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Controlled embeddings into groups that have
no non-trivial finite quotients

Martin R Bridson

Abstract If a class of finitely generated groups G is closed under iso-
metric amalgamations along free subgroups, then every G ∈ G can be
quasi-isometrically embedded in a group Ĝ ∈ G that has no proper sub-
groups of finite index.

Every compact, connected, non-positively curved space X admits an iso-
metric embedding into a compact, connected, non-positively curved space
X such that X has no non-trivial finite-sheeted coverings.
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David Epstein’s lucid writings, particularly those on automatic groups, had a
strong influence on me when I was a graduate student. Since then, during
many hours of enjoyable conversation, I have continued to benefit from his
great insight into mathematics. It was therefore a great pleasure to speak at
his birthday celebration and it is an equal pleasure to write an article for this
volume.

0 Introduction

In this article I shall address the following general question: given a finitely
generated group G that satisfies certain desirable properties, when can one
embed G into a group which retains these desirable properties but does not
have any non-trivial finite quotients? My interest in this question arises from
a geometric problem that is the subject of Theorem C.

Our discussion begins with a general embedding theorem which is similar to
results that were proved in the wake of the landmark paper by Higman, Neu-
mann and Neumann [11]. The novel element in the result presented here is that
we control the geometry of the embedding.
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Theorem A Let G be a class of finitely generated groups. If G is closed under
the operation of isometric amalgamation along finitely generated free groups,
then every G ∈ G can be quasi-isometrically embedded in a group Ĝ ∈ G that
has no proper subgroups of finite index.

The definition of isometric amalgamation is given in Section 1. There are var-
ious interesting classes of groups that are closed under amalgamations along
arbitrary finitely generated free groups, for example the class of all finitely
presented groups, groups of type Fn , and groups of a given (cohomological or
geometric) dimension n ≥ 2. The benefit of restricting the geometry of the
amalgamation becomes apparent when the defining properties of G are more
geometric in nature. For example, the class of groups which satisfy a polynomial
isoperimetric inequality is not closed under the operation of amalgamation along
arbitrary finitely generated free groups (or indeed along quasi-isometrically em-
bedded free groups), but it is closed under amalgamation along isometrically
embedded subgroups (Corollary 4.2).

A refinement of the proof of Theorem A yields:

Theorem B Every finitely presented group G can be embedded in a finitely
presented group Ĝ that has no non-trivial finite quotients and whose Dehn
function f

Ĝ
satisfies:

f
Ĝ

(n) ≤ nfG(n).

One can (simultaneously) arrange for the isodiametric function of Ĝ to be no
greater than that of G.

Theorem A does not apply directly to the class of groups that arise as funda-
mental groups of compact non-positively curved spaces.1 Nevertheless, using a
more subtle argument based on the same blueprint of proof, in Section 3 we shall
prove the following theorem. (We say that a covering Ẑ → Z is ‘non-trivial’ if
Ẑ is connected and Ẑ → Z is not a homeomorphism.)

Theorem C Every compact, connected, non-positively curved space X ad-
mits an isometric embedding into a compact, connected, non-positively curved
space X such that X has no non-trivial finite-sheeted coverings. If X is a
polyhedral complex of dimension n ≥ 2, then one can arrange for X to be a
complex of the same dimension.

1Throughout this article we use the term ‘non-positive curvature’ in the sense of
A.D. Alexandrov [3].
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Any local isometry between compact non-positively curved spaces induces an
injection on fundamental groups [3, II.4], so in the notation of Theorem C we
have π1X ↪→ π1X . Since X has no non-trivial finite-sheeted coverings, π1X
has no proper subgroups of finite index. Thus Theorem C gives a solution to
our general embedding problem for the class of groups that arise as fundamental
groups of compact non-positively curved spaces. An extension of Theorem C
yields the corresponding result for groups that act properly and cocompactly
on CAT(0) spaces (3.6).

The fundamental groups of the most classical examples of non-positively curved
spaces, quotients of symmetric spaces of non-compact type, are residually fi-
nite. In 1995 Dani Wise produced the first examples of compact non-positively
curved spaces whose fundamental groups have no non-trivial finite quotients
[21]. He also constructed semihyperbolic groups that are not virtually tori-
son free, cf (3.7). Subsequently, Burger and Mozes [5] constructed compact
non-positively curved 2-complexes whose fundamental groups are simple. Fun-
damental groups of compact negatively curved spaces, on the other hand, are
never simple [8], [16].

One might hope to prove an analogue of Theorem A in which the enveloping
group Ĝ is simple. However the techniques described in this article are clearly
inadequate in this regard. Indeed, finitely presented simple groups have solvable
word problems and hence so do their finitely presented subgroups. Thus if one
wishes to embed a given finitely presented group G into a finitely presented
simple group, then one must make essential use of the fact that G has a solvable
word problem. Higman conjectures that the solvability of the word problem is
the only obstruction to the existence of such an embedding [10] (cf [4], [17]).

