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Abstract We consider complex Fenchel{Nielsen coordinates on the
quasi-Fuchsian space of punctured tori. These coordinates arise from
a generalisation of Kra’s plumbing construction and are related to earth-
quakes on Teichmüller space. They also allow us to interpolate between
two coordinate systems on Teichmüller space, namely the classical Fuch-
sian space with Fenchel{Nielsen coordinates and the Maskit embedding.
We also show how they relate to the pleating coordinates of Keen and
Series.
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0 Introduction

In this note we study the holomorphic extension of the classical Fenchel{Nielsen
coordinates of the Teichmüller space of once-punctured tori to the quasi-con-
formal deformation space of a Fuchsian group representing two punctured tori,
quasi-Fuchsian punctured torus space. A punctured torus group G = hS; T i
is a discrete, marked, free subgroup of PSL(2;C) with two generators whose
commutator K = T−1S−1TS is parabolic. This group acts naturally on the
Riemann sphere by conformal transformations. The limit set �(G) consists of
all accumulation points of this action and is the smallest nonempty closed G{
invariant subset of the Riemann sphere. Its complement is called the ordinary
set Ω(G). The group G is called quasi-Fuchsian if its ordinary set Ω(G) consists
of two simply connected components or equivalently if its limit set �(G) is a
topological circle. The space of all quasi-Fuchsian punctured torus groups up
to conjugation within PSL(2;C) is called quasi-Fuchsian punctured torus space
and will be denoted by Q. The subset of Q consisting of groups whose limit
set is a round circle is the space of all Fuchsian punctured torus groups. We
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call this Fuchsian punctured torus space and we will denoted it by F . It is a
copy of the Teichmüller space of the punctured torus.

Our approach to quasi-Fuchsian punctured torus groups is a combination of the
classical Fenchel{Nielsen construction of Fuchsian groups and the gluing con-
struction used by Kra in [12] for terminal b-groups. This is rather natural as
Fuchsian groups form a real subspace inside the space of quasi-Fuchsian groups,
and terminal b-groups form part of the boundary of the same space. We start
with a Fuchsian group F of the second kind such that X0 , the quotient of the
hyperbolic plane by F , is a sphere with a puncture and two in�nite area ends
with boundary geodesics of equal lengths. We then extend the group by adding
a Möbius transformation that glues together the in�nite area ends of the quo-
tient to make a punctured torus. If the resulting group G is Fuchsian, this is
the Fenchel{Nielsen construction. The construction is carried out in Section 1
and the Fenchel{Nielsen parameter is connected with the gluing parameter in
Proposition 3.2. We can also regard F and G as acting on the Riemann sphere
and we allow the Fenchel{Nielsen parameters to be complex. For other allowed
values of the gluing parameter the resulting group G is a quasi-Fuchsian group
bent along the geodesic in H3 corresponding to the boundary geodesics of X0 .
The analysis of this bending, the associated shear, and their use for parametris-
ing the deformation space of quasi-Fuchsian groups from di�erent points of view
is the main goal of the second half of the paper. We show that the resulting
complexi�ed Fenchel{Nielsen twist parameter can be interpreted as a complex
shear as introduced by Parker and Series in [18] and that it has another natural
interpretation as a zw = t plumbing parameter as in Kra [12] The relationship
between the various points of view is often easy at a conceptual level but can
be hard to make explicit. In this paper we aim to make these connections as
explicit as possible. Part of this involves writing down generators for punctured
torus groups as matrices depending on parameters. This is useful for making
explicit computations which we illustrate by drawing pictures of various slices
through Q.

One of the main themes of this paper will be a partial description of Keen{
Series pleating invariants in terms of complex Fenchel{Nielsen parameters. For
completeness we now give a brief account of pleating invariants [5, 8]. Unlike
complex Fenchel{Nielsen coordinates these are not holomorphic coordinates but
they do reflect the geometrical structure of the associated 3{manifold as well
as the limit set of G. In particular, they may be used to determine the shape
of the embedding of Q into C2 given by complex Fenchel{Nielsen coordinates.
We will illustrate this with pictures of various slices through this embedding.
Let G be a punctured torus group that is quasi-Fuchsian but not Fuchsian. We
call such a group strictly quasi-Fuchsian. Consider C(G), the the hyperbolic
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convex hull in H3 of the limit set of G (sometimes called the Nielsen region for
G). This is a G{invariant, simply connected, convex subset of H3 . Thus, its
quotient C(G)=G is a convex 3{manifold with boundary, whose fundamental
group is G. In other words C(G)=G is topologically, the product of a closed
interval with a punctured torus. Each boundary component is topologically a
punctured torus and naturally inherits a hyperbolic structure from the three
manifold (this structure is di�erent from the obvious hyperbolic structure on
the corresponding component of Ω(G)=G). This hyperbolic structure makes
the boundary component into a pleated surface in the sense of Thurston. That
is, it consists of totally geodesic flat pieces joined along a geodesic lamination,
called the pleating locus, and which carries a natural transverse measure, the
bending measure. The length l� of a measured lamination � on a surface with a
given hyperbolic structure, is the total mass on this surface of the measure given
by the product of hyperbolic length along the leaves of � with the transverse
measure �. For the punctured torus it is well known that measured geodesic
laminations are projectively parametrised by the extended real line. If the
support of the lamination is drawn on the square flat torus then this parameter
is just the gradient. From this we see that the possible types of support that
this lamination that can have fall into two categories. First, simple closed
curves, sometimes called rational laminations because of their parametrisation
by rational slopes on a square torus. The transverse measure is just the �{
measure on these curves. Secondly, laminations whose leaves are unbounded
geodesic arcs and which correspond to \in�nite words" in G. We refer to these
as in�nite laminations. They correspond to curves of irrational slope on a
square torus and so are sometimes referred to as irrational laminations. The
measure they carry is called bending measure. We remark that the pleating
locus cannot be the same on both components of the convex hull boundary.
This is an important observation. Most of the time in this paper, we will be
concerned with the case where the pleating locus on one component of @C(G)=G
is a simple closed geodesic. In this case, there will be a constant angle across
this geodesic between the two adjacent flat pieces. In this case, the lamination
length is just the length of the geodesic in the hyperbolic structure on the
convex hull boundary. Keen and Series show in [8] that a marked punctured
torus group is determined by its pleating invariants, namely the projective
classes (�; l�), (�; l�) where the supports of � and � are the pleating loci on
the two components of @C(G) and l� , l� are their lamination lengths.

Suppose that the pleating loci on both components of @C(G) are simple closed
curves γ , � . The corresponding group elements necessarily have real trace
(though this is not a su�cient condition). The collection of all groups in Q
for which γ , � are the pleating loci is called the (rational) pleating plane Pγ;� .
This is a two dimensional non-singular subset of Q and is parametrised by the
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lengths of the geodesics γ and � (which in this case are the lamination lengths),
see Theorem 2 of [8]. Keen and Series also de�ne pleating planes for the cases
where one or both of the pleating loci are in�nite laminations. We will only
make passing reference to such pleating planes.

