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1916 Michael Kapovich

1 Introduction

There are only few known obstructions for existence of an isometric properly
discontinuous action of a Gromov-hyperbolic group G on the real-hyperbolic
space Hp for some p:

(1) If G is a group satisfying Kazhdan property (T) then each isometric action
G y Hp fixes a point in Hp ; hence no infinite hyperbolic group satisfying
property (T) admits an isometric properly discontinuous action G y Hp , for
any p.

(2) Suppose that G is the fundamental group of a compact Kähler manifold
and G y Hp is an isometric properly discontinuous action. Then, according to
a theorem of Carlson and Toledo [8], this action factors through an epimorphism
G→ Q, where Q is commensurable to a surface group. Hence, unless G itself
is commensurable to a surface group, it does not admit an isometric properly
discontinuous action G y Hp . Examples of Gromov-hyperbolic groups which
are Kähler (and are not commensurable to surface groups) are given by the
uniform lattices in PU(m, 1), m ≥ 2, as well as the fundamental groups of
compact negatively curved Kähler manifolds (see [20]).

On the positive side, by a theorem of Bonk and Schramm [3], each Gromov-
hyperbolic group admits a quasi-isometric embedding to a real-hyperbolic space.

The goal of this paper is to find a better “demarcation line” between hyperbolic
groups satisfying property (T) and groups acting discretely on real-hyperbolic
spaces. In this paper we will show that a large class of 2–dimensional Gromov-
hyperbolic groups admits isometric properly discontinuous convex-cocompact
actions on real-hyperbolic spaces. We consider a 2–dimensional negatively
curved acute polygon P of finite groups (see section 2.2 for more details). Let
G := π1(P) be the fundamental group of this polygon, we refer the reader to
[7, Chapter II, section 12] for the precise definitions.

Our main result is:

Theorem 1.1 Suppose that n = 2k is even. Then the group G admits a
discrete, faithful, convex-cocompact action ρ on a constant curvature hyperbolic
space Hp , where p <∞ depends on the polygon P .

Our technique in general does not work in the case when n is odd: We were
unable to construct a representation. However in section 6 we will construct ρ
and prove that it is discrete, faithful, convex-cocompact for a special class of
odd-sided n–gons of groups, provided that n ≥ 5.
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Representations of polygons of finite groups 1917

Conjecture 1.2 The assertion of Theorem 1.1 remains valid for all odd n ≥ 5.

In contrast, if P is a triangle of finite groups where the vertex links are con-
nected graphs with the 1st positive eigenvalue of the Laplacian > 1/2, then the
group G = π1(P) satisfies property (T), see [1]. Hence (provided that G is infi-
nite) the group G cannot act properly discontinuously on Hp for any p. Thus,
it appears, that (at least for the polygons of finite groups) the “demarcation
line” which we are trying to find, is hidden somewhere among quadrilaterals
and triangles of groups. We will address this issue in another paper.

Recall that, by a theorem of Dani Wise [24], G is residually finite (actually,
Wise proves that G has separable quasi-convex subgroups, which is used in the
proof of our main theorem).

Corollary 1.3 The group G is linear.

Remark 1.4 A very different proof of linearity of G was given by Wise and
Haglund, who used an embedding of G to a right-angled Coxeter group, [14].

The following problem is open even for right-angled Coxeter groups of virtual
cohomological dimension 2.

Problem 1.5 Suppose that G is a Gromov-hyperbolic Coxeter group. Is
G isomorphic to a discrete subgroup of Isom(Hn) for some n? Note that if
one insists that the Coxeter generators act on Hn as reflections, then there
are examples of Gromov-hyperbolic Coxeter groups which do not admit such
actions on Hn , see [10].

In section 8, we give an example of a nonlinear Gromov-hyperbolic group.

The proof of the main theorem splits in two parts: (1) Construction of ρ, (2)
proof of discreteness. To prove discreteness of ρ we show that there exists a ρ–
equivariant quasi-isometric embedding µ : X → Hp , where X is the universal
cover of the polygon P . This proves that the action ρ : G y Hp is properly
discontinuous and convex-cocompact. (A priori this action can have finite ker-
nel. In section 7 we explain how to deal with this issue.) The proof that µ is
a quasi-isometric embedding is based on the following theorem of independent
interest:
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1918 Michael Kapovich

Theorem 1.6 Suppose that X is a 2–dimensional regular cell complex, which
is equipped with a CAT(−1) path-metric so that each face of X is isometric to
a right-angled regular n–gon in H2 . Let µ : X → Hp is a continuous map which
is a (totally-geodesic) isometric embedding on each face of X . Assume also that
for each pair of faces F ′, F ′′ ⊂ X which intersect non-trivially a common face
F ⊂ X , we have:

Span(µ(F ′)) ⊥ Span(µ(F ′′)).

Then µ is a quasi-isometric embedding.

Our construction of representations ρ was inspired by the paper of Marc Bour-
don, [4], where he proves a theorem which is a special case of Theorem 1.1: In
his paper Bourdon considers n–gons of finite groups where the edge groups are
cyclic and the vertex groups are direct products of the adjacent edge groups,
under the extra assumption that the orders of the edge groups are much smaller
that n.

Acknowledgments During the work on this paper I was visiting the Max
Plank Institute (Bonn), I was also supported by the NSF grants DMS-02-03045
and DMS-04-05180. I am grateful to Tadeusz Januszkiewicz for inspirational
and helpful conversations during the work on this paper. I first tried to prove
discreteness of certain representations by verifying that an equivariant map is
a quasi-isometric embedding, in a joint project with Bernhard Leeb in 1998.
Although our attempt back then was unsuccessful, I am grateful to Bernhard
Leeb for that effort. I am also grateful to the referees of this paper for numerous
suggestions and to Mark Sapir for discussions of Theorem 8.1.

2 Preliminaries

Notation If Σ is a (finite) set, we define a Euclidean vector space V ect(S) to
be the vector space L2(S), where S forms an orthonormal basis (we identify
each 1–point subset of S with its characteristic function in L2(S)). Suppose
that S ⊂ Hq . Then Span(E) will denote the smallest totally-geodesic subspace
in Hq which contains S . If E ⊂ Hq is a geodesic segment, then Bis(E) will
denote the perpendicular bisector of E .

Suppose that E1, E2 ⊂ E are subspaces of a Euclidean vector space E , whose
intersection is E3 . We say that E1, E2 intersect orthogonally if E1/E3, E2/E3

are contained in the orthogonal complements of each other in the Euclidean
space E/E3 .
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Representations of polygons of finite groups 1919

Suppose that H ′,H ′′ are totally-geodesic subspaces in Hp . We say that H ′,H ′′

intersect orthogonally if

H ′ \H ′′ 6= ∅,H ′′ \H ′ 6= ∅
and for some (equivalently, for every) point x ∈ H ′ ∩H ′′ we have:

Tx(H
′), Tx(H

′′) ⊂ Tx(Hp) intersect orthogonally.

Totally geodesic subspaces H ′,H ′′ ⊂ Hp are said to be orthogonal to each other
if either:

(a) H ′,H ′′ intersect orthogonally, or

(b) H ′,H ′′ are within positive distance from each other and for the unique
shortest geodesic segment σ := x′x′′ ⊂ Hp connecting H ′ to H ′′ , the totally-
geodesic subspaces H ′′, γσ(H

′) intersect orthogonally. Here γσ is the hyperbolic
translation along σ which sends x′ to x′′ .

We will use the notation H ′ ⊥ H ′′ for subspaces H ′,H ′′ orthogonal to each
other. Clearly, H ′ ⊥ H ′′ ⇐⇒ H ′′ ⊥ H ′ .

2.1 Discrete subgroups of Isom(Hn)

Recall that a map f : X → Y between two metric spaces is called an (L,A)
quasi-isometric embedding if for all x, x′ ∈ X we have:

L−1d(x, x′)−A ≤ d(f(x), f(x′)) ≤ Ld(x, x′) +A,

where L > 0. An (L,A) quasi-isometry is an (L,A) quasi-isometric embedding

X
f→ Y such that each point of Y is within distance ≤ A from a point in Im(f).

A map f is called a quasi-isometry (resp. a quasi-isometric embedding) if it is
an (L,A) quasi-isometry (resp. quasi-isometric embedding) for some L and A.

An (L,A) quasi-geodesic segment in a metric space X is an (L,A) quasi-
isometric embedding f : [0, T ] → X , where [0, T ] is an interval in R. By
abusing notation we will sometimes refer to the image Im(f) of an (L,A)
quasi-geodesic segment f as an (L,A) quasi-geodesic segment. Recall that by
the Morse lemma (see for instance [17, Lemma 3.43]), quasi-geodesics in Hn

are stable:

There is a function D = D(L,A) such that for each (L,A) quasi-geodesic seg-
ment f : [0, T ]→ Hn , the Hausdorff distance between Im(f) and the geodesic
segment

f(0)f(T ) ⊂ Hn
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1920 Michael Kapovich

connecting the end-points of Im(f) is at most D .