This article is organized as follows. In Section 1 we describe some examples
of groups that are not residually finite and define isometric amalgamation. In
Section 2 we prove Theorem A. In Section 3 we discuss spaces of non-positive
curvature and prove Theorem C. In Section 4 we examine the effect of iso-
metric amalgamations on isoperimetric and isodiametric inequalities and prove
Theorem B.

This article grew out of a lecture which I gave at the conference on Geometric
Group Theory at Canberra in July 1996. I would like to thank the organizers of
that conference. I would particularly like to thank Chuck Miller for arranging
my visit and for welcoming me so warmly.
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1 Residual finiteness and isometric amalgamation

A group G is said to be residually finite if for every non-trivial element g ∈ G
there is a finite group Q and an epimorphism φ: G � Q such that φ(g) 6= 1.
As a first step towards producing groups with no finite quotients, we must
gather a supply of groups that are not residually finite. The Hopf property
provides a useful tool in this regard. A group H is said to be Hopfian if every
epimorphism H � H is an isomorphism — in other words, if N ⊂ H is normal
and H/N ∼= H then N = {1}.

The following result was first proved by Malcev [14].

1.1 Proposition If a finitely generated group is residually finite then it is
Hopfian.

Proof Let G be a finitely generated group and suppose that there is an epi-
morphism φ: G → G with non-trivial kernel. We fix g0 ∈ ker φ r {1} and for
every n > 0 we choose gn ∈ G such that φn(gn) = g0 .

If there were a finite group Q and a homomorphism p: G → Q such that
p(g0) 6= 1, then all of the maps φn := pφn would be distinct, because φn(gn) 6= 1
whereas φm(gn) = 1 if m > n. But there are only finitely many homomor-
phisms from any finitely generated group to any finite group (because the images
of the generators determine the map).

1.2 Examples The following group was discovered by Baumslag and Solitar
[6]:

BS(2, 3) = 〈a, t | t−1a2t = a3〉.

The map a 7→ a2, t 7→ t is onto: a is in the image because a = a3a−2 =
(t−1a2t)a−2 . However this map is not an isomorphism: [a, t−1at] is a non-
trivial element of the kernel. Meier [15] noticed that the salient features of this
example are present in many other HNN extensions of abelian groups. Some of
these groups were later studied by Wise [19], among them

T (n) = 〈a, b, ta, tb | [a, b] = 1, t−1
a ata = (ab)n, t−1

b btb = (ab)n〉,

which is the fundamental group of a compact non-positively curved 2-complex
(see (3.1)). If n ≥ 2 then certain non-trivial commutators, for example g0 =
[ta(ab)t−1

a , b], lie in the kernel of the epimorphism T (n)� T (n) given by a 7→
an, b 7→ bn, ta 7→ ta, tb 7→ tb . The proof of (1.1) shows that g0 has trivial image
in every finite quotient of T (n).

Martin R Bridson

Geometry and Topology Monographs, Volume 1 (1998)

102



1.3 Definition of Isometric Amalgamation Let H ⊂ G be a pair of
groups with fixed finite generating sets. If, in the corresponding word metrics,
dG(h, h′) = dH(h, h′) for all h, h′ ∈ H , then we say that H is isometrically
embedded in G.

Consider a finite graph of groups (in the sense of Serre [18]). If one can choose
finite generating sets for the vertex groups Gi and the edge groups Hi,j such
that the inclusions of the edge groups are all isometric embeddings, then we
say that the fundamental group Γ of the graph of groups is obtained by an
isometric amalgamation of the Gi along the Hi,j or, more briefly, Γ is an
isometric amalgam of the Gi .

Note that, with respect to the natural choice of generators, all of the vertex
and edge groups are isometrically embedded in the amalgam. Note also that,
even in the basic cases of HNN extensions and amalgamated free products, the
above definition is more stringent than simply requiring that for each i, j there
exist choices of generators (depending on i, j ) with respect to which Hi,j ↪→ Gi
is an isometric embedding.

Free products of finitely generated groups are (trivial) examples of isometric
amalgams. One can also obtain both G × Z and G ∗ Z from G by isometric
amalgamations: each is the fundamental group of a graph of groups with one
vertex group G and one edge group; to obtain G×Z one takes G as edge group
and uses the identity map as the inclusions; to obtain G ∗Z one takes the edge
group to be trivial.

1.4 Lemma Let G be as in Theorem A and let T (n) be as in (1.2). If G ∈ G
then G ∗ T (n) ∈ G .

Proof Fix a finite generating set S for G. As above G ∗ Z ∈ G ; let a be a
generator of the Z free factor. The cyclic subgroup generated by a is isomet-
rically embedded with respect to the generating system S ∪ {a}. We add a
further stable letter b that commutes with a, thus obtaining G ∗ Z2 ∈ G .