We have been greatly helped by conversations with Linda Keen and Caroline
Series. We would like to thank them for their help. We would also like to thank
the referee for her/his comments which have improved the paper. The second
author was supported by the Academy of Finland and by the foundation Magnus
Ernroothin Säätiö of the Finnish Society of Sciences and Letters. Figures 4.1,
5.1 and 6.1 were drawn using a computer program developed by David Wright.
The second author would like to thank him for his help in installing and using
the program. Both authors would like to thank the Centre Emile Borel at the
Institut Henri Poincar�e for their hospitality.

1 Real Fenchel{Nielsen coordinates

In this section we show how to write down generators for Fuchsian punctured
torus groups in terms of Fenchel{Nielsen coordinates. This section gives a
foundation for the subsequent sections: In order to obtain complex Fenchel{
Nielsen coordinates we simply keep the same normal form for the generators but
make the parameters complex. The material in this section is quite standard,
for a more complete discussion of Fenchel{Nielsen coordinates see Buser [2].

Let X be a punctured torus and γ � X a simple closed geodesic. Then
X0 = X n γ is a hyperbolic surface of genus 0 with one puncture and two
geodesic boundary components of equal length, say l . X0 can be realised as a
quotient X0 = N(G0)=G0 , where G0 is a Fuchsian group of the second kind
generated by two hyperbolic transformations with multiplier � = l=2 2 R+ :

S =
�

cosh(�) cosh(�) + 1
cosh(�)− 1 cosh(�)

�
and S0 =

�
cosh(�) cosh(�)− 1

cosh(�) + 1 cosh(�)

�
;

(1:1)
and N(G0) is the Nielsen region of G0 , that is, the hyperbolic convex hull in
H of the limit set of G0 . For later reference we record that the �xed points of
these transformations are �xS = � coth(�=2) and �xS0 = � tanh(�=2). The
transformations S and S0 correspond to the boundary geodesics of X0 and
their product K = S0

−1
S corresponds to the puncture. In other words

K = S0
−1
S =

�
−1 + 2 cosh(�) 2 cosh(�)
−2 cosh(�) −1− 2 cosh(�)

�
(1:2)

is a parabolic transformation �xing −1.
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Figure 1.1 The Fenchel{Nielsen construction

The original surface X can be reconstructed by gluing together the geodesic
boundary components of X0 . The gluing can be realised by adding to the
group a hyperbolic Möbius transformation T that preserves H2 . We form a
new Fuchsian group, an HNN extension of G0 :

G = hG0; T i = (G0) �hT i :

The transformation T is required to conjugate the cyclic subgroups hSi and
hS0i in a manner compatible with the gluing operation:

T−1ST = S0:

This condition �xes T up to one free parameter � 2 R, and T can be written
in the form

T =
�

cosh(�=2) coth(�=2) − sinh(�=2)
− sinh(�=2) cosh(�=2) tanh(�=2)

�
: (1:3)

We recover the original (marked) surface with the correct geometry for exactly
one parameter �0 2 R. However, the group G is a Fuchsian group for any
real � , and the parameter has a geometric interpretation: There is a unique
simple geodesic arc � on X0 perpendicular to both geodesic boundary curves.
A distinguished lift of this arc to the universal covering H2 is the segment of
the positive imaginary axis connecting i tanh(�=2) 2 axis(S0) and i coth(�=2) 2
axis(S). Now T maps i tanh(�=2) to a point on the axis of S , namely

T (i tanh(�=2)) = i coth(�=2)
(
sech(�) + i tanh(�)

�
:

The (signed) hyperbolic distance of this point from i coth(�=2) is exactly � , the
sign of � is chosen to be positive if moving from i coth(�=2) to T

(
i tanh(�=2)

�
takes one in a positive (anti-clockwise) direction around the circle of radius
coth(�=2). The map G 7−! (�; �) is the Fenchel{Nielsen coordinate of the
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Figure 1.2 The fundamental domain

Teichmüller space of punctured tori. It de�nes a global real analytic parametri-
sation and identi�es F with R+�R (see Buser [2]). Fenchel{Nielsen coordinates
depend on the choice of an ordered pair of (homotopy classes of) simple closed
curves on the punctured torus intersecting exactly once, that is a marking. We
obtain di�erent coordinates for di�erent choices of marking. These choices are
related by elements of the modular group. We investigate this in more detail in
the next section. In [21] Waterman and Wolpert give computer pictures for the
action of the modular group on Fenchel{Nielsen coordinates. They also give
pictures of this action in another set of coordinates which can be easily derived
from traces of generating triples.

Varying � and keeping � �xed is the Fenchel{Nielsen deformation considered
by Wolpert in [22] and [23].

2 Complex Fenchel{Nielsen coordinates

The Teichmüller space of punctured tori seen as the space of Fuchsian groups
representing a punctured torus, F , is a natural subspace of the corresponding
quasi-Fuchsian space, Q. Kourouniotis [11] and Tan [20] showed that, for
compact surfaces, the Fenchel{Nielsen coordinates can be complexi�ed to give
a global parametrisation of quasi-Fuchsian space. With this in mind we now
suppose that � and � are complex. That is (�; �) 2 C+�C where C+ denotes
those complex numbers with positive real part. With such � and � we consider
groups generated by S and T with the normal forms (1.1) and (1.3). This means
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that S and T are now in PSL(2;C) rather than in PSL(2;R). The group hS; T i
is not quasi-Fuchsian for all (�; �) 2 C+ � C but the complex Fenchel{Nielsen
coordinates (�; �) do give global coordinates on Q. We present a short proof of
this fact using the strati�cation method developed by Kra and Maskit in [13].

Proposition 2.1 The map h: Q ! C2 given by h(G) = (cosh2(�); e� ) is a
global complex analytic coordinate map on Q.

Proof Let G = hA;Bi be a quasi-Fuchsian group of type (1; 1) generated by
two loxodromic transformations A and B . Assume that the group is normalised
so that 0 is the repelling �xed point, and 1 is the attracting �xed point of A,
and that B(0) = 1. Let x1 = B(1), and x2 = B(1). Note that x1; x2 2 �(G).

We claim that G is determined by giving x1 and x2 : Clearly B is determined,
as we know how it maps three points. Also, from the normalisation we know
that

A =
�
a 0
0 1=a

�
; B =

�
x1(x2 − 1) x1 − x2

x2 − 1 x1 − x2

�
;

where a 2 C, jaj > 1. Now

tr[A;B] =
2a2x1 − 1− a4

a2(x1 − 1)
:

As [A;B] is assumed to be a parabolic, solving for a2 in the equation tr[A;B] =
−2 gives a2 = 2x1 − 1 � 2

p
x1(x1 − 1). Only one of these solutions satis�es

jaj > 1. This �xes A. (The choice of the branch of the square root a =
p
a2

does not a�ect A.)

