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Cusp equivalence between smooth embeddings
of the 2–sphere in 4–space

Takao Matumoto

Abstract If the fundamental group of the complement of a smooth em-
bedding f : S2 ⊂ R4 is a cyclic group, the map can be deformed to the
standard embedding by a generic one-parameter family with at most cusp
singularities. If two smooth embeddings are connected by such a deforma-
tion, they will be called cusp equivalent. We will discuss the relation of
three equivalences of smooth 2–knots S2 ⊂ R4 ; cusp equivalence, stable
equivalence and weakly stable equivalence.
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1 Introduction

First we present the following theorem. We say that fλ has a cusp singularity
at λ = 0 if fλ(x, y) = (x2, y, x(λ − x2 − y),±xy) or fλ(x, y) = (x2, y, x(−λ −
x2 − y),±xy) for some local coordinates of S2 and R4 which are compatible
with the orientations. The former is called a cusp birth and the latter a cusp
death.

Theorem 1 If the fundamental group of the complement of a smooth embed-
ding f : S2 ⊂ R4 is a cyclic group, then there is a generic one-parameter family
of smooth maps ft : S2 → R4 such that f0 is the standard embedding, f1 = f
and ft is a self-transverse immersion except for finitely many t’s where ft has
only one cusp singularity.

If ft has a first cusp singularity at t1 , then ft is an embedding for t < t1 and
ft has a self-intersection point for t1 < t < t1 + ε. The second cusp either
leads a birth of another self-intersection point or leads to the death of the first
self-intersection point and so on. A self-intersection point appears or disappears
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at a cusp birth or a cusp death respectively. Theorem 1 is easily extended to a
connected embedded surface in R4 . In the case of non-orientable surfaces there
are several unknotted embeddings which are not isotopic because they have
different normal Euler numbers but they are connected by such a deformation.
Kamada also gave a proof of the generalized version of Theorem 1 in [2].

Let f0(S2) and f1(S2) be the image of two embedded 2–spheres. These 2–knots
can be equivalent in the following three senses.

(1) They are cusp equivalent if they are connected by a generic one-parameter
family {ft} of smooth maps such that ft is a self-transverse immersion except
for finitely many values of t at which ft has only one cusp singularity.

(2) They are stably equivalent if they are ambient isotopic after trivial 1–
handles are attached. That is, they are ambient isotopic after a genus g un-
knotted orientable surface is attached as a connected summand to each.

(3) They are weakly stably equivalent if, for some n ≥ 0, they are ambient
isotopic in R4#(#nS

2 × S2).

If ft is a generic deformation with at most cusp singularities, then the funda-
mental group of the complement is kept constant during the deformation. We
have the following theorem.

Theorem 2 Assume that two smooth 2–knots f0 : S2 ⊂ R4 and f1 : S2 ⊂ R4

are cusp equivalent. Then they are stably equivalent.

Theorem 2 is easily generalized to the case of embedded orientable surfaces of
positive genus. In the case of embedded non-orientable surfaces we need the
additional condition that they have the same normal Euler numbers.

Theorem 3 Stably equivalent 2–knots S2
0 ⊂ R4 and S2

1 ⊂ R4 are weakly
stably equivalent.

Theorem 1 should be known to specialists who are familiar both with 2–knot
theory and singularity theory. But since it would give a starting point for a
possible proof of the smooth 4–dimensional unknotting conjecture, I would like
to dedicate this short paper to Professor R Kirby. I would also like to thank
the referee who read the manuscript carefully and offered a beautiful figure to
simplify the proof of Theorem 2.
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2 Proof of the Theorems

Proof of Theorem 1 Since any two maps of S2 into R4 are mutually homo-
topic, there is a generic one-parameter family of smooth maps ft : S2 → R4

connecting f0 and f1 . By dimensional reasoning, the generic births and deaths
of self-intersection points have only two types; finger moves and cusps. In fact
at a finite number of t’s the image of ft has a cusp or a partial tangency of two
local sheets. By a finger move we mean the local deformation including the lat-
ter non-transverse case; a finger pushes a local sheet until it penetrates another
local sheet. We get a pair of self-intersection points after the penetration with
one plus and one minus intersection number. Note that the reverse process of
the finger move is a Whitney trick. We may think that the finger move follows
along a curve α that connects two points of S2 . If the fundamental group of the
complement is a cyclic group generated by the element encircling the surface,
the curve α is homotopically trivial relative boundary and hence isotopically
trivial; so, we get a 2–disk D with two corners and ∂D = α ∪ (D ∩ S2). Now
it is not difficult to decompose this finger move into two cusp births.

The reverse deformation around the cusp birth, that is, the cusp death process
can be described by the collapsing of a 2–disk D with one corner such that
∂D = D ∩ {immersed S2} and the corner point on the boundary is the self-
intersection point. Moreover we have two types of cusps for the cusp birth;
one gives a positive intersection point and another gives a negative one for
the appearing immersed surface. If the finger move is isotopically trivial, we
can construct a pair of disjoint collapsing 2–disks for the pair of positive and
negative self-intersection points and get a pair of positive and negative cusps.
This completes the proof of Theorem 1. For another proof one may consult the
manuscript written by Kamada [2].

Before giving a proof of Theorem 2 we recall the definition of trivial 1–handles.
An embedded product, B × I , of a 2–disk B and an interval I in R4 is said
to span S2 as a 1–handle if (B × I) ∩ S2 = B × {0, 1} ∩ S2 and the surface
obtained by the surgery according to B× I has an orientation compatible with
the original one. The circle β = ∂B × 1/2 parallel to the boundary of ∂B × I
is considered. The 1–handle is called trivial if there is a 2–disk D such that
D ∩ ((B × I) ∪ S2) = ∂D and ∂D ∩ β = a point.

