
ISSN 1364-0380 (on line) 1465-3060 (printed) 2319

Geometry & Topology GGG
G
G
G
G
GG GG

G
G
G
G

T TT
T
T
T
T

TTTT
T
T
T
T

Volume 9 (2005) 2319–2358

Published: 21 December 2005

Limit groups for relatively hyperbolic groups

II: Makanin–Razborov diagrams

Daniel Groves

Department of Mathematics, California Institute of Technology
Pasadena, CA 91125, USA

Email: groves@caltech.edu

Abstract

Let Γ be a torsion-free group which is hyperbolic relative to a collection of free
abelian subgroups. We construct Makanin–Razborov diagrams for Γ. We also
prove that every system of equations over Γ is equivalent to a finite subsystem,
and a number of structural results about Γ–limit groups.

AMS Classification numbers Primary: 20F65

Secondary: 20F67, 20E08, 57M07

Keywords: Relatively hyperbolic groups, limit groups, R–trees

Proposed: Benson Farb Received: 15 March 2005

Seconded: Walter Neumann, Martin Bridson Accepted: 3 December 2005

c© Geometry & Topology Publications



2320 Daniel Groves

1 Introduction

This paper is a continuation of [19]. Throughout this paper, Γ will denote a
torsion-free group which is hyperbolic relative to a collection of free abelian
subgroups. For an arbitrary finitely generated group G, we wish to understand
the set Hom(G,Γ) of all homomorphisms from G to Γ.

In [19] we considered a sequence of pairwise non-conjugate homomorphisms
{hi : G→ Γ} and extracted a limiting G–action on a suitable asymptotic cone,
and then extracted an R–tree with a nontrivial G–action. This R–tree allows
much information to be obtained. In particular, in case G = Γ, we studied
Aut(Γ) and also proved that Γ is Hopfian. In this paper, we continue this
study, in case G is an arbitrary finitely generated group. In particular, we
construct a Makanin–Razborov diagram for G, which gives a parametrisation
of Hom(G,Γ) (see Section 6 below). We build on our work from [19], which in
turn builds on our previous work of [17] and [18]. The strategy is to follow [32,
Section 1], though there are extra technical difficulties to deal with.

To a system of equations Σ over Γ in finitely many variables there is naturally
associated a finitely generated group GΣ , with generators the variables in Σ,
and relations the equations. The solutions to Σ in Γ are in bijection with the
elements of Hom(GΣ,Γ). Thus, Makanin–Razborov diagrams give a descrip-
tion of the set of solutions to a given system of equations over Γ. For free
groups, building on the work of Makanin and Razborov, Makanin–Razborov
diagrams were constructed by Kharlampovich and Miasnikov [22, 23], and also
by Sela [31]. For torsion-free hyperbolic groups, Makanin–Razborov diagrams
were constructed by Sela [32], and it is Sela’s approach that we follow here.
Alibegović [2] constructed Makanin–Razborov diagrams for limit groups.

Limit groups are hyperbolic relative to their maximal non-cyclic abelian sub-
groups (see [9] and [1]). Limits groups are also torsion-free. Therefore, the
main result of this paper (the construction of Makanin–Razborov diagrams)
generalises the main result of [2]. Alibegović has another approach to the con-
struction of Makanin–Razborov diagrams for these relatively hyperbolic groups
(see [2, Remark 3.7]).

The main results of this paper are the following five:

Theorem 5.10 Suppose that Γ is a torsion-free relatively hyperbolic group
with abelian parabolics, and that G is a finitely generated group. Then G is a
Γ-limit group if and only if G is fully residually Γ.
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Proposition 5.11 Suppose that Γ is a torsion-free relatively hyperbolic group
with abelian parabolics. Then there are only countably many Γ–limit groups.

Theorem 5.16 Let Γ be a torsion-free relatively hyperbolic group with abelian
parabolics. Then every system of equations in finitely many variables over Γ
(without coefficients) is equivalent to a finite subsystem.

In Section 3 we define an equivalence relation ‘∼’ on the set of homomor-
phisms Hom(G,Γ), where G is an arbitrary finitely generated group and Γ is
a torsion-free relatively hyperbolic group with abelian parabolics. This equiv-
alence relation uses conjugation, elements of Mod(G) ≤ Aut(G) and ‘bending’
moves (see Section 3).

Theorem 1.1 Let Γ be a torsion-free relatively hyperbolic group with abelian
parabolics, and let G be a finitely generated freely indecomposable group.
There is a finite collection {ηi : G → Li}

n
i=1 of proper quotients of G such

that, for any homomorphism h : G → Γ which is not equivalent to an injec-
tive homomorphism there exists h′ : G → Γ with h ∼ h′ , i ∈ {1, . . . , n} and
hi : Li → Γ so that h′ = hi ◦ ηi .

The quotient groups Li that appear in Theorem 1.1 are Γ–limit groups. The-
orem 1.1 allows us to reduce the description of Hom(G,Γ) to a description of
{Hom(Li,Γ)}n

i=1 . We then apply Theorem 1.1 to each of the Li in turn, and so
on with successive proper quotients. That this process terminates follows from
the following

Theorem 5.2 Let Γ be a torsion-free group which is hyperbolic relative to
free abelian subgroups. Every decreasing sequence of Γ–limit groups:

R1 > R2 > R3 > . . . ,

which are all quotients of a finitely generated group G, terminates after finitely
many steps.

Theorems 1.1 and 5.2 allow us to construct Makanin–Razborov diagrams over Γ,
which is one of the main purposes of this paper. A Makanin–Razborov diagram
for G is a finite tree which encodes all of the information about Hom(G,Γ)
obtained from the above process. Thus a Makanin–Razborov diagram gives a
parametrisation of Hom(G,Γ). This is described in further detail in Section 6,
the main result of which is the existence of Makanin–Razborov diagrams over
Γ.
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2322 Daniel Groves

Sela [33, I.8] asked whether Theorem 5.16 holds and whether Makanin–Razborov
diagrams exist in the context of CAT(0) groups with isolated flats. We believe
that relatively hyperbolic groups with abelian parabolics are a natural setting
for these questions. However, it is worth noting that for technical reasons we
have restricted to abelian, rather than virtually abelian, parabolics, so we have
not entirely answered Sela’s questions.

An outline of this paper is as follows. In Section 2 we recall the definition
of relatively hyperbolic groups, and recall the construction of limiting R–trees
from [17] and [19], as well as other useful results. In Section 3 we improve
upon our version of Sela’s shortening argument from [18] and [19] to deal with
arbitrary sequences of homomorphisms {hn : G→ Γ} where G is an arbitrary
finitely generated group. In Section 4 we recall Sela’s construction of shortening
quotients from [31], and adapt this construction to our setting. In Section 5
we prove Theorem 5.2, one of the main technical results of this paper. We also
prove Theorems 5.11, 5.16, and a number of structural results about Γ–limit
groups. Finally in Section 6 we construct Makanin–Razborov diagrams over Γ.

Acknowledgment I would like to thank Zlil Sela for providing me with the
proof of [32, Proposition 1.21], which is repeated in the proof of Proposition
5.14 in this paper. I would also like to thank the referee for correcting a number
of mistakes in earlier versions of this paper, in particular the use of the bending
moves in shortening quotients, and for his/her careful reading(s) and numerous
comments, which have substantially improved the exposition of the results in
this paper.

This work was supported in part by NSF Grant DMS-0504251.

2 Preliminaries

2.1 Relatively hyperbolic groups

Relatively hyperbolic groups were first defined by Gromov in his seminal paper
on hyperbolic groups [16, Subsection 8.6, p.256]. Another definition was given
by Farb [15, Section 3], and further definitions given by Bowditch [7, Definitions
1 and 2, page 1]. These definitions are all equivalent (see [7, Theorem 7.10, page
44] and [8, Theorem 6.1, page 682]). Recently there has been a large amount
of interest in these groups (see [1, 8, 10, 12, 13, 24, 35], among others). The
definition we give here is due to Bowditch [7, Definition 2, page 1].
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Definition 2.1 A group Γ with a family G of finitely generated subgroups
is called hyperbolic relative to G if Γ acts on a δ–hyperbolic graph K with
finite quotient and finite edge stabilisers, where the stabilisers of infinite valence
vertices are the elements of G , so that K has only finitely many orbits of simple
loops of length n for each positive integer n.

The groups in G are called parabolic subgroups of Γ.

In this paper we will be exclusively interested in relatively hyperbolic groups
which are torsion-free and have abelian parabolic subgroups.

We record the following simple lemma for later use.

Lemma 2.2 Suppose that Γ is a torsion free relatively hyperbolic group with
abelian parabolics. Then abelian subgroups of Γ are finitely generated.

Proof Suppose that g ∈ Γ. If g is a hyperbolic element, then by a result
of Osin (see [24, Theorem 1.14, page 10] and the comment thereafter), the
centraliser of g is cyclic.

Therefore, any noncyclic abelian subgroup is contained entirely within a single
parabolic subgroup. These are assumed to be abelian (and are finitely generated
by the definition of ‘relatively hyperbolic’).

2.2 The limiting R–tree

In this subsection we recall a construction from [19] (see also [17] for more de-
tails). Suppose that Γ is a torsion-free relatively hyperbolic group with abelian
parabolic subgroups. In [19, Section 4], we constructed a space X on which Γ
acts properly and cocompactly by isometries. For each parabolic subgroup P
(of rank n, say) there is in X an isometrically embedded copy of R

n , with the
Euclidean metric, so that the action of P leaves this Euclidean space invariant
and this P –action is proper and cocompact with quotient the n–torus.

Terminology 2.3 We say that two homomorphisms h1, h2 : G → Γ are con-
jugate if there exists γ ∈ Γ so that h1 = τγ ◦ h2 , where τγ is the inner auto-
morphism of Γ induced by γ . Otherwise, h1 and h2 are non-conjugate.

Suppose now that G is a finitely generated group, and that {hn : G → Γ}
is a sequence of pairwise non-conjugate homomorphisms. By considering the
induced actions of G on X , and passing to a limit, we extract an isometric
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action of G on an asymptotic cone Xω of X . This action has no global fixed
point. There is a separable G–invariant subset C∞ ⊆ Xω , and by passing to
a subsequence {fi} of {hi} we may assume that the (appropriately scaled)
actions of G on X converge in the G–equivariant Gromov–Hausdorff topology
to the G–action on C∞ .

The space C∞ is a tree-graded metric space, in the terminology of Druţu and
Sapir [12, Definition 1.10, page 7]. Informally, this means that there is a collec-
tion of ‘pieces’ (in this case finite dimensional Euclidean spaces), and otherwise
the space is ‘tree-like’ (see [12] for the precise definition and many properties
of tree-graded metric spaces). By carefully choosing lines in the ‘pieces’, and
projecting, an R–tree T is extracted from C∞ . This tree T comes equipped
with an isometric G–action with no global fixed points and the kernel of the
G–action on T is the same as the kernel of the G–action on C∞ . For more
details on this entire construction, see [19, Sections 4,5,6] and [17].