Let us normalise the group G = hS0; T i of Section 1 as above: We conjugate G
with a transformation (here written as an element of PGL(2;C))

R =
�

cosh(�)=(1 − cosh(�)) − coth(�)
1=(1 − cosh(�)) csch(�)

�
:

This gives

S0 = RS0R−1 =
�
e� 0
0 e−�

�
;

where we can assume je�j > 1, and

T0 = RTR−1 =
�

coth(�)e−�=2 coth(�)e�=2

csch(�) sech(�)e−�=2 coth(�)e�=2

�
:

Now
x1 = cosh2(�); x2 =

1 + e�

sech2(�) + e�
:
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Remark 2.2 The choice je�j > 1 implies � 2 C+ . Unlike real Fenchel{Nielsen
coordinates, there is no simple description of which pairs (�; �) 2 C+ � C are
in h(Q), the image of quasi-Fuchsian space under the coordinate map. Using
the pleating invariants of Keen and Series [8] one can determine how h(Q) lies
inside C2 . In this paper we carry out part of this construction and illustrate
our results by drawing slices through Q in Figure 5.1.

We now use the fact that (cosh2(�); e� ) give global coordinates to show that
(�; �) give global coordinates on quasi-Fuchsian space. LetgFN =

�
(�; �) 2 C2: (cosh2(�); e� ) 2 h(Q)

}
;

where h is the map of Proposition 2.1. We denote by FN the component
of gFN containing R+ � R. Our proof that (�; �) give global coordinates
involves showing that there are no paths in gFN between two places where the
parameters are di�erent but the groups are the same.

Proposition 2.3 Let γ: [0; 1] −! C+ � C denote any path from γ(0) =
(�0; �0) to γ(1) = (�0 +m�i; �0 + 2n�i) for any (�0; �0) 2 gFN and integers m

and n not both zero. Then γ([0; 1]) is not contained in gFN .

Proof We begin with the case m = 1 and n = 0.

Using the normalisation of Proposition 2.1 we have T0(�0; �0) = T0(�0 +�i; �0).
Also notice that S0(�0; �0) and S0(�0 + �i; �0) are the same in PSL(2;C) but
di�er by −I in SL(2;C). They correspond to the two choices of square root
for a2 in Proposition 2.1. Thus moving along γ from (�0; �0) to (�0 + �i; �0)
adds i� to the multiplier of S0 . For more details of the relationship between
multipliers and the di�erent lifts of Möbius transformations in PSL(2;C) to
matrices in SL(2;C) see the discussion in Section 1 of [18]. Let �1 be any
hyperplane in H3 orthogonal to the axis of S0 and let �2 = S0(�1) be its
image under S0 . Because going along γ from (�0; �0) to (�0 + �i; �0) changes
the multiplier of S0 by �i then also �2 is rotated by 2� with respect to �1 .
We can think of going along γ as being the same as doing a Dehn twist of the
annulus between @�1 and @�2 in bC.

Speci�cally we may decompose S0 into a product of half turns (that is elliptic
involutions in PSL(2;C) of order 2) as follows:

S0 = �1�2 =
�

0 e�

−e−� 0

��
0 −1
1 0

�
:

The geodesic �xed by �1(�; �) has end points �ie� . Replacing (�0; �0) by (�0 +
�i; �0) interchanges these end points. Equivalently this reverses the orientation
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of the geodesic. Therefore if �1 is hyperplane orthogonal to the axis of S0 and
containing the geodesic with end points �i (that is the axis of �2 ) it is clear
that its image under the �1 is rotated by 2� when we replace �0 by �0 + �i.

Let �1 be any point of @�1 \Ω and �2 = S0(�1) be its image under S0 . Let �
be any path in Ω joining �1 and �2 . Now consider the homotopy H given by
following � while (�; �) varies along γ . Denote the image of � at time t by
�t .

If the whole of γ were in Q then the homotopy H would induce an isotopy from
Ω
(
G(�0; �0)

�
to Ω

(
G(�0; �0 + 2�i)

�
. At each stage S0 is loxodromic so �1 and

�2 are disjoint and �t consists of more than one point. Now �0 and �1 are
both paths in Ω

(
G(�0; �0)

�
= Ω

(
G(�0 + �i; �0)

�
joining �1 and �2 . It is clear

from the earlier discussion that the path �1�0
−1 formed by going along �1 and

then backwards along �0 winds once around the (closed) annulus between @�1

and @�2 . This it separates the �xed points of S0 . This contradicts the fact
that the limit set � is connected.

We can adapt this proof to cover the case where �0 is sent to �0 +m�i for some
non-zero integer m. This is done by observing that the path �1�0

−1 now winds
m times around the annulus between @�1 and @�2 . Moreover this argument
does not use the value of � at each end of the path. It merely uses the fact that
T0(�0; �0) = T0(�1; �1) and so we may take �1 = �0 + 2n�i without changing
anything.

Thus we have proved the result when m and n are any integers with m not
zero. It remains to prove the result when m = 0 and n is an integer other than
zero. We do this as follows. Observe that, with the normalisation of (1.1) and
(1.3), S(�0; �0) = S(�0; �0 +2�i) but T (�0; �0 +2�i) and T (�0; �0) give distinct
lifts in SL(2;C). As before we decompose T into a product of half turns as
follows:

T = �1�2 =
�

sinh(�=2) cosh(�=2) coth(�=2)
− cosh(�=2) tanh(�=2) − sinh(�=2)

��
0 −1
1 0

�
:

The geodesic �xed by �1(�; �) has end points

− sinh(�=2) � i
cosh(�=2) tanh(�=2)

:

Replacing (�0; �0) by (�0; �0 + 2�i) interchanges these end points. The rest of
the argument follows as before.

The next two results are direct consequences of Propositions 2.1 and 2.3.

Coordinates for Quasi-Fuchsian Punctured Torus Space

Geometry and Topology Monographs, Volume 1 (1998)

459



Corollary The functions cosh2(�) and e� have well de�ned inverses in h(Q)
and so we can regard (�; �) is a global coordinate system for quasi-Fuchsian
space.

Corollary The pair
(
cosh(�); sinh(�=2)

�
give global coordinates for quasi-

Fuchsian space. In particular, the points where sinh(�) = 0 or cosh(�=2) = 0
are not in FN .

Proof The �rst part follows from the previous corollary. We give a simple
justi�cation for the last statement. If sinh(�) = 0 then cosh(�) = �1 and S
is parabolic. Similarly if cosh(�=2) = 0 then T is elliptic or else coth(�) is
in�nite and S is parabolic as before.

Complex Fenchel{Nielsen coordinates depend on the choice of a marking for
the punctured torus, that is an ordered pair of generators for S . It is intu-
itively clear that changing this marking gives a biholomorphic change of the
coordinates

(
cosh(�); sinh(�=2)

�
. We now make this explicit.

Proposition 2.4 Let (S0; T0) and (S1; T1) be any two generating pairs for
a punctured torus group G. Let (�0; �0) and (�1; �1) be the corresponding
complex Fenchel{Nielsen coordinates on Q. Then the map(

cosh(�0); sinh(�0=2)
�
7−!

(
cosh(�1); sinh(�1=2)

�
is a biholomorphic homeomorphism of Q to itself.

Proof A classical result of Nielsen [17] states that we can obtain the pair
(S1; T1) from (S0; T0) by a sequence of elementary Nielsen-moves on the gen-
erators. As one of our aims is to make things explicit, we list these Nielsen moves
and write down the e�ect that they have on the coordinates

(
cosh(�); sinh(�=2)

�
.

