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1 Introduction

Let (M,g) be a Riemannian 7–manifold whose holonomy group Hol(g) is the
exceptional holonomy group G2 (or, more generally, a subgroup of G2 ). Then
M is naturally equipped with a constant 3–form ϕ and 4–form ∗ϕ. We call
(M,ϕ, g) a G2–manifold. Complete examples of Riemannian 7–manifolds with
holonomy G2 were constructed by Bryant and Salamon [3], and compact ex-
amples by Joyce [7] and Kovalev [11].

Now ϕ and ∗ϕ are calibrations on M , in the sense of Harvey and Lawson
[5]. The corresponding calibrated submanifolds in M are called associative 3–

folds and coassociative 4–folds, respectively. They are distinguished classes of
minimal 3– and 4–submanifolds in (M,g) with a rich structure, that can be
thought of as analogous to complex curves and surfaces in a Calabi–Yau 3–fold.

Harvey and Lawson [5] introduced four types of calibrated geometries. Special
Lagrangian submanifolds of Calabi–Yau manifolds, associative and coassocia-
tive submanifolds of G2 manifolds and Cayley submanifolds of Spin(7) mani-
folds. Calibrated geometries have been of growing interest over the past few
years and represent one of the most mysterious classes of minimal submanifolds
[12], [13]. A great deal of progress has been made recently in the field of special
Lagrangian submanifolds that arise in mirror symmetry for Calabi–Yau mani-
folds and plays a significant role in string theory, for references see [8]. As one
might expect, another promising direction for future investigation is calibrated
submanifolds in G2 and Spin(7) manifolds. Recently, some progress has been
made in constructing such submanifolds [6, 17, 18] and in understanding their
deformations [1, 14].

The deformation theory of compact calibrated submanifolds was studied by
McLean [22]. He showed that if C is a compact coassociative 4–fold in a G2–
manifold (M,ϕ, g), then the moduli space MC of coassociative deformations
of C is smooth, with dimension b2+(C).

This paper proves an analogue of McLean’s theorem for a special class of
noncompact coassociative 4–folds. The situation we are interested in is when
(M,ϕ, g) is an asymptotically cylindrical G2–manifold, that is, it is a noncom-
pact 7–manifold with one end asymptotic to the cylinder X × R on a Calabi–

Yau 3–fold X . The natural class of noncompact coassociative 4–folds in M
are asymptotically cylindrical coassociative 4–folds C , asymptotic at infinity in
M to a cylinder L × R, where L is a special Lagrangian 3–fold in X , with
phase i. Understanding the deformations of such submanifolds when the ambi-
ent G2–manifold decomposes into connected sum of two pieces will provide the
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necessary technical framework towards completing the Floer homology program
for coassociative submanifolds, [13].

In particular, we prove the following theorem.

Theorem 1.1 Let (M,ϕ, g) be a G2–manifold asymptotic to X×(R,∞) with

decay rate α < 0, where X is a Calabi–Yau 3–fold. Let C be a coassociative

4–fold in M asymptotic to L × (R′,∞) for R′ > R with decay rate β for

α 6 β < 0, where L is a special Lagrangian 3–fold in X with phase i.

If γ < 0 is small enough then the moduli space Mγ
C of asymptotically cylindri-

cal coassociative submanifolds in M close to C , and asymptotic to L× (R′,∞)
with decay rate γ , is a smooth manifold of dimension dimV+ , where V+ is the

positive subspace of the image of H2
cs(C,R) in H2(C,R).

The principal analytic tool we shall use to prove this is the theory of weighted

Sobolev spaces on manifolds with ends, developed by Lockhart and McOwen
[15, 16]. The important fact is that elliptic partial differential operators on
exterior forms such as d + d∗ or d∗d + dd∗ on the noncompact 4–manifold C
are Fredholm operators between appropriate Banach spaces of forms, and we
can describe their kernels and cokernels.

Results similar to Theorem 1.1 on the deformations of classes of noncompact
special Lagrangian m–folds were proved by Marshall [19] and Pacini [24] for as-

ymptotically conical special Lagrangian m–folds, and by Joyce [7, 9] for special
Lagrangian m–folds with isolated conical singularities. Marshall and Joyce also
use the Lockhart–McOwen framework, but Pacini uses a different analytical ap-
proach due to Melrose [20, 21]. Note also that Kovalev [11] constructs compact
G2–manifolds by gluing together two noncompact, asymptotically cylindrical
G2–manifolds.

