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10. Explicit higher local class field theory

Ivan Fesenko

In this section we present an approach to higher local class field theory [F1-2] different
from Kato’s (see section 5) and Parshin’s (see section 7) approaches.

Let F (F = Kn, . . . ,K0 ) be an n-dimensional local field. We use the results of
section 6 and the notations of section 1.

10.1. Modified class formation axioms

Consider now an approach based on a generalization [F2] of Neukirch’s approach [N].
Below is a modified system of axioms of class formations (when applied to topo-

logical K -groups) which imposes weaker restrictions than the classical axioms (cf.
section 11).

(A1). There is a Ẑ-extension of F .
In the case of higher local fields let F pur/F be the extension which corresponds to

K
sep
0 /K0: F pur = ∪(l,p)=1F (µl); the extension F pur is called the maximal purely un-

ramified extension of F . Denote by FrobF the lifting of the Frobenius automorphisms
of Ksep

0 /K0. Then

Gal(F pur/F ) ' Ẑ, FrobF 7→ 1.

(A2). For every finite separable extension F of the ground field there is an abelian
group AF such that F → AF behaves well (is a Mackey functor, see for instance
[D]; in fact we shall use just topological K -groups) and such that there is a
homomorphism v:AF → Z associated to the choice of the Ẑ-extension in (A1)
which satisfies

v(NL/FAL) = |L ∩ F pur : F | v(AF ).

In the case of higher local fields we use the valuation homomorphism

v:K top
n (F )→ Z
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of 6.4.1. From now on we write K top
n (F ) instead of AF . The kernel of v is V K top

n (F ).
Put

vL =
1

|L ∩ F pur : F |v ◦NL/F .

Using (A1), (A2) for an arbitrary finite Galois extension L/F define the reciprocity
map

ϒL/F : Gal(L/F )→ K top
n (F )/NL/FK

top
n (L), σ 7→ NΣ/FΠΣ mod NL/FK

top
n (L)

where Σ is the fixed field of σ̃ and σ̃ is an element of Gal(L pur/F ) such that σ̃|L = σ
and σ̃|F pur = FrobiF with a positive integer i. The element ΠΣ of K top

n (Σ) is any such

that vΣ(ΠΣ) = 1; it is called a prime element of K top
n (Σ). This map doesn’t depend

on the choice of a prime element of K top
n (Σ), since ΣL/Σ is purely unramified and

V K
top
n (Σ) ⊂ NΣL/ΣV K

top
n (ΣL).

(A3). For every finite subextension L/F of F pur/F (which is cyclic, so its Galois
group is generated by, say, a σ )
(A3a) |K top

n (F ) : NL/FK
top
n (L)| = |L : F | ;

(A3b) 0 −→ K
top
n (F )

iF/L−−−→ K
top
n (L)

1−σ−−→ K
top
n (L) is exact;

(A3c) K
top
n (L)

1−σ−−→ K
top
n (L)

NL/F−−−→ K
top
n (F ) is exact.

Using (A1), (A2), (A3) one proves that ϒL/F is a homomorphism [F2].

(A4). For every cyclic extensions L/F of prime degree with a generator σ and a cyclic
extension L′/F of the same degree

(A4a) K
top
n (L)

1−σ−−→ K
top
n (L)

NL/F−−−→ K
top
n (F ) is exact;

(A4b) |K top
n (F ) : NL/FK

top
n (L)| = |L : F |;

(A4c) NL′/FK
top
n (L′) = NL/FK

top
n (L)⇒ L = L′ .

If all axioms (A1)–(A4) hold then the homomorphism ϒL/F induces an isomor-
phism [F2]

ϒab
L/F : Gal(L/F )ab → K top

n (F )/NL/FK
top
n (L).

The method of the proof is to define explicitly (as a generalization of Hazewinkel’s
approach [H]) a homomorphism

Ψab
L/F :K top

n (F )/NL/FK
top
n (L)→ Gal(L/F )ab

and then show that Ψab
L/F ◦ ϒab

L/F is the indentity.

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields
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10.2. Characteristic p case

Theorem 1 ([F1], [F2]). In characteristic p all axioms (A1)–(A4) hold. So we get the
reciprocity map ΨL/F and passing to the limit the reciprocity map

ΨF :K top
n (F )→ Gal(F ab/F ).

Proof. See subsection 6.8. (A4c) can be checked by a direct computation using the
proposition of 6.8.1 [F2, p. 1118–1119]; (A3b) for p-extensions see in 7.5, to check it
for extensions of degree prime to p is relatively easy [F2, Th. 3.3].

