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10. Explicit higher local class field theory

Ivan Fesenko

In this section we present an approach to higher local classfield theory [F1-2] different
from Kato's (see section 5) and Parshin’s (see section 7) approaches.

Let F (F=K,, ...,Kp)bean n-dimensional local field. We use the results of
section 6 and the notations of section 1.

10.1. Modified class formation axioms

Consider now an approach based on a generalization [F2] of Neukirch’'s approach [N].
Below is a modified system of axioms of class formations (when applied to topo-
logical K -groups) which imposes weaker restrictions than the classical axioms (cf.

section 11).

(A1). Thereisa Z-extension of F.

In the case of higher local fieldslet Fpyr/F' be the extension which corresponds to
ngp/KO: Four = Ug p)=1F (11); the extension Fpr is called the maximal purely un-
ramified extension of F'. Denote by Frobg thelifting of the Frobenius automorphisms
of K5/Ko. Then

Gal(Fpur/F) ~ 7, Frobp — 1.

(A2). For every finite separable extension F' of the ground field there is an abelian
group Ap suchthat ¥ — Ap behaveswell (isa Mackey functor, seefor instance
[D]; in fact we shall use just topological K-groups) and such that there is a
homomorphism v: Ar — 7Z associated to the choice of the Z-extension in (A1)
which satisfies

o(Np pAL) = |L N Fpur - F| 0(Ap).

In the case of higher local fields we use the valuation homomorphism
v: K'P(F) - Z
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of 6.4.1. Fromnow onwewrite K P(F) insteadof Ay. Thekernel of v is VK P(F).
Put
1

= = boNu
LA Fpy: F| T

vr
Using (A1), (A2) for an arbitrary finite Galoisextension L/F' definethe reciprocity
map

Y. r:Gal(L/F) — K\P(F)/Ny,p K}®(L), o — Ns,pMs mod Ny, pKP(L)

where X isthefixedfieldof & and & isan element of Gal(L pyr/F) suchthat 0| = o
and &|p,, = Frobl, with apositiveinteger i. Theelement My of K, "(Z) isany such
that vs(Ms) = 1; it is called a prime element of K °(S). This map doesn’t depend
on the choice of a prime element of Kf?p(Z), since 2L /% is purely unramified and
VEP(E) C NspsVEP(EL).
(A3). For every finite subextension L/F of Fpy/F (which is cyclic, so its Galois

group isgenerated by, say, a o)

(A33) |KyP(F): NppKP(L)|=|L: Fl;

(A3b) 0 — KOP(F) /% K1) 127, K1) isexact;

o N .
(A30) K'P(1) 1% K1) 27 KI%P(F) isexact.

Using (A1), (A2), (A3) oneprovesthat Y, isahomomorphism [F2].

(A4). For everycyclicextensions L/ F of primedegreewith a generator o andacyclic
extension L'/F of the same degree
(Ada) KOP(1) =% koP(r) N2/7, (1P is exact;
(Adb) |KP(F): Npyp Kn®(L)| = |L: F;
(Adc) Ny pKiP(L')= Ny pKpP(L) = L=1'
If all axioms (A1)~(A4) hold then the homomorphism Y7, induces an isomor-
phism [F2]
Y% piGal(L/F)® — K\P(F)/Npr KP(L).

The method of the proof is to define explicitly (as a generalization of Hazewinkd's
approach [H]) a homomorphism

l'PaLb/F: K®(F)/Nyp,p K'°P(L) — Gal(L/F)®

and then show that W%, , o Y%, , istheindentity.

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



Part . Section 10. Explicit local class field theory 97

10.2. Characteristic p case

Theorem 1 ([F1], [F2]). Incharacteristic p all axioms (A1)—(A4) hold. So we get the
reciprocity map W, and passing to the limit the reciprocity map

We: K'9P(F) — Ga(F®/F).

Proof. See subsection 6.8. (A4c) can be checked by a direct computation using the
proposition of 6.8.1 [F2, p. 1118-1119]; (A3b) for p-extensions seein 7.5, to check it
for extensions of degree primeto p isrelatively easy [F2, Th. 3.3]. O

Remark. Note that in characteristic p the sequence of (A3b) is not exact for an
arbitrary cyclicextension L/F' (if L ¢ Fpyr). Thecharacteristic zero caseis discussed
below.

10.3. Characteristic zero case. |

10.3.1. prime-to- p-part.
Itisrelatively easy to check that all theaxiomsof 10.1 hold for prime-to- p extensions
and for

K,(F) = K. P(F) |V IGP(F)
(note that VK P(F) = =1 LKn " (F)). This supplies the prime-to- p-part of the
reciprocity map.