We begin in Section 2 with an introduction to G2–manifolds and coassociative
submanifolds, including a sketch of the proof of McLean’s theorem on defor-
mations of compact coassociative 4–folds, and the definitions of asymptotically

cylindrical G2–manifolds and coassociative 4–folds. Section 3 introduces the
weighted Sobolev spaces of Lockhart and McOwen, and determines the kernel
and cokernel of the elliptic operator d+ + d∗ on C used in the proof. Finally,
Section 4 proves Theorem 1.1, using Banach space techniques and elliptic reg-
ularity.

Remark 1.2 In [11], Kovalev constructs asymptotically cylindrical manifolds
X with holonomy SU(3). Then X × S1 is an asymptotically cylindrical G2–
manifold, though with holonomy SU(3) rather than G2 . One can find examples
of asymptotically cylindrical coassociative 4–folds C in X × S1 of two types:
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(a) C = C ′ × pt, for C ′ an asymptotically cylindrical complex surface in X ;
or

(b) C = L×S1 , for L an asymptotically cylindrical special Lagrangian 3–fold
in X , with phase i.

Examples of type (a) can be constructed using algebraic geometry: if X = X\D
for X a Fano 3–fold and D a smooth divisor in X , then we can take C = C \D
for C a smooth divisor in X intersecting D transversely. Examples of type
(b) can be found by choosing the Calabi–Yau 3–fold (X,J, ω,Ω) to have an
antiholomorphic involution σ : X → X with σ∗(J) = −J , σ∗(ω) = −ω and
σ∗(Ω) = −Ω. Then the fixed points L of σ are a special Lagrangian 3–fold
with phase i, and each infinite end of L is asymptotically cylindrical.

We can then apply Theorem 1.1 to these examples. One can show that if C̃
is a small deformation of a coassociative 4–fold C of type (a) or (b) then C̃ is
also of type (a) or (b) and thus, Theorem 1.1 implies analogous results on the
deformation theory of asymptotically cylindrical complex surfaces and special
Lagrangian 3–folds in asymptotically cylindrical Calabi–Yau 3–folds.

2 Introduction to G2 geometry

We now give background material on G2–manifolds and their coassociative
submanifolds that will be needed later. A good reference on G2 geometry is
Joyce [7, Sections 10–12], and a good reference on calibrated geometry is Harvey
and Lawson [5].

2.1 G2–manifolds and coassociative submanifolds

Let (x1, . . . , x7) be coordinates on R
7 . Write dxij...l for the exterior form

dxi ∧ dxj ∧ · · · ∧ dxl on R
7 . Define a metric g0 , a 3–form ϕ0 and a 4–form ∗ϕ0

on R
7 by g0 = dx2

1 + · · · + dx2
7 ,

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356 and

∗ϕ0 = dx4567 + dx2367 + dx2345 + dx1357 − dx1346 − dx1256 − dx1247.
(1)

The subgroup of GL(7,R) preserving ϕ0 is the exceptional Lie group G2 . It
also preserves g0, ∗ϕ0 and the orientation on R

7 . It is a compact, semisimple,
14–dimensional Lie group, a subgroup of SO(7).

A G2–structure on a 7–manifold M is a principal subbundle of the frame bundle
of M , with structure group G2 . Each G2–structure gives rise to a 3–form ϕ and
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a metric g on M , such that every tangent space of M admits an isomorphism
with R

7 identifying ϕ and g with ϕ0 and g0 respectively. By an abuse of
notation, we will refer to (ϕ, g) as a G2–structure.

Proposition 2.1 Let M be a 7–manifold and (ϕ, g) a G2–structure on M .

Then the following are equivalent:

(i) Hol(g) ⊆ G2 , and ϕ is the induced 3–form,

(ii) ∇ϕ = 0 on M , where ∇ is the Levi–Civita connection of g , and

(iii) dϕ = d∗ϕ = 0 on M .