Remark. Note that in characteristic p the sequence of (A3b) is not exact for an
arbitrary cyclic extension L/F (if L 6⊂ F pur ). The characteristic zero case is discussed
below.

10.3. Characteristic zero case. I

10.3.1. prime-to- p-part.
It is relatively easy to check that all the axioms of 10.1 hold for prime-to-p extensions

and for

K ′n(F ) = K top
n (F )/V K top

n (F )

(note that V K top
n (F ) =

⋂
(l,p)=1 lK

top
n (F ) ). This supplies the prime-to- p-part of the

reciprocity map.

10.3.2. p-part.
If µp 6 F ∗ then all the axioms of 10.1 hold; if µp 66 F ∗ then everything with

exception of the axiom (A3b) holds.

Example. Let k = Qp(ζp). Let ω ∈ k be a p-primary element of k which means
that k( p

√
ω)/k is unramified of degree p. Then due to the description of K2 of a local

field (see subsection 6.1 and [FV, Ch.IX §4]) there is a prime elements π of k such
that {ω, π} is a generator of K2(k)/p. Since α = ik/k( p

√
ω){ω, π} ∈ pK2(k( p

√
ω)),

the element α lies in
⋂
l>1 lK2(k( p

√
ω)). Let F = k{{t}}. Then {ω, π} /∈ pK top

2 (F )

and iF/F ( p
√
ω){ω, π} = 0 in K

top
2 (F ( p

√
ω)).

Since all other axioms are satisfied, according to 10.1 we get the reciprocity map

ϒL/F : Gal(L/F )→ K top
n (F )/NL/FK

top
n (L), σ 7→ NΣ/FΠΣ

for every finite Galois p-extension L/F .
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To study its properties we need to introduce the notion of Artin–Schreier trees
(cf. [F3]) as those extensions in characteristic zero which in a certain sense come
from characteristic p. Not quite precisely, there are sufficiently many finite Galois
p-extensions for which one can directly define an explicit homomorphism

K top
n (F )/NL/FK

top
n (L)→ Gal(L/F )ab

and show that the composition of ϒab
L/F with it is the identity map.

10.4. Characteristic zero case. II: Artin–Schreier trees

10.4.1.

Definition. A p-extension L/F is called an Artin–Schreier tree if there is a tower of
subfields F = F0 − F1 − · · · − Fr = L such that each Fi/Fi−1 is cyclic of degree p,
Fi = Fi−1(α), αp − α ∈ Fi−1.

A p-extension L/F is called a strong Artin–Schreier tree if every cyclic subexten-
sion M/E of degree p, F ⊂ E ⊂M ⊂ L, is of type E = M (α), αp − α ∈M .

Call an extension L/F totally ramified if f (L|F ) = 1 (i.e. L ∩ F pur = F ).

Properties of Artin–Schreier trees.
(1) if µp 66 F ∗ then every p-extension is an Artin–Schreier tree; if µp 6 F ∗ then

F ( p
√
a)/F is an Artin–Schreier tree if and only if aF ∗p 6 VFF ∗p .

(2) for every cyclic totally ramified extension L/F of degree p there is a Galois totally
ramified p-extension E/F such that E/F is an Artin–Schreier tree and E ⊃ L.

For example, if µp 6 F ∗, F is two-dimensional and t1, t2 is a system of local
parameters of F , then F ( p

√
t1)/F is not an Artin–Schreier tree. Find an ε ∈ VF \ V pF

such that M/F ramifies along t1 where M = F ( p
√
ε). Let t1,M , t2 ∈ F be a system

of local parameters of M . Then t1t
−p
1,M is a unit of M . Put E = M

(
p

√
t1t
−p
1,M

)
. Then

E ⊃ F ( p
√
t1) and E/F is an Artin–Schreier tree.

(3) Let L/F be a totally ramified finite Galois p-extension. Then there is a totally
ramified finite p-extension Q/F such that LQ/Q is a strong Artin–Schreier tree
and L pur ∩Q pur = F pur.

(4) For every totally ramified Galois extension L/F of degree p which is an Artin–
Schreier tree we have

vL pur (K
top
n (L pur)

Gal(L/F )) = pZ

where v is the valuation map defined in 10.1, K top
n (L pur) = lim−→M K

top
n (M ) where

M/L runs over finite subextensions in L pur/L and the limit is taken with respect
to the maps iM/M ′ induced by field embeddings.
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Proposition 1. For a strong Artin–Schreier tree L/F the sequence

1 −→ Gal(L/F )ab g−→ V K top
n (L pur)/I(L|F )

NL pur/F pur−−−−−−−→ V K top
n (F pur) −→ 0

is exact, where g(σ) = σΠ−Π, vL(Π) = 1, I(L|F ) = 〈σα− α : α ∈ V K top
n (L pur)〉.