With respect to S ∪ {a, b, (ab)n}, the cyclic subgroups generated by a, b and
(ab)n are all isometrically embedded. Thus G ∗ T (n) can be obtained from
G ∗ Z2 by an isometric amalgamation: the underlying graph of groups has one
vertex group, G ∗ Z2 , there are two edges in the graph and both edge groups
are cyclic; the homomorphism at one end of each edge sends the generator to
(ab)n , and the maps at the other ends are onto 〈a〉 and 〈b〉 respectively.
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2 The proof of Theorem A

In order to clarify the exposition, we shall first prove a simplified version of
Theorem A in which we do not examine the geometry of the amalgamations
involved.

2.1 Lemma Let G be a class of groups that is closed under the operation
of amalgamation along finitely generated free groups. If G ∈ G is finitely
generated, then it can be embedded in a finitely generated group Ĝ ∈ G that
has no proper subgroups of finite index.

Proof The following proof is chosen with Theorem A in mind (shorter proofs
exist). A similar construction was used in [21].

Step 0 Replacing G by G0 = G ∗ T (n) if necessary, we may assume that G
contains an element of infinite order g0 ∈ G whose image in every finite quotient
of G0 is trivial (see (1.2)). Let {b1, . . . , bn} be a generating set for G0 . We
replace G0 by G1 = G0∗Z, and take as generators A′ := {t, b1t, . . . , bnt}, where
t generates the free factor Z. We relabel the generators A′ = {a0, . . . , an}.

Step 1 We take an HNN extension of G1 with n stable letters:

E1 = 〈G1, s0, . . . , sn | s−1
i aisi = gpi0 , i = 0, . . . , n〉.

where the pi are any non-zero integers. Now, since each ai is conjugate to a
power of g0 in E1 , the only generators of E1 that can survive in any finite
quotient are the si . However, since there is an obvious retraction of E1 onto
the free subgroup generated by the si , the group E1 still has plenty of finite
quotients.

Step 2 We repeat the extension process, this time introducing stable letters
τi to make the generators si conjugate to g0 :

E2 = 〈E1, τ0, . . . , τn | τ−1
i siτi = g0, i = 0, . . . , n〉.

Step 3 Add a single stable letter σ that conjugates the free subgroup of E2

generated by the si to the free subgroup of E2 generated by the τi :

E3 = 〈E2, σ | σ−1siσ = τi, i = 0, . . . , n〉.

At this stage we have a group in which all of the generators except σ are
conjugate to g0 . In particular, every finite quotient of E3 is cyclic.
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Step 4 Because no power of a0 lies in either of the subgroups of E2 generated
by the si or the τi , the normal form theorem for HNN extensions implies that
{a0, σ} freely generates a free subgroup of E3 .

We define Ĝ to be an amalgamated free product of two copies of E3 ,

Ĝ = E3 ∗F E3,

where F = F (x, y) is a free group of rank two; the inclusion into E3 is x 7→ a0

and y 7→ σ , and the inclusion into E3 is x 7→ σ and y 7→ a0 . All of the
generators of Ĝ are conjugate to a power of either g0 or g0 , and therefore
cannot survive in any finite quotient. In other words, Ĝ has no finite quotients.

The following lemma enables us to gauge the geometry of the embeddings in
the preceding construction.

2.2 Lemma Let G be a group with finite generating set A, where no a ∈ A
represents 1 ∈ G.

(1) In any HNN extension of G with finitely many stable letters s0, . . . , sn ,
the free subgroup generated by S = {s0, . . . , sn} is isometrically embed-
ded with respect to A∪S . If 〈a〉 ⊂ G is isometrically embedded and has
trivial intersection with the amalgamated subgroups of si then gp{a, si}
is isometrically embedded in the HNN extension.

(2) If H ⊂ G is isometrically embedded with respect to A, then H is also
isometrically embedded in any isometric amalgamation involving G as a
vertex group (provided the amalgamation is isometric with respect to the
same generating set A).

(3) Let g ∈ Gr{1}. The cyclic subgroups of G∗〈t〉 generated by t, by [g, t],
and by each (at) with a ∈ A, are all isometrically embedded with respect
to the choice of generators A∗ = {at, [g, t], t | a ∈ A}.

Proof (1) and (2) follow from the normal form theorem for graphs of groups
[18].

The normal form theorem for free products tells us that if we write [g, t]n as
a word in the generators A ∪ {t}, then that word must contain at least 2n
occurences of t±1 . Each of the elements of A∗ contains at most two occurences
of t±1 , therefore dA∗(1, [g, t]n) = n.