We call ∇ϕ the torsion of the G2–structure (ϕ, g), and when ∇ϕ = 0 the
G2–structure is torsion-free. A triple (M,ϕ, g) is called a G2–manifold if M is
a 7–manifold and (ϕ, g) a torsion-free G2–structure on M . If g has holonomy
Hol(g) ⊆ G2 , then g is Ricci-flat. For explicit, complete examples of G2–
manifolds see Bryant and Salamon [3], and for compact examples see Joyce [7]
and Kovalev [11]. Here are the basic definitions in calibrated geometry, due to
Harvey and Lawson [5].

Definition 2.2 Let (M,g) be a Riemannian manifold. An oriented tangent

k–plane V on M is a vector subspace V of some tangent space TxM to M
with dimV = k , equipped with an orientation. If V is an oriented tangent
k–plane on M then g|V is a Euclidean metric on V , so combining g|V with the
orientation on V gives a natural volume form volV on V , which is a k–form
on V .

Now let ϕ be a closed k–form on M . We say that ϕ is a calibration on M if for
every oriented k–plane V on M we have ϕ|V 6 volV . Here ϕ|V = α · volV for
some α ∈ R, and ϕ|V 6 volV if α 6 1. Let N be an oriented submanifold of
M with dimension k . Then each tangent space TxN for x ∈ N is an oriented
tangent k–plane. We call N a calibrated submanifold if ϕ|TxN = volTxN for
all x∈N .

Calibrated submanifolds are automatically minimal submanifolds (see [5, The-
orem II.4.2]). There are two natural classes of calibrated submanifolds in G2–
manifolds.

Definition 2.3 Let (M,ϕ, g) be a G2–manifold, as above. Then the 3–form
ϕ is a calibration on (M,g). We define an associative 3–fold in M to be a
3–submanifold of M calibrated with respect to ϕ. Similarly, the Hodge star
∗ϕ of ϕ is a calibration 4–form on (M,g). We define a coassociative 4–fold in
M to be a 4–submanifold of M calibrated with respect to ∗ϕ.
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McLean [22, Prop. 4.4] gives an alternative description of coassociative 4–folds:

Proposition 2.4 Let (M,ϕ, g) be a G2–manifold, and C a 4–dimensional

submanifold of M . Then C admits an orientation making it into a coassociative

4–fold if and only if ϕ|C ≡ 0.

2.2 Deformations of compact coassociative 4–folds

Here is the main result in the deformation theory of coassociative 4–folds, proved
by McLean [22, Theorem 4.5]. As our sign conventions for ϕ0, ∗ϕ0 in (1) are
different to McLean’s, we use self-dual 2–forms in place of McLean’s anti-self-
dual 2–forms.

Theorem 2.5 Let (M,ϕ, g) be a G2–manifold, and C a compact coassociative

4–fold in M . Then the moduli space MC of coassociative 4–folds isotopic to

C in M is a smooth manifold of dimension b2+(C).

Sketch proof Suppose for simplicity that C is an embedded submanifold.
There is a natural orthogonal decomposition TM |C = TC ⊕ ν , where ν → C
is the normal bundle of C in M . There is a natural isomorphism ν ∼= Λ2

+T
∗C ,

constructed as follows. Let x ∈ C and V ∈ νx . Then V lies in TxM , so V ·ϕ|x ∈
Λ2T ∗

xM , and (V · ϕ|x)|TxC ∈ Λ2T ∗
xC . Moreover (V · ϕ|x)|TxC actually lies in

Λ2
+T

∗
xC , the bundle of self-dual 2–forms on C , and the map V 7→ (V ·ϕ|x)|TxC

defines an isomorphism ν
∼=

−→Λ2
+T

∗C .

For small ǫ > 0, write Bǫ(ν) for the subbundle of ν with fibre at x the open ball
about 0 in ν|x with radius ǫ. Then the exponential map exp: ν →M induces
a diffeomorphism between Bǫ(ν) and a small tubular neighbourhood TC of C in
M . The isomorphism ν ∼= Λ2

+T
∗C gives a diffeomorphism exp: Bǫ(Λ

2
+T

∗C) →
TC . Let π : TC → C be the obvious projection.