10.3.2. p-part.
If up, < F* then al the axioms of 10.1 hold; if p, £ F* then everything with
exception of the axiom (A3b) holds.

Example. Let & = Q,((y). Let w € k bea p-primary element of & which means
that k(¥/w)/k isunramified of degree p. Then dueto the description of K, of alocal
field (see subsection 6.1 and [FV, Ch.IX §4]) there is a prime elements 7 of k£ such
that {w,n} isagenerator of Kp(k)/p. Since a = iy ymiw, 7} € pKa(k({/w)),
the dement o liesin (5, LKo(k(¢/w)). Let F = k{{t}}. Then {w, 7} ¢ pk, (F)
and i) p( o w7} =0 in KyP(F(/w)).
Since all other axioms are satisfied, according to 10.1 we get the reciprocity map
Yr,r:Gal(L/F) — K\®(F)/N,p KI®(L), o+ Ns;pMs

for every finite Galois p-extension L/F.
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To study its properties we need to introduce the notion of Artin—Schreier trees
(cf. [F3]) as those extensions in characteristic zero which in a certain sense come
from characteristic p. Not quite precisely, there are sufficiently many finite Galois
p-extensions for which one can directly define an explicit homomorphism

K®(F)/Ny pKGP(L) — Gal(L/F)®
and show that the composition of Y2, . with it is the identity map.

10.4. Characteristic zero case. Il; Artin—Schreier trees

104.1.

Definition. A p-extension L/F iscalled an Artin—Schreier treeif thereis a tower of
subfields F' = Fp — F} — --- — F, = L suchthat each F;/F;_; iscyclic of degree p,
F,=F,_1(a), a? —a € F;_;.

A p-extension L/F iscalled astrong Artin—Schreier treeif every cyclic subexten-
sion M/FE ofdegreep, F C EC M C L, isof type E = M(a), o —a € M.

Call anextension L/F totally ramifiedif f(L|F)=1 (i.e. LN Fpy = F).

Properties of Artin—Schreier trees.
(1) if pp, £ F* then every p-extension is an Artin-Schreier tree; if 1, < F* then
F(¥/a)/F isan Artin—Schreier treeif and only if aF*? < Ve F*P.
(2) foreverycyclictotally ramified extension L/ F' of degree p thereisaGaloistotally
ramified p-extension E/F suchthat E/F isan Artin-Schreier treeand £ D L.
For example, if 1, < F*, F istwo-dimensiona and t1,t, is a system of local
parametersof F, then F({/t1)/F isnotan Artin-Schreier tree. Findan ¢ € Vy \ VE
suchthat M /F ramifiesaong t1 where M = F({/e). Let t1 y,t2 € F beasystem

of local parametersof M. Then t1t,§;, isaunitof M. Put E'= M ({/taty ;). Then

E D F(¢/t1) and E/F isan Artin—Schreier tree.

(3) Let L/F be atotally ramified finite Galois p-extension. Then there is a totally
ramified finite p-extension Q/F suchthat LQ)/Q isastrong Artin-Schreier tree
and Lpur N Q pur = Fpur-

(4) For every totally ramified Galois extension L/F of degree p which is an Artin—
Schreier tree we have

01 pur (KIP(L pur)®3E/ ) = pz2

where v isthevaluation map definedin 10.1, K7 P(L pur) = lim o K, P(M) where
M /L runsover finite subextensionsin Ly /L and the limit is taken with respect
to the maps 4,/ induced by field embeddings.
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Proposition 1. For a strong Artin—Schreier tree L/ F' the sequence

L pur / F'pur

1 — Gal(L/F)® % VKL pur) / I(L|F) — VEP(Fp) — 0
is exact, where g(o) = ol — T, v (M) =1, I(L|F) = (0o — o : o € VK (L pur))-
Proof. Inductionon |L : F'| using the property Ny, /o, [(LIF) = I(M|F) for a
subextension M /F of L/F. O
10.4.2. Asageneralization of Hazewinkel’s approach [H] we have
Corollary. For a strong Artin—Schreier tree L/ F' define a homomorphism

Wi et VIGP(F) /Ny e VEGP(L) — GA(L/F)®,  a— g *((Froby, ~1)5)
where Ny, /FouB = ir/Fp,« @nd Froby, isdefined in 10.1.
Proposition 2. W,/ o Y&, .- Gal(L/F)® — Gal(L/F)® is the identity map; so for

astrong Artin—Schreier tree Y%b/  isinjectiveand W,/ issurjective.