Definition 2.4 [5, Definition 1.5, page 3] Suppose that {hn : G → Γ} is a
sequence of homomorphisms. The stable kernel of {hn}, denoted Ker−−→ (hn), is

the set of all g ∈ G so that g ∈ ker(hn) for all but finitely many n.

A sequence of homomorphisms {hi : G→ Γ} is stable if for all g ∈ G either (i)
g ∈ ker(hi) for all but finitely many i; or (ii) g 6∈ ker(hi) for all but finitely
many i.

The following theorem recalls some of the properties of the G–action on the
R–tree T .

Theorem 2.5 (Compare [17, Theorem 4.4] and [19, Theorem 6.4]) Suppose
that Γ is a torsion-free group that is hyperbolic relative to a collection of free
abelian subgroups and that G is a finitely generated group. Let {hn : G→ Γ}
be a sequence of pairwise non-conjugate homomorphisms. There is a subse-
quence {fi} of {hi} and an action of G on an R–tree T so that if K is the
kernel of the G–action on T and L := G/K then:

(1) The stabiliser in L of any non-degenerate segment in T is free abelian.

(2) If T is isometric to a real line then L is free abelian, and for all but
finitely many n the group hn(G) is free abelian.

(3) If g ∈ G stabilises a tripod in T then g ∈ Ker−−→ (fi) ⊆ K .

(4) Let [y1, y2] ⊂ [y3, y4] be non-degenerate segments in T , and assume that
StabL([y3, y4]) is nontrivial. Then

StabL([y1, y2]) = StabL([y3, y4]).

In particular, the action of L on T is stable.

Geometry & Topology, Volume 9 (2005)
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(5) L is torsion-free.

Thus T is isometric to a line if and only if L is abelian. If L is not abelian
then K = Ker−−→ (fi).

We now recall the definition of Γ–limit groups. There are many ways of defining
Γ–limit groups. We choose a geometric definition using the above construction.

Definition 2.6 (Compare [32, Definition 1.11], [19, Definition 1.2]) A strict
Γ–limit group is a quotient G/K where G is a finitely generated group, and
K is the kernel of the G–action on T , where T is the R–tree arising from a
sequence of non-conjugate homomorphisms {hn : G→ Γ} as described above.

A Γ–limit group is a group which is either a strict Γ–limit group or a finitely
generated subgroup of Γ.

Definition 2.7 We say that a sequence of homomorphisms {hn : G → Γ}
converges to a Γ–limit group L if the subsequence in Theorem 2.5 can be taken
to be {hn} itself and L is the resulting Γ–limit group.

Remark 2.8 There are finitely generated subgroups of torsion-free hyperbolic
groups which are not finitely presented (see, for example, the construction from
[25, Corollary (b), page 46]). Therefore, when Γ is a torsion-free relatively
hyperbolic group with free abelian parabolic subgroups, a Γ–limit group need
not be finitely presented. This presents substantial complications (many of
which are already dealt with by Sela in [32, Section 1]), some of which are
solved by the application of Theorem 5.6 below.

2.3 Acylindrical accessibility and JSJ decompositions

In [28], Sela studied acylindrical graph of groups decompositions, and proved
an accessibility theorem for k–acylindrical splittings [28, Theorem 4.1]. Unlike
other accessibility results such as [14, Theorem 5.1, page 456] and [3, Main
theorem, page 451], Sela’s result holds for finitely generated groups, rather
than just for finitely presented groups.1

We follow [31, Section 2] to construct the abelian JSJ decomposition of a freely
indecomposable strict Γ–limit group, L.

Recall the following:

1Since Γ–limit groups needn’t be finitely presented, it is important that we can
apply acylindrical accessibility.
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Lemma 2.9 [19, Lemma 6.7] Let Γ be a torsion-free group which is hyper-
bolic relative to abelian subgroups, and let L be a strict Γ–limit group. Abelian
subgroups of L are malnormal. Each abelian subgroup of L is contained in a
unique maximal abelian subgroup.

Given Lemma 2.9, the proof of the following is identical to that of [31, Lemma
2.1].

Lemma 2.10 Let Γ be a torsion-free group which is hyperbolic relative to
abelian subgroups, and let L be a strict Γ–limit group. Let M be a maximal
abelian subgroup of L, and let A be any abelian subgroup of L.

(1) If L = U ∗A V then M can be conjugated into either U or V .

(2) If L = U∗A then either (i) M can be conjugated into U or (ii) M can
be conjugated to M ′ and L = U ∗A M

′ .

Given Lemma 2.10, if we have an abelian splitting L = U∗A where A is a
subgroup of a non-elliptic maximal abelian subgroup M , we can convert it into
the amalgamated free product L = U ∗A M . Thus we will concentrate only on
splittings where edge groups are abelian and every noncyclic abelian subgroup
is elliptic. Just as in [31, Lemma 2.3], any such splitting can be modified by
sliding operations and modifying boundary monomorphisms by conjugation to
be 2–acylindrical. Therefore, we can apply acylindrical accessibility.

We now follow the analysis from [31, Section 2]. First we construct the canoni-
cal quadratic decomposition of L (see [27, Theorem 5.6, pages 98–99]. This can
then be refined to construct the cyclic JSJ decomposition, and further refined
to construct the abelian JSJ decomposition, which encodes all 2–acylindrical
abelian splittings of L in which noncyclic abelian subgroups are elliptic. The
proof of [29, Theorem 1.7] applies in this context and implies that the abelian
JSJ decomposition of L is unique up to sliding moves, conjugation and mod-
ifying boundary monomorphisms by conjugation. See [32, Theorem 1.10] for
a precise statement (which holds in our context without change), and [27] for
definitions of terms left undefined here.

There are three types of vertex groups in the abelian JSJ decomposition of L.
The first are surface vertex groups, which correspond to maximal quadratically
hanging subgroups. The second are abelian vertex groups which are abelian.
The third type are rigid vertex groups. The key feature of rigid vertex groups
is that they are elliptic in any abelian splitting of L.

By Theorem 2.5 any strict Γ–limit group L admits a nontrivial stable action on
any R–tree with abelian segment stabilisers and trivial tripod stabilisers. If L
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is nonabelian then this R–tree is not a line and, by [28, Theorem 3.1], L splits
over a group of the form E–by-cyclic, where E stabilises a segment. Since
abelian subgroups of L are malnormal (Lemma 2.9) and segment stabilisers
are abelian, any group of the form E–by-cyclic is in fact abelian. Therefore,
any non-abelian strict Γ–limit group admits a nontrivial abelian splitting. This
now implies the following result.

Proposition 2.11 Suppose that L is a non-abelian, freely indecomposable
strict Γ–limit group, and that L is not a surface group. The abelian JSJ
decomposition of L is nontrivial.

3 The shortening argument

In [18, Sections 3–6] and [19, Section 7] we described a version of Sela’s short-
ening argument which worked for sequences of surjective homomorphisms to Γ,
and described in [18, Section 3] why this notion is insufficient for all sequences
of homomorphisms.

In this section we present another version of the shortening argument, which
works for all sequences of homomorphisms {hn : G → Γ}, for any finitely gen-
erated group G. This version was stated but not proved in [19, Theorem 7.10],
and we give the proof here.

There are two equivalent approaches to this version of the shortening argument.
The first is to find a group Ĝ which contains G and shorten using elements
of Mod(Ĝ), rather than just elements of Mod(G) (this approach was used in
the proof of [18, Theorem 7.9]) . The second approach is to use the ‘bending’
moves of Alibegović [2]. We use the second approach here.

Definition 3.1 Let G be a finitely generated group. A Dehn twist is an
automorphism of one of the following two types:

(1) Suppose that G = A ∗C B and that c is contained in the centre of C .
Then define φ ∈ Aut(G) by φ(a) = a for a ∈ A and φ(b) = cbc−1 for
b ∈ B .

(2) Suppose that G = A∗C , that c is in the centre of C , and that t is the
stable letter of this HNN extension. Then define φ ∈ Aut(G) by φ(a) = a
for a ∈ A and φ(t) = tc.

Geometry & Topology, Volume 9 (2005)
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Definition 3.2 Generalised Dehn twists Suppose G has a graph of groups
decomposition with abelian edge groups, and A is an abelian vertex group in
this decomposition. Let A1 ≤ A be the subgroup generated by all edge groups
connecting A to other vertex groups in the decomposition. Any automorphism
of A that fixes A1 element-wise can be naturally extended to an automorphism
of the ambient group G. Such an automorphism is called a generalised Dehn
twist of G.

Definition 3.3 Let G be a finitely generated group. We define Mod(G) to
be the subgroup of Aut(G) generated by:

(1) Inner automorphisms,

(2) Dehn twists arising from splittings of G with abelian edge groups,

(3) generalised Dehn twists arising from graph of groups decompositions of
G with abelian edge groups.

Similar definitions are made in [31, Section 5] and [5, Section 1].

We will try to shorten homomorphisms by pre-composing with elements of
Mod(G). However, as seen in [18, Section 3], this is not sufficient to get the
most general result. Thus, we also define a further kind of move (very similar
to Alibegović’s bending move, [2, Section 2]).

Definition 3.4 Suppose that Γ is a torsion-free group which is hyperbolic
relative to free abelian subgroups, that G is a finitely generated group, and
that h : G → Γ is a homomorphism. We define two kinds of ‘bending’ moves
as follows:

(B1) Let Λ be a graph of groups decomposition of G, and let A be an abelian
vertex group in Λ. Suppose that h(A) ≤ P , where P is a parabolic
subgroup of Γ. A move of type (B1) replaces h by a homomorphism
h′ : G→ Γ which is such that:

(a) h′(A) ∼= h(A);

(b) h′(A) ≤ P ;

(c) h′ agrees with h on all edge groups of Λ adjacent to A, and all
vertex groups other than A.

(B2) Let Λ be a graph of groups decomposition of G, and let A be an abelian
edge group of Λ, associated to an edge e. Suppose that h(A) ≤ P , for
some parabolic subgroup P of Γ. A move of type (B2) replaces h by a
homomorphism which either
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(a) conjugates the image under h of a component of π1(Λ r e) by an
element of P , in case e is a separating edge, or

(b) multiplies the image under h of the stable letter associated to e by
an element of P , in case e is non-separating,

and otherwise agrees with h.

Definition 3.5 (Compare [5, Definition 4.2], [2, Definition 2.11]) We define
the relation ‘∼’ on the set of homomorphisms h : G→ Γ to be the equivalence
relation generated by setting h1 ∼ h2 if h2 is obtained from h1 by:

(1) pre-composing with an element of Mod(G),

(2) post-composing with an inner automorphism of Γ or

(3) a bending move of type (B1) or (B2).