We will use the notation Hn for the real-hyperbolic n–space; its curvature is
normalized to be equal to −1. The space Hn has a geometric compactification
H̄n = Hn ∪ Sn−1 . For a subset S ⊂ Hn we let S̄ denote its closure in H̄n .

Discrete subgroups G ⊂ Isom(Hn) are called Kleinian groups.

The convex hull C(G) of a Kleinian group G ⊂ Isom(Hn) is the smallest non-
empty closed convex G–invariant subset C ⊂ Hn . The convex hull exists for
each G whose limit set has cardinality 6= 1. The convex hull is unique unless
G is finite.

Definition 2.1 A Kleinian group G ⊂ Isom(Hn) is called convex-cocompact if
C(G) exists and the quotient C(G)/G is compact.

Lemma 2.2 Suppose we have a representation ρ : G→ Isom(Hn) of a finitely-
generated group G. Then the action ρ : G y Hn is properly discontinuous and
convex-cocompact iff there exists a G–equivariant quasi-isometric embedding
f : ΓG → Hn , where ΓG is a Cayley graph of G.

Proof First, suppose that ρ : G y Hn properly discontinuous and convex-
cocompact. Then, because C(G) is a geodesic metric space, there exists a
G–equivariant quasi-isometry f : ΓG → C(G). Composing this map with the
isometric embedding ι : C(G)→ Hn , we conclude that f : ΓG → Hn is a quasi-
isometric embedding.

Conversely, suppose that f : ΓG → Hn is an equivariant quasi-isometric embed-
ding. In particular, f is a proper map. Hence, if for 1 ∈ ΓG we set o := f(1),
then for each compact subset K ⊂ Hn there are only finitely many elements
g ∈ G such that g(o) ∈ K . Therefore the action G y Hn is properly discon-
tinuous. In particular, it has finite kernel.

Observe that stability of quasi-geodesics in Hn implies that Im(f) is quasi-
convex, ie, there exists a constant c < ∞ such that for any two points x, y ∈
Im(f) the geodesic segment xy is contained in a c–neighborhood Nc(Im(f)) of
Im(f). On the other hand, by [6, Proposition 2.5.4], there exists R = R(c) such
that the convex hull of each c–quasi-convex subset S ⊂ Hn is contained in the
R–neighborhood NR(S). Thus, the convex subset C(ρ(G)) ⊂ Hn is contained
in NR(c)(Im(f)). Since G acts cocompactly on Im(f) it follows that G acts
cocompactly on C(G). Therefore ρ(G) is convex-cocompact.
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Representations of polygons of finite groups 1921

Remark 2.3 (1) Clearly, instead of ΓG in the above lemma one can use any
geodesic metric space on which G acts isometrically, properly discontinuously
and cocompactly.

(2) The above lemma shows that existence of a G–equivariant quasi-isometric
embedding f : ΓG → Hn implies that ρ has finite kernel. However it does not
exclude the possibility that this kernel is nontrivial.

Definition 2.4 Let G be a group with a Cayley graph ΓG . A subgroup
H ⊂ G is called quasi-convex if the orbit H · 1 ⊂ ΓG is quasi-convex, ie, there
exists a number D so that each geodesic segment σ ⊂ ΓG with vertices in H ·1
is contained in ND(H · 1).

If G is Gromov-hyperbolic then quasi-convexity of H is independent of the
choice of Cayley graph ΓG .

2.2 Geometry of polygons of groups

Consider an n–gon P (n ≥ 5) with vertices xi and edges ej , 1 ≤ i, j ≤ n.
Throughout we will be working mod n, ie, qn+ i will be identified with i for
i ∈ {1, . . . , n}. We will be assuming that each edge ei has the vertices xi, xi+1 .
We will regard P as a (2–dimensional) cell complex and its poset Pos(P ) as
a (small) category. A polygon of groups P based on P is a covariant functor
from Pos(P ) to the category of groups and monomorphisms.

In other words, a polygon of groups P based on P is a collection of groups
Gxi

, Gei
, GF assigned to the vertices, edges and the 2–face F of P , together

with monomorphisms

GF → Ge → Gx

for each edge e containing the vertex x, so that the following diagrams are
commutative:

Gx ← Ge
տ ↑

GF

The direct limit of the above diagrams of monomorphisms is the fundamental
group G = π(P) of the polygon P . If the vertex, edge and face groups of
P embed naturally into G, the polygon P is called developable. Not every
polygon of groups is developable, however under a certain nonpositive curvature
assumption on P , the polygon P is developable, see [7].
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1922 Michael Kapovich

Curvature and angles For each vertex xi ∈ P define a graph Lkxi
as

follows. The vertices of Lkxi
are the right cosets gGei

, gGei−1 , g ∈ Gxi
. The

vertices v,w are connected by a (single) edge iff there exists g ∈ Gxi
such that

g({v,w}) = {Gei
, Gei−1}. Thus the group Gxi

acts on Lkxi
with the quotient

being the edge connecting Gei
, Gei−1 . We metrize the graph Lkxi

by assigning
the same length αi to each edge, so that the group Gxi

acts isometrically. Then
the angle between the subgroups Gei

, Gei−1 is the least number αi such that the
metric graph Lkxi

is a CAT(1) space, ie, the length of the shortest embedded
cycle in Lkxi

is at least 2π . Equivalently, the angle between Gei
, Gei−1 equals

2π/girth(Lkxi
).

We will say that the polygon P is acute (or has acute angles) if the angle αi
between each pair of edge groups Gei

, Gei−1 is at most π/2.

We refer the reader to [7, Chapter II, section 12] for the precise definitions of
the nonpositive/negative curvature of P ; various examples of negatively curved
polygons of groups can be found in [1], [7, Chapter II, section 12] and [22].
Instead, we state the following equivalent definition of negative curvature:

There exists a 2–dimensional simply-connected regular cell complex X (the
universal cover of P ) together with a path-metric on X whose restriction to
each face of X has constant curvature −1, so that:

(1) Each face of X is isometric to an n–gon in H2 with angles α1, . . . , αn .

(2) Each cell in X is convex.

(3) There exists an isometric cellular action G y X which is transitive on
2–cells.

(4) The stabilizer of each 2–face F ⊂ X is isomorphic to GF , it fixes F
pointwise.

(5) The stabilizer of each edge e of F is isomorphic to Ge and it fixes e
pointwise.

(6) The stabilizer of each vertex x of F is isomorphic to Gx .

(7) The inclusion maps GF →֒ Ge →֒ Gx coincide with the monomorphisms
GF → Ge → Gx in the definition of P .

Note that the link in X of each vertex xi ∈ F is isometric to Lkxi
(where each

edge has the length αi ). Thus the above complex X is a CAT(-1) metric space.

Throughout the paper we will be using only the following corollary of negative
curvature for acute polygons of groups:
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Corollary 2.5 If P is negatively curved then there is a CAT(−1) complex X
where each face is isometric to a regular right-angled polygon in H2 , so that
the properties (2)–(7) are satisfied.

In this paper we will consider only the case when the vertex groups are finite,
thus the action G y X is properly discontinuous and cocompact, which implies
that X is equivariantly quasi-isometric to a Cayley graph of G.

We now return to the original polygon P assuming that it has even number of
sides. Let o denote the center of the face F and let mj be the midpoint of the
edge ej ⊂ F . We consider two subgraphs Γeven,Γodd ⊂ F which are obtained
by conning off from o the sets

meven := {m2j , j = 1, . . . , n/2},modd := {m2j−1, j = 1, . . . , n/2}
respectively. Let Geven, Godd denote the subgroups of G generated by the
elements of

Ge2j
, j = 1, . . . , n/2

and
Ge2j−1 , j = 1, . . . , n/2

respectively. Define subgraphs Teven and Todd to be the orbits

Geven · Γeven and Godd · Γodd.
We define a new path-metric τ on the complex X by declaring the closure of
each component of X \ (Teven ∪ Todd) to be a unit Euclidean square. Clearly,
the group G acts on (X, τ) isometrically and (X, τ) is a CAT(0) metric space.

The groups Geven, Godd act on the graphs Teven, Todd with the fundamen-
tal domains Γeven,Γodd respectively. It therefore follows that if g ∈ G and
g(Teven)∩Teven 6= ∅ (resp. g(Todd)∩Todd 6= ∅) then g ∈ Geven (resp. g ∈ Godd ).

Lemma 2.6 The subgraphs Teven, Todd ⊂ X are convex subsets in X isometric
(with respect to the path-metric induced from (X, τ)) to a tree.

Proof (1) First, let us prove that Teven, Todd ⊂ X are convex. Since X is
a CAT(0) space, and Teven, Todd are connected, it suffices to test convexity at
each vertex of Teven, Todd . However, by the definition of the metric τ , the angle
between different edges of Teven (resp. Todd ) at each vertex of Teven (resp. Todd )
is ≥ π . Therefore convexity follows.