Proof. Induction on |L : F | using the property NL pur/M purI(L|F ) = I(M |F ) for a
subextension M/F of L/F .

10.4.2. As a generalization of Hazewinkel’s approach [H] we have

Corollary. For a strong Artin–Schreier tree L/F define a homomorphism

ΨL/F :V K top
n (F )/NL/FV K

top
n (L)→ Gal(L/F )ab, α 7→ g−1((FrobL−1)β)

where NL pur/F purβ = iF/F purα and FrobL is defined in 10.1.

Proposition 2. ΨL/F ◦ ϒab
L/F : Gal(L/F )ab → Gal(L/F )ab is the identity map; so for

a strong Artin–Schreier tree ϒab
L/F is injective and ΨL/F is surjective.

Remark. As the example above shows, one cannot define ΨL/F for non-strong Artin–
Schreier trees.

Theorem 2. ϒab
L/F is an isomorphism.

Proof. Use property (3) of Artin–Schreier trees to deduce from the commutative dia-
gram

Gal(LO/Q)
ϒLQ/Q−−−−→ K

top
n (Q)/NLQ/QK

top
n (LQ)y NQ/F

y
Gal(L/F )

ϒL/F−−−−→ K
top
n (F )/NL/FK

top
n (L)

that ϒL/F is a homomorphism and injective. Surjectivity follows by induction on
degree.

Passing to the projective limit we get the reciprocity map

ΨF :K top
n (F )→ Gal(F ab/F )

whose image in dense in Gal(F ab/F ).

Remark. For another slightly different approach to deduce the properties of ϒL/F see
[F1].
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10.5

Theorem 3. The following diagram is commutative

K
top
n (F )

ΨF−−−−→ Gal(F ab/F )

∂

y y
K

top
n−1(Kn−1)

ΨKn−1−−−−→ Gal(Kab
n−1/Kn−1).

Proof. Follows from the explicit definition of ϒL/F , since ∂{t1, . . . , tn} is a prime

element of K top
n−1(Kn−1).

Existence Theorem ([F1-2]). Every open subgroup of finite index in K
top
n (F ) is the

norm group of a uniquely determined abelian extension L/F .

Proof. Let N be an open subgroup of K top
n (F ) of prime index l.

If p 6= l, then there is an α ∈ F ∗ such that N is the orthogonal complement of 〈α〉
with respect to t(q−1)/l where t is the tame symbol defined in 6.4.2.

If char (F ) = p = l, then there is an α ∈ F such that N is the orthogonal
complement of 〈α〉 with respect to ( , ]1 defined in 6.4.3.

If char (F ) = 0, l = p, µp 6 F ∗, then there is an α ∈ F ∗ such that N is the
orthogonal complement of 〈α〉 with respect to V1 defined in 6.4.4 (see the theorems in
8.3). If µp 66 F ∗ then pass to F (µp) and then back to F using (|F (µp) : F |, p) = 1.

Due to Kummer and Artin–Schreier theory, Theorem 2 and Remark of 8.3 we deduce
that N = NL/FK

top
n (L) for an appropriate cyclic extension L/F .

The theorem follows by induction on index.

Remark 1. From the definition of K top
n it immediately follows that open subgroups

of finite index in Kn(F ) are in one-to-one correspondence with open subgroups in
K

top
n (F ). Hence the correspondence L 7→ NL/FKn(L) is a one-to-one correspondence

between finite abelian extensions of F and open subgroups of finite index in Kn(F ).

Remark 2. If K0 is perfect and not separably p-closed, then there is a generalization
of the previous class field theory for totally ramified p-extensions of F (see Remark
in 16.1). There is also a generalization of the existence theorem [F3].

Corollary 1. The reciprocity map ΨF :K top
n (F )→ Gal(L/F ) is injective.

Proof. Use the corollary of Theorem 1 in 6.6.
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Corollary 2. For an element Π ∈ K top
n (F ) such that vF (Π) = 1 there is an infinite

abelian extension FΠ/F such that

F ab = F purFΠ, F pur ∩ FΠ = F

and Π ∈ NL/FK top
n (L) for every finite extension L/F , L ⊂ FΠ .

Problem. Construct (for n > 1 ) the extension FΠ explicitly?
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