Definition 3.6 Let A be an arbitrary finite generating set for G, and let
X be the space upon which Γ acts properly, cocompactly and isometrically
(defined in [19] and briefly described in Section 2), with basepoint x. For a
homomorphism h : G→ Γ define ‖h‖ by

‖h‖ := max
g∈A

dX(x, h(g).x).

A homomorphism h : G → Γ is short if for any h′ such that h ∼ h′ we have
‖h‖ ≤ ‖h′‖.

The following is the main result of this section.

Theorem 3.7 Suppose that Γ is a torsion-free group which is hyperbolic rela-
tive to a collection of free abelian subgroups. Let G be a freely indecomposable
finitely generated group and {hn : G → Γ} be a sequence of non-conjugate
homomorphisms which converges to a faithful action of G on the tree-graded
metric space C∞ as in Subsection 2.2 above. Then, for all but finitely many n,
the homomorphism hn is not short.

Proof Suppose that the sequence {hn : G → Γ} converges into a faithful G–
action on C∞ . As described in Subsection 2.2 (see [17] and [19] for more details),
a faithful G–action on an R–tree T may be extracted from the G–action on
C∞ . We now analyse the action of G on T more closely.

The group G is freely indecomposable and the stabiliser in G of any tripod in
T is trivial, so we can apply the decomposition theorem of Sela – [28, Theorem
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3.1] – and decompose T into subtrees of three types: axial, IET, and discrete
(because G is freely indecomposable and tripod stabilisers are trivial, there are
no Levitt-type components in T ). This decomposition of T induces (via the
Rips machine; see [4]) a graph of groups decomposition of G, which will allow
us to shorten hn for sufficiently large n. See [26], [28, Sections 2,3] or [18,
Section 4] for more information.

Note that there are two sources for segments in T . There are segments in
C∞ meeting each flat in at most a point, and there are flats in C∞ which are
projected to lines in T . We treat these as two separate cases. However, we can
make the following simplifications (let P be the collection of lines in T which
are projections of flats in C∞):

(1) Suppose that Y is an IET subtree of T and that pE ∈ P is a line in T .
Then the intersection Y ∩ pE contains at most a point ([18, Proposition
4.3]).

(2) Suppose that a line l ⊂ T is an axial subtree of T and that the line pE is
in P. If l ∩ pE contains more than a point then l = pE ([18, Proposition
4.5]).

(3) If an edge e in the discrete part of T has an intersection of positive length
with pE ∈ P then e ⊂ pE ([18, Lemma 4.7]).

Fix a finite generating set A for G. Let y be the basepoint in T , and consider
the paths [y, u.y] for u ∈ A. If there is any IET component of T which
intersects any segment [y, u.y] nontrivially then we can apply [26, Theorem
5.1] and [18, Corollary 4.4] to shorten these intersections whilst leaving the
remaining segments unchanged (to see that we can have G finitely generated
rather than finitely presented, see [18, Remark 4.8]).

Suppose that some segment [y, u.y] has an intersection of positive length with
some axial component l ⊂ T so that l is not contained in any pE ∈ P. Then
[18, Theorem 5.1] can be used to shorten those segments [y, ui.y] intersecting
the orbit of pE nontrivially, and leaving other segments unchanged.

Suppose that [y, u.y] intersects some line pE nontrivially, and that pE is an
axial component of T . The only place where the proof of [18, Theorem 5.2]
breaks down is that the images hi(G) may not intersect parabolics in its image
in denser and denser subsets (when measured with the scaled metric). However,
this is exactly what the bending move (B1) is designed to deal with.

We have the following analogue of [18, Proposition 5.4]: Let E denote the flat in
C∞ which projects to pE . The subgroup StabG(E) is an abelian subgroup of G.
There is a sequence of flats Ei ⊂ Xi so that Ei → E in the Gromov topology.
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The subgroups hi(StabG(E)) are abelian, and fix the flat Ei , for sufficiently
large i. Thus hi(Stabg(E)) is contained in a unique maximal abelian subgroup
AEi

of Γ. If we fix a finite subset W of StabG(E) and ǫ > 0, then for sufficiently
large i, there is an automorphism σi : AEi

→ AEi
so that

(1) For every w ∈W , and every ri ∈ Ei ,

dXi
(ri, hi(σi(w)).ri) < ǫ.

(2) For any k ∈ StabG(E) which acts trivially on E we have σi(hi(k)) =
hi(k).

The proof of the existence of such a σi is the same as the proof of [18, Propo-
sition 5.4]. Such a σi induces a move of Type (B1) in a straightforward man-
ner, since the adjacent edge groups to the vertex group StabG(E) contain ele-
ments which act trivially on E , therefore we replace hi by the homomorphism
which agrees with hi on all edge groups and on all vertex groups which are not
StabG(E), and replaces hi|StabG(E) by σi ◦ hi|StabG(E) .

We now construct shortening elements for all but finitely many of the intervals
[yn, hn(u).yn] by following the proof of [26, Theorem 5.1] (see [18, Section 5] for
more details).

Finally, we are left with the case where [y, u.y] is contained entirely in the
discrete part of T . We follow the proof of [18, Theorem 6.1], which in turn
followed [26, Section 6]. This argument naturally splits into a number of cases.

Case 1 y is contained in the interior of an edge e.

Case 1a e is not contained entirely in a line pE ∈ P and ē ∈ T/G is a splitting
edge.

This case follows directly as in [18, Section 6].

Case 1b e is not completely contained in a line pE ∈ P and ē is not a splitting
edge.

This case also follows directly as in [18, Section 6].

Case 1c e is contained in a line pE ∈ P and ē is a splitting edge.

In this case, we have a graph of groups decomposition G = H1 ∗AE
H2 , where

AE = StabG(E) (and E is the flat in C∞ which projects to pE ). The Dehn
twist which is found in [18, Section 6] is naturally replaced by a bending move
of type (B2).

Case 1d e is contained in a line pE ∈ P and ē is not a splitting edge.
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Once again the Dehn twist is replaced by a bending move of Type (B2).

Case 2 y is a vertex of T .

Once again here there are four cases, depending on whether on edge adjacent
to y is or is not a splitting edge and is or is not contained in a line pE ∈ P. In
case an edge e is not contained in a line pE ∈ P, we proceed exactly as in [18],
following [26] directly. In case e ⊂ pE , we replace the shortening Dehn twists
by bending moves of type (B2) as in Case 1 above.

Therefore, in any case, we can find moves which shorten all but finitely many
of the hi , as required.

4 Shortening quotients

In this section we recall the concept of shortening quotients from [31, Section 5]
and [32, Definition 1.14], and generalise this notion to the relatively hyperbolic
setting. The use of bending moves means that the output of this section is
slightly different to that in the hyperbolic case (though it will be good enough
for our purposes).

Let G be a finitely generated group, Γ a torsion-free relatively hyperbolic group
with abelian parabolics and {hn : G → Γ} a stable sequence of homomor-
phisms, with associated Γ–limit group L.2 Suppose that L is nonabelian and
freely indecomposable. Let π : G → L be the canonical quotient map. The
shortening procedure (given below) constructs a sequence of homomorphisms
{νi : F → Γ}, where F is a finitely generated free group. The sequence {νi}
has a subsequence converging to a Γ–limit group Q, which comes equipped
with a canonical epimorphism η : L→ Q. See Lemma 4.1 and Proposition 4.2
for more information.

We follow the construction from [31, Section 3] and [30, Section 3] (see [18,
Section 7] for more details in the current context). See also [34] for more
information on the Bass–Serre theory, in particular [34, I.5] for the standard
presentation of the fundamental group of a graph of groups.

Given the situation described in the previous paragraph, we now describe the
construction of {νi}, Q and η . Let ΛL be an abelian JSJ decomposition for L,
with vertex groups V 1, . . . , V m and edge groups E1, . . . , Es . Let t1, . . . , tb be
the Bass–Serre generators for L with respect to some (fixed) maximal subtree

2Stable sequences of homomorphisms were defined in Definition 2.4.
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of ΛL . Note that L is finitely generated, so each of the vertex groups Vi is
generated by a finite set together with the adjacent edge groups.

As in [31, Theorem 3.2, comment at the bottom of page 45] we have not yet
proved that the edge groups are finitely generated (though this will eventually
turn out to be the case; see Corollary 5.12 below).

We can ‘approximate’ the finitely generated group L by finitely presented
groups Un , each equipped with a graph of groups decomposition Λn which
is a ‘lift’ of ΛL . We describe this approximation now, following [31, Theorem
3.2] and [18, Theorem 7.9].

Let g1, . . . , gk generate G and let π : G → L be the canonical quotient map
associated to the convergent subsequence of {hn : G → Γ}. Note that L is
clearly generated by {π(g1), . . . , π(gk)}. Now choose elements

v1
1, . . . , v

1
l1
, . . . , vm

1 , . . . , v
m
lm
, t1, . . . , tb ∈ G,

so that (i) π(vi
k) ∈ V i ; (ii) π(tk) = tk ; and (iii) for each generator gj of G

there is a word:
gj = wj(v

1
1 , . . . , v

m
lm
, t1, . . . , tb).

Thus G is generated by {v1
1 , . . . , v

m
lm
, t1, . . . , tb}. We may also assume, by adding

finitely many more elements to our list if necessary, that each V i is generated
by {π(vi

1), . . . , π(vi
li
)}, together with the edge groups Ej which are adjacent

to V i . In case the edge groups adjacent to V i are all finitely generated, we
assume that V i is in fact generated by {π(vi

1), . . . , π(vi
li
)}. For each j , let

ej1, e
j
2, . . . ∈ G be a set of elements for which π(ejp) ∈ Ej so that Ej is generated

by {π(ej1), π(ej2), . . .}.

We now define the groups Un . First, define the group Hn to be the group with
the generating set:

{x1
1, . . . , x

1
l1
, . . . , xm

1 , . . . , x
m
lm
, y1, . . . , yb, z

1
1 , . . . , z

s
1, z

1
n, . . . , z

s
n},

together with the relations [zj
p1
, zj

p2
] = 1 for j = 1, . . . , s, and 1 ≤ p1, p2 ≤ n.

Clearly there exists a natural epimorphism σn : Hn → L defined by σn(xi
p) =

π(vi
p), σn(yr) = tr and σn(zj

d) = π(ejd). We define Un to be the quotient of Hn

defined by adding as relations each word w in the given generators of Hn for
which

(1) σn(w) = 1,

(2) the length of w in the given generating set for Hn is at most n and

(3) for some fixed index i ∈ {1, . . . ,m}, the word w is a word in
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(a) the generators xi
1, . . . , x

i
li
,

(b) the elements zj
1, . . . , z

j
n for any of the indices j ∈ {1, . . . , s} for which

Ej < V i and

(c) the words yrz
j
1y

−1
r , . . . , yrz

j
ny−1

r for any pair of indices (j, r) for
which trEj(tr)−1 < V i .