Under this identification, submanifolds C̃ in TC ⊂ M which are C1 close to
C are identified with the graphs Γζ2

+
of small smooth sections ζ2

+ of Λ2
+T

∗C

lying in Bǫ(Λ
2
+T

∗C). For each ζ2
+ ∈ C∞

(
Bǫ(Λ

2
+T

∗C)
)

the graph Γζ2
+

is a 4–

submanifold of Bǫ(Λ
2
+T

∗C), and so C̃ = exp(Γζ2
+
) is a 4–submanifold of TC .

We need to know: which 2–forms ζ2
+ correspond to coassociative 4–folds C̃

in TC ?

C̃ is coassociative if ϕ| eC ≡ 0. Now π| eC : C̃ → C is a diffeomorphism, so we
can push ϕ| eC down to C , and regard it as a function of ζ2

+ . That is, we define

Q : C∞
(
Bǫ(Λ

2
+T

∗C)
)
→ C∞(Λ3T ∗C) by Q(ζ2

+) = π∗(ϕ|exp(Γ
ζ2
+

)).
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Then the moduli space MC is locally isomorphic near C to the set of small
self-dual 2–forms ζ2

+ on C with ϕ|exp(Γ
ζ2
+

) ≡ 0, that is, to a neighborhood of 0

in Q−1(0).

To understand the equation Q(ζ2
+) = 0, note that at x ∈ C , Q(ζ2

+)|x depends
on the tangent space to Γζ2

+
at ζ2

+|x , and so on ζ2
+|x and ∇ζ2

+|x . Thus the

functional form of Q is

Q(ζ2
+)|x = F

(
x, ζ2

+|x,∇ζ
2
+|x

)
for x ∈ C ,

where F is a smooth function of its arguments. Hence Q(ζ2
+) = 0 is a nonlinear

first order PDE in ζ2
+ . As ϕ is closed, ϕ|C ≡ 0, and Γζ2

+
is isotopic to C , we see

that ϕ|Γ
ζ2
+

is an exact 3–form on Γζ2
+

, so that Q(ζ2
+) is exact. The linearization

dQ(0) of Q at ζ2
+ = 0 is

dQ(0)(β) = lim
ǫ→0

(
ǫ−1Q(ǫβ)

)
= dβ.

Therefore Ker(dQ(0)) is the vector space H2
+ of closed self-dual 2–forms β on

C , which by Hodge theory is a finite-dimensional vector space isomorphic to
H2

+(C,R), with dimension b2+(C). This is the Zariski tangent space of MC at
C , the infinitesimal deformation space of C as a coassociative 4–fold.

To complete the proof we must show that MC is locally isomorphic to its Zariski
tangent space H2

+ , and so is a smooth manifold of dimension b2+(C). To do
this rigorously requires some technical analytic machinery, which is passed over
in a few lines in [22, p. 731]. Here is one way to do it.

As Q maps from Λ2
+T

∗C with fibre R
3 to Λ3T ∗C with fibre R

4 , it is overde-

termined, and not elliptic. To turn it into an elliptic operator, define

P : C∞
(
Bǫ(Λ

2
+T

∗C)
)
× C∞(Λ4T ∗C) → C∞(Λ3T ∗C)

by P (ζ2
+, ζ

4) = Q(ζ2
+) + d∗ζ4.

(2)

Then the linearization of P at (0, 0) is

dP (0, 0): (ζ2
+, ζ

4) 7→ dζ2
+ + d∗ζ4,

which is elliptic. Since ellipticity is an open condition, P is elliptic near (0, 0)
in C∞

(
Bǫ(Λ

2
+T

∗C)
)
× C∞(Λ4T ∗C).

Suppose P (ζ2
+, ζ

4) = 0. Then Q(ζ2
+) = −d∗ζ4 , so

‖d∗ζ4‖2
L2 = −

〈
d∗ζ4, Q(ζ2

+)
〉
L2 = −

〈
ζ4,d(Q(ζ2

+))
〉
L2 = 0,

by integration by parts, since Q(ζ2
+) is exact. Hence P (ζ2

+, ζ
4) = 0 if and only

if Q(ζ2
+) = d∗ζ4 = 0. But 4–forms with d∗ζ4 = 0 are constant, and the vector

space of such ζ4 is H4(C,R). Thus, P−1(0) = Q−1(0) ×H4(C,R).
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Because C∞(Λ2
+T

∗C), C∞(Λ3T ∗C) are not Banach spaces, we extend P in (2)
to act on Sobolev spaces Lp

l+2(Λ
2
+T

∗C), Lp
l+2(Λ

3T ∗C) for p > 4 and l > 0,
giving

P̃ : Lp
l+2

(
Bǫ(Λ

2
+T

∗C)
)
× Lp

l+2(Λ
4T ∗C) → Lp

l+1(Λ
3T ∗C),

P̃ : (ζ2
+, ζ

4) 7→ π∗(ϕ|Γ
ζ2
+

) + d∗ζ4.