(2) Since, Teven, Todd ⊂ (X, τ) are convex, it follows that they are contractible.
Therefore these graphs are isometric to metric trees. It is clear that Teven and
Todd are isometric to each other.
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Corollary 2.7 Each subgroup Geven, Godd is a quasi-convex subgroup of G.

Proof Cayley graphs ΓG , ΓGeven , ΓGodd
are quasi-isometric to (X, τ), Teven ,

Todd respectively. Recall that X is Gromov-hyperbolic. Therefore, by combin-
ing stability of quasi-geodesics in Gromov-hyperbolic geodesic metric spaces and
convexity of Teven, Todd ⊂ X , we conclude that Geven, Godd are quasi-convex
subgroups of G.

We define functions odd(i) and even(i) by

odd(i) =

{
i, if i is odd

i− 1, if i is even
and even(i) =

{
i, if i is even

i− 1, if i is odd

To motivate the following definition, observe that the group G is generated by
the elements gl of the vertex subgroups Gxl

. It will be very important for the
later analysis to find out which products of pairs of generators f = h−1

j gi, hj ∈
Gxj

, gi ∈ Gxi
, preserve the trees Todd, Teven . Note that the answer is clear for

some of these products:

(a) If gi preserves eodd(i) (resp. eeven(i) ) and h−1
j preserves eodd(j) (resp.

eeven(j)), then gi, h
−1
j ∈ Godd (resp. Geven ) and hence f also preserves Todd

(resp. Teven ).

(b) If i = j and the product f = h−1
i gi preserves the edge eodd(i) (resp.

eeven(i) ), then f also preserves Todd (resp. Teven ).

Accordingly, define finite subsets Φ′
even,Φeven,Φ

′
odd,Φodd ⊂ G as follows:

(1) Φ′
even consists of products h−1

j gi , gi ∈ Gxi
, hj ∈ Gxj

with either (a) i 6= j

and gi ∈ Geeven(i)
and hj ∈ Geeven(j)

, or (b) i = j and h−1
i gi ∈ Geeven(i)

.

(2) Φeven := {h−1
j gi : gi ∈ Gxi

, hj ∈ Gxj
} \ Φ′

even .

(3) Φ′
odd consists of products h−1

j gi , gi ∈ Gxi
, hj ∈ Gxj

with either (a) i 6= j

and gi ∈ Geodd(i)
and hj ∈ Geodd(j)

, or (b) i = j and h−1
i gi ∈ Geodd(i)

.

(4) Φodd := {h−1
j gi : gi ∈ Gxi

, hj ∈ Gxj
} \Φ′

odd .

Observe that Φ′
even,Φ

′
odd are contained in the subgroups Geven, Godd respec-

tively.

Proposition 2.8 Φodd ∩Godd = ∅, Φeven ∩Geven = ∅. In other words, among
the products of the generators, only the “obvious” ones preserve the trees Todd
and Teven .
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Proof We prove that Φodd ∩ Godd = ∅, the second assertion is proved by
relabeling. We have to show that

h−1
j giTodd = Todd ⇒ h−1

j gi ∈ Φ′
odd.

Throughout the proof we use the metric τ on X . We begin with the following

Observation 2.9 Let gl ∈ Gxl
\ Geodd(l)

and z be a vertex of gl(F ). Then

there is a geodesic segment σ = zz′ ⊂ (X, τ) from z to a point z′ ∈ Γodd , which
intersects Todd orthogonally (at the point z′ ) and which is entirely contained
in F ∪ gl(F ). For instance, if gl(F ) ∩ F = {xl}, then the segment σ equals
zxl ∪ xlmodd(l) .

Moreover, unless z ∈ gl(F ) ∩ F , the length of the segment σ is strictly greater
than 1. In particular, d(z, Todd) > 1.

Let f := h−1
j gi and assume that f(Todd) = Todd . Hence the edge f(eodd(i)) ⊂ X

intersects Todd orthogonally in its midpoint f(modd(i)). The segment f(eodd(i))

equals zw where z := h−1
j (xi) and w := f(xi+1) (if i is odd), and w := f(xi−1)

(if i is even). In any case, d(z, Todd) = 1.

Suppose that hj /∈ Godd(j) . Then, unless z = xj , by applying Observation 2.9
to l = j , we obtain a contradiction with d(z, Todd) > 1. Therefore z = xj and
i = j , f ∈ Gxi

. Thus we apply Observation 2.9 to l = j , gl = f and the vertex
w ∈ f(F ), and conclude that w ∈ F as well. Then f(eodd(i)) = eodd(i) and

hence f = h−1
j gi ∈ Φ′

odd .

Hence we conclude that hj ∈ Godd(j) . We now use the fact that g−1
i hj(Todd) =

Todd and reverse the roles of gi and hj . The same argument as above then
implies that either

(a) gi ∈ Godd(i) , or

(b) i = j , f−1 ∈ Godd(j) .

In Case (a), hj ∈ Godd(j) , gi ∈ Godd(i) and thus f ∈ Φ′
odd ; in Case (b) i = j, f ∈

Godd(j) and thus f ∈ Φ′
odd .

Corollary 2.10 For each g ∈ Φeven, h ∈ Φodd we have gTeven ∩ Teven = ∅,
hTodd ∩ Todd = ∅.

Recall the following definition:
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Definition 2.11 A group G is said to satisfy LERF property with respect to
a subgroup H ⊂ G if one of the following equivalent conditions holds:

(a) For each finite subset F ⊂ G\H there exists a homomorphism φ : G→ Ḡ,
where Ḡ is a finite group and φ(H) ∩ φ(F ) = ∅.
(b) For each finite subset F ⊂ G \ H there exists a finite index subgroup
G′ ⊂ G so that H ⊂ G′ and F ∩G′ = ∅.

Note that for H = {1} the above definition amounts to residual finiteness of
G.

Corollary 2.12 There is an epimorphism φ : G→ Ḡ where Ḡ is a finite group
and φ(Φeven) ∩ φ(Geven) = ∅, φ(Φodd) ∩ φ(Godd) = ∅.

Proof According to [24], the group G satisfies the LERF property with respect
to each quasi-convex subgroup. Thus there are finite quotients

φ′ : G→ Ḡ′, φ′′ : G→ Ḡ′′

so that φ′(Geven) ∩ φ′(Φeven) = ∅, φ′(Godd) ∩ φ′(Φodd) = ∅. Then define the
homomorphism φ = (φ′, φ′′) : G→ Ḡ′ × Ḡ′′ and let the group Ḡ be the image
of φ.

Let q : X → X̄ := X/Ker(φ) denote the quotient map; the group G acts on
the compact complex X̄ through the quotient group Ḡ. We let T̄even, T̄odd
denote the projections of the trees Teven, Todd to the complex X̄ .

Lemma 2.13 Suppose that gi ∈ Gxi
, hj ∈ Gxj

and giT̄even ∩ hj T̄even 6= ∅
(resp. giT̄odd ∩ hj T̄odd 6= ∅). Then h−1

j gi ∈ Φ′
even (resp. h−1

j gi ∈ Φ′
odd ).

Proof If giT̄even∩hjT̄even 6= ∅ then giT̄even = hjT̄even . It follows that kh−1
j gi ∈

Geven for some k ∈ Ker(φ); thus φ(h−1
j gi) ∈ φ(Geven) which implies that

h−1
j gi ∈ Φ′

even . The argument for T̄odd is the same.

The graphs T̄even, T̄odd determine finite subsets Seven, Sodd of the set Edges(X̄)
consisting of those edges in X̄ which intersect T̄even, T̄odd nontrivially. Let
ξ, η denote the characteristic functions of the subsets Seven, Sodd ⊂ Edges(X̄),
normalized to have unit norm in the (finite-dimensional) Hilbert space H :=
L2(Edges(X̄)). The group G acts on H by precomposition. We let V ⊂ H
denote the span of the subset G · {ξ, η} ⊂ H and let p be the dimension of V .
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Corollary 2.14 (1) The subgroups Geven, Godd fix the vectors ξ, η ∈ V re-
spectively.

(2) The set
Σ = {g∗(ξ), g∗(η) : g ∈ Gx1 ∪ . . . Gxn}

is an orthonormal system in V .

(3) For all g, h ∈ Gx1 ∪ . . . Gxn :

(a) g∗(ξ) 6= h∗(η).

(b) g∗(ξ) = h∗(ξ) (resp. g∗(η) = h∗(η)) iff h−1g ∈ Φ′
even (resp. h−1g ∈ Φ′

odd ).

Let Lk◦xi
denote the vertex set of the link of xi in X .

Corollary 2.15 The representation G y V contains subrepresentations

Gxi
y V ect(Lk◦xi

),

so that the orthonormal vectors Gxi
· {ξ, η} are identified with the vectors

Gxi
· Lk◦xi

.

Proof Let us consider the case when i is odd, since the other case is analogous.
Observe that the stabilizer in Gxi

of the vector ξ ∈ V (resp. η ∈ V ) is the
group Gxi

∩ Geven = Geeven(i)
(resp. Gxi

∩ Godd = Geodd(i)
); the stabilizer in

Gxi
of the vector f−i is Geeven(i)

. Thus we construct an isometric embedding

V ect(Lk◦xi
) → V by sending f−i , f

+
i to ξ, η respectively, and then extending

this map equivariantly to the orthonormal basis Lk◦xi
.