There exists a natural map κn : Un → Un+1 . Since L is the quotient of G
by the stable kernel of {hi : G → Γ}, for each n there exists kn > kn−1 so
that the homomorphism hkn

: G → Γ induces a homomorphism λn : Un → Γ
defined by λn(xi

p) = hkn
(vi

p), λn(yr) = hkn
(tr) and λn(zj

d) = hkn
(ejd). Also, the

homomorphism σn : Hn → L factors through Un , and we denote the associated
homomorphism from Un to L by σn .

Since the second set of defining relations of Un consists of words whose letters
are mapped by σn into the same vertex group of ΛL , each of the groups Un

admits an abelian splitting Λn which projects by σn into the abelian decom-
position ΛL of L. That is to say each of the vertex groups V i

n in Λn satisfies
σn(V i

n) ≤ V i , each of the edge groups Ej
n = 〈zj

1, . . . , z
j
n〉 satisfies σn(Ej

n) ≤ Ej

and each of the Bass–Serre generators in Λn satisfies σn(yr) = tr .

By the surface vertex groups of Λn we mean the vertex groups in Λn which
project to surface vertex groups of ΛL . Since such groups are finitely presented,
for all but finitely many n each surface vertex group in Λn is isomorphic to the
corresponding surface vertex group of ΛL , via the natural projection from Un

to L. Denote by Mod(Un) the subgroup of Aut(Un) generated by

(1) inner automorphisms,

(2) Dehn twists in edge groups of Λn ,

(3) Dehn twists in cyclic groups which arise as the edge group in a splitting of
Un obtained by cutting the surface associated to a surface vertex group
of Λn along a weakly essential s.c.c.3 and

(4) generalised Dehn twists induced by the decomposition Λn .

Let Wn be the subgroup of Un generated by the xi
p ’s and the yr ’s. Clearly the

homomorphism κn : Un → Un+1 restricts to an epimorphism κn : Wn →Wn+1 ,
and λn restricts to a homomorphism from Wn to Γ.

3Following [27], a weakly essential s.c.c on a surface is a simple closed curve which
is not null-homotopic, not boundary parallel and not the core of a Möbius band.
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Thus we have the following commutative diagram, where ιn : Wn → Un is
inclusion.

W1
κ1−−−−→ W2 · · ·

κn−2

−−−−→ Wn−1
κn−1

−−−−→ Wn

ι1

y ι2

y ιn−1

y ιn

y

U1
κ1−−−−→ U2 · · ·

κn−2

−−−−→ Un−1
κn−1

−−−−→ Un

λ1

y λ2

y λn−1

y λn

y

Γ Γ Γ Γ

The Γ–limit group L is the direct limit of the sequence {(Wi, κi)}. Denote the
free group W1 by F , and let φ : F → L be the canonical quotient map.

Define an equivalence relation on Hom(Wn,Γ) analogously to Definition 3.5,
using (i) automorphisms φ ∈ Mod(Un); (ii) bending moves (where we restrict
attention to bending moves defined using the decomposition Λn of Un); and
(iii) conjugations in Γ. Also, define the norm‖h‖ of h ∈ Hom(Wn,Γ), using the
generating set {x1

1, . . . , x
m
lm
, y1, . . . , yr}. For each n ≥ 1, choose a homomor-

phism λ̂n : Wn → Γ so that (i) λ̂n ∼ λn|Wn ; and (ii) ‖λ̂n‖ is minimal amongst
all homomorphisms equivalent to λn|Wn .

Let ξn be the given epimorphism from F to Wn (obtained by identifying their

generating sets in the obvious way), and let νn = λ̂n ◦ ξn : F → Γ. Passing to a
subsequence of {νn}, we obtain an associated Γ–limit group Q, with canonical
quotient map ν∞ : F → Q.

Lemma 4.1 The natural map between the generating set of L and the gen-
erating set of Q extends to an epimorphism η : L → Q. Furthermore, η is
injective on each rigid vertex group of ΛL .

Proof The group L is the direct limit of the sequence {(Wi, κi)}, so the kernel
of the map from F to L is Ker−−→ (ξn).

The Γ–limit group Q is obtained from the sequence {νn = λ̂n ◦ ξn}. It is clear
that Ker−−→ (νn) ⊆ Ker−−→ (ξn). This proves that there is an epimorphism η : L→ Q
as required by the statement of the lemma.

Finally, we prove that the rigid vertex groups of ΛL are mapped injectively
into Q by η . First note that rigid vertex groups are non-abelian, by definition.
Let V i be a rigid vertex group of L, and let x, y be distinct elements of V i .
Suppose that u, v ∈ F are such that φ(u) = x, φ(v) = y . By the properties of
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the above construction, there exists j0 ≥ 1 so that for all j ≥ j0 the following
hold:

(i) ξj(u), ξj(v) ∈ V
i
j ; (ii) ξj(u) 6= ξj(v); and (iii) λj(ξj(u)) 6= λj(ξj(v)).

Now, the effect of all Dehn twists and generalised Dehn twists arising from Λj ,
and also of the bending moves arising from Λj , is conjugation on V i

j (by the

same element for all of V i
j ). Hence λ̂j(ξj(u)) 6= λ̂j(ξj(v)), which is to say that

νj(u) 6= νj(v). Since this is true for all j ≥ j0 , we see that ν∞(u) 6= ν∞(v).
By construction, η(x) = ν∞(u) and η(y) = ν∞(v). Therefore, η is injective on
V i , as required.

The group Q is called the shortening quotient of L associated to {hn : G→ Γ}.

Although we speak of the shortening quotient, Q and η depend on the choices
of shortest homomorphism in the equivalence class of λn , and also on the con-
vergent subsequence of {νn} chosen.

We now record some important properties of shortening quotients for use later
in this paper.

Proposition 4.2 Suppose that G is a finitely generated group, that Γ is
a torsion-free relatively hyperbolic group with abelian parabolics, and that
{hn : G → Γ} is a sequence of homomorphisms that converges into a faith-
ful action of a non-abelian, freely indecomposable strict Γ–limit group L on an
R–tree.

Suppose that {νnt : F → Γ} is a (convergent) sequence of homomorphisms so

that νnt = λ̂nt ◦ ξnt , where λ̂nt : Wnt → Γ is a short homomorphism, as in the
construction of shortening quotients above. Let Q be the resulting shortening
quotient, with canonical epimorphism η : L→ Q as in Lemma 4.1 above.

(1) If the sequence {νnt} is not contained in finitely many conjugacy classes
then η is not injective, so Q is a proper quotient of L.

(2) If the sequence {νnt} is contained in finitely many conjugacy classes, then
there is some subsequence {hr} of {hnt} so that each hr factors through
the canonical epimorphism π : G→ L.

Proof First we prove (1). Suppose that Q is not a proper quotient of L,
and that {νnt} is not contained in finitely many conjugacy classes. Then the
limiting action of Q on the R–tree T , induces a faithful action of L on T .
This, in turn, induces an abelian splitting Θ of L. We use the splitting Θ to
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shorten all but finitely many of the homomorphisms λ̂nt , which contradicts the
fact that they were chosen to be short. We argue as in Section 3.

Consider a generator u of L, the basepoint y of T and the segment [y, u.y].
If [y, u.y] intersects an IET component of T in more than a point, then [26,
Theorem 5.1] finds a mapping class of the associated surface in the splitting of
L which shortens the limiting action on T . By [18, Corollary 4.4], the length
of [y, u.y] in T is the same as its the pre-image in C∞ , so we use the same
automorphism to shorten the limiting action on C∞ . The surface group found
above is conjugate into a surface vertex group of the JSJ decomposition of L,
and so the shortening automorphism is a product of Dehn twists in s.c.c. on
this surface. Since a surface vertex is finitely presented, all but finitely many
of the Un have an isomorphic copy of this surface vertex, and we can shorten
the approximating homomorphisms. Thus we may suppose that [y, u.y] does
not intersect any IET components in more than a point.

If [y, u.y] intersects an axial subtree in a segment of positive length then we
apply the shortening moves in Section 3 to shorten the limiting action on C∞ .
Once again, these shortening moves can easily be lifted to all but finitely many
of the Un (by using the fact that the splitting ΛL of L essentially encodes all
abelian splittings of L). Thus the appropriate shortening moves will shorten
all but finitely many of the approximating homomorphisms from Wn to Γ. It
is worth noting that even though we do not know that abelian subgroups of L
are finitely generated, the generalised Dehn twists that we need can be chosen
to be supported on a finitely generated subgroup, which is finitely presented
and will lift to all but finitely many of the Un .

Finally, there is the case that [y, u.y] is entirely contained in the discrete part of
T . In this case, the limiting action is not shortened, but the appropriate Dehn
twist, generalised Dehn twist or bending move can be lifted to all but finitely
many of the Un , and used to shorten the approximating homomorphisms, just
as in Section 3. The bending moves in any of the cases in the proof are naturally
interpreted using the homomorphisms from Wn to Γ (and the splitting Λn of
Un ). Thus (1) is proved by following the proof of Theorem 3.7.

We now prove (2). Suppose that the elements of the sequence {νnt} belong to
finitely many conjugacy classes. Since each of the λ̂nt is short, the sequence
‖νnt‖ is bounded, and by passing to a subsequence we may assume that {νnt}
is constant, and equal to ν , say. For ease of notation, we refer to the constant
subsequence of {νnt} by {νi}, and the associated subsequence of {hnt} by {hi}.

We have Q ∼= ν(F ) ≤ Γ. By Lemma 4.1, each of the rigid vertex groups of ΛL

embed in Q, and hence in Γ. Let Vj be a rigid vertex group in ΛL , and denote
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by V ′
j the isomorphic image of Vj in Γ given by the above embedding. By

Lemma 2.2, the edge groups in ΛL adjacent to rigid vertex groups are finitely
generated. The edge groups adjacent to surface groups are finitely generated,
and ΛL does not have a pair of adjacent abelian vertex groups. Therefore, all
edge groups in ΛL are finitely generated, and therefore all vertex groups are
also finitely generated.

Since all of the edge groups of ΛL are finitely generated, we assumed during the
construction of the Ui and Wi that the vertex group Vj of ΛL was generated

by {π(vj
1), . . . , π(vj

lj
)}, for each 1 ≤ j ≤ m. Now, for each 1 ≤ j ≤ m and each

1 ≤ k ≤ lj , we have hi(v
j
k) = λi(x

j
k). Therefore, if Yj = 〈vj

1, . . . , v
j
lj
〉 ≤ G and

Zi
j = 〈xj

1, . . . , x
j
lj
〉 ≤Wi then

hi(Yj) = (λi ◦ ιi)(Z
i
j).