Then P̃ is a smooth map of Banach manifolds.

Let H3 be the vector space of closed and coclosed 3–forms on C , so that H3 ∼=
H3(C,R) by Hodge theory, and V p

l+1 be the Banach subspace of Lp
l+1(Λ

3T ∗C)

L2–orthogonal to H3 . Then one can show that P̃ maps into V p
l+1 , and the

linearization

dP̃ (0, 0) : Lp
l+2(Λ

2
+T

∗C) × Lp
l+2(Λ

4T ∗C) → V p
l+1,

dP̃ (0, 0) : (ζ2
+, ζ

4) 7→ dζ2
+ + d∗ζ4

is then surjective as a map of Banach spaces.

Thus, P̃ : Lp
l+2

(
Bǫ(Λ

2
+T

∗C)
)
×Lp

l+2(Λ
4T ∗C) → V p

l+1 is a smooth map of Banach

manifolds, with dP̃ (0, 0) surjective. The Implicit Mapping Theorem for Banach

spaces (Theorem 4.4) now implies that P̃−1(0) is near 0 a smooth submanifold,
locally isomorphic to Ker(dP̃ (0)). But P̃ (ζ2

+, ζ
4) = 0 is an elliptic equation

for small ζ2
+, ζ

4 , and so elliptic regularity implies that solutions (ζ2
+, ζ

4) are
smooth.

Therefore P̃−1(0) = P−1(0) near 0, and also Ker(dP̃ (0, 0)) = Ker(dP (0, 0)).
Hence P−1(0) is, near (0, 0), a smooth manifold locally isomorphic to the kernel
Ker(dP (0, 0)). So from above Q−1(0) is near 0 a smooth manifold locally
isomorphic to Ker(dQ(0)). Thus, MC is near C a smooth manifold locally
isomorphic to H2

+(C,R). This completes the proof.

2.3 Asymptotically cylindrical G2–manifolds and coassociative

4–folds

We first define cylindrical and asymptotically cylindrical G2–manifolds.

Definition 2.6 A G2–manifold (M0, ϕ0, g0) is called cylindrical if M0 = X×R

and (ϕ0, g0) is compatible with this product structure, that is,

ϕ0 = Re Ω + ω ∧ dt and g0 = gX + dt2,

where X is a (connected, compact) Calabi–Yau 3–fold with Kähler form ω ,
Riemannian metric gX and holomorphic (3,0)-form Ω.
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Definition 2.7 A connected, complete G2–manifold (M,ϕ, g) is called as-

ymptotically cylindrical with decay rate α if there exists a cylindrical G2–
manifold (M0, ϕ0, g0) with M0 = X × R as above, a compact subset K ⊂ M ,
a real number R, and a diffeomorphism Ψ: X × (R,∞) → M \K such that
Ψ∗(ϕ) = ϕ0+dξ for some smooth 2–form ξ on X×(R,∞) with

∣∣∇kξ
∣∣ = O(eαt)

on X × (R,∞) for all k > 0, where ∇ is the Levi–Civita connection of the
cylindrical metric g0 .

The point of this is that M has one end modelled on X × (R,∞), and as
t → ∞ in (R,∞) the G2–structure (ϕ, g) on M converges to order O(eαt)
to the cylindrical G2–structure on X × (R,∞), with all of its derivatives. We
suppose M and X are connected, that is, we allow M to have only one end.

This is because one can use Cheeger–Gromoll splitting theorem [4] to show that
an orientable, connected, asymptotically cylindrical Riemannian manifold with
Ricci-flat metric g can have at most 2 cylindrical ends. In the case when there
are 2 cylindrical ends then there is reduction in the holonomy group Hol(g)
and (M,g) is a cylinder. One can also show that reduction in holonomy can be
obtained by just using the analytic set-up for Fredholm properties of an elliptic
operator on noncompact manifolds, [25].