3 Hyperbolic trigonometry

Consider a regular right-angled hyperbolic n–gon F ⊂ H2 (n ≥ 5). Let an
denote its side-length, ρn the radius of the circumscribed circle, rn the radius
of the inscribed circle, bn the length of the shortest diagonal in F (ie, a diagonal
which cuts out a triangle from F ); see Figure 1. We then have:

cosh(an) = 1 + 2 cos(
2π

n
), cosh(

an
2

) =
√

2 cos(
π

n
), cosh(bn) = cosh2(an),

cosh(rn) =
1√

2 sin(π
n
)
, cosh(ρn) = cosh(rn) cosh(

an
2

).

Note that an, bn, rn, ρn are strictly increasing functions of n.
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Figure 1: Geometry of a hyperbolic n–gon

Consider a Lambert quadrilateral Q with one zero angle: Q is a quadrilateral
in H2 with one ideal vertex (where Q has zero angle) and three finite vertices
where the angles are π/2 (Figure 2). Let x, y denote the lengths of the finite
sides of Q. Then

sinh(x) sinh(y) = cos(0) = 1

(see [2, 7.17.1]), or, equivalently

cosh2(x) cosh2(y) = cosh2(x) + cosh2(y).

Thus, if we have two segments E = xx′, E′ = x′x′′ in H2 which intersect at
the point x′ where they meet orthogonally, then the necessary and sufficient
condition for Bis(E) ∩ Bis(E′) = ∅ is

cosh2(|E|/2) cosh2(|E′|/2) ≥ cosh2(|E|/2) + cosh2(|E′|/2),
equivalently

sinh(|E|/2) sinh(|E′|/2) ≥ 1.

We will refer to these inequalities as the disjoint bisectors test.

Lemma 3.1 Suppose that E,E′ ⊂ H2 are segments which meet orthogonally
at a vertex, where |E| = 2ρn and |E′| = an . Then

∅ = Bis(E) ∩ Bis(E′) ⊂ H
2
,

provided that n ≥ 7; in case n = 6 we have:

Bis(E) ∩ Bis(E′) ⊂ ∂∞H2,

is a point at infinity.
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x

y

zero angle

Figure 2: A Lambert quadrilateral

Proof Applying the disjoint bisectors test to |E| = 2ρ6 , |E′| = a6 we get the
equality. Hence the bisectors meet at infinity in case n = 6 and are within
positive distance from each other if n ≥ 7.

Lemma 3.2 Suppose that E,E′ ⊂ H2 are segments which meet orthogonally
at a vertex, where |E| = bn and |E′| = an , n ≥ 7. Then

∅ = Bis(E) ∩ Bis(E′) ⊂ H
2
.

Proof Since bn ≥ b7, an ≥ a7 it suffices to prove lemma in case n = 7. Note
that a7 > a6 and

b7 ≈ 2.302366350 > 2ρ6 = 2.292431670

Hence the assertion follows from Lemma 3.1.

Below is another application of the disjoint bisectors test. Consider three seg-
ments s, s′, s′′ in H3 of the length x, y, x respectively, which are mutually or-
thogonal and so that s ∩ s′ = p, s′ ∩ s′′ = q , s′ = pq , see Figure 3.

Corollary 3.3 If x = bn, y = an, n ≥ 5, then Bis(s) ∩ Bis(s′′) = ∅.

Proof It suffices to prove the corollary for n = 5. We first compute the length
z = 2t of the segment s′′′ coplanar to s and s′ such that Bis(s) = Bis(s′′′). By
considering the Lambert’s quadrilateral with angle φ we get:





cosh(t) sin(φ) = cosh(x/2)
cosh(y) sin(φ) = cosh(h)

sinh(x/2) sinh(h) = cos(φ)
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Figure 3: Three orthogonal segments

Thus cosh(t) =
cosh(y) cosh(x/2)

cosh(h)
.

On the other hand, the last two equations in the above system imply that

cosh(h) =
cosh(x/2)√

sinh2(x/2) + 1/ cosh2(y)
.

Therefore

cosh(z/2) =

√
1 + sinh2(x/2) cosh2(y).

By applying the disjoint bisectors test to s′′′, s′′ we get:

Bis(s) ∩ Bis(s′′) = ∅ ⇐⇒ sinh2(x/2) cosh(y) ≥ 1.

Lastly, we have:

cosh(a5) ≈ 1.6180, sinh(b5/2) ≈ 1.85123.

Therefore sinh2(b5/2) cosh(a5) > 1.
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4 Quasi-isometric maps of polygonal complexes

Suppose that X is a simply-connected 2–dimensional regular cell complex which
is equipped with a path-metric so that:

1. Each face is isometric to a right-angled regular n–gon in H2 (of course,
n ≥ 5).

2. The complex X is negatively curved, ie, for each vertex x ∈ X the length of
the shortest embedded loop in Lkx(X) is at least 2π .

Theorem 4.1 Suppose that µ : X → Hp is a continuous map which is a
(totally-geodesic) isometric embedding on each face of X . We also assume that
for each pair of faces F ′, F ′′ ⊂ X which intersect nontrivially a common face
F ⊂ X , we have:

Span(µ(F ′)) ⊥ Span(µ(F ′′)).

Then µ is a quasi-isometric embedding.

Proof Throughout the proof we will be using the notation an, bn, ρn for various
distances in a regular right-angled hyperbolic n–gon, see Section 3.

Since the inclusion X(1) →֒ X is a quasi-isometry, it suffices to check that
X(1) µ→ Hp is a quasi-isometric embedding. Since µ is 1–Lipschitz, it is enough
to show that d(µ(z), µ(w)) ≥ C · d(z,w) for some C = C(X) > 0 and all
z,w ∈ X(0) . We first give a proof in case n ≥ 6 and then explain how to
modify it for n = 5.

Let γ̃ ⊂ X(1) be an (oriented) geodesic segment connecting z to w . We start by
replacing (in case when n is even) each subsegment of γ̃ connecting antipodal
points in a face F of X with a geodesic segment within F . We will call the
resulting (oriented) curve γ ⊂ X . Clearly,

Length(µ(γ)) ≤ Length(µ(γ̃)) ≤ n

2
Length(µ(γ)),

so it suffices to get a lower bound on Length(µ(γ)). We will refer to the edges
of γ connecting antipodal points of faces as diagonals in γ .

Remark 4.2 Suppose that xx′, x′x′′ are (distinct) diagonals in γ , contained
in faces F,F ′ respectively. Then F ∩ F ′ = {x′}: Otherwise γ̃ ⊂ X(1) would
not be a geodesic as there exists a shorter path along the boundaries of F and
F ′ ; see Figure 4. In particular, µ(xx′) ⊥ µ(x′x′′) in Hp .
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Figure 4: Diagonals

We will regard γ as concatenation of consecutive segments e0, e1, . . . . We define
a collection BE(γ) of bisected edges Ei in γ inductively as follows:

(1) Let E0 = e0 ⊂ γ be the first edge of γ .

(2) Suppose that Ei = ej ⊂ γ was chosen, i ≥ 0. We will take as Ei+1 = ek ,
k > i, the first edge on γ following Ei which satisfies two properties:

(a) If ei ∩ ek 6= ∅ then either ei or ek is a diagonal.

(b) ei, ek do not belong to a common face in X .

Proposition 4.3 Suppose that n ≥ 6. Then the edges Ei, i = 0, 1, . . . in γ
satisfy the following:

(1) There exists a constant c = c(X) such that d(Ei, Ei+1) ≤ c in X .

(2) Bis(µ(Ei)) ∩ Bis(µ(Ei+1)) ⊂ H
p

is empty unless n = 6 and either Ei , or
Ei+1 is not a diagonal. In case n = 6 and at least one of these segments is not
a diagonal, the bisectors Bis(µ(Ei)),Bis(µ(Ei+1)) ⊂ Hp are disjoint but have a
common ideal point in ∂∞Hp .

(3) For all edges ej ⊂ γ between Ei, Ei+1 , their images µ(ej) are disjoint from
Bis(µ(Ei)) ∪ Bis(µ(Ei+1)).
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Figure 5: Diagonal and an edge

Proof (1) It is clear from the construction, that Ei, Ei+1 are separated by at
most n/2 edges on γ . Hence the first assertion follows.

(2) There are several cases we have to consider.

(a) Suppose that either Ei or Ei+1 is a diagonal (see Figure 5) of the length
2ρn in the notation of section 3. Then these segments share a common vertex
x′ and it follows that µ(Ei) ⊥ µ(Ei+1) (see the Remark above). The worst case
occurs when n = 6 and one of the segments is an edge of a face of X : The
bisectors Bis(µ(Ei)), Bis(µ(Ei+1)) are disjoint in Hp but have a common ideal
point (see Lemma 3.1). Since, as n increases, both side-lengths and lengths of
diagonals in regular right-angled n–gons in H2 strictly increase, it follows that

Bis(µ(Ei)) ∩ Bis(µ(Ei+1)) = ∅,∀n ≥ 7.