By construction, (λi ◦ ιi) ∼ λ̂i .

The fact that Q ∼= ν(F ) ≤ Γ implies that λ̂i(Z
i
j) is isomorphic to V ′

j . Now,

(λi ◦ ιi) and λ̂i are related by a sequence of shortening moves, each of which
acts by conjugation on Zi

j . Thus (λi ◦ ιi)(Z
i
j) is conjugate to V ′

j in Γ. The
same is therefore true of hi(Yj).

Since the edge groups of Λ are finitely generated (and abelian), and since
the non-rigid vertex groups are finitely presented, a presentation for L can be
found which consists of presentations for the rigid vertex groups, and finitely
many other generators and relations. The sequence {hn : G → Γ} converges
to π : G → L, so each of these finitely many extra relations will be sent to 1
by hl for sufficiently large l . However, we have already seen that the relations
corresponding to the rigid vertex groups are mapped to 1 by all the hi . This
shows that all but finitely many of the hi factor through π : G→ L, as required.
This proves (2).

5 Γ–limit groups

In this section we follow [32, Section 1] in order to understand Γ–limit groups,
and to understand Hom(G,Γ), where G is an arbitrary finitely generated group.
The main technical results of this section are Theorem 5.2 and Theorem 5.6.

These technical results are then applied to yield various applications: Theorem
5.10, Proposition 5.11, Theorem 5.16, and in the next section the construction
of Makanin–Razborov diagrams.
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Remark 5.1 A previous version of this paper claimed that any strict Γ–limit
group which is freely indecomposable and nonabelian admits a principal cyclic
splitting. However, this is false.

To see this, consider the following example. Let Γ be the fundamental group of
a finite volume hyperbolic n–manifold M with torus cusps, for n ≥ 3, so that Γ
admits no splitting over Z. Let M ′ be the double of M along one of its cusps,
and Γ′ = π1(M

′). By repeatedly Dehn twisting along a simple closed curve in
the attaching torus, it is not difficult to see that Γ′ is a strict Γ–limit group.
However, the JSJ decomposition of Γ′ is given by two copies of Γ attached by
a (noncyclic) abelian edge group. It is clear that Γ′ admits no principal cyclic
splitting.

It is possible to adapt the proof of [31, Theorem 3.2] to this context to prove
that the above example is one of the few ways in which a strict Γ–limit group
can fail to have a principal cyclic splitting. However, rather than make this long
diversion, we prefer to work entirely with the abelian JSJ decomposition of a
strict Γ–limit group L, which we already know to be nontrivial, so long as L
is freely indecomposable, non-abelian and not a surface group, by Proposition
2.11.

Let G be a fixed finitely generated group. Define an order on the set of Γ–limit
groups that are quotients of G as follows: suppose R1 and R2 are both Γ–limit
groups that are quotients of G, and that ηi : G→ Ri are the (fixed) canonical
quotient maps. We say R1 > R2 if there exists an epimorphism with non-trivial
kernel τ : R1 → R2 so that η2 = τ ◦ η1 . We say that R1 and R2 are equivalent
if there is an isomorphism τ : R1 → R2 so that η2 = τ ◦ η1 .

The following is one of the main technical results of this paper.

Theorem 5.2 (Compare [32, Theorem 1.12]) Let Γ be a torsion-free group
which is hyperbolic relative to free abelian subgroups. Every decreasing se-
quence of Γ–limit groups:

R1 > R2 > R3 > . . . ,

which are all quotients of a finitely generated group G, terminates after finitely
many steps.

For limit groups, the analogous result has a short proof using the fact that free
groups are linear (see [5, Corollary 1.9, page 4]). However (as observed by M.
Kapovich; see, for example, [6, Subsection 1.4]), not all hyperbolic groups are
linear and therefore not all relatively hyperbolic groups are linear.
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It is worth noting that we do not insist that the Γ–limit groups Rn in the
statement of Theorem 5.2 be strict Γ–limit groups. This will be important later,
because to study a single homomorphism, we consider a constant sequence,
which leads to a Γ–limit group which need not be strict.

Before we prove Theorem 5.2, we prove the following lemma (implicit in [32,
page 7]):

Lemma 5.3 Let Ξ be a finitely generated group, let L be a Ξ–limit group
and suppose that L is d–generated. Then L can be obtained as a limit of
homomorphisms {fn : Fd → Ξ}, where Fd is the free group of rank d.

Proof The group L is obtained as the limit of a (convergent) sequence of
homomorphisms {hn : G → Ξ}, where G is a finitely generated group. Let
η : G→ L be the canonical quotient map. Let {r1, . . . , rd} be a generating set
for R and let {y1, . . . , yd} ⊂ G be such that η(yi) = ri for 1 ≤ i ≤ d. Let
Gd ≤ G be the subgroup generated by {y1, . . . , yd}, and let π : Fd → Gd be the
natural quotient map. Define hn = fn ◦ π . It is easy to see that the sequence
{hn : Fd → Ξ} converges to L.

Proof of Theorem 5.2 We follow the outline of the proof of [32, Theorem
1.12]. In order to obtain a contradiction, we suppose that there exists a finitely
generated group G and an infinite descending sequence of Γ–limit groups:

R1 > R2 > R2 > . . . ,

all quotients of G.

Without loss of generality, we may assume G = Fd , the free group of rank d.
Let {f1, . . . , fd} be a basis for Fd , and let C be the Cayley graph of Fd with
respect to this generating set. We construct a particular decreasing sequence
of Γ–limit groups as follows. Let T1 be a Γ–limit group with the following
properties:

(1) T1 is a proper quotient of Fd .

(2) T1 can be extended to an infinite decreasing sequence of Γ–limit groups:
T1 > L2 > L3 > . . . .

(3) The map η1 : Fd → T1 maps to the identity the maximal number of
elements in the ball of radius 1 about the identity in C among all possible
epimorphisms from Fd to a Γ–limit group L that satisfies the first two
conditions.
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Continue to define the sequence inductively. Suppose that the finite sequence
T1 > T2 > . . . > Tn−1 has been constructed, and choose Tn to satisfy:

(1) Tn is a proper quotient of Tn−1 .

(2) The finite decreasing sequence of Γ–limit groups T1 > T2 > . . . > Tn can
be extended to an infinite decreasing sequence.

(3) The map ηn : Fd → Tn maps to the identity the maximal number of
elements in the ball of radius n about the identity in C among all possible
maps from Fd to a Γ–limit group Ln satisfying the first two conditions.

Since each of the Γ–limit groups Tn is a quotient of Fd , each Tn is d–generated.
Let {r1,n, . . . , rd,n} be a generating set for Tn . By Lemma 5.3, Tn can be
obtained as a limit of a sequence of homomorphisms {vn

i : Fd → Γ}, with the
quotient map ηn : Fd → Tn sending fi to ri,n .

For each n, choose a homomorphism vn
in

: Fd → Γ for which:

(1) Every element in the ball of radius n about the identity in C that is
mapped to the identity by ηn : Fd → Tn is mapped to the identity by
vn
in

. Every such element that is mapped to a nontrivial element by ηn is
mapped to a nontrivial element by vn

in
.

(2) There exists an element f ∈ Fd that is mapped to the identity by
ηn+1 : Fd → Tn+1 for which vn

in
(f) 6= 1.

Denote the homomorphism vn
in

by hn . By construction, the set of homomor-
phisms {hn : Fd → Γ} does not belong to a finite set of conjugacy classes.
Therefore, from the sequence {hn} we can extract a subsequence that con-
verges to a (strict) Γ–limit group, denoted T∞ . By construction, the Γ–limit
group T∞ is the direct limit of the sequence of (proper) epimorphisms:

Fd → T1 → T2 → · · ·

Let η∞ : Fd → T∞ be the canonical quotient map.

The Γ–limit group T∞ is a proper quotient of each of the Γ–limit groups Tn .
For each index n, the group Tn was chosen to maximise the number of elements
in the ball of radius n about the identity in C that are mapped to the identity
in Γ among all Γ–limit groups that are proper quotients of Tn−1 and that admit
an infinite descending chain of Γ–limit groups. Therefore, it is not difficult to
see that T∞ does not admit an infinite descending chain of Γ–limit groups.

The proof of the following proposition is similar to that of [32, Proposition
1.16].
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Proposition 5.4 There is a subsequence {hnt} of {hn : Fd → Γ} so that each
hnt factors through η∞ : Fd → T∞ .

Proof Let T∞ = H1 ∗ · · · ∗ Hp ∗ F be the Grushko decomposition of T∞ .
Consider H1 , and a finitely generated subgroup F 1 of Fd so that η(F 1) =
H1 . Use the sequence {hn|F 1 : F 1 → Γ} to construct a shortening quotient of
H1 , proper if possible. Repeat for each of the Hi in turn, starting with the
subsequence of {hn} used to construct the shortening quotient of Hi−1 as a
starting point for constructing a shortening quotient of Hi . In this way, we
eventually get a quotient L1 of T∞ (map F to itself in this quotient).

For each of the Hi which admitted a proper shortening quotient, take the
Grushko decomposition of the corresponding free factor in L1 , and for each
of the non-free factors H ′

j in this decomposition, attempt to find a proper
shortening quotient of H ′

j , passing to finer and finer subsequences each time.

Continuing in this manner, we obtain a sequence of quotients:

T∞ → L1 → · · · → Ls

which are all proper quotients, except possibly in the case s = 1 and T∞ → L1

is an isomorphism. This process will terminate after finitely many steps, since
T∞ does not admit an infinite descending chain of proper Γ–limit quotients.

We now have a subsequence {fi} of {hn}, the final subsequence used in con-
structing a shortening quotient ({fi} is contained in all of the other subse-
quences used in this process). By construction, Ls is a free product of finitely
generated free groups, and Γ–limit groups which do not admit a proper short-
ening quotient starting from the sequence {fi}.

Let Ls = K1∗. . .∗Kq ∗F
′′ be the given free product decomposition of Ls , where

the Ki are not free, and let σi : Fki
→ Ki be the canonical quotient map. By

Proposition 4.2, there is a subsequence {f ′i} of {fi} so that all f ′i |Fk1
: Fk1

→ Γ
factor through σ1 . Similarly, there is a further subsequence of {f ′i} which, when
suitably restricted, factor through σ2 . By passing to further subsequences, we
can see that there is a subsequence of the fi which all factor through ηs : Fd →
Ls .