From this, it is clear that these changes of coordinate are holomorphic.

First, suppose that (S0; T 0) = (S; S�1T ). Then

cosh(�0) = cosh(�); sinh(� 0=2) = sinh(�=2) cosh(�)� cosh(�=2) sinh(�):

Secondly, suppose that (S0; T 0) = (S; T−1). Then

cosh(�0) = cosh(�); sinh(� 0=2) = − sinh(�):

Finally, suppose that (S0; T 0) = (T; S)

cosh(�0) =
cosh(�) cosh(�=2)

sinh(�)
; sinh(� 0=2) =

− sinh(�=2) sinh(�)
cosh(�=2)

:
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3 Plumbing and earthquakes

In this section we show how the Fenchel{Nielsen construction is related to two
standard constructions in Teichmüller theory, namely the zw = t plumbing
construction and to quake-bends. In particular, the Fenchel{Nielsen twist pa-
rameter is a special case of the quake-bend parameter and we show how to
express the plumbing parameter in terms of Fenchel{Nielsen parameters.

Consider Teichmüller space of the punctured torus F with Fenchel{Nielsen
coordinates as in Section 1. The motion through Teichmüller space obtained by
�xing the length parameter � but varying the shear � is the Fenchel{Nielsen
deformation (see [22]) which is the simplest example of an earthquake (see
Waterman and Wolpert [21] and McMullen [16] for some other earthquakes).
One may think of this as cutting along Ax(S) twisting and then regluing.

If we reglue so that along Ax(S) the two sides make a constant angle then we
have an example of a quake-bend (see Epstein and Marden [4]). We can say
that the group G(�; �) is obtained from G(�; 0) by doing a quake-bend along
S with parameter � . That is, for � 2 R+ , we take the Fuchsian group G(�; 0)
with generators

S =
�

cosh(�) cosh(�) + 1
cosh(�)− 1 cosh(�)

�
; T =

�
coth(�=2) 0

0 tanh(�=2)

�
:

This group has a fundamental domain rather like the one shown in Figure 1.2 ex-
cept with � = 0 (the copy of the hyperbolic plane in question is the hyperplane
in H3 whose boundary is the extended real axis). Let Q(�) be a loxodromic
map with the same �xed points as S and trace 2 cosh(�=2). Apply Q(�) to that
part of H2 lying above Ax(S), ie those points with jzj > coth(�=2). What we
have done is essentially cut along Ax(S) and reglued after performing a shear
and a bend. Now repeat this construction along the axis of every conjugate
of S . This is a quake-bend. For more details and a precise de�nition of what
is involved, see [4]. A discussion of quake-bends and complex Fenchel{Nielsen
coordinates in given in Section 5.3 of [7].

One can perform this construction for irrational measured laminations. In this
case the new measure is obtained by multiplying the initial bending measure
by the quake-bend parameter. This gives a way of generalising the Fenchel{
Nielsen twist parameter � analogous to the way lamination length generalises
the hyperbolic length of a simple closed curve.

We now relate these ideas by extending the zw = t{plumbing construction to
this situation. Essentially the same construction was used by Earle and Marden
[3] and Kra [12] in the case of punctured surfaces and it was extended by Ar�es
[1] and Parkkonen [19] for surfaces with elliptic cone points.
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Let X0 be a punctured cylinder (as in Section 1). Assume that the boundary
geodesics γ1 and γ2 corresponding to boundary components b1 and b2 have
equal length l = 2� > 0. Let U1 and U2 be neighbourhoods of, respectively,
the ends of X0 corresponding to γ1 and γ2 . Let γ12 be the shortest geodesic
arc connecting the two boundary components, and let

A� = f� 2 C j e−�2=� < j�j < 1g
with its hyperbolic metric of constant curvature −1. The curve fjzj = e−�

2=2�g
is the unique geodesic in A� with this metric.

We de�ne local coordinates at the ends of X0 by

z: U1 ! A� and w: U2 ! A�
by requiring that the maps are isometries and that the segments γ12 \ U1 and
γ12 \ U2 are mapped into A� \ R+ . These conditions de�ne the maps z and
w uniquely.

A� A�

A1 A2

z w

γ1 γ2
γ12

Figure 3.1 The zw = t plumbing construction

If A � X0 is an annulus homotopic to a boundary component b of X0 , we
call the component of @ A separating the other component of @ A from b, the
outer boundary of A. The remaining component of @ A is the inner boundary
of A. Assume there are annuli Ai � Ui and a holomorphic homeomorphism
f : A1 ! A2 so that

z(x)w(f(x)) = t

John R Parker and Jouni Parkkonen

Geometry and Topology Monographs, Volume 1 (1998)

462



for some constant t 2 C and f maps the outer boundary of A1 to the inner
boundary of A2 . The outer boundaries bound annuli on X0 . Remove these
annuli to form a new Riemann surface Xtrunc . De�ne

Xt: = Xtrunc= �;

where the equivalence is de�ned by setting

x � y () z(x)w(y) = t:

We say that Xt was obtained from X0 by the zw = t plumbing construction
with plumbing or gluing parameter t. If the annuli Ai can be chosen to be
collar neighbourhoods of the boundary geodesics γi , we say that the plumbing
is tame.

Next we show that the Fenchel{Nielsen twist parameter is naturally associated
with a plumbing parameter:

Lemma 3.1 If G is in Q with � 2 R+ then t = e−�
2=� e−�i�=� = ei�� where

� = (i� − �)=�.

Proof Let �: H2 ! H2=G0 be the canonical projection. Let eγ1 be the
geodesic in H2 connecting the �xed points of S and eγ2 the geodesic connecting
the �xed points of S0 . Now the boundary geodesics for which the gluing will
be done are γi = � (eγi). The local coordinates are given by

z(P ) = exp
�
�i

�
log
�

�−1(P ) sinh(�=2) + cosh(�=2)
−�−1(P ) sinh(�=2) + cosh(�=2)

��
;

and

w(Q) = exp
�
�i

�
log
�

�−1(Q) cosh(�=2) − sinh(�=2)
�−1(Q) cosh(�=2) + sinh(�=2)

��
:

Substituting for T we see, after simplifying, that

z
(
T (Q)

�
= exp

�
�i

�
log
�
e−� �−1(Q) cosh(�=2) + sinh(�=2)
−�−1(Q) cosh(�=2) + sinh(�=2)

��
:

Thus z(T (Q)) w(Q) = exp(−�2=�− �i�=�) as claimed.

The same proof also yields the following:

Proposition 3.2 The classical Fenchel{Nielsen construction is a zw = t
plumbing construction for a parameter t of modulus e−�

2=� .
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4 �{slices

In this section we keep � real but allow � to be complex. When � = Im(�)
is in the interval (0; �] we will show that the axis of S is the pleating locus
on one component of the convex hull boundary and when � 2 [−�; 0) then it
is the pleating locus on the other component. We will show that � has an
interpretation as a complex shear along the pleating locus, Ax(S), see Parker
and Series [18]. The complex shear � is de�ned as follows. The imaginary part
of � , which we require to be in the interval (−�; �), is the bending angle on the
convex hull boundary across Ax(S). The real part of � de�ned as follows. Let
� be the unique simple geodesic arc in the convex hull boundary from Ax(S)
to itself and orthogonal to Ax(S) at both ends. Then we form a curve in the
convex hull boundary in the homotopy class speci�ed by T by going along
� and then along Ax(S). The real part of the complex shear is the signed
distance we go along Ax(S). This de�nition is made precise on page 172 of
[18]. The theorems of this section should be compared with the constructions
found in [12] and section 2.2 of [5]. We also note that one may use the formulae
of [18] to show that, when � is real, the imaginary part of � cannot be �� ,
Proposition 7.1 of [8].