Remark. Astheexampleaboveshows, onecannot define W,/ for non-strong Artin—
Schreier trees.

Theorem 2. Y%, . isan isomorphism.

Proof. Use property (3) of Artin—Schreier trees to deduce from the commutative dia-
gram

Gal(L0/Q) 22 K(Q)/N1o/0 K P(LQ)
J |

GA(L/F) —  KP(F)/Ny, r K\P(L)

that Y7, is a homomorphism and injective. Surjectivity follows by induction on
degree. O

Passing to the projective limit we get the reciprocity map
Yp: K(F) — Ga(F®/F)
whose image in densein Gal(F®/F).

Remark. For another slightly different approach to deduce the propertiesof Y, see
[F1].
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10.5

Theorem 3. The following diagramis commutative

K®r) —Pr. Ga@FEr®/F)

o| l

LIJK’VL—
K® (K, 1) — Gad(K® /K, 1).

Proof. Follows from the explicit definition of Y;, /-, since 0{t1, ...,t,} isaprime
element of K'®,(K,,_1). 0

Existence Theorem ([F1-2]). Every open subgroup of finite index in KELO'D(F) isthe
norm group of a uniquely determined abelian extension L/F'.

Proof. Let N be an open subgroup of K °P(F) of primeindex .

If p #1, thenthereisan « € F* suchthat N isthe orthogonal complement of ()
with respect to ¢(4=1/! where ¢ is the tame symbol definedin 6.4.2.

If char(F) = p = [, then thereisan « € F such that N is the orthogonal
complement of («) with respectto (, ]; definedin 6.4.3.

If char(F) =0,l =p, pp, < F*, thenthereisan a € F* such that N isthe
orthogonal complement of («) with respectto V1 definedin 6.4.4 (seethe theoremsin
8.3). If p, £ F* thenpassto F(u,) andthenback to F' using (| F'(up) @ F|,p) = 1.

Dueto Kummer and Artin—Schreier theory, Theorem 2 and Remark of 8.3 we deduce
that N = Ny, KxP(L) for an appropriate cyclic extension L/F.

The theorem follows by induction on index. 0

Remark 1. From the definition of K'°° it immediately follows that open subgroups
of finite index in K,,(F) are in one-to-one correspondence with open subgroups in
KLOp(F). Hencethe correspondence L — N,/ K, (L) isaone-to-onecorrespondence
between finite abelian extensions of F' and open subgroups of finiteindex in K, (F).

Remark 2. If Ky is perfect and not separably p-closed, then there is a generalization
of the previous class field theory for totally ramified p-extensions of F' (see Remark
in 16.1). Thereis also ageneralization of the existence theorem [F3].

Corollary 1. Thereciprocity map Wr: K\P°(F) — Gal(L/F) isinjective.

Proof. Usethe corollary of Theorem 1in 6.6. O
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Corollary 2. For an element M € K P(F) such that vx(M) = 1 thereis an infinite
abelian extension Fy/F such that

Fab:FpurFrh Fpuw Nk =F

and M € Ny, p KiP(L) for everyfinite extension L/F, L C Fn.

Problem. Construct (for n > 1) the extension Fpy explicitly?

(D]

[F1]

[F2]

[F3]
[F4]

[F3]
[FV]

[H]
[N]

References

A. Dress, Contributions to the theory of induced representations, Lect. Notes in Math.
342, Springer 1973.

I. Fesenko, Class field theory of multidimensional local fields of characteristic 0, with
the residue field of positive characteristic, Algebrai Analiz (1991); English translation
in St. Petersburg Math. J. 3(1992), 649-678.

I. Fesenko, Multidimensional local classfield theory I, Algebrai Analiz (1991); English
trandation in St. Petersburg Math. J. 3(1992), 1103-1126.

I. Fesenko, Abelian local p-class field theory, Math. Ann. 301 (1995), pp. 561-586.

I. Fesenko, Abelian extensions of complete discrete valuation fields, Number Theory
Paris 1993/94, Cambridge Univ. Press, 1996, 47—74.

I. Fesenko, Sequential topologies and quotients of the Milnor K -groups of higher local
fields, preprint, www.maths.nott.ac.uk/personal/ ibf/stgk.ps

|. Fesenko and S. Vostokov, Loca Fields and Their Extensions, AMS, Providence RI,
1993.

M. Hazewinkel, Local classfield theory is easy, Adv. Math. 18(1975), 148-181.
J. Neukirch, Class Field Theory, Springer, Berlin etc. 1986.

Department of Mathematics University of Nottingham
Nottingham NG7 2RD England

E-mail: ibf@maths.nott.ac.uk

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