We have already noted that a subsequence of the homomorphisms {hn} can be
assumed to factor through Ls . Thus, by induction on j , suppose that there is a
further subsequence of {hn} which factors through the canonical quotient map
Fd → Lj+1 . The rigid vertex groups of the non-free factors of the Grushko de-
composition of Lj inject into Lj+1 , by the shortening argument. Since abelian

Geometry & Topology, Volume 9 (2005)



Limit groups for relatively hyperbolic groups, II 2343

subgroups of Γ are finitely generated (Lemma 2.2), we may assume by induc-
tion that the abelian subgroups of Lj+1 are finitely generated. Thus the abelian
vertex groups of the JSJ decomposition of a Grushko factor of Lj , as well as the
edge groups, are finitely generated. This implies that the abelian subgroups of
Lj are all finitely generated. The canonical quotient map Lj → Lj+1 embeds
the rigid vertex groups in the JSJ decomposition of Lj into Lj+1 . Thus we may
assume that a subsequence of {hn} factors through the canonical quotient map
from a finitely generated subgroup of Fd to the rigid vertex groups of Lj . The
other vertex groups in the JSJ decomposition of Lj are finitely presented, so
there is some further subsequence of {hn} which factors through the canonical
quotient to these vertex groups (the proof of these claims are almost identical
to the proof of Proposition 4.2.(2)) . It now follows that some subsequence of
{hn} factors through the canonical quotient Fd → Lj . Thus, by induction, a
subsequence of {hn} factors through η∞ : Fd → T∞ , as required.

The homomorphisms {hn : Fd → Γ} were chosen so that for every index n
there exists some element f ∈ Fd for which ηn+1(f) = 1 and hn(f) 6= 1. Now,
η∞ : Fd → T∞ is the direct limit of the sequence

Fd → T1 → T2 → · · ·

where the induced map from Fd to Ti is ηi . Thus, for all n ≥ 1 and all f ∈ Fd ,
if ηn+1(f) = 1 then η∞(f) = 1. By Proposition 5.4 it is possible to extract
a subsequence {hnt : Fd → Γ} that factors through the map η∞ : Fd → T∞ ,
which is to say that there is a homomorphism πt : T∞ → Γ so that hnt = πt◦η∞ .
Hence, for every index t, and every element f ∈ Fd , if ηnt+1(f) = 1 then
η∞(f) = 1, which implies that hnt(f) = 1, in contradiction to the way that
the homomorphisms hn were chosen. This finally ends the proof of Theorem
5.2.

Corollary 5.5 Let Γ be a torsion-free relatively hyperbolic group with abelian
parabolics, and let L be a Γ–limit group. Then L is Hopfian.

Corollary 5.5 generalises, and gives an independent (though similar) proof of,
[19, Theorem A], and implies that the relation defined on Γ–limit groups which
are quotients of a fixed group G is a partial order. The proof of the following
theorem is similar to that of [32, Theorem 1.17], and closely follows that of
Proposition 5.4 above.

Theorem 5.6 Suppose that G is a finitely generated group, and Γ a torsion-
free relatively hyperbolic group with abelian parabolics, and let {hn : G →
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Γ} be a sequence of homomorphisms converging to a Γ–limit group L, with
canonical quotient π : G → L. There exists a subsequence {hnt} of {hn} so
that each hnt : G→ Γ factors through π : G→ L.

Proof The sequence {hn} converges to a faithful action of L on an R–tree
T . As in the proof of Theorem 5.4, take the Grushko decomposition of L, and
attempt to form proper shortening quotients of the non-free factors. For each
such proper quotient, take the Grushko decomposition and attempt to form
further proper shortening quotients from the non-free factors, starting with a
finer subsequence of {hn} at each stage. We eventually obtain a sequence (finite
by Theorem 5.2)

G→ L→ L2 → · · · → Ls.

The rest of the proof is the same as that of Proposition 5.4.

Theorem 5.6 is the tool which we will use in the study of Γ–limit groups as a
replacement for the finite presentability of limit groups.

Corollary 5.7 Let Γ be a torsion-free group which is hyperbolic relative to
abelian subgroups, and suppose that L is a Γ–limit group. Then there is a
sequence of homomorphisms {ρn : L→ Γ} which converge to L.

Proof In case L is not a strict Γ–limit group, it is isomorphic to a finitely
generated subgroup of Γ, so we can take a constant sequence of embeddings.
In case L is a strict Γ–limit group, the result follows from Theorem 5.6.

Corollary 5.7 simplifies the definition of shortening quotients considerably. In
particular, the groups Un and Wn are no longer required. We briefly describe
the simplified construction of shortening quotients.

Start with a non-abelian and freely indecomposable strict Γ–limit group L,
and a sequence of homomorphisms {hn : L → Γ} which converges to L. For

each n, let ĥn be a short homomorphism which is equivalent to hn (where now
‘short’ is as defined in Definition 3.5). Passing to a convergent subsequence of

{ĥn : L→ Γ}, we find a Γ–limit group Q which is a quotient of L.

In this context, Proposition 4.2.(1) follows immediately from Theorem 3.7. The
homomorphisms hn all have L as the domain, so Proposition 4.2.(2) is tauto-
logical in this context.

We record the simpler version of Proposition 4.2 here:
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Proposition 5.8 Suppose that Γ is a torsion-free relatively hyperbolic group
with abelian parabolics, that L is a non-abelian and freely-indecomposable
strict Γ–limit group, and that {hn : L → Γ} is a sequence of homomorphisms

converging to L. Suppose further that ĥnt : L → Γ is a convergent sequence

so that ĥnt is short and equivalent to hnt , for each t. Let Q be the resulting
shortening quotient, with canonical epimorphism η : L→ Q.

If the sequence ĥnt is not contained in finitely many conjugacy classes then Q
is a proper quotient of L.

Definition 5.9 Let Γ and G be finitely generated groups. We say that G is
fully residually Γ if for every finite F ⊂ G there is a homomorphism h : G→ Γ
which is injective on F .

Theorem 5.10 Let Γ be a torsion-free relatively hyperbolic group with abelian
parabolics. A finitely generated group G is a Γ–limit group if and only if it is
fully residually Γ.

Proof If G is a fully residually Γ then it is certainly a Γ–limit group. Con-
versely, suppose that G is a Γ–limit group. By Corollary 5.7, there is a sequence
of homomorphisms {hn : G → Γ} which converges to G. Using this sequence,
it is clear that G is fully residually Γ.

Proposition 5.11 Let Γ be a torsion-free relatively hyperbolic group with
abelian parabolics. Then there are only countably many Γ–limit groups.

Proof If Γ is abelian, then all Γ–limit groups are finitely generated abelian
groups, of which there are only countably many.

Suppose then that Γ is nonabelian. Let L be a Γ–limit group, and consider a
sequence of shortening quotients of L:

L→ L2 → . . .→ Ls

constructed as in the proof of Theorem 5.6, starting with a sequence {hn : L→
Γ} which converges to L. Note that none of the non-free factors of Ls admits
a proper shortening quotient, and if s > 1 then each map in the sequence is
a proper quotient. We will prove by induction that there are only countably
many Γ–limit groups.

For the base case, note that Ls is a free product of a finitely generated free
group and a finite collection of finitely generated subgroups of Γ. There are
only countably many such groups.
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Assume by induction there are only countably many groups which can be Lj+1

in the sequence. Now, Lj is a free product of a finitely generated free group and
freely indecomposable Γ–limit groups. Some of the free factors of Lj embed
into Lj+1 (if they do not admit a proper shortening quotient). If Hk is one
of the other non-free Grushko factors of Lj , then Hk admits an abelian JSJ
decomposition ΛHk

. By Lemma 4.1, the rigid vertex groups of ΛHk
embed into

Lj+1 . By induction and Lemma 2.2 we may assume that abelian subgroups of
Lj+1 are finitely generated. By the argument in the proof of Proposition 4.2,
we see that the edge groups and vertex groups of ΛHk

are finitely generated.
Therefore each free factor of Lj is either (i) a finitely generated free group; (ii)
a finitely generated subgroup of Lj+1 ; or (iii) can be formed by taking finitely
many HNN extensions and amalgamated free products of finitely generated
subgroups of Lj+1 and finitely generated free groups over finitely generated
abelian subgroups. There are only countably many such constructions, and so
there are only countably many choices for Lj . This also implies that abelian
subgroups of Lj are finitely generated (which we assumed by induction for
Lj+1).

Therefore, by induction, there are only countably many choices for L. This
completes the proof of the proposition.

The following result was proved in the course of proving Proposition 5.11.

Corollary 5.12 Any abelian subgroup of a Γ–limit group is a finitely gener-
ated free abelian group.

Proposition 5.13 (Compare Proposition 1.20, [32]) Let G be a finitely gen-
erated group and Γ a torsion-free relatively hyperbolic group with abelian par-
abolics. Let R1, R2 . . . be a sequence of Γ–limit groups that are all quotients
of G so that

R1 < R2 < · · · .

Then there exists a Γ–limit group R, a quotient of G, so that R > Rm for all
m.

Proof For each m, choose a homomorphism hm : G→ Γ that factors through
the quotient map ηm : G → Rm as hm = h′m ◦ ηm and so that h′m is injective
on the ball of radius m in Rm . This is possible by Theorem 5.6.

A subsequence of {hm} converges to a Γ–limit group R, which is a quotient
of G. By Theorem 5.6, we may assume that each element of this subsequence
factors through the canonical quotient map η : G→ R.
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We prove that R > Rm for each m. We have quotient maps η : G → R, and
ηi : G→ Ri . Since Ri < Ri+1 there exists τi : Ri+1 → Ri so that ηi = τi◦ηi+1 .
In particular, ker(ηi+1) ⊆ ker(ηi).

Let A be the fixed finite generating set for G. We attempt to define a homo-
morphism κi : R → Ri as follows: for a ∈ A, define κi(η(a)) = ηi(a). This is
well-defined if and only if ker(η) ⊆ ker(ηi). Therefore, suppose that g ∈ ker(η).
Since each hj factors through η , we have hj(g) = 1 for all j . Suppose that g
lies in the ball of radius n about the identity in the Cayley graph of G. Then
for all j , the element ηj(g) lies in the ball of radius n about the identity in
Rj . Since hj(g) = 1, for all j , and by the defining property of the hj , if k ≥ n
then ηk(g) = 1. Thus since for all j we have ker(ηj+1) ⊆ ker(ηj) we have
ηi(g) = 1, as required. We have constructed a homomorphism κi : R → Ri so
that ηi = κi ◦ η , which is to say that R > Ri . This finishes the proof.

Propositions 5.11 and 5.13 imply that there are maximal elements for the set of
Γ–limit groups which are quotients of a fixed finitely generated group G, under
the order described before Theorem 5.2.

Recall that we say that two Γ–limit groups which are quotients of G, η1 : G→
R1 and η2 : G → R2 are equivalent if there is an isomorphism τ : R1 → R2 so
that η2 = η1 ◦ τ .