  .00

  .00

One tick = 10^ -1

limit set

trace T1       =  2.0906800000+i   .0000000000 trace T2       =  6.8000000000+i   .0000000000
trace T1T2   =  7.1083120000+i   .2878252474 trace [T1,T2]= -2.0000000000+i   .0000000000
Special words:  abAB eps     =        .0100000000
bound  =    20.0000000000
No. of limit points:      875   Max. level =       61

  .00

  .00

One tick = 10^ -1

limit set

trace T1       =  2.0906800000+i   .0000000000 trace T2       =  3.5000000000+i   .0000000000
trace T1T2   =  3.6586900000+i  1.7985912116 trace [T1,T2]= -2.0000000000+i   .0000000000
Special words:  abAB eps     =        .0100000000
bound  =    20.0000000000
No. of limit points:     2595   Max. level =      117

  .00

  .00

One tick = 10^ -1

limit set

trace T1       =  2.0906800000+i   .0000000000 trace T2       =  2.0000000000+i   .0000000000
trace T1T2   =  2.0906800000+i  2.0000000000 trace [T1,T2]= -2.0000000000+i   .0000000000
Special words:  abAB eps     =        .0100000000
bound  =    20.0000000000
No. of limit points:     8357   Max. level =      202

Figure 4.1 Limit sets of groups in a �{slice

Let us �x � > 0. Consider the set

f� 2 C j (�; �) 2 FNg

The �{slice Q� is de�ned to be the component of this set containing the points
where � 2 R (compare with the quake-bend planes of [8]). We wish to obtain
an estimate for the allowed values of � for each �. In order to do this we will
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construct pleating coordinates on each �{slice. A �rst approximation can be
achieved by estimating the values of � = Im(�) that correspond to tame plumb-
ing constructions. The following theorem is an explicit version of Theorem 6.1
of [7]. Speci�cally, we show that the constant � of that theorem can be taken as
�0 = 2 arccos

(
tanh(�)

�
(compare Section 6 of [9]). Because the point (�; i�0) is

on the boundary of quasi-Fuchsian space, there can be no larger uniform bound
on Im(�) that ensures discreteness. The fact that � is the imaginary part of
the quake-bend will follow from Theorem 4.2.

Theorem 4.1 Let �0 2 (0; �) be de�ned by the equation cos(�0=2) = tanh(�).
Then for Im(�) = � 2 (−�0; �0) the group G is a quasi-Fuchsian punctured
torus group.

T

S

S0

10−1

Figure 4.2 The construction for the combination theorem

Proof It is easy to check that the circle with centre at i tanh(�=2) tan(�=2)
and radius tanh(�=2) sec(�=2) is mapped by T to the circle with centre at
−i coth(�=2) tan(�=2) and radius coth(�=2) sec(�=2). Moreover these circles
are mapped to themselves under hS0i and hSi respectively (the circles pass
through the �xed points of S0 and S ). Providing the two circles are disjoint
then the annulus between them is a fundamental domain for hT i. It is easy
to check that the circles are disjoint if and only if cos(�=2) > tanh(�), that
is � 2 (−�0; �0). When this happens we can use Maskit’s second combination
theorem [14, 15] to show that G is discrete, has a fundamental domain with
two components each of which glues up to give a punctured torus and G is
quasi-Fuchsian.
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For a positive real number �, suppose that G is a quasi-Fuchsian punctured
torus group. The ordinary set of G has two components. There is an obvious
way to label these as the \top" and \bottom" components so that, for the case
when G is Fuchsian, the upper half plane is the \top"component. In what
follows, we give a result that enables us to make this de�nition precise. Namely
in Lemmas 4.3 and 4.4, we show that either the \top" component contains the
upper half plane or the \bottom" component contains the lower half plane (or
both, in which case the group would be Fuchsian). When G is strictly quasi-
Fuchsian there are two components to the convex hull boundary facing these
two components of the ordinary set. We label them \top" and \bottom" as
well (this notation is also used by Keen and Series on page 370 of [7]). Both
of these components is a pleated surface and so we may speak of the pleating
locus on the \top" and \bottom". The following theorem may be thought of as
a generalisation of Proposition 6.2 of [18].

Theorem 4.2 For any parameter in a � slice (� 2 R) with � 2 (0; �) (re-
spectively � 2 (−�; 0)) the pleating locus on the \bottom" (respectively "top")
surface is S and � (respectively −� ) is the complex shear along S with respect
to the curve T as de�ned in [18].

Intuitively this should be clear as we are keeping � real and bending away from
Ax(S). As we are only bending along one curve the result is convex. In the
general case we could not expect a Fenchel{Nielsen complex twist to always be
the complex shear on the convex hull boundary as we may bend along di�erent
curves in di�erent directions. In what follows we only consider the case � > 0.
By symmetry this is su�cient. The proof will be by way of several lemmas.

Lemma 4.3 If � 2 (0; �0) then the lower half plane L is contained in Ω(G).

Proof We will consider the lower half plane L with its Poincar�e metric. We
then use plane hyperbolic geometry to prove the result.

Let D� be the fundamental region for the action of F = hS; S0i on L formed
by the intersection of L with the exterior of the isometric circles for S and S0 .
That is

D� = fz 2 L: j(cosh(�) + "1)z + "2 cosh(�)j � 1 for all choices of "1; "2 = �1g :

We are now going to consider various hypercycles (that is arcs of circles) with
endpoints at the �xed points of S and S0 . To begin with, let c0 and c00 be the
semicircles centred at 0 of radius coth(�=2) and tanh(�=2). Clearly these are
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the Poincar�e geodesics joining the �xed points of S and S0 respectively. Let
D0 be the subset of L between these two semi-circles:

D0 = fz 2 L: tanh(�=2) � jzj � coth(�=2)g :
The Nielsen region N(F ) of F = hS; S0i , that is the hyperbolic convex hull of
�(F ) in L, is

N(F ) =
[
g2F

g(D� \D0):

�
2

�
2

c0

c1

c00

c01

T

0 1−1

Figure 4.3 The construction in the lower half plane

Now consider the circular arcs c1 and c01 in L−D0 with endpoints at � coth(�=2)
and � tanh(�=2) which make an angle �=2 with c0 and c00 respectively. In
other words c1 is the arc of the circle centred at −i coth(�=2) tan(�=2) with
radius coth(�=2) sec(�=2) lying in the lower half plane. Similarly c01 is the
intersection of L with the circle centred at i tanh(�=2) tan(�=2) with radius
tanh(�=2) sec(�=2). Figure 4.3 shows c1 and c01 . Observe that c1 and c01 are a
constant distance d(�) from c0 and c00 where

d(�) = log
(
sec(�=2) + tan(�=2)

�
:

Denote the lune between c0 and c1 by B(�) and the lune between c00 and c01
by B0(�). Let D1 be the subset of the lower half plane lying between c1 and
c01 . Now D1 is just the intersection of L with the fundamental region for T
considered in Theorem 4.1. One of the consequences of Maskit’s combination
theorem is that D�\D1 is contained in Ω(G). (It is at this point that we have
used � < �0 .) Let N(�) be the union of all F translates of D� \D1 :

N(�) =
[
g2F

g(D� \D1):
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It is clear that N(�) is just the d(�) neighbourhood of N(F ). Since D� \D1

is contained in Ω(G) then so is N(�).