(b) Consider now the case when neither Ei = ek nor Ei+1 is a diagonal,
Ei is contained in a face F and there exists at least one edge (say, ek+1)
between Ei, Ei+1 which is contained in the face F . Then, by the construction,
Ei+1 = x′x′′ is not contained in F but shares the common point x′ with F .
Thus µ(Ee+1) ⊥ µ(F ).

Observe now that there is a vertex y ∈ F such that the segments yx′ and Ei
have the same bisector in F . To find this vertex simply apply the reflection in
Bis(Ei) to the vertex x′ : This symmetry preserves F and sends the vertex x′
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Figure 6: Bisectors

to a vertex y ∈ F . See Figure 6. Since x, x′ ∈ F are not antipodal, yx′ is not
an edge of F .

Clearly, Bis(µ(yx′)) = Bis(µ(Ei)). Hence the problem reduces to verifying that
the bisectors Bis(µ(yx′)), Bis(µ(Ei+1)) (or their closures in H

p
) are disjoint.

We note that in case n = 6 the segment yx′ connects antipodal points in F ;
hence the proof in this case reduces to (a).

Assume now that n ≥ 7, then, since yx′ is not an edge of F , |xy′| ≥ bn ≥ b7 ,
|x′x′′| = an ≥ a7 and

Bis(µ(Ei)) ∩ Bis(µ(Ei+1)) = ∅,

follows from Lemma 3.2.

(c) The last case to consider is when Ei, Ei+1 are not diagonals and they are
separated by exactly one edge e ⊂ γ (this edge cannot be a diagonal in this
case), which is not contained in a common face with Ei nor with Ei+1 . Then
the edges

µ(Ei), µ(e), µ(Ei+1) ⊂ Hp

intersect orthogonally. The lengths of these edges are equal to a(n) ≥ a(6).
Hence, (as in Case (b)) we replace µ(Ei) with a segment s of the length ≥ 2ρ6

which meets µ(Ei+1) orthogonally at the point µ(e) ∩ µ(Ei+1). Therefore, by
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applying again Lemma 3.1, the bisectors Bis(µ(Ei)),Bis(µ(Ei+1)) are disjoint;
their closures in H

p
are disjoint provided n ≥ 7.

This proves the second assertion of the Proposition. The third assertion is clear
from the construction: For instance, in Case (b) the edges ej between Ei, Ei+1

are all contained in the face F . Therefore they are disjoint from the bisector
of Ei within F , which implies the assertion about their images in Hp . On the
other hand, the edge µEi+1 is orthogonal to µ(F ), hence Bis(µEi+1) is disjoint
from µF .

Now, let us finish the proof that µ is a quasi-isometric embedding. Suppose that
γ ⊂ X has length L, then the subset BE(γ) consists of ℓ ≈ L/c bisected edges
Ei (here c is the constant from Proposition 4.3, Part 1). Hence the geodesic
segment γ∗ = µ(z)µ(w) in Hp connecting the end-points of µ(γ) crosses ℓ
bisectors Bis(µEi). In case n ≥ 7, the bisectors Bis(µEi), Bis(µEi+1) are
separated by distance δ = δ(X) > 0, hence the length of γ∗ is at least ℓδ .
Since ℓ ≈ L/c, we conclude that dHp(x, y) ≥ Const · L/δ . It follows that µ is
a quasi-isometry.

Now, consider the exceptional case n = 6. We claim that for each i the
intersection points Bis(µEi) ∩ Bis(µEi+1) and Bis(µEi+2) ∩ Bis(µEi+1) are
distinct. Given this, instead of the collection BE(γ) we would consider the
collection of edges Ei ∈ BE(γ) for even i, then Bis(µEi) ∩ Bis(µEi+2) = ∅ for
all even i and we are done by the same argument as for n ≥ 7.

Case I We begin with the case when Ei ⊂ Fi, Ei+2 ⊂ Fi+2 are diagonals and
Ei+1 ⊂ Fi is not. (Here Fi are faces of X .) Then Ei ∩ Ei+1 , Ei+2 ∩ Ei+1 are
the end-points of Ei+1 . Therefore

ξi = Bis(µEi) ∩ Bis(µEi+1) ∈ ∂∞Span(µ(Ei) ∪ µ(Ei+1)),

ξi+1 = Bis(µEi+1) ∩ Bis(µEi+2) ∈ ∂∞Span(µ(Ei+1) ∪ µ(Ei+2)).

However, by the assumptions on µ,

Span(µ(Fi+2)) ⊥ Span(µ(Fi))

Thus

Span(µ(Ei) ∪ µ(Ei+1)) ∩ Span(µ(Ei+1) ∪ µ(Ei+2)) = Span(µ(Ei+1)).

Since it is clear that ξi /∈ ∂∞Span(µ(Ei+1)), we conclude that ξi 6= ξi+1 and
the assertion follows.

Geometry & Topology, Volume 9 (2005)



1936 Michael Kapovich

We will reduce the case of a general triple of edges Ei, Ei+1, Ei+2 to the Case
I discussed above. We consider only one other case, the arguments in the rest
of cases are identical to:

Case II Suppose that pairs of edges Ei ⊂ Fi, Ei+1 ⊂ Fi+1 , Ei+2 ⊂ Fi+2 are
as in Figure 7. We take the diagonals Di ⊂ Fi,Di+2 ⊂ Fi+2 so that

Bis(µDi) = Bis(µEi),Bis(µDi+2) = Bis(µEi+2).

Now the proof reduces to the Case I.

Ei

Ei+1

Ei+2

Fi

Fi+1

Fi+2

Di

Di+2

Figure 7

Finally, consider the case of pentagons (ie n = 5). We define the collection
BE(γ) of bisected edges Ei as before. Let Ei, E2, E3 be consecutive bisected
edges. We will see that Bis(µE1) ∩ Bis(µE3) = ∅. Since n = 5 we necessarily
have: E2 is separated by a unique edge e ⊂ γ from E1 and by a unique edge
e′ ⊂ γ from E3 , see Figure 8.

Note that it could happen that there is no face F1 which contains E1, e, nor
a face F3 which contains E3, e

′ . However, in Hp there exists a unique regular
right angled pentagon which contains the edges µ(E1), µ(e) (resp. µ(E3), µ(e′))
in its boundary. Hence we will give a proof pretending that the corresponding
face already exits in X . Observe that, similarly to our discussion above, the
diagonals D1 ⊂ F1 , D3 ⊂ F3 have the property that Bis(µDi) = Bis(µEi),
i = 1, 3. Thus it suffices to consider the triple of pairwise orthogonal segments:
µ(D1), µ(E2) and µD3 in Hp . The length of µ(E2) equals a5 , the lengths of
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Figure 8

D1,D3 are equal to b5 , hence

Bis(µD1) ∩ Bis(µD3) = ∅

by Corollary 3.3.

5 Proof of the main theorem

In this section establish

Theorem 5.1 Suppose that n = 2k is even. Then the group G admits an
isometric properly discontinuous convex-cocompact action ρ : G y Hp , where
p <∞ depends on the polygon P .

Proof Let X be the universal cover of the polygon of groups P . We first
construct a representation ρ : G→ Isom(Hp) for a certain p. We then produce
a quasi-isometric ρ–equivariant embedding µ : X → Hp . From this, via Lemma

Geometry & Topology, Volume 9 (2005)



1938 Michael Kapovich

2.2, it will follow that ρ : G y Hp is an isometric properly discontinuous convex-
cocompact action.

Let Lkx denote the link (in X ) of the vertex x, similarly, let Lke denote the
link of the edge e. Recall that Lk◦ denotes the vertex set of a link Lk . The
set Lk◦xi

contains two distinguished elements: f+
i , f

−

i which correspond to the
directions from xi toward xi+1 and toward xi−1 respectively. We define the
subsets Lk•xi

:= Lk◦xi
\ {f+

i , f
−

i }.
Observe that the directions ηi ∈ Lk◦xi

, ηi+1 ∈ Lk◦xi+1
belong to the boundary of

a common face in X if and only if there exists g ∈ Gei
so that

ηi = g(f±i ), ηi+1 = g(f±i+1).

Step 1: Construction of ρ

It is clear that to construct a representation ρ : G → Isom(Hp) (for some p)
we have to produce a collection of faithful representations

ρi : Gxi
→ Isom(Hp)

so that the following diagram commutes:

Gxi
←− Gei

−→ Gxi+1

ց ρi ρi+1 ւ
Isom(Hp)

Embed F isometrically (as a convex, regular, right-angled polygon) in the hy-
perbolic plane H2 . Via this embedding we will identify the directions f±i ∈ Lkxi

with the unit vectors
−→
f±i ∈ Txi

H2 which are tangent to the sides of F .