Here are the analogous definitions for coassociative submanifolds.

Definition 2.8 Let (M0, ϕ0, g0) and X be as in Definition 2.6. A submanifold
C0 of M0 is called cylindrical if C0 = L× R for some compact submanifold L
in X , not necessarily connected. C0 is coassociative if and only if L is a special

Lagrangian 3–fold with phase i in the Calabi–Yau 3–fold X .

Definition 2.9 Let (M0, ϕ0, g0), X , (M,ϕ, g), K,Ψ and α be as in Defini-
tions 2.6 and 2.7, and let C0 = L × R be a cylindrical coassociative 4–fold in
M0 , as in Definition 2.8.

A connected, complete coassociative 4–fold C in (M,ϕ, g) is called asymptot-

ically cylindrical with decay rate β for α 6 β < 0 if there exists a compact
subset K ′ ⊂ C , a normal vector field v on L× (R′,∞) for some R′ > R, and
a diffeomorphism Φ: L× (R′,∞) → C \K ′ such that the diagram

X × (R′,∞)

⊂

��

L× (R′,∞)expv

oo
Φ

// (C \K ′)

⊂

��

X × (R,∞)
Ψ // (M \K)

(3)

commutes, and
∣∣∇kv

∣∣ = O(eβt) on L× (R′,∞) for all k > 0.
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Here we require C but not L to be connected, that is, we allow C to have
multiple ends. The point of Definition 2.9 is to find a good way to say that
a submanifold C in M is asymptotic to the cylinder C0 in M0 = X × R as
t → ∞ in R, to order O(eβt). We do this by writing C near infinity as the
graph of a normal vector field v to C0 = L×R in M0 = X ×R, and requiring
v and its derivatives to be O(eβt).

3 Infinitesimal deformations of C

Let (M,ϕ, g) be an asymptotically cylindrical G2–manifold asymptotic to X×
(R,∞), and C an asymptotically cylindrical coassociative 4–fold in M asymp-
totic to L×(R′,∞). We wish to study the moduli space Mγ

C of asymptotically

cylindrical deformations C̃ of C in M with rate γ . To do this we modify the
proof of Theorem 2.5 in Section 2, for the case when C is compact. There we
modelled MC on P̃−1(0) for a nonlinear map P̃ between Banach spaces, whose
linearization dP̃ (0, 0) at 0 was the Fredholm map between Sobolev spaces

d+ + d∗ : Lp
l+2(Λ

2
+T

∗C) × Lp
l+2(Λ

4T ∗C) −→ Lp
l+1(Λ

3T ∗C). (4)

Now when C is not compact, as in the asymptotically cylindrical case, (4)
is not in general Fredholm, and the proof of Theorem 2.5 fails. To repair it
we use the analytical framework for asymptotically cylindrical manifolds devel-
oped by Lockhart and McOwen in [15, 16], involving weighted Sobolev spaces

Lp
k,γ(Λ

rT ∗C). Roughly speaking, elements of Lp
k,γ(Λ

rT ∗C) are Lp
k r–forms on

C which decay like O(eγt) on the end L× (R′,∞). This has the advantage of
building the decay rate γ into the proof from the outset.

This section will study the weighted analogue of (4),

d+ + d∗ : Lp
l+2,γ(Λ2

+T
∗C) × Lp

l+2,γ(Λ4T ∗C) −→ Lp
l+1,γ(Λ3T ∗C), (5)

for small γ < 0. It will be shown in Section 4 to be the linearization at 0 of a
nonlinear operator P for which Mγ

C is locally modelled on P−1(0).

Section 3.1 introduces weighted Sobolev spaces, and the Lockhart–McOwen
theory of elliptic operators between them. Then Sections 3.2 and 3.3 compute
the kernel and cokernel of (5) for small γ < 0, and Section 3.4 determines the
set of rates γ for which (5) is Fredholm.
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3.1 Elliptic operators on asymptotically cylindrical manifolds

We now sketch parts of the theory of analysis on manifolds with cylindrical
ends due to Lockhart and McOwen [15, 16]. We begin with some elementary
definitions.