We are going to mimic this construction with more arcs. For each n with
n� < � , let cn and c0n be the circular arcs in L − D0 with endpoints at
� coth(�=2) and � tanh(�=2) making an angle of n�=2 with c0 and c00 respec-
tively. That is cn is the arc of a circle with centre at −i coth(�=2) tan(n�=2)
and radius coth(�=2) sec(n�=2) and c0n is the arc of a circle with centre at
i tanh(�=2) tan(n�=2) and radius tanh(�=2) sec(n�=2). As before, cn is a con-
stant distance d(n�) from c0 and c0n is the same distance from c00 . We de�ne
Dn , the subset of L between cn and c0n , and the lunes B(n�) and B0(n�) as
before. Let

N(n�) =
[
g2F

g(D� \Dn):

Again N(n�) is the d(n�) neighbourhood of N(F ).

Furthermore, let n0 be the integer with (n0 − 1)� < � � n0� . We de�ne arcs
cn0 and c0n0

which are now in the closed upper half plane. We also de�ne
B(n0�), B0(n0�) and N(n0�) geometrically but remark that these no longer
have any metrical properties. An important observation is that L is contained
in N(n0�).

�
2

�
2

n
�
2

(n−2)
�
2

cn

cn+1

c0

c00
T

0 1−1

Figure 4.4 The inductive step

The rest of the proof follows by an induction from n = 1 up to n = n0 . We
claim that, for 1 � n < n0 that if B(n�) and B0(n�) are in Ω(G) then so are
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B
(
(n + 1)�

�
and B0

(
(n + 1)�

�
. This in turn means that N

(
(n + 1)�

�
is in

Ω(G). In particular N(n0�), which contains L, is in Ω(G).

Thus all we have do is prove the claim, which we now do. Since B(n�) and
B0(n�) are contained in Ω(G) then so is N(n�). Consider T−1B

(
(n + 1)�

�
.

Since cn+1 makes an angle of n�=2 with c1 and T acts conformally on bC we
see that T−1(cn+1) makes an angle of n�=2 with T−1(c1) = c01 , see Figure 4.4.
In other words T−1(cn+1) is a hypercycle a constant distance d

(
(n − 1)�

�
from c00 (also it is not c0n−1 ). This means that T−1(cn+1), and hence also
T−1B

(
(n + 1)�

�
, is contained within the d(n�) neighbourhood of N(F ), that

is N(n�). Since N(n�) was assumed to be in Ω(G), we see that T−1B
(
(n+1)�

�
and hence also B

(
(n+ 1)�

�
is contained in Ω(G), as claimed. We remark that

if n > n0 then T−1(cn+1) lies in the closed upper half plane and the argument
breaks down. A similar argument shows that B0

(
(n+ 1)�

�
is also contained in

Ω(G). This completes the proof.

Lemma 4.4 If � 2 Q� and � 2 (0; �) then the pleating locus on the \bottom"
surface is S .

Proof Suppose �rst that � 2 (0; �0). From Lemma 4.3 we see that L is
contained in Ω(G). Thus the geodesic plane in H3 with boundary the real axis
is a support plane for @C(G). Moreover the image of this plane under T must
also be a support plane for @C(G). As the intersection of these two planes is
the axis of S we have the result.

Now consider � = t+i� 2 Q� and � 2 [�0; �). We proceed as in Proposition 5.4
of [5]. Suppose that S is not the pleating locus for the bottom surface. Consider
a path � in Q� joining � with � 0 = t0+ i�0 where �0 2 (0; �0). Without loss of
generality, suppose that if � 2 � then Im(�) � �0 > 0. We know that at � 0 the
pleating locus on the bottom surface is S . Using the standard identi�cation of
projective measured laminations on the punctured torus with the extended real
line (with the topology given by stereographic projection of the usual topology
on the circle) then Keen and Series show that the pleating locus is continuous
with respect to paths in Q [6]. Therefore there are points on the path � for
which the pleating locus is a projective measured lamination arbitrarily close
to γ1 . In particular there are points where the pleating locus is γm for m 2 Z
which corresponds to Wm = S−mT 2 G (in the next section we will give more
details of how to associate words with simple closed curves). In particular, this
group element must have real trace. In other words there is a point of � where
tr(S−mT ) = 2 cosh(�=2 +m�) coth(�) is real, and so

0 = sinh(t=2 +m�) sin(�=2):
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As � 2 [�0; �) we see that sin(�=2) 6= 0. Thus t=2 + m� = 0 and tr(S−mT ) =
2 cos(�=2). This means S−mT is elliptic and so � is not in Q� after all.

Lemma 4.5 With S and T as in the theorem and � 2 (0; �) (respectively � 2
(−�; 0)) the complex shear � along S with respect to T is � = � (respectively
� = −� ).

Proof The trace of T is

cosh(�=2)
(
coth(�=2) + tanh(�=2)

�
= 2 cosh(�=2) coth(�):

Writing tr(T ) = 2 cosh
(
�(T )

�
and tr(S) = 2 cosh

(
�(S)

�
the formula (I) of [18]

gives the complex shear along S with respect to T as � where

cosh(�=2) = cosh
(
�(T )

�
tanh

(
�(S)

�
= cosh(�=2) coth(�) tanh(�)
= cosh(�=2):

Thus � and � agree up to sign and addition of multiples of 2�i. Since Im(�)
is in (0; �) we �nd that � = � when � = Im(�) > 0 and � = −� when � < 0.

5 Pleating rays on �{slices

We have shown that on a �{slice the pleating locus on one component of the
convex hull boundary is γ1 which corresponds to S . We now investigate the
intersection of each �{slice with the rational pleating plane associated to the
simple closed curves γ1 and γp=q . We call this intersection a pleating ray. Part
of the this section will be a justi�cation of this name.