In what follows we will adopt the following convention. Given a number p and
a totally-geodesic embedding H2 ⊂ Hp , we observe that the normal bundle
N(H2) of H2 in Hp admits a canonical flat orthogonal connection (invariant
under the stabilizer of H2 in Isom(Hp)). Thus, given normal vectors ν ∈
Nx(H

2), ν ′ ∈ Nx′(H
2), we have well-defined scalar product ν · ν ′ and hence the

notion of orthogonality ν ⊥ ν ′ . Set Vi := Txi
Hp and let Ni ⊂ Vi denote the

orthogonal complement to Txi
H2 . We define Ri ∈ Isom(Hp) to be the isometric

reflection in the bisector of the edge ei of F ⊂ Hp . Set Ji := Ri−1 ◦ . . . ◦ R1 ,
for i = 2, . . . , n+ 1; observe that Jn+1 = Id.

Remark 5.2 The fact that the identity Jn+1 = Id fails if n is odd is one of
the reasons why our construction requires n to be an even number. An attempt
to apply the constructions below to odd n lead to a representation of a certain
extension of the group G rather than of G itself.
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Proposition 5.3 Suppose that n = 2k is even. Then there exists a natural
number p and a collection of faithful isometric linear actions dρi : Gxi

y Vi ,
i = 1, . . . , n, so that the following hold:

(1) Each representation dρi contains a subrepresentaion Gxi
y V ect(Lk◦xi

),
so that the unit basis vectors f±i ∈ Lk◦xi

⊂ V ect(Lk◦xi
) are identified with the

vectors
−→
f±i ∈ Vi .

(2) Each reflection Ri : Hp → Hp induces an isomorphism of RGei
–modules

(Vi, dρi(Gei
))→ (Vi+1, dρi+1(Gei

)).

(3) “Orthogonality”: The spaces V ect(Lk•xi
) ⊂ Ni, V ect(Lk

•
xj

) ⊂ Nj are mu-
tually orthogonal, |i − j| ≥ 2, i, j ∈ {1, . . . , n}. If j = i + 1 then we require
orthogonality of the subspaces

V ect(Lk◦xi
\Gei

· {f+
i , f

−

i }) ⊂ Ni, V ect(Lk
◦
xi+1
\Gei

· {f+
i+1, f

−

i+1}) ⊂ Ni+1.

Remark 5.4 (1) The assumption that the number of sides of F is even is
used only in this part of the proof of the main theorem and very likely is just
a technicality.

(2) The “orthogonality” property will be used to prove that the action G y Hp

that we are about to construct, is discrete, faithful and convex-cocompact.

Before beginning the proof of the proposition we first make some observations
(where we ignore the orthogonality issue). Suppose that we have constructed
representations dρi . We then “fold” these representations into a single orthog-
onal representation G y V1 by composing each dρi with the composition of re-
flections (R1)∗◦. . .◦(Ri−1)∗ , where (Rj)∗ is the isomorphism O(Vj+1)→ O(Vj)
which is induced by dRj |xj+1 . Note that under the action G y V1 the vec-

tors
−→
f +

1 ,
−→
f −

1 are fixed by the “odd” and “even” subgroups Godd, Geven , re-
spectively. Moreover, the representation G y V1 contains subrepresentations
Gxi

y V ect(Lk◦xi
).

Recall that in Corollary 2.14 we have constructed a finite-dimensional orthog-
onal representation G y V which satisfies the same properties as above: It
contains unit vectors ξ, η fixed by Geven, Godd respectively, and it contains sub-
representations Gxi

y V ect(Lk◦xi
). Therefore, to construct the representations

dρi we begin with the action G y V (which we identify with an action G y V1 )
and then “unfold” it (using compositions of reflections Ri) to a collection of
representations dρi . This is the idea of the proof of Proposition 5.3.
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The reader familiar with bending deformations of representations of groups into
Isom(Hp) will notice that the “folding” and “unfolding” of representations dis-
cussed above is nothing but π–bending.

Proof We let G y V denote the orthogonal representation constructed in
Corollary 2.14. According to Corollary 2.15, the representation G y V contains
subrepresentations Gxi

y V ect(Lk◦xi
). Let p denote the dimension of V .

Our goal is to construct isometries φi : V → Vi := Txi
Hp . The actions dρi will

be obtained by the conjugation:

dρi : Gxi
y Vi := φi ◦ (Gxi

y V ) ◦ φ−1
i .

First take an arbitrary isometry φ1 : V → V1 sending the unit vectors ξ, η ∈ V
to the vectors

−→
f −

1 ,
−→
f +

1 respectively. Now define isometries φj , j = 2, . . . , n+1
by

φi = Ji ◦ φ1,

ie φi+1 = Ri ◦ φi.
Note that φn+1 = φ1 . Define the action dρi : Gxi

y Vi by conjugating via φi
the action Gxi

y V .

The group Ge1 fixes the vector η ∈ V , hence Ge1 also fixes the vector φ1(η) =−→
f +

1 . Thus

dR1 ◦ dρ1 |Ge1
= dρ2 |Ge1

.

The same argument shows that

dRi ◦ dρi |Gei

= dρi+1 |Gei

.

for all i. This proves (1) and (2). In what follows we will identify the spaces
V ect(Lk◦xi

) with their images in Vi , i = 1, . . . , n.

We will check that the sets

Lk◦xi
\Gei

· {f+
i , f

−

i } ⊂ Ni, Lk
◦
xi+1
\Gei

· {f+
i+1, f

−

i+1} ⊂ Ni+1

are orthogonal to each other and will leave the remaining orthogonality assertion
to the reader. Let

v ∈ Lk◦xi
\Gei

· {f+
i , f

−

i } ⊂ Ni, w ∈ Lk◦xi+1
\Gei

· {f+
i+1, f

−

i+1} ⊂ Ni+1.

In order to show that v ⊥ w it suffices to verify that the corresponding vectors

v,w ∈ Σ ⊂ V
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are distinct (recall that Σ is an orthonormal system in V ). If, say, v ∈ G·ξ, w ∈
G · η then v 6= w . Hence we will consider the case

v = g∗η ∈ Gxi
· η,w = h∗η ∈ Gxi+1 · η.

According to Corollary 2.14, if g∗(η) = h∗(η) then h−1g ∈ Φ′
odd . In our case,

g ∈ Gxi
, h ∈ Gxi+1 . Then h−1g ∈ Φ′

odd means that either

(a) g, h do not have a common fixed vertex of F and g ∈ Godd(i), h ∈ Godd(i+1) ,

or

(b) g, h fix the same vertex of F and g∗(η) = h∗(η).

In case (a), if i is odd then g, h ∈ Gei
, and hence g∗η = g∗η corresponds to the

vectors f+
i ∈ Ni, f

−

i ∈ Ni+1 . Therefore the equality v = w implies that

φi(v) ∈ Gei
· −→f +

i , φi+1(w) ∈ Gei
· −→f −

i+1.

If i is even then both g ∈ Gei−1 , h ∈ Gei+1 fix the vector η . Therefore the
equality v = w implies that

φi(v) =
−→
f −

i ∈ Gei
· −→f −

i , φi+1(w) =
−→
f +
i+1 ∈ Gei

· −→f +
i+1.

In case (b), we can assume that, say, h ∈ Gxi
∩ Gxi+1 = Gei

. If i is odd then
h∗η = η and therefore g∗η = η . Therefore the equality v = w implies that

φi(v) = f+
i ∈ Gei

· f+
i , φi+1(w) = f−i+1 ∈ Gei

· f−i+1.

Lastly, assume that i is even. Then the vector v = g∗(η) = w = h∗(η) corre-
sponds to the vectors

φi(w) = h(
−→
f −

i ) ∈ Gei
· −→f −

i ⊂ Ni, φi+1(w) = h(
−→
f +
i+1) ∈ Gei

· −→f +
i+1 ⊂ Ni+1.

This proves the orthogonality assertion.

Now, once we have constructed linear orthogonal representations dρi : Gxi
y

Vi , we extend them (by exponentiation) to isometric actions ρi : Gxi
y Hp ,

which fix the points xi , i ∈ 1, . . . , n. Observe that for each i the group ρi(Gei
),

resp. ρi(Gei−1), fixes the edge ei , resp. ei−1 , of the polygon F ⊂ H2 , since

dρi(Gei
), dρi(Gei−1), fix the vectors

−→
f+
i ,
−→
f−i respectively. Hence the reflection

Ri commutes with the groups ρi(Gei
) and ρi+1(Gei

). Thus the representa-
tions ρi, ρi+1 : Gei

→ Isom(Hp) are the same. Therefore the representations ρi
determine an isometric action ρ : G y Hp .
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Step 2: Discreteness of ρ

We will construct a ρ–equivariant continuous mapping µ : X → Hp satis-
fying the assumptions of Theorem 4.1. Since such µ is necessarily a quasi-
isometric embedding (Theorem 4.1), by applying Lemma 2.2, we will conclude
that ρ : G y Hp is properly discontinuous and convex-cocompact.