If a word over A∪{t} equals (at)n in G ∗ 〈t〉, then its exponent sum in t must
be n. Therefore, since each of the generators in A∗ has t-exponent sum 1 or
0, we have dA∗(1, (at)n) = n.
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2.3 The Proof of Theorem A We follow the proof of (2.1). What we must
ensure is that at each stage the embedding which we described can be performed
by means of an isometric amalgamation.

First we choose a finite generating set A for G0 = G∗T (n) so that G ↪→ G0 is
an isometric embedding, and we fix an element g ∈ G0 whose image is trivial
in every finite quotient of G0 . Then as generators for G1 = G0 ∗ 〈t〉 we take
A∗ := {at, [g, t], t | a ∈ A}. Note the difference with (2.1) — we have included
[g, t]. Define g0 = [g, t].

Lemma 2.2(3) assures us that the amalgamations carried out in Step 1 of the
proof of (2.1) are along isometrically embedded subgroups provided that we take
all pi = 1. And parts (1) and (2) of Lemma 2.2 imply that the amalgamations
carried out in Steps 2, 3 and 4 of (2.1) are also along isometrically embedded
subgroups. Thus we obtain the desired group Ĝ ∈ G that has no finite quotients.

We have the inclusions G ⊂ G0 ⊂ G1 ⊂ Ĝ. The third inclusion was constructed
to be an isometric embedding. The first and second inclusions are obviously
isometric embeddings with respect to natural choices of generators. But it does
not follow that G ↪→ Ĝ is an isometric embedding, because at the end of Step
0 of the proof we switched from the obvious set of generators for G1 to a less
natural set that was suited to our purpose. On the other hand, for any finitely
generated group H , the identity map between the metric spaces obtained by
endowing H with different word metrics is bi-Lipschitz. Thus, G ⊂ Ĝ0 is a
quasi-isometric embedding (with respect to any choice of word metrics).

For future reference we note:

2.4 Lemma The cyclic subgroups generated by all of the stable letters intro-
duced in the above construction are isometrically embedded in Ĝ.

3 The non-positively curved case

The proof that we shall give of Theorem C is entirely self-contained except
that we do not prove the basic facts about non-positively curved spaces that
are listed (3.2). One could shorten the proof of Theorem C considerably by
using the complexes constructed in [21] or [5] in place of Lemmas 3.3 and 3.5.
However those constructions are rather complicated, so we feel that there is
benefit in presenting a more direct account.

The example given in (4.3(2)) shows that the class of groups which act properly
and cocompactly on spaces of non-positive curvature does not satisfy the con-
ditions of Theorem A. Nevertheless, with appropriate attention to detail, one
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can use the blueprint of our proof of Theorem A to prove Theorem C, and this
is what we shall do. First we need to know that there exists a compact non-
positively curved 2-complex whose fundamental group is not residually finite.

3.1 Wise’s Examples [19] Let

T (n) = 〈a, b, ta, tb | [a, b] = 1, t−1
a ata = (ab)n, t−1

b btb = (ab)n〉.
In Section 1 we saw that if n ≥ 2 then this group is not Hopfian and therefore
not residually finite. T (n) is the fundamental group of the non-positively curved
2-complex X(n) that one constructs as follows: take the (skew) torus formed
by identifying opposite sides of a rhombus with sides of length n and small
diagonal of length 1; the loops formed by the images of the sides of the rhombus
are labelled a and b respectively; to this torus attach two tubes S×[0, 1], where
S is a circle of length n; one end of the first tube is attached to the loop labelled
a and one end of the second tube is attached to the loop labelled b; in each
case the other end of the tube wraps n times around the image of the small
diagonal of the rhombus.

Any complex obtained by attaching tubes along local geodesics in the above
manner is non-positively curved in the natural length metric (see [3, II.11]). We
shall need the following additional facts concerning metric spaces of non-positive
curvature; see [3] for details.

3.2 Proposition Let X be a compact, connected, geodesic space of non-
positive curvature. Fix x ∈ X .

(1) Each homotopy class in π1(X,x) contains a unique shortest loop based
at x. This based loop is the unique local geodesic in the given homotopy
class.

(2) Each conjugacy class in π1(X,x) is represented by a closed geodesic in
X (ie a locally isometric embedding of a circle). In other words, every
loop in X is freely homotopic to a closed geodesic (which need not pass
through x). If two closed geodesics are freely homotopic then they have
the same length.

(3) π1(X,x) is torsion-free.

(4) Metric graphs are non-positively curved.

(5) The induced path metric on the 1-point union of two non-positively curved
spaces is again non-positively curved.

(6) If X is a compact non-positively curved space, Z is a compact length
space and i1, i2: Z → X are locally isometric embeddings, then, when
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endowed with the induced path metric, the quotient of X ∪ (Z × [0, L])
by the equivalence relation generated by i1(z) ∼ (z, 0) and i2(z) ∼ (z, L)
is non-positively curved. Moreover, if L is greater than the diameter of
X , then X is isometrically embedded in the quotient.