In order to obtain pleating rays on each �{slice, we follow the arguments in [5],
many of which are inherently two-dimensional in nature. These arguments have
been superseded by more general arguments in [8]. We give these arguments to
help the reader interpret Figure 5.1 and Figure 6.1 without having to refer to [5]
or [8]. But, since these arguments are not new, we shall not give all the details.
Furthermore, we indicate how one may use pleating rays on �{slices to obtain
the rational pleating planes. This is the simplest part of the construction of
pleating coordinates. The more complicated parts are treated at length in [8].
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  .00

 3.50

One tick = 10^ -1

slice with fixed trace=2.5

trace T1       =  3.0861600000+i   .0000000000 trace T2       =  2.0000000000+i   .0000000000
trace T1T2   =  3.0861600000+i -2.0000000000 trace [T1,T2]= -2.0000000000+i   .0000000000
Special words:  abAB eps     =        .0100000000
bound  =    20.0000000000
No. of limit points:     1649   Max. level =      202

Figure 5.1 Part of a slice through Q with � held to be real and �xed. In
this case cosh(�) = 5=4. This �gure shows the image of the slice under
the 2 to 1 map � 7−! i trT = 2i cosh(�=2) coth(�) = 10

3
i cosh(�=2). The

�gure shows pleating rays for this slice, see [8] or Section 6. The vertical
line from 10i=3 upwards represents Fuchsian space (which has been folded
onto itself at the point corresponding to a rectangular torus). Observe
that the pleating rays meet Fuchsian space orthogonally.

In what follows, we assume that the pleating locus on one component of the
convex hull boundary is γ1 , represented by S , and the pleating locus the other
is also a simple closed curve, γp=q for some p=q 2 Q. There is a special word
Wp=q 2 G = hS; T i corresponding to the homotopy class of simple closed curves
[γp=q ]. These words are de�ned recursively in [24] (see also Section 3.1 of [5])
but of course, we now need to use the generators S and T de�ned (1.1) and
(1.3). First, W1 = S−1 , Wm = S−mT for m 2 Z. If qr − ps = 1 then we
inductively de�ne W(p+r)=(q+s) = Wr=sWp=q .

For each γp=q the p=q{pleating ray P�p=q;1 on Q� is de�ned to be the those
points of Q� for which the pleating locus is γp=q on the \top" and γ1 on
the \bottom". Thus these points have Im(�) 2 (0; �), Theorem 4.2. Likewise
P�1;p=q consists of those points in Q� where the pleating locus on the \top"
surface is γ1 and that on the \bottom" is γp=q . Such points have Im(�) 2
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(−�; 0). This discussion may be summarised in the following result which
should be compared to Theorem 5.1 of [5].

Proposition 5.1 On each �{slice Q� and for p=q 2 Q the pleating rays
P�p=q;1 and P�1;p=q each consist of a non-empty, connected, non-singular arc

on which tr(Wp=q) is real and which meet F orthogonally at the same point
from the opposite side. Their other end-points lie on the boundary of Q� and
at these points j tr(Wp=q)j = 2.

Some rational pleating rays are shown in the pictures Figures 5.1 and 6.1. It
can be observed that the pleating rays are non-singular connected arcs that
meet Fuchsian space orthogonally.

Sketch proof This is an adaptation of ideas in [5] and [8]. First we �x a
particular �{slice Q� . In Theorem 4.2 we showed that γ1 , represented by
S , is the pleating locus on one component of the convex hull boundary. For
de�niteness we take this to be the \bottom" component. By symmetry all our
arguments go through when the pleating loci are the other way round.

It was shown in Corollary 6.4 of [18] that, when the complex shear is purely
imaginary, the pleating locus on the \top" component is T (that is γ0 ). Using
a change of generators (marking) as in Proposition 2.4, it follows that, when
the real part of the complex shear is −2m�, for an integer m, then the pleating
locus on the \top" component is S−mT (that is γm ). Consider the line where
Im(�) = �0=2. Such groups are all quasi-Fuchsian (Theorem 4.1) and at � =
−2m� + i�0=2 the pleating locus is γm for m 2 Z. Thus, by the continuity
of the pleating locus, see [6], as we move along this line we �nd points whose
pleating locus is given by any real parameter. This shows that any real pleating
ray on Q� is non-empty.

It is clear that P�p=q;1 is contained in the real locus of tr(Wp=q). We now
investigate how this real locus meets Fuchsian space. Any brach of the real
locus of tr(Wp=q) contained in Q�−F meets F in a singularity of tr(Wp=q). A
result of Wolpert, page 226 of [23], says that the second derivative of

��tr(Wp=q)
��

with respect to � along Fuchsian space is strictly positive. (We have used here
that γp=q and γ1 are both simple and they intersect.) Thus tr(Wp=q) has a
unique singularity in F and this singularity is quadratic. Hence the branches of
its real locus must meet orthogonally. In particular there is one branch meeting
F at this point on which Im(�) > 0 and one brach where Im(�) < 0.

For 0 < p=q < 1 the pleating ray P�p=q;1 (which is non-empty) must be con-
tained in the open set bounded by F , that is Im(�) = 0; the pleating rays
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P�0;1 , that is Re(�) = 0, and P�1;1 , that is Re(�) = −2�; and the boundary of
Q� . The pleating ray must be a union of connected components of the inter-
section of this set with the real locus of tr(Wp=q). The proof of this statement
follows Proposition 5.4 of [5]. A similar argument has been used in Lemma 4.4
so we will not repeat it. It is clear that if the pleating locus on the \top" is
γp=q and if j tr(Wp=q)j > 2 then the group is in the interior of Q. Thus, mov-
ing along P�p=q;1 in the direction of increasing j tr(Wp=q)j we cannot reach the
boundary of Q and so we must reach F . It follows that P�p=q;1 is connected
and non-singular. If not, there would be at least two branches of P�p=q;1 on
which j tr(Wp=q)j is increasing. But there is only one branch that meets F , a
contradiction. A similar analysis takes care of other p=q .

Finally, when j tr(Wp=q)j = 2 the pleating ray reaches the boundary of Q�
and the curve γp=q has become parabolic. This completes our sketch proof of
Proposition 5.1.

In order to obtain the pleating planes associated to the pairs γ1 , γp=q we
must vary �. As we do this, the pleating rays on each �{slice now sweep out
the whole pleating plane. Keen and Series prove that this gives a connected,
non-singular two dimensional subset of Q. In order to obtain pleating planes
associated to other pairs of curves we use the change of coordinates given in
Proposition 2.4. Speci�cally, if the pleating loci we are interested in are γa=b
and γc=d which intersect q = ad − bc 6= 0 times then there is a sequence of
Nielsen moves taking the pair (γ1; γp=q) to the pair (γa=b; γc=d). Associated
to these Nielsen moves is a biholomorphic change of coordinates on Q and the
pleating plane associated to γa=b and γc=d is the image under this change of
coordinates of the pleating plane associated to γ1 and γp=q .