Recall that we have identified the face F of X with a regular right-angled
hyperbolic polygon F in H2 , this defines the (identity) embedding µ : F → H2 .
Now, for each g ∈ G we set

µ|
gF

:= ρ(g) ◦ µ|
F
.

Let us check that this mapping is well-defined:

(1) If g ∈ GF then, by construction of ρ, ρ(g) fixes the polygon µ(F ) point-
wise, hence µ ◦ g|

F
= ρ(g) ◦ µ|

F
for g ∈ GF .

(2) If g ∈ Ge , where e is an edge of P , then, by the construction, ρ(g) fixes
the edge µ(e) pointwise, hence µ ◦ g|

e
= ρ(g) ◦ µ|

e
for g ∈ Ge .

(3) The same argument applies to g ∈ Gx , for the vertices x ∈ F .

Hence µ : X → Hp is well-defined and thus it is a ρ–equivariant, continuous
mapping which is an isometric totally-geodesic embedding on each face of X .

Lastly, we check the orthogonality condition required by Theorem 4.1. By
equivariance, it is clear that we only need to verify orthogonality for the faces
F ′, F ′′ ⊂ X which are adjacent to the face F ⊂ X . We will see that this
orthogonality condition will follow from the Assertion 3 of Proposition 5.3.
There are several cases which may occur, we will check one of them and will
leave the rest to the reader.

Suppose that F ′ = gi(F ), F ′′ = gj(F ), gi ∈ Gxi
, Gj ∈ Gxj

and

F ′ ∩ F = {xi}, F ′′ ∩ F = {xj},
where |i− j| ≥ 2. Then

Txi
(µF ′) ⊂ Ni, Txj

(µF ′′) ⊂ Nj

and the vectors
dgi(
−→
f ±

i ) 6= −→f ±

i , dgj(
−→
f ±

j ) 6= −→f ±

j

span Txi
(µF ′) and Txj

(µF ′′) respectively. According to the Assertion 3 of
Proposition 5.3, we have:

dgi(
−→
f ±

i ) ⊥ dgj(
−→
f ±

j ).

Geometry & Topology, Volume 9 (2005)



Representations of polygons of finite groups 1943

(Recall that here the orthogonality is defined modulo the parallel translation
along curves in Span(F ).) Since both Span(µF ′),Span(µF ′′) intersect Span(F )
orthogonally, the geodesic segment xixj ⊂ Span(F ) is orthogonal to both
Span(µF ′) and Span(µF ′′). Therefore µ(F ′) ⊥ µ(F ′′).

6 The odd case

In this section we will construct examples of negatively curved right-angled
polygons of groups and their actions on Hp in the case of the odd number of
sides.

We define the following polygon of groups. Suppose that we are given finite
groups Γ1, . . . ,Γn . Let F be an n–gon (n ≥ 3). Below the indices i are
taken modulo n. We assign the group Gxi

= Γi × Γi+1 to each vertex xi
of F . We label each edge ei of F by the group Γi+1 . The homomorphisms
Γi+1 → Γi × Γi+1 , Γi+1 → Γi+1 × Γi+2 are the natural isomorphisms to the
second and the first factor respectively. We set GF := {1}. In what follows, let
P denote the resulting polygon of groups (see Figure 9) and set G := π1(P).

Gx4
= Γ1 × Γ2

Gx2
= Γ2 × Γ3

Gx3
= Γ3 × Γ4Gx4

= Γ4 × Γ5

Gx5
= Γ5 × Γ1

Γ1 Γ2

Γ3

Γ4

Γ5

Figure 9

Remark 6.1 Note that G is isomorphic to the cyclic graph-product of the
groups Γi, i = 1, . . . , n (see [7] for detailed definition). Indeed, the group G is
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generated by the elements of Γ1, . . . ,Γn subject to the relations:

[gi, hi+1] = 1,∀gi ∈ Γi, hi+1 ∈ Γi+1.

The polygon of groups P is negatively curved provided that n ≥ 5: For each
vertex x = xi ∈ P , the link of x in the universal cover X of P is the complete
bipartite graph Kti−1,ti , where tj := |Gej

|, j = 1, . . . , n.

Theorem 6.2 Suppose that n ≥ 5, and the polygon of groups P is as above.
Then G admits a properly discontinuous convex-cocompact action on Hp for
certain p = p(P).

Proof We will assume that n = 2k−1 is odd. Let e1, . . . , en denote the edges
of the polygon P . First, we construct a homomorphism ρ : G→ Isom(Hp) for
some p, which is faithful on each vertex group. Let T denote the disjoint union

n⋃

i=1

Lkei
,

where the link of ei is taken in X . One can think of this set as the set of all
flags: (e, f), where e is an edge in F and f is a face of X containing e. Each
group Gei

acts naturally on Lkei
(since Gei

fixes the edge ei ⊂ X ). We extend
this action to the trivial action on the rest of T . Thus we get an action

n∏

i=1

Gei
y T.

Observe that there is a tautological epimorphism

G→
n∏

i=1

Gei

which sends each subgroup Gei
⊂ G to the subgroup Gei

of the direct product.
Hence G acts on T through the quotient group

∏n
i=1Gei

.

Let W denote the Euclidean vector space V ect(T ) with the orthonormal basis
T , and set p := dim(W ), ie,

p = t1 + . . .+ tn.

The set T contains distinguished elements f1, . . . , fn consisting of the flags
(ei, F ). The dihedral group Dn acts on F and therefore on {f1, . . . , fn}. We
extend this action to the rest of T (and hence to W ) by the identity on T \
{f1, . . . , fn}. The reflections Rj ∈ D yield isometric involutions Ij of W . Note
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that (since n = 2k − 1 is odd) the involution Ri+k fixes xi+1 , hence Ii+k
permutes the vectors fi, fi+1 ∈W .

Embed the polygon F to H2 as a right-angled regular polygon µ(F ) ⊂ H2 as in
the proof of Theorem 1.1. As before, we will identify F and µ(F ). We embed
H2 into Hp as a totally-geodesic subspace. Let mi denote the midpoint of the
edge ei ⊂ F . The tangent space Wi := Tmi

Hp contains a distinguished vector−→
fi which is the unit vector orthogonal to ei and directed inward F . Note that
this vector is parallel (under the parallel transport along ei ) to the vectors−→
f +
i ,
−→
f −

i+1 used in the proof of Theorem 1.1. Pick an arbitrary linear isometry

ψ1 : W → W1 which sends f1 to
−→
f1 . By conjugating via ψ1 we transport the

linear action G y W to a linear action G y W1 , exponentiating the latter
action we get an isometric action ρ1 : G y Hp .

We now proceed analogously to the proof of Theorem 1.1: Define linear maps
ψi : W →Wi so that we have a commutative diagram:

W
Ik+1−→ W

Ik+2−→ W . . .
In+k+1−→ W

↓ ψ1 ↓ ψ2 ↓ ψ3 ↓ ψn+1

W1
Rk+1−→ W2

Rk+2−→ V3 . . .
Rn+k+1−→ Wn

Note that ψi(fi) =
−→
fi for all i. Indeed, ψ1(f1) =

−→
f1 by construction. Suppose

that ψi(fi) =
−→
fi . Then

ψi+1(fi+1) = Rj ◦ ψi ◦ Ij(fi+1) = Rj ◦ ψi(fi) = Rj(
−→
fi ) =

−−→
fi+1

where j = i+ k .

Observe that ψn+1 6= ψ1 . However, In+k+1 ◦ . . . ◦ Ik+1 = I1 commutes with
Ge1 y W and Rn+k+1 ◦ . . . ◦Rk+1 = R1 commutes with ρ1(Ge1) y Hp . Hence

ρ1 = ρn+1 : Ge1 → Isom(Hp).

It remains to verify that for each i the groups ρi(Gei
), ρi+1(Gei+1) commute.

It is elementary to verify that for all g ∈ Gei
, g′ ∈ Gei+1 the vectors ψi(g(fi))

and ψi+1(g(fi+1)) are mutually orthogonal (after being translated to Txi+1H
p

along ei, ei+1 ). The group action ρi(Gei
) y Txi+1H

p permutes the vectors

{ψi(g(fi)), g ∈ Gei
}

and fixes the orthogonal complement to these vectors; same is true for the action
of Gei+1 and the vectors

{ψi+1(g
′(fi+1)), g

′ ∈ Gei+1}
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Hence the groups ρi(Gei
), ρi+1(Gei+1) commute. Therefore we have constructed

a homomorphism ρ : G→ Isom(Hp), ρ|Gei
= ρi|Gei

.

This action has the same “orthogonality” properties as the homomorphism ρ
in the proof of Theorem 1.1, ie, if i 6= j then for all g ∈ Gei

\ {1}, g′ ∈ Gej
\

{1}, the hyperbolic planes H2, ρ(g)H2 and ρ(g′)H2 are mutually orthogonal.
Thus, the arguments of the second part of the proof of Theorem 1.1 still work
and, by applying Theorem 4.1, we conclude that ρ is discrete, faithful, convex-
cocompact.