Proposition 5.14 (Compare [32, Proposition 1.21]) Let G be a finitely gen-
erated group and Γ a torsion-free group hyperbolic relative to free abelian
subgroups. Then there are only finitely many equivalence classes of maximal
elements in the set of Γ–limit groups that are quotients of G.

Proof The following proof was explained to me by Zlil Sela in the context of
torsion-free hyperbolic groups. The same proof works in the current context.

Suppose on the contrary that there are infinitely many non-equivalent maximal
Γ–limit groups R1, R2, . . . , each a quotient of G. Let ηi : G → Ri be the
canonical quotient map. Fixing a finite generating set A for G, we fix a finite
generating set for each of the Ri , and hence obtain maps νi : Fd → Ri , where
d = |A|. There is a fixed quotient map π : Fd → G so that for each i we have
νi = ηi ◦ π .

For each i, consider the set of words of length 1 in Fd that are mapped to
the identity by νi . This set is finite for each i, and there is a bound on its
size, so there is a subsequence of the Ri so that this set is the same for all i.
Starting with this subsequence, consider those words of length 2 in Fd which
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are mapped to the identity by νi , and again there is a subsequence for which
this (bounded) collection is the same for all i. Continue with this process for all
lengths of words in Fd , passing to finer and finer subsequences, and consider the
diagonal subsequence. We continue to denote this subsequence by R1, R2, . . . .

Now, for each i, choose a homomorphism hi : Fd → Γ so that for words w of
length at most i in Fd , we have hi(w) = 1 if and only if νi(w) = 1, and so that
hi factors through the quotient map π : Fd → G. This is possible because each
Ri is a Γ–limit group which is a quotient of G.

A subsequence of {hi : Fd → Γ} converges into a Γ–limit group M , which is a
quotient of G since all hi factor through π . Let ψ : Fd →M be the canonical
quotient, and φ : G→M the quotient for which ψ = φ◦π . Note that a word w
of length at most i in Fd maps to the identity under ψ if and only if νi(w) = 1.

Now, R1, R2, . . . are non-equivalent maximal Γ–limit quotients, so (possibly
discarding one Ri which is equivalent to M ) are all non-equivalent to M .
Therefore, for each i there does not exist a homomorphism µ : M → Ri so
that νi = µ ◦ ψ . That is to say that for each i there exists ui ∈ Fd so that
ψ(ui) = 1 but νi(ui) 6= 1.

Let {τi : Fd → Γ} be a sequence of homomorphisms that all factor through
π : Fd → G so that

• a word w ∈ Fd of length at most i satisfies τi(w) = 1 if and only if
νi(w) = 1 and

• τi(ui) 6= 1.

By Theorem 5.4 there is a subsequence {τni
} of {τi} which converges into a Γ–

limit group (which must be M ) so that each τni
factors through ψ : Fd →M .

Therefore, there is ri : M → Γ so that τni
= ri ◦ ψ . However, we have that

ψ(uni
) = 1, but 1 6= τni

(uni
) = ri(ψ(uni

)) = ri(1) = 1, a contradiction. This
contradicts the existence of R1, R2, . . . , and finishes the proof.

One of the motivations for the work done in this paper and its predecessors
[17, 18, 19] were the following questions asked by Sela [33, I.8]: Let G be a
CAT(0) group with isolated flats (see [21]).

I.8(i) Is G Hopf?

I.8(ii) Is it true that every system of equations over G is equivalent to a finite
system?

I.8(iii) Is it possible to associate a Makanin–Razborov diagram to a system of
equations over G?
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I.8(iv) Is it possible to decide if a system of equations over G has a solution?

We believe that relatively hyperbolic groups with abelian parabolics form a
more natural context for this question than CAT(0) groups with isolated flats.
Note that ‘virtually abelian’ rather than ‘abelian’ would be a natural class
(containing CAT(0) with isolated flats), but our methods only work for abelian
parabolics. For torsion-free relatively hyperbolic groups with abelian parabol-
ics, I.8(i) was answered by the author in [19] (and also follows from Corollary 5.5
above), I.8(ii) is the content of the next theorem, and I.8(iii) is answered in Sec-
tion 6 below. We also remark that Dahmani [11, Theorem 0.2] has answered
I.8(iv) for a class of groups which includes torsion-free relatively hyperbolic
groups with virtually abelian parabolics.

Definition 5.15 Let G be a finitely generated group. Two systems of equa-
tions Φ and Φ′ in finitely many variables over G are equivalent if the sets of
solutions of Φ and Φ′ are the same in Gn (where the number of variables is
n).

Theorem 5.16 (Compare [32, Theorem 1.22]) Suppose that Γ is a torsion-
free relatively hyperbolic group with abelian parabolics. Then every system of
equations in finitely many variables over Γ (without coefficients) is equivalent
to a finite subsystem.

Proof We follow the proof of [32, Theorem 1.22]. Let F be the free group
with basis the variables of Σ. We implicitly use the fact that a solution to Σ
over Γ corresponds to a homomorphism from F to Γ which sends each of the
equations in Σ (considered as words in F ) to 1 ∈ Γ.

Let Σ be a system of equations in finitely many variables over Γ. We iteratively
construct a directed locally finite tree as follows. Start with the first equation σ1

in Σ, and associate with it a one relator group G1 = F/〈σ1〉
F . By Proposition

5.14, to G1 is associated a finite number of maximal Γ–limit quotients. Denote
these quotients of G1 by R1, . . . , Rm . Place G1 at the root node of a tree, and
a directed edge from G1 to each Ri . Note that if G1 is a Γ–limit group then
it is a maximal Γ–limit quotient of itself, and we do not need any new vertices
at this stage.

Now let σ2 be the second equation in Σ, and consider each Ri in turn. If
σ2 represents the trivial element of Ri , leave it unchanged. If σ2 is nontrivial
in Ri , define R̂i = Ri/〈σ2〉

Ri . With R̂i , we associate its finite collection of
maximal Γ–limit quotients, and extend the locally finite tree by adding new
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vertices for these quotients of Ri , and directed edges joining Ri to each of its
quotients.

Continue this procedure iteratively. By Theorem 5.2, each branch of this locally
finite tree is finite, and therefore by Konig’s Lemma the entire tree is finite. This
implies that the construction of this tree terminates after finitely many steps.

Let Σ′ be the (finite) subset of Σ consisting of those equations σi considered
before the above procedure terminates. We claim that the system Σ is equiv-
alent to the subsystem Σ′ . Certainly any solution to Σ is a solution to Σ′ .
Suppose that there is a solution to Σ′ which is not a solution to Σ. Then there
is a homomorphism h : F → Γ which sends each element of Σ′ to 1 but so that
h(σj) 6= 1 for some σj ∈ Σ r Σ′ .

Let F be the free group with basis the variables of Σ. Any homomorphism
from F to Γ which sends σ1 to 1 factors through G1 , and then in turn factors
through one of the maximal Γ–limit quotients R1, . . . , Rm of G1 . Similarly,
any homomorphism from F to Γ which sends σ1 and σ2 to 1 either factors
through one of the Ri (in case σ2 is trivial in Ri ) or else through one of the

maximal Γ–limit quotients of R̂i = Ri/〈σ2〉
Ri .

Arguing in this manner, we see that any homomorphism from F to Γ which
sends all of Σ′ to 1 factors through G1 and then through some branch in the
tree. Thus we find some terminal vertex group V of this tree so that σj 6= 1 in
V (since h(σj) 6= 1). This implies that the procedure does not terminate when
we consider V . This contradiction implies that all solutions to Σ′ are solutions
to Σ, as required.

Guba [20] proved the analogous theorem for free groups, whilst Sela [32, The-
orem 1.22] proved it for torsion-free hyperbolic groups.

6 Makanin–Razborov diagrams

In this final section, we describe the construction of Makanin–Razborov dia-
grams for Γ, which give a description of the set Hom(G,Γ), where G is an
arbitrary finitely generated group. This is analogous to the constructions in
[31, Section 5] and [32, Section 1].

Let R be a freely indecomposable Γ–limit group, and let r1, . . . , rm ∈ R be a
fixed generating set for R. We assume that we always use the generating set
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{r1, . . . , rm} to define the length of homomorphisms, and hence to find short
homomorphisms.

Following [31, page 63] and [32, page 13] we say that two proper shortening
quotients S1, S2 of R are equivalent if there is an isomorphism τ : S1 → S2 so
that the canonical quotient maps ηi : R → Si , for i = 1, 2 satisfy η2 = τ ◦ η1 .
This defines an equivalence relation on the set of shortening quotients of R,
paired with the canonical quotient maps: {(Si, ηi : R→ Si)}.

Let SQ(R, r1, . . . , rm) be the set of (proper) shortening quotients of R. On
the set SQ(R, r1, . . . , rm) we define a partial order as follows: given two proper
shortening quotients S1, S2 of R, along with canonical quotients ηi : R → Si ,
for i = 1, 2, we say that S1 > S2 if there exists a proper epimorphism ν : S1 →
S2 so that η2 = ν ◦ η1 .

Lemma 6.1 (Compare [32, Lemma 1.23]) Let L be a freely-indecomposable
Γ–limit group. Let S1 < S2 < S3 < · · · (where Sj ∈ SQ(L, r1, . . . , rm)) be a
properly increasing sequence of (proper) shortening quotients of L. Then there
exists a proper shortening quotient R ∈ SQ(L, r1, . . . , rm) so that for each j
we have R > Sj .

Proof Restricting to short homomorphisms throughout, the proof is identical
to that of Proposition 5.13 above. We remark that the sequence of short ho-
momorphisms {hm} obtained to find the shortening quotient R as in the proof
of Proposition 5.13 is not contained in finitely many conjugacy classes. This
is because the sequence of kernels ker(ηi) (where ηi : L → Si is the canonical
epimorphism) is strictly decreasing.

Thus, R is indeed a proper shortening quotient of L, by Proposition 4.2.

Lemma 6.2 (Compare [32, Lemma 1.24]) Let L be a freely-indecomposable
Γ–limit group. The set, SQ(L, r1, . . . , rm), of (proper) shortening quotients
of L contains only finitely many equivalence classes of maximal elements with
respect to the partial order.

Proof Once again, restricting throughout to short homomorphisms, the proof
is almost identical to that of Proposition 5.14 above.

Once again, we need to ensure that the shortening quotient M obtained is a
proper quotient of L. This will follow from Proposition 4.2 if we can ensure that
the (short) homomorphisms {hi : Fd → Γ} obtained do not belong to finitely
many conjugacy classes. In order to ensure this, note that for each i 6= j , there
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exists wij ∈ Fd so that νi(wij) = 1 but νj(wij) 6= 1, since Ri and Rj are
maximal and inequivalent.