We conclude this section with a discussion of how one may take data associated
to one component of the convex hull boundary and �nd information about the
other component. At �rst sight it does not seem clear how this could be done.
But, at least when the pleating locus on one component is a simple closed curve,
this follows from the relationship between complex Fenchel{Nielsen coordinates
and Keen{Series pleating invariants. Let G be a strictly quasi-Fuchsian punc-
tured torus group. Suppose that the pleating locus on one component of the
convex hull boundary is a simple closed curve γ of length �. Then we can con-
struct Fenchel{Nielsen coordinates relative to a generating pair S , T where γ
is represented by S . The complex Fenchel{Nielsen coordinates are given purely
in terms of data associated to the component of the convex hull boundary on
which γ is the pleating locus. By considering the associated �{slice Q� , we
can �nd the Keen{Series pleating invariants for G in terms of the complex
Fenchel{Nielsen coordinates. We have not mentioned lamination length on Q�
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in the above discussion. It su�ces to remark that when the lamination on the
other component of the convex hull boundary is also a simple closed curve given
by W 2 G, then the lamination length can be easily found from tr(W ). For
irrational pleating rays, we just use a continuity argument. In particular, we
can determine information about the pleating on the other component of the
convex hull boundary (this generalises Corollary 6.4 of [18], where it is shown
that if the pleating locus on one component of @C(G)=G is S and the complex
shear is purely imaginary then the pleating locus on the other component is
T ). Moreover, if the pleating locus on the other component of the convex hull
boundary is also a simple closed curve, we can use a sequence of Nielsen moves
(see Proposition 2.4) to determine the Fenchel{Nielsen coordinates with respect
to � . In fact this is very straightforward.

On the other hand, suppose the pleating locus is an in�nite measured lamination
� with lamination length l� . The projective class (�; l�) (see [8]) generalises
the choice of simple closed curve with �{measure and the hyperbolic length of
that curve. It follows from the work of Epstein{Marden, [4], that the group
is completely determined by (�; l�) and the quake-bend parameter � (see [7,
8] for a discussion of the quake-bend parameter for quasi-Fuchsian punctured
torus groups). These generalise the Fenchel{Nielsen coordinates for an in�nite
lamination. However, it does not seem that there is a straightforward way to
go explicitly from these parameters to the pleating invariants or to the corre-
sponding parameters on the other component of the convex hull boundary.

6 Degeneration to the Maskit embedding

In the previous sections we have considered what happens when � is a �xed
real positive number. In this section, we consider what happens when � = 0.
We should expect the complex shear to tend to i� as � tends to 0 (compare
Theorem 4.1(i) of [18], see Proposition 6.1 below). This means that complex
Fenchel{Nielsen coordinates degenerate. In this section we show that by us-
ing the plumbing parameter instead, we obtain the Maskit embedding of Te-
ichmüller space, denoted M (see [24, 5]). This is de�ned to be the space of
free Kleinian groups G on two generators S , T up to conjugation, such that
each group has the following properties. First, the generator S and the com-
mutator K = T−1S−1TS are both parabolic. Secondly, the components of
the ordinary set are of two kinds. Namely, a simply connected, G{invariant
component whose quotient is a punctured torus; and also in�nitely many round
discs whose stabilisers are thrice punctured sphere groups, all conjugate within
G. In other words these groups are terminal b-groups. This space is a holo-
morphically parametrised copy of the Teichmüller space of a punctured torus.
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There is a standard normal form for the generators in terms of a parameter �,
see [24, 5], which is

S0 =
�

1 2
0 1

�
; T0 =

�
−i� −i
−i 0

�
: (6:1)

The goal of this section is to show that as we let � tend to zero, the normal
form for S and T given in (1.1), (1.3) degenerate to generators of groups in the
Maskit embedding (6.1). Moreover, the � slices Q� with their pleating rays
tend to the Maskit embedding with its pleating rays. We illustrate this with
a series of pictures which should be compared to Figure 1 of [5]. There is a
discussion of how the Maskit embedding lies on the boundary of quasi-Fuchsian
space on page 190 of [18].

Consider the limit of S as � tends to zero:

S0 = lim
�!0

�
cosh(�) cosh(�) + 1

cosh(�)− 1 cosh(�)

�
=
�

1 2
0 1

�
:

Similarly the limit of S0 = T−1ST as � tends to zero is:

S00 = lim
�!0

�
cosh(�) cosh(�)− 1

cosh(�) + 1 cosh(�)

�
=
�

1 0
2 1

�
:

The parabolic transformations S0 and S00 generate the level 2 principal con-
gruence subgroup of PSL(2;Z), a torsion-free triangle group. A comparison of
the plumbing parameter calculated in Lemma 3.1 with the corresponding result
for terminal b-groups (see Kra [12; Section 6.4]) suggests that, in order to study
the degeneration of quasi-Fuchsian groups in

S
�>0Q� as � −! 0, it is useful

to make a change of parameters

� =
i� − �
�

:

We refer to � as the plumbing parameter. In terms of this parameter the matrix
T can be written as

T =
�
−i sinh(��=2) coth(�=2) −i cosh(��=2)

−i cosh(��=2) −i sinh(��=2) tanh(�=2)

�
: (6:2)

Using Lemma 3.1, we see that (1.1) and (6.2) give a parametrisation of the
generators of G in terms of a length parameter and a plumbing parameter.
The following result on the limit groups, which should be compared to Theo-
rem 4.1(i) of [18], now follows rather easily:

Proposition 6.1 Consider a sequence of groups where � tends to zero but �
remains �xed. Then the complex shear along S tends to i� .
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Proof The conclusion is immediate from the de�nition of �: � = i�−��! i�
as �! 0.

We now show that when � tends to zero with � being kept �xed we obtain the
standard form for group generators in the Maskit embedding.

Proposition 6.2 Assume that � 2 Q� for small �. As � tends to zero
the group with parameter (�; �) tends to the terminal b-group representing
punctured torus on its invariant component with parameter �.

Proof We have already seen that S0 and S00 have the correct form.

Let � be �xed. For small � we have

sinh(��=2) coth(�=2) =
(
��=2 +O(�2)

�(
2=� +O(1)

�
= �+O(�):

Therefore we have
lim
�!0

(
sinh(��=2) coth(�=2)

�
= �:

This means that the limit as � tends to zero of T is

T0 = lim
�!0

�
−i sinh(��=2) coth(�=2) −i cosh(��=2)

−i cosh(��=2) −i sinh(��=2) tanh(�=2)

�
=
�
−i� −i
−i 0

�
:

The limiting matrices S0 and T0 are just the usual group generators of terminal
b-groups in the Maskit embedding M of Teichmüller space of the punctured
torus.

The convergence of �{slices to M is illustrated in Figure 6.1.

Remarks 6.3 (a) The plumbing construction is tame when Im(�) = � 2
(0; �0) or equivalently Im(�) 2

(
(� − �0)=�; �=�

�
. For small � we have �0 =

� − 2� + O(�)2 . As � tends to zero this interval tends to (2;1), which is
the condition for tame plumbing in the Maskit slice, Section 6.2 of [12] or
Proposition 2.3 of [24].

(b) In the (�; �) parameters, Fuchsian space corresponds to the union of the
lines Im(�) = �=�. When � ! 0, Im� ! 1, that is, the closure of Fuchsian
space touches M at the boundary point corresponding to the parameter � =1
(see page 191 of [18]).
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  .00

 2.00

One tick = 10^ -1

Cosh(lambda)=3/2

  .00

 2.00

One tick = 10^ -1

Cosh(lambda)=1.25

  .00

 2.00

One tick = 10^ -1

Cosh(lambda)=1.1

  .00

 2.00

One tick = 10^ -1

Cosh(lambda)=1.05

Figure 6.1 �{slices for tr(T ) = 3, 2:5, 2:2 and 2:1 drawn with a collec-
tion of rational pleating rays
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