A particular case of (6) that we shall need is where X is the disjoint union
of spaces X1 and X2 , and Z is a circle. In this case the quotient is obtained
by joining X1 to X2 with a cylinder whose ends are attached along closed
geodesics.

3.3 Lemma There exists a compact, connected, non-positively curved 2-
complex K with basepoint x0 ∈ K such that:

(1) there is an element g0 ∈ π1(K,x0) whose image in every finite quotient
of π1(K,x0) is trivial;

(2) π1(K,x0) is generated by a finite set of elements each of which is repre-
sented by a closed geodesic that passes through x0 and has integer length;

(3) g0 is represented by a closed geodesic of length 1 that passes through x0 .

Proof Let X be a compact, connected, 2-complex of non-positive curvature
and let g0 ∈ π1X be a non-trivial element whose image in every finite quotient
of π1X is trivial (the spaces X(n) of (3.1) give such examples). We choose a
point x0 on a closed geodesic that represents the conjugacy class of g0 . Suppose
that π1(X,x0) is generated by {b1, . . . , bn}, let βi be the shortest loop based
at x0 in the homotopy class bi , and let li be the length of βi . Let l0 be the
length of the closed geodesic representing g0 . Replacing g0 by a proper power
if necessary, we may assume that l0 > li for i = 1, . . . , n.

Consider the following metric graph Λ: there are (n+ 1) vertices {v0, . . . , vn}
and 2n edges {e1, ε1, . . . , en, εn}; the edge ei connects v0 to vi and has length
(l0− li)/2; the edge εi is a loop of length l0 based at vi . We obtain the desired
complex K by gluing Λ to X , identifying v0 with x0 , and then scaling the
metric by a factor of l0 so that the closed geodesic representing g0 ∈ π1(K,x0)
has length 1.

Let γi ∈ π1(K,x0) be the element given by the geodesic ci that traverses ei ,
crosses εi , and then returns along ei , that is ci = eiεiei , where the overline de-
notes reversed orientation. Note that π1(K,x0) is the free product of π1(X,x0)
and the free group generated by {γ1, . . . , γn}. As generating set for π1(K,x0)
we choose {biγi, biγ2

i | i = 1, . . . , n}.
According to parts (4) and (5) of the preceding proposition, K has non-positive
curvature. Moreover, the concatenation of any non-trivial locally geodesic loop
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in X , based at x0 , and any non-trivial locally geodesic loop in Λ based at v0

is a closed geodesic in K . Thus βici and βieiε
2
i ei are closed geodesics in K ;

the former has length 2 and the latter has length 3; the former represents biγi
and the latter represents biγ2

i .

3.4 The proof of Theorem C Given a compact, connected, non-positively
curved space X we must isometrically embed it in a compact, connected, non-
positively curved space X whose fundamental group has no non-trivial finite
quotients. Moreover the embedding must be such that if X is a complex of
dimension at most n ≥ 2 then so is X . We give two constructions, the first in
outline and the second in detail.

First Proof We form the 1-point union of X with one of the complexes X(n)
described in (3.1) thus ensuring that some element g0 of the fundamental group
has trivial image in every finite quotient. We then apply the construction of
(3.3), gluing a metric graph to our space to obtain a space X ′ whose funda-
mental group is generated by elements represented by closed geodesics that
pass through a basepoint on a closed geodesic representing g0 . To complete the
proof one follows the argument of Lemma 3.5 with X ′ in place of K (taking the
cylinders attached to be sufficiently long so that X is isometrically embedded
in the resulting space, 3.2(6)).

Second Proof Choose a finite set of generators for π1X , and let c1, . . . , cN
be closed geodesics in X representing the conjugacy classes of these elements.
Lemma 3.5 gives a compact non-positively curved 2-complex K4 whose funda-
mental group has no finite quotients; fix a closed geodesic c0 in K4 . Take N
copies of K4 and scale the metric on the i-th copy so that the length of c0 in
the scaled metric is equal to the length l(ci) of ci . Then glue the N copies
of K4 to X using cylinders Si × [0, L] where Si is a circle of length l(ci); the
ends of Si × [0, L] are attached by arc length parametrizations of c0 and ci
respectively. Call the resulting space X .

Part (6) of (3.2) assures us that X is non-positively curved, and if the length
L of the gluing tubes is sufficiently large then the natural embedding X ↪→ X
will be an isometry.

It remains to construct K4 .

3.5 Lemma There exists a compact non-positively curved 2-complex K4

whose fundamental group has no finite quotients.
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Proof Let K be as in (3.3). We mimic the argument of (2.1), with π1(K,x0)
in the rôle of G1 . At each stage we shall state what the fundamental group of
the complex being constructed is; in each case this is a simple application of
the Seifert-van Kampen theorem.