Definition 3.1 Let (C, g) be an asymptotically cylindrical Riemannian man-

ifold. That is, there is a Riemannian cylinder (L × R, g0) with L compact, a
compact subset K ′ ⊂ C and a diffeomorphism Φ: C \K ′ → L× (R′,∞) such
that

∇k
0

(
Φ∗(g) − g0

)
= O(eβt) for all k > 0

for some rate β < 0, where ∇0 is the Levi–Civita connection of g0 on L× R.

Let E0 be a cylindrical vector bundle on L × R, that is, a vector bundle on
L×R invariant under translations in R. Let h0 be a smooth family of metrics

on the fibres of E0 and ∇E0
a connection on E0 preserving h0 , with h0,∇E0

invariant under translations in R.

Let E be a vector bundle on C equipped with metrics h on the fibres, and
a connection ∇E on E preserving h. We say that E,h,∇E are asymptotic to

E0, h0,∇E0
if there exists an identification Φ∗(E) ∼= E0 on L × (R′,∞) such

that Φ∗(h) = h0 + O(eβt) and Φ∗(∇E) = ∇E0
+ O(eβt) as t → ∞. Then we

call E,h,∇E asymptotically cylindrical.

Choose a smooth function ρ : C → R such that Φ∗(ρ) ≡ t on L × (R′,∞).
This prescribes ρ on C \K ′ , so we only have to extend ρ over the compact set
K ′ . For p ≥ 1, k ≥ 0 and γ ∈ R we define the weighted Sobolev space Lp

k,γ(E)
to be the set of sections s of E that are locally integrable and k times weakly
differentiable and for which the norm

‖s‖Lp
k,γ

=
( k∑

j=0

∫

C
e−γρ

∣∣∇j
Es

∣∣pdV
)1/p

(6)

is finite. Then Lp
k,γ(E) is a Banach space. Since ρ is uniquely determined except

on the compact set K ′ , different choices of ρ give the same space Lp
k,γ(E), with

equivalent norms.

For instance, the r–forms E = ΛrT ∗C on C with metric g and the Levi–
Civita connection are automatically asymptotically cylindrical, and if C is an
oriented 4–manifold then the self-dual 2–forms Λ2

+T
∗C are also asymptotically

cylindrical. We consider partial differential operators on asymptotically cylin-
drical manifolds.
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Definition 3.2 In the situation of Definition 3.1, suppose E,F are two as-
ymptotically cylindrical vector bundles on C , asymptotic to cylindrical vector
bundles E0, F0 on L × R. Let A0 : C∞(E0) → C∞(F0) be a linear partial
differential operator of order k which is cylindrical, that is, invariant under
translations in R.

Suppose A : C∞(E) → C∞(F ) is a linear partial differential operator of order
k on C . We say that A is asymptotic to A0 if under the identifications Φ∗(E) ∼=
E0 , Φ∗(F ) ∼= F0 on L× (R′,∞) we have Φ∗(A) = A0 + O(eβt) as t → ∞ for
β < 0. Then we call A an asymptotically cylindrical operator. It is easy to
show that A extends to bounded linear operators

Ap
k+l,γ : Lp

k+l,γ(E) −→ Lp
l,γ(F ) (7)

for all p > 1, l > 0 and γ ∈ R.

Now suppose A is an elliptic operator. (7) is Fredholm if and only if γ does not
lie in a discrete set DA0

⊂ R, which we now define.

Definition 3.3 In Definition 3.2, suppose A and A0 are elliptic operators
on C and L × R, so that E,F have the same fibre dimensions. Extend A0

to the complexifications A0 : C∞(E0 ⊗R C) → C∞(F0 ⊗R C). Define DA0
to

be the set of γ ∈ R such that for some δ ∈ R there exists a nonzero section
s ∈ C∞(E0⊗RC) invariant under translations in R such that A0(e

(γ+iδ)ts) = 0.

Then Lockhart and McOwen prove [16, Theorem 1.1]:

Theorem 3.4 Let (C, g) be a Riemannian manifold asymptotic to (L×R, g0),
and A : C∞(E) → C∞(F ) an elliptic partial differential operator on C of order

k between vector bundles E,F on C , asymptotic to the cylindrical elliptic

operator A0 : C∞(E0) → C∞(F0) on L× R. Define DA0
as above.