By a smoothing of a transverse double point we mean replacing a neighborhood
of the transverse double point with a standard annulus connecting the compo-
nents of a Hopf link in the boundary 3–sphere. When the surface is oriented,
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the smoothing should respect the orientation and the isotopy class of the re-
sulting surface is uniquely determined. Since a cusp birth is described also by
fλ(x, y) = (x2, y, x(λ − x2 − y2),±xy), an oriented smoothing of the double
point appearing at the cusp birth is shown in Figure 1.

Figure 1: Smoothing a double point

We can find easily B × I and D of a trivial 1–handle in the figure. If the sign
of the cusp birth is reversed, the upper and lower curves at the crossing in the
figure are reversed. So, we obtain:

Lemma Let F0 be an oriented immersed surface in R4 , and let F1 be a
surface obtained from F0 by a single cusp birth. Let F2 be obtained from F1

by smoothing the double point that appears following the cusp birth. Then F2

is obtained from F0 by surgery along a trivial 1–handle.

Proof of Theorem 2 Let f1(S2) = S2
1 and f2(S2) = S2

2 be embedded 2–
spheres in R4 that are cusp equivalent. The one-parameter family {ft} can be
deformed so that any cusp birth takes place at t < 1/2 and any cusp death
takes place at t > 1/2. So we may assume that there is an immersed 2–sphere
f1/2(S2) = S in R4 such that S can be obtained from either S2

1 or S2
2 by

attaching m cusps for some m. Let F be the embedded surface obtained from
S by smoothing all the double points of S . The result follows from the previous
lemma.

I thank the referee for offering the use of Figure 1 which simplifies the proof of
Theorem 2 greatly.
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Proof of Theorem 3 The surface which is obtained by attaching n trivial
1–handles is a connected sum of the original 2–knot and an unknotted surface
F of genus n in the sense of [1]. Since the bounding solid tori for the unknotted
surfaces F are ambient isotopic to each other by Corollary 1.6 of [1], we may
assume that there is an orientation preserving diffeomorphism h of R4 to itself
which not only satisfies h(S2

0#F ) = S2
1#F but also preserves the circles β ’s

determined by the trivial 1–handles. Now we consider each trivial 1–handle.
Perform surgery along the loop on the embedded surface which intersects the
circle β at one point for the trivial 1–handle recursively. We have to respect
the stable framing when making the surgery. Then we get a 2–knot in the new
ambient manifold, the connected sum of R4 with n copies of S2 × S2 . Let
Ds be the core 2–disk of the surgery disk and Do the original Whitney type
2–disk for the trivial 1–handle. The 2–disks Do ’s depend on each of the original
2–knots. If we do surgery on the new ambient manifold along each 2–sphere
Ds ∪Do , we get the original 2–knot in R4 . So, doing the reversing surgery n
times for the complement of each of S2

0 and S2
1 again, we get Theorem 3.

3 On the generalization

The generalization of Theorem 1 to an embedded connected surface in R4 is
straightforward.

In the case of RP 2 we have a generic one-parameter family with only a pair of
cusp births and deaths connecting the unknotted surfaces with normal Euler
numbers 2 and −2. Here the normal Euler number means half of the intersec-
tion number of the zero section of the induced disk bundle for the normal bundle
of the immersed unoriented surface with respect to its orientable 2–covering.

The proof of Theorem 2 is easily generalized to an oriented surface of positive
genus because the sign of a cusp birth or death is determined by the intersection
number of the self-intersection point of the central oriented immersed surface.
Also, if the intersection number of the self-intersection point is positive or neg-
ative, its contribution to the normal Euler number of the immersed surface is
−2 or +2 respectively [3] and the procedure of Lemma annuls this contribution
in the case of oriented smoothing.

But in the case of non-orientable surfaces we cannot distinguish a positive or
negative cusp after it turns into a self-intersection point. So, a double point
which appears at a positive cusp birth may terminate at a negative cusp death.
In this case the smoothing double point cannot respect the local orientation
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near the cusp and if the cusp birth is smoothed by attaching a trivial 1–handle
then the cusp death is smoothed by attaching two unknotted RP 2 ’s with the
same Euler number. Nevertheless, if the normal Euler numbers of two embed-
dings f0 and f1 are the same, the number of positive cusp births and positive
cusp deaths should be equal and similarly the number of negative ones. Hence,
if a self-intersection point born at a positive cusp dies at a negative cusp, there
is also a self-intersection point born at a negative cusp and dieing at a positive
cusp and vice versa. So, if the cusp births are smoothed by attaching 1–handles,
then the cusp deaths are smoothed by attaching the connected sum of unknot-
ted tori and RP 2 ’s with zero total Euler number. Since the connected sums of
the unknotted RP 2 with the unknotted torus and with two unknotted RP 2 ’s
with Euler number −2 and 2 are isotopic, cusp equivalent non-orientable sur-
faces with the same Euler number are stably equivalent after possibly taking
connected sum of each with an unknotted RP 2 .

If the notion of stable equivalence for non-orientable surfaces is enlarged to
include the connected sum with unknotted RP 2 ’s, then we can drop the hy-
pothesis that the normal Euler numbers are the same.

As for Theorem 3, if the 1–handles are preserved by an ambient isotopy for
stably equivalent embedded surfaces, they are easily shown to be weakly stably
equivalent. We expect this to be true in general but we might have some
difficulties even in the orientable case.
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