Let c0 be the closed geodesic of length 1 representing g0 . Let {a0, . . . , an} be
the generators given by 3.3(2), let αi be the closed geodesic through x0 that
represents ai , and suppose that αi has length pi . For each i, we glue to K a
cylinder Spi × [0, 1], where Spi is a circle of length pi , with basepoint vi ; one
end of the cylinder is attached to αi while the other end wraps pi -times around
c0 , and vi×{0, 1} is attached to x0 . Let K1 be the resulting complex. By the
Seifert-van Kampen theorem, π1(K1, x0) = E1 , in the notation of (2.1). Part
(6) of (3.2) implies that K1 is non-positively curved.

The images in K1 of the paths vi × [0, 1] give an isometric embedding into K1

of the metric graph Y that has one vertex and n edges of length 1; call the
corresponding free subgroup F1 ⊂ E1 (it is the subgroup generated by the si
in (2.1)).

Step 2 of (2.1) is achieved by attaching n cylinders of unit circumference S1 ×
[0, 1] to K1 , the ends of the i-th cylinder being attached to c0 and to the
image of vi × [0, 1]. The resulting complex K2 has π1(K2, x0) = E2 . As in the
previous step, the free subgroup F2 ⊂ E2 generated by the basic loops that run
along the new cylinders is the π1 -image of an isometric embedding Y → K2 .
(This F2 is the subgroup generated by the τi in (2.1).)

To achieve Step 3 of (2.1), we now glue Y × [0, L] to K2 by attaching the ends
according to the isometric embeddings that realize the embeddings F1, F2 ⊂
π1(K2, x0). This gives us a compact non-positively curved complex K3 with
fundamental group E3 (in the notation of (2.1)). Let v be the vertex of Y ,
observe that v × {0, L} is attached to x0 ∈ K3 , and let σ ∈ π1(K3, x0) be the
homotopy class of the loop [0, L]→ K3 given by t 7→ (v, t).

We left open the choice of L, the length of the mapping cylinder in Step 3, we
now specify that it should be p0 , the length of the geodesic representing the
generator a0 . An important point to observe is that the angle at x0 between
the image of v× [0, L] and any path in K1 ⊂ K3 is π . Thus the free subgroup
gp{a0, σ} is the π1 -image in π1(K3, x0) of an isometry from the metric graph
Z with one vertex (sent to x0 ) and two edges of length L = p0 . In fact, we
have two such isometries Z → K3 , corresponding to the free choice we have of
which edge of Z to send to the image of v × [0, L]. We use these two maps to
realize Step 4 of the construction on (2.1): we apply part (6) of (3.2) with X
equal to the disjoint union of two copies of K3 and with the two maps Z → K3
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employed as the local isometries i1, i2 , the image of one of the maps being in
each component of X . The resulting space is the desired complex K4 .

By gluing non-positively curved orbi-spaces (in the sense of Haefliger [9]), or
by performing equivariant gluing, one can extend Theorem C to include groups
with torsion. We refer the reader to [3, II.11] for the technical tools that make
this adaptation straightforward.

3.6 Theorem If a group G acts properly and cocompactly by isometries on a
CAT(0) space Y then one can embed G in a group Ĝ that acts properly and
cocompactly by isometries on a CAT(0) space Y and has no proper subgroups
of finite index. If Y is a polyhedral complex of dimension n ≥ 2 then so is Y .

Since the group G need not be torsion-free, (3.6) shows in particular that there
exist compact non-positively curved orbihedra, with finite local groups, that are
not finitely covered by any polyhedron (where ‘covered’ refers to covering in the
sense of orbispaces and ‘polyhedron’ means an orbihedron whose local groups
are trivial). We close our discussion of non-positively curved spaces with an
explicit example to illustrate this point. The first examples of this type were
discovered by my student Wise [20], and the following example is essentially
contained in his work.

3.7 A semihyperbolic group that is not virtually torison-free

In the hyperbolic plane H2 we consider a regular quadrilateral Q with vertex
angles π/4. Let α and β be hyperbolic translations that identify the opposite
sides of Q. Then Q is a fundamental domain for the action of G = gp{α, β};
the commutator [α, β] acts as a rotation through π at one vertex of Q, and
away from the orbit of this vertex the action of G is free. Thus the quotient
orbifold V = H2/G is a torus with one singular point, and at that singular
point the local group is Z2 .

Let X(n) and T (n) be as in (3.1) and fix a closed geodesic c in the homotopy
class of a non-trivial element g0 in the kernel of a self-surjection T (n)� T (n).
We scale the metric on X(n) so that this geodesic has length l = |α| = |β|.
Then we take a copy of X(n) and consider the orbispace V obtained by gluing
it to V using a tube Sl × [0, 1] one end of which is glued to c and the other
end of which is glued to the image in V of the axis of α.