Suppose now that X is a (locally finite) right-angled 2–dimensional hyperbolic
building whose fundamental chamber F has n ≥ 6 vertices. Recall that X is
uniquely determined by the thickness ti of the edges ei of F , ie, the number of
2–faces in X containing ei . Thus every such building is the universal cover of
an n–gon P of finite groups corresponding to a cyclic graph-product. Thickness
of the edge ei is the order of the edge group Gei

in P .

According to a recent theorem of F. Haglund, [13], all uniform lattices in the
building X are commensurable. Hence, as an application of Theorem 6.2, we
obtain

Corollary 6.3 Let H be a group acting discretely, cocompactly and isometri-
cally on X . Then H contains a finite index subgroup which admits a properly
discontinuous convex-cocompact action on Hp for some p = p(X).

7 Extension of discrete representations

In this section we discuss the following question:

Suppose that G y Hn is a properly discontinuous isometric action. Is it true
that G is isomorphic to a Kleinian group?

Note that the kernel F of the action G y Hn is necessarily finite, therefore we
have a short exact sequence

1→ F → G→ Ḡ→ 1,

where Ḡ is Kleinian. What we are interested in is whether the group G is itself
isomorphic to a Kleinian group. Of course, a necessary condition for this is that
G is residually finite. Finding a non-residually finite extension G of a Kleinian
group Ḡ is a very difficult task, and presently such extensions are not known.
Nevertheless we have:
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Theorem 7.1 Suppose that G is a residually finite group which fits into a
short exact sequence

1→ F → G→ Ḡ→ 1,

where Ḡ admits a discrete and faithful representation ρ̄ into Isom(Hn). Then
G also admits a discrete and faithful representation ρ into Isom(Hm) for some
m. Moreover, if ρ̄ is convex-cocompact (resp. geometrically finite) then ρ can
be taken convex-cocompact (resp. geometrically finite).

Proof The proof of this theorem is modeled on the proof of the well-known
fact that a finite extension of a residually finite linear group is again linear, but
we present it here for the sake of completeness.

We first lift ρ̄ to a homomorphism ρ̄ : G → Isom(Hn), so that Ker(ρ̄) = F .
Since G is residually finite, there exists a homomorphism

φ : G→ Q

where Q is a finite group, so that φ|F is injective. Embed Q in SO(k) for
some k . The product group Isom(Hn)× SO(k) embeds in Isom(Hn+k) as the
stabilizer of Hn embedded in Hn+k as a totally-geodesic subspace. Therefore,
for m = n+ k we get a homomorphism

ρ : G→ Isom(Hn)× SO(k) ⊂ Isom(Hm)

given by
ρ(g) = (ρ̄(g), φ(g)).

It is clear that ρ(g)|Hn = ρ̄(g) and therefore ρ is faithful and ρ(G) ⊂ Isom(Hm)
is discrete. Moreover, Λ(ρ(G)) = Λ(ρ̄(Ḡ)). Recall that geometrically finite and
convex-cocompact actions can be detected by considering the dynamics of a
discrete group on its limit set (see [5]). Therefore, if ρ̄ is convex-cocompact
(resp. geometrically finite) then ρ is also convex-cocompact (resp. geometrically
finite).

Combining Theorem 7.1 with Theorem 5.1 we get Theorem 1.1.

8 Example of a nonlinear Gromov-hyperbolic group

Theorem 8.1 There exists an infinite hyperbolic group G such that each
representation of G to GL(m,k) factors through a finite group. In particular,
G is nonlinear. Here k is an abritrary field.
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Proof Let Γ be a uniform lattice in a quaternionic hyperbolic space HHn, n ≥
2. Since HHn is negatively curved, the group Γ is hyperbolic. Clearly, the group
Γ is a nonelementary hyperbolic group; hence Γ admits an infinite proper
quotient Γ → G where G is a hyperbolic group (see [11] or [16]). We first
consider the case when k has zero characteristic. Then without loss of generality
we can assume that we are given a linear representation ρ : G→ GL(N,R). We
will show that ρ(G) is finite by using the standard “adelic” trick. The reader
can find similar applications of this argument in Margulis’ proof of arithmeticity
of higher rank lattices (see [19, 25]), and in Tits’ proof of the Tits alternative,
[23].

The representation ρ lifts to a linear representation ρ̃ : Γ→ GL(N,R). Let L
denote the Zariski closure of ρ̃(Γ) in GL(N,R). Let S denote the solvable rad-
ical of L. We first consider the case when L′ := L/S is a reductive group with
nontrivial noncompact factor H . Then the projection Γ → G → L → H has
Zariski dense image. Hence, according to Corlette’s Archimedean superrigidity
theorem [9], the representation Γ → H extends to Isom(HHn). This however
contradicts the assumption that the projection Γ → G is not 1–1. Therefore
the group L′ is a compact algebraic group.

Suppose that the projection ρ(G) ⊂ L′ is infinite. As a compact Lie group, L′

is isomorphic to a subgroup of O(M). Since G satisfies property (T),

H1(G, o(M)Ad(ρ)) = 0,

where o(M) is the Lie algebra of O(M). Vanishing of the above cohomology
group implies that the space Hom(G,O(M))/O(M) is finite. Hence, analo-
gously to the proof of Theorem 7.67 in [21], ρ is conjugate to a representation
ρ′ : G→ O(M) for which

ρ′(G) ⊂ K(F ) ⊂ O(M,F ) ⊂ GL(M,F ),

where F is a number field and K(R) is the Zariski closure of ρ′(G).

One would like to replace the representation ρ with another representation φ
of the group G, whose image is Zariski dense in a certain noncompact algebraic
group and so that Ker(φ) = Ker(ρ). The most obvious thing to try is to find
an element σ of the Galois group Gal(C/Q), so that the image of φ = σ(ρ) is
not relatively compact. This does not necessarily work. Note however, that the
restriction of the norm on C to σ(F ) gives rise to an Archimedean valuation
on F . The idea of the adelic trick is to use non-Archimedean valuations v of F
together with Archimedean ones. This is done by introducing the ring of adeles
of F , which is a certain subset of the product∏

v∈V al(F )

Fv,
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where Fv is the completion of F with respect to the valuation v .

Let A(F ) denote the ring of adeles of F ; then the diagonal embedding F →֒
A(F ) has discrete image (see for example [18]). Hence the diagonal embedding

ρ′(G) →֒ GL(M,A(F ))

also has discrete image. If the projection of ρ′(G) to each factor GL(M,Fv)
were relatively compact, the image of ρ′(G) in GL(M,A(F )) would be compact
as well. However a discrete subset of a compact is finite, which contradicts the
assumption that ρ(G) is infinite.

Thus there exists a valuation v of F so that the image of the projection

ρ′(G)→ K(Fv) ⊂ GL(M,Fv)

is not relatively compact. In case when v is an Archimedean valuation, we
can again apply Corlette’s Archimedean superrigidity [9] to get a contradic-
tion. Hence such v has to be nonarchimedean. Therefore the representation
Γ → ρ′(G) → GL(M,Fv) corresponds to an isometric action of Γ on a locally
finite Euclidean building X . However, by the non-Archimedean superrigidity
theorem of Gromov and Schoen [12], Γ fixes a point in X . Therefore the image
of ρ′(G) in GL(M,Fv) is relatively compact, which is a contradiction. Hence
ρ′(G) is finite. It follows that the group L is commensurable to its solvable
radical S ; hence ρ(G) is a virtually solvable group. By applying property (T)
again, we conclude that ρ(G) is finite.

We now consider the case when k has positive characteristic; since the argument
is similar to the zero characteristic case, we give only a sketch. Under the
above assumptions, ρ(G) ⊂ GL(m,F ), where F is a finitely generated field (of
positive characteristic). The field F is an extension

Fq ⊂ E ⊂ F
where Fq is a finite field, Fq ⊂ E is an purely transcendental extension and
E ⊂ F is an algebraic extension (see [15, Chapter VI.1]). Since F is finitely gen-
erated, F/E is finite-dimensional and therefore, by passing to a bigger matrix
group, we reduce the problem to the case when F = E is a purely transcen-
dental extension, which necessarily has finite transcendence degree. Therefore
we reduced to the case of ρ : G → GL(N,F ), where F = Fq(t1, . . . , tm) is the
field of rational functions with coefficients in Fq .

Then we associate with each variable t±1
j a discrete valuation v±j and an action

G y X±j on the corresponding Euclidean building. The non-Archimedean
superrigidity theorem of Gromov and Schoen [12] shows that for each ±j the
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action G y X±j has a fixed point. Therefore the matrix coefficients of ρ(G)
have bounded degree with respect to all the variables t±1

1 , . . . , t±1
m . Hence, since

Fq is finite, the matrix coefficients of ρ(G) belongs to a finite subset of F and
thus ρ(G) is finite.

Remark 8.2 After this paper was written, I was informed by Alain Valette
that he also knew how to prove Theorem 8.1. I am sure that other people were
also aware of this proof since all the arguments here are quite standard.
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