Now choose a short homomorphism hi : Fd → Γ so that (i) for words w of
length at most i in Fd we have hi(w) = 1 if and only if νi(w) = 1; (ii) hi

factors through π : Fd → G; (iii) hi(wij) = 1 for j = 1, . . . , i − 1; and (iv)
hi(wki) 6= 1 for k = i+ 1, . . . , 2i.

Conditions (iii) and (iv) ensure that for each i the set {hi, . . . , h2i} have distinct
kernels and so belong to different conjugacy classes. Therefore, the hi do not
belong to finitely many conjugacy classes.

The rest of the proof is identical to that of Proposition 5.14 above.

We can now use shortening quotients to ‘encode and simplify’ all homomor-
phisms from a freely-indecomposable Γ–limit group into Γ.

Proposition 6.3 (Compare [32, Proposition 1.25]) Suppose that R is a
freely-indecomposable Γ–limit group. Let r1, . . . , rm ∈ R be a generating set
for R, and let M1, . . . ,Mk be a set of representatives of the (finite) set of equiv-
alence classes of maximal (proper) shortening quotients in SQ(R, r1, . . . , rm),
equipped with the canonical quotient maps ηi : R→Mi , for i = 1, . . . , k .

Let h : R → Γ be a homomorphism which is not equivalent to an embedding.
Then there exist a (not necessarily unique) index 1 ≤ i ≤ k , a homomorphism
ĥ : R → Γ so that ĥ ∼ h, and a homomorphism hMi

: Mi → Γ so that ĥ =
hMi

◦ ηi .

Proof Choose ĥ ∼ h so that ĥ is short. By hypothesis, ĥ is not injective.
The constant sequence ĥ, ĥ, . . . converges into a proper shortening quotient S
of R. Now, S ∼= ĥ(R), and the canonical quotient map is just ĥ. By Lemma
6.2, there exists some Mi so that Mi > S or Mi is equivalent to S . The result
now follows.

We use Propositions 5.14 and 6.3 to prove Theorem 1.1.

Proof of Theorem 1.1 Let Γ be a torsion-free relatively hyperbolic group
with abelian parabolics, G a freely indecomposable finitely generated group
and h : G→ Γ a homomorphism.

The image h(G) is a Γ–limit group. By Proposition 5.14, there are finitely
many equivalence classes of maximal Γ–limit groups which are quotients of G,
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and h factors through one of these maximal Γ–limit groups. If G is not a Γ–
limit group, then these maximal Γ–limit quotients of G are proper quotients,
and the theorem is proved in this case.

Thus we may assume that G is a Γ–limit group, and the result now follows
from Proposition 6.3.

Remark 6.4 It is reasonable in the hypothesis to restrict to freely indecom-
posable groups G, because if G = A ∗ B then Hom(G,Γ) = Hom(A,Γ) ×
Hom(B,Γ). Thus a homomorphism h : G → Γ induces a pair of homomor-
phisms, hA : A→ Γ and hB : B → Γ, and vice versa.

Hence, it is easy to understand the homomorphisms from an arbitrary finitely
generated group G to Γ in terms of the sets of homomorphisms of the free
factors in the Grushko decomposition of G to Γ.

Finally, we now construct Makanin–Razborov diagrams over Γ. Let G be an
arbitrary finitely generated group. A Makanin–Razborov diagram is a finite
(directed) tree associated to a finitely generated group G which encodes the set
Hom(G,Γ).

There is a root vertex, labelled by G. All other vertices are labelled by Γ–limit
groups. We start with G.

Suppose first that G is not a Γ–limit group, then by Proposition 5.14 there
are finitely many equivalence classes of maximal Γ–limit quotients of G. Let
R1, . . . , Rs be a collection of representatives of these equivalence classes. Add
a new vertex for each Ri , and a directed edge joining G to Ri , labelled by the
canonical quotient map from G to Ri .

These are the only edges emanating from G (unless G is a Γ–limit group). All
other edges will be between a pair of Γ–limit groups.

If G is a Γ–limit group, it is analysed in exactly the same way as all of the
other vertices. We proceed with this analysis now.

There are two kinds of edges. Suppose that the Γ–limit group R is the label of
a vertex, and the Grushko decomposition of R is R = H1 ∗ . . . ∗Hk ∗ F , where
each Hi is freely indecomposable, noncyclic and finitely generated, and F is a
finitely generated free group. Then we add new vertices, one for each Hi and
one for F , and directed edges from R to each Hi and to F . We do not label
this first kind of edge.

We now describe the second kind of edge. Suppose that R is a noncyclic freely
indecomposable Γ–limit group labelling some vertex. By Lemma 6.2, R admits
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only finitely many equivalence classes of maximal proper shortening quotients.
Add a new vertex for each equivalence class, and a directed edge from R to
each of these quotients, labelled by the canonical quotient map.

The vertices labelled by finitely generated free groups are terminal vertices of
the tree.

We thus build the Makanin–Razborov diagram, successively taking Grushko
decompositions and maximal proper shortening quotients, if possible.

This tree obviously has finite width, and by Theorem 5.2 each branch has finite
length. Therefore, by Konig’s Lemma, the tree is finite.

We now describe how the Makanin–Razborov diagram for G encodes the set of
all homomorphisms from G to Γ. Denote the Makanin–Razborov diagram for
G by MRG .

Any homomorphism from G to Γ factors through one of the Ri . Similarly, if
L is the label of a vertex, and L is noncyclic and freely indecomposable, with
M1, . . . ,Mk the maximal proper shortening quotients of L, then any homomor-
phism from L to Γ which is not equivalent to an embedding factors through
one of the Mi .

For any homomorphism h : G → Γ we can find a sub-tree ∆h of MRG . Each
edge of ∆h is labelled as in MRG (or not labelled, as the case may be). Each
vertex v has two labels: the group Hv which labels it in MRG , and also a
homomorphism hv : Hv → Γ.

The diagram ∆h encodes a factorisation of h, and is constructed as follows:
The root vertex of ∆h is the root vertex of MRG , labelled by G and h.

If G is not a Γ–limit group, then there is some maximal Γ–limit quotient Ri

of G (a proper quotient), equipped with the canonical quotient η : G → Ri ,
so that h = h′ ◦ η for some homomorphism h′ : Ri → Γ. Add to ∆h the edge
labelled by η , and vertex labelled Ri (which we label by Ri and h′ ).

From Ri (respectively G, in case G is a Γ–limit group), we add the vertices
corresponding to the Grushko decomposition. These vertices are labelled by
the Grushko factors, and the homomorphism induced on these free factors by
h′ (respectively h), as in Remark 6.4.

From a free Grushko factor Fn , of rank n, the set Hom(Fn,Γ) is naturally
parametrised by Γn . The vertex labelled by Fn is a terminal vertex of MRG ,
and of ∆h also (whatever the other label may be).

Suppose that v is a vertex of ∆h , labelled by a noncyclic freely indecomposable
Γ–limit group L, and an associated homomorphism hL : L→ Γ. Then either
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(i) hL is equivalent to an embedding ĥL : L→ Γ, or

(ii) hL is equivalent to some homomorphism ĥL which factors through one of
the maximal proper shortening quotients of L.

In the first case, the associated vertex is a terminal vertex of ∆h (even though
it may not be a terminal vertex of MRG ; see Remark 6.5 below). In the second
case, let M be the maximal shortening quotient, ρM : L → M the canonical
quotient, and ĥL = hM ◦ ρM . To ∆h we add the edge labelled by ρM , and the
vertex from MRG labelled by M , which we label by M and hM .

We then take the Grushko decomposition of M , and proceed by repeating the
above analysis. In this way, we obtain a tree ∆h which encodes a factorisation
of h. At each vertex v , with labels (Gv , hv : Gv → Γ), one of the following is
performed:

(1) Take the Grushko decomoposition of Gv , and consider the homomor-
phisms induced by hv on the free factors in turn.

(2) Replace hv by an equivalent homomorphism ĥv : Gv → Γ which is an
injection, and stop the analysis of the branch at this vertex.

(3) Replace hv by an equivalent homomorphism ĥv : Gv → Γ, where ĥv =
hM ◦η , for some maximal proper shortening quotient η : Gv →M of Gv ,
and proceed by analysing (M,hM ).

(4) Stop the analysis of a branch at a free group, since Hom(F,Γ) is easily
understood.

Note that in general the diagram ∆h need not be unique.

Remark 6.5 It is worth remarking that the terminal vertices of ∆h need not
be terminal vertices of MRG . This is because it is possible that some freely
indecomposable finitely generated subgroup H of Γ is also a strict Γ–limit
group which admits a proper shortening quotient. Thus, some homomorphisms
from H to Γ are not equivalent to an injection, but some are.

This phenomena arises in the case of Makanin–Razborov diagrams over torsion-
free hyperbolic groups (as in [32]), but not in Makanin–Razborov diagrams over
free groups (because finitely generated subgroups of free groups are free, and
free groups are always terminal vertices).

Remark 6.5 captures one of the key differences between the Makanin–Razborov
diagrams for free groups (as constructed in [31, Section 5]) and those con-
structed in this paper for torsion-free relatively hyperbolic groups with abelian
parabolics.
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There is one other difference which is worthy of remark. In the case of free
groups (and of torsion-free hyperbolic groups), every non-injective homomor-
phism from a Γ–limit group L to the target group Γ is equivalent to one which
factors through a maximal shortening quotient of L. This equivalent homo-
morphism can be realised by pre-composing with an element of Mod(L), and
post-composing with an inner automorphism of Γ. Since this conjugation does
not change the kernel, we see that for every h : L→ Γ there is a maximal short-
ening quotient M of L, and φ ∈ Mod(L) so that h ◦ φ factors through M .
Applying this analysis repeatedly leads to a factorisation of any homomorphism
as a composition of modular automorphisms and canonical quotient maps, fol-
lowed finally by a product of embeddings and maps from finitely generated free
groups to the target group Γ.

If Γ is a torsion-free relatively hyperbolic group with abelian parabolics, the
situation is slightly more complicated. It is still the case that if L is a Γ–limit
group then for any h : L → Γ which is not equivalent to an embedding, there
is a maximal shortening quotient M of L and ĥ ∼ h so that ĥ factors through
M . However, the equivalence between h and ĥ now involves bending moves,
as well as pre-composition with an element of Mod(L) and conjugation in Γ.
Since the bending moves can change the kernel of a map,4 it is not necessarily
the case that there is φ ∈ Mod(L) so that h ◦ φ factors through some maximal
shortening quotient. Therefore, we do not get a factorisation analogous to that
for free and torsion-free hyperbolic groups.

The construction of Makanin–Razborov diagrams for torsion-free relatively hy-
perbolic groups with abelian parabolics (essentially) answers a question asked
by Sela [33, Problem I.8(iii)]. See the discussion above Theorem 5.16.
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