V inherits the structure as a (non-positively curved) orbihedron in which the
only singular point is the original one; at this singular point the local structure
is as it was in V . The fundamental group Ĝ of V is G ∗Z T (n), where the

Controlled embeddings into groups

Geometry and Topology Monographs, Volume 1 (1998)

111



amalgamation identifies g0 ∈ T (n) with α ∈ G. Now, g0 has trivial image
in every finite quotient of T (n), therefore [α, β] = [g0, β] has trivial image in
every finite quotient of Ĝ. It follows that [α, β], which has order two, lies in
every subgroup of Ĝ that has finite index.

In the case n = 2, the group Ĝ has the following presentation:

〈a, b, s, t, α, β | α = [s−1(ab)s, b], [a, b] = [α, β]2 = 1, t−1bt = s−1as = (ab)2〉.

4 Isoperimetric inequalities

Isoperimetric inequalities for finitely presented groups G = 〈A | R〉 measure the
complexity of the word problem. If a word w in the free group F (A) represents
the identity in G, then there is an equality

w =
N∏
i=1

x−1
i rixi

in F (A), where ri ∈ R±1 . Isoperimetric inequalities give upper bounds on the
integer N in a minimal such expression. The bounds are given as a function
of the length of w , and the function fG: N → N giving the optimal bound is
called the Dehn function of the presentation. If there is a constant K > 0 such
that the functions g, h: N→ N satisfy g(n) ≤ K h(Kn) +Kn, then one writes
g � h. It is not difficult to show (see [1] for example) that the Dehn functions
of different finite presentations of a fixed group are ' equivalent, where f ' g
means that f � g and g � f .

As an alternative measure of complexity for the word problem, instead of trying
to bound the integer N in the above equality one might seek to bound the
length of the conjugating elements xi . In this case the function giving the
optimal bound is called the isodiametric function of the group, which we write
ΦG(n). Again, this function is ' independent of the chosen presentation (see
[7]).

We refer the reader to [7] for more information and references concerning Dehn
functions and isodiametric functions and their (useful) interpretation in terms
of the geometry of van Kampen diagrams.

4.1 Proposition If G is an isometric amalgam of a finite collection {Gi |
i ∈ I} of finitely presented groups, then the Dehn function fG(n) of G is
� n2 + n maxi fGi(n).
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Proof A diagrammatic version of the proof is given in (4.3(3)), here we present
a more algebraic proof.

By definition, G is the fundamental group of a finite graph of groups. For the
sake of notational convenience we shall assume that there are no loops in the
graph of groups under consideration. The proof in the general case is entirely
similar but notationally cumbersome.

Thus we have a finite tree with vertex set I and a set of edges E ⊂ I × I .
At the vertex indexed i the vertex group is Gi . Let Hi,j be the edge group
associated to (i, j) ∈ E . By definition, (1.3), there are finite generating sets Ai
for the Gi and subsets Bi,j ⊂ Ai with specified bijections φi,j : Bi,j → Bj,i for
each (i, j) ∈ E ; the set Bi,j generates Hi,j , each of the inclusions Hi,j ↪→ Gi is
isometric with respect to these choices of generators, and φi,j = φ−1

j,i .

We fix finite presentations 〈Ai | Ri〉 for the Gi . Then,

G ∼= 〈A | R, φi,j(b) = b, ∀b ∈ Bi,j〉,

where A =
∐
iAi, R =

∐
iRi , and (i, j) runs over E

Let W be a word in the generators A. Suppose that W is identically equal
to a product u1 . . . um , where each uk is a word over one of the alphabets
Ai(k) and each Ai(k) 6= Ai(k+1) . Under these circumstances W is said to
have alternating length m. The normal form theorem for amalgamated free
products [13] (or more generally graph products [18]) ensures that this notion
of length is well-defined. It also tells us that if W = 1 in G then at least one
of the subwords uk is equal in Gi(k) to a word ω in the generators Bi(k),i(k±1) .
Because Hi(k),i(k±1) is isometrically embedded in Gi(k) , we can replace uk by
ω without increasing the length of W . This can be done at the cost of applying
at most fGi(k)(2|uk|) relations. We apply |ω| relations to replace each letter b
of ω with φi(k),i(k±1)(b). Then, without applying any more relations, we group
ω together with the neighbouring word uk±1 . The net effect of this operation
is to reduce the alternating length of W without increasing its actual length.
By repeating this operation fewer than |W | times we can replace W by a word
W ′ with |W ′| ≤ |W | that involves letters from only one of the alphabets Ai .
Since W ′ represents the identity in Gi , we can then reduce W ′ to the empty
word by applying at most fGi(|W ′|) relators from Ri .

The total number of relators applied in the reduction of W to W ′ is fewer than
m|W |+m maxi fGi(|W |), where m is the alternating length of W . Therefore
the total number of relators that we had to apply in reducing W to the empty
word was less than |W |2 + |W | maxi fGi(|W |).
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4.2 Corollary The class of groups that satisfy a polynomial isoperimetric in-
equality is closed under the formation of isometric amalgamations along finitely
generated subgroups.

4.3 Remarks

(1) If instead of considering isometric amalgamations we considered the fun-
damental groups of graphs of groups in which the edge groups were only quasi-
isometrically embedded, then the above proof would break down at the point
where we noted that |W ′| ≤ |W |. In fact Proposition 4.1 would be false under
this weaker hypothesis: consider the Baumslag-Solitar groups for example.

(2) Let D be the direct product of the free group on {a, b} and the free
group on {c, d}. Let L = gp{ac, bc}. For a suitable choice of generators, L
is isometrically embedded in D . It is shown in [2] and [3] that D ∗L D has
a cubic Dehn function, whereas D has a quadratic Dehn function. Thus, in
general, isometric amalgamations may increase the polynomial degree of Dehn
functions.

(3) The proof of (4.1) can be recast as an induction argument in which one
proves that the area of a minimal van Kampen diagram for W is
m(maxi fGi(|W |)+ |W |), where m is the alternating length of W . This admits
a simple geometric proof which we shall now sketch.

Draw a circle labelled by W , divide it into m subarcs according to the decom-
position of W as an alternating word. Maintaining the notation established
in the proof of (4.1), we draw a chord in the disc connecting the endpoints
of the circular arc labelled by uk . We label the chord by a geodesic word
ω ∈ B∗i(k),i(k±1) that is equal to uk in G. We fill the subdisc with boundary
labelled ukω

−1 using a minimal-area van Kampen diagram over the given pre-
sentation of Gi(k) . We then attach to the chord labelled ω faces corresponding
to relators of the type φi(k),i(k±1)(b); the effect of this is to replace ω by the
corresponding word in the generators Bi(k±1),i(k) . By induction, we may fill
the remaining subdisc with a van Kampen diagram of area no greater than
(m − 1)(maxi fGi(|W |) + |W |). We may choose uk so that 2|uk| ≤ |W |, and
hence |uk|+ |ω| ≤ |W |. Therefore the area of the whole diagram is no greater
than m (maxi fGi(|W |) + |W |), completing the induction.

A simple induction on alternating length, in the manner of (4.3(3)), allows one
to show that (with respect to the finite presentations considered in (4.1)) every
null-homotopic word W of alternating length m bounds a van Kampen diagram
in which every vertex can be joined to the basepoint of the diagram by a path
in the 1-skeleton that has length at most |W |+ maxi ΦGi(|W |). Thus:
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4.4 Proposition If G is an isometric amalgam of a finite collection {Gi | i ∈
I} of finitely presented groups, then the isodiametric function ΦG(n) of G is
� maxi ΦGi(n).

4.5 The Proof of Theorem B Given an infinite finitely presented group
G, we replace it by G ∗ Z. This does not change the Dehn function or the
isodiametric function of G but it allows us to assume that G is generated by a
finite set of elements {ai, . . . , ar} such that each 〈ai〉 is isometrically embedded
in G (see 2.2(3)).

The fundamental group S of any of the spaces X yielded by Theorem C will
satisfy a quadratic isoperimetric inequality and a linear isodiametric inequality
[3, III]. At the level of π1 , the proof of Theorem C was exactly parallel to that of
(2.1), so Lemma 2.4 implies that S contains an isometrically embedded infinite
cyclic subgroup 〈s〉.

The group Ĝ whose existence is asserted in Theorem B is obtained by taking
an amalgamated free product of G and m copies of S : the cyclic subgroup 〈s〉
in the i-th copy of S is identified with 〈ai〉 ⊂ G. In other words, Ĝ is the
fundamental group of a tree of groups in which there is one vertex of valence
m, with vertex group G, and m vertices of valence 1, each with vertex group
S ; each edge group is infinite cyclic and the generator of the i-th edge group
is mapped to s ∈ S and ai ∈ G.

Proposition 4.1 tells us that the Dehn function of Ĝ is � nfG(n), and Propo-
sition 4.4 tells us that the isodiametric function of Ĝ is no worse than that of
G.
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[19] D T Wise, An automatic group that is not Hopfian, J. Alg. 180 (1996) 845–847

[20] D T Wise, Non-positively curved squared complexes, aperiodic tilings, and non-
residually finite groups, PhD Thesis, Princeton Univ. (1996)

[21] D T Wise, A non-positively curved squared complex with no finite covers,
preprint (1995)

Mathematical Institute, 24–29 St Giles’, Oxford, OX1 3LB

Email: bridson@maths.ox.ac.uk

Received: 16 November 1997

Martin R Bridson

Geometry and Topology Monographs, Volume 1 (1998)

116