Then DA0
is a discrete subset of R, and for p > 1, l > 0 and γ ∈ R, the

extension Ap
k+l,γ : Lp

k+l,γ(E) → Lp
l,γ(F ) is Fredholm if and only if γ /∈ DA0

.

Suppose γ /∈ DA0
. Then Ap

k+l,γ is Fredholm, so its kernel Ker(Ap
k+l,γ) is finite-

dimensional. Let e ∈ Ker(Ap
k+l,γ). Then by an elliptic regularity result [15,

Theorem 3.7.2] we have e ∈ Lp
k+m,γ(E) for all m > 0. The weighted Sobolev

Embedding Theorem [15, Theorem 3.10] then implies that e ∈ Lr
k+m,δ(E) for all

r > 1, m > 0 and δ > γ , and e is smooth. But Ker(Ap
k+1,γ) is invariant under

small changes of γ in R \ DA0
, so e ∈ Lr

k+m,γ(E) for all r > 1 and m > 0.
This proves:
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Proposition 3.5 For γ /∈ DA0
the kernel Ker(Ap

k+l,γ) is independent of p, l ,
and is a finite-dimensional vector space of smooth sections of E .

When γ /∈ DA0
, as Ap

k+l,γ is Fredholm the cokernel

Coker(Ap
k+l,γ) = Lp

l,γ(F )
/
Ap

k+l,γ

(
Lp

k+l,γ(E)
)

of Ap
k+l,γ is also finite-dimensional. To understand it, consider the formal ad-

joint A∗ : C∞(F ) → C∞(E) of A. This is also an asymptotically cylindrical
linear elliptic partial differential operator of order k on C , with the property
that

〈Ae, f〉L2(F ) = 〈e,A∗f〉L2(E)

for compactly-supported e ∈ C∞(E) and f ∈ C∞(F ).

Then for p > 1, l > 0 and γ /∈ DA0
, the dual operator of (7) is

(A∗)q−l,−γ : Lq
−l,−γ(F ) −→ Lq

−k−l,−γ(E), (8)

where q > 1 is defined by 1
p + 1

q = 1. Here we mean that Lq
−k−l,−γ(E),

Lq
−l,−γ(F ) are isomorphic to the Banach space duals of Lp

k+l,γ(E), Lp
l,γ(F ),

and these isomorphisms identify (A∗)q−l,−γ with the dual linear map to (7).

Now there is a problem with (8), as it involves Sobolev spaces with negative

numbers of derivatives −l,−k− l . Such Sobolev spaces exist as spaces of distri-

butions. But we can avoid defining or using these spaces, by the following trick.
We are interested in Ker

(
(A∗)q−l,−γ

)
, as it is dual to Coker(Ap

k+l,γ). The elliptic

regularity argument above showing Ker(Ap
k+l,γ) is independent of l also holds

for negative differentiability, so we have Ker
(
(A∗)q−l,−γ

)
= Ker

(
(A∗)qk+m,−γ

)

for m ∈ Z, and in particular for m > 0. So we deduce:

Proposition 3.6 In Theorem 3.4, let A∗ be the formal adjoint of A. Then

for all γ /∈ DA0
, p, q > 1 with 1

p + 1
q = 1 and l,m > 0 there is a natural

isomorphism

Coker(Ap
k+l,γ)

∼= Ker
(
(A∗)qk+m,−γ

)∗
. (9)

When γ /∈ DA0
we see from (9) that the index of Ap

k+l,γ is

ind(Ap
k+l,γ) = dimKer(Ap

k+l,γ) − dim Ker
(
(A∗)qk+m,−γ

)
. (10)

Lockhart and McOwen show [16, Theorem 6.2] that for γ, δ ∈ R \ DA0
with

γ 6 δ we have

ind(Ap
k+l,δ) − ind(Ap

k+l,γ) =
∑

ǫ∈DA0
:γ<ǫ<δ

d(ǫ), (11)
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where d(ǫ) > 1 is the dimension of the a vector space of solutions s ∈ C∞(E0⊗R

C) of a prescribed form with A0(s) = 0.

3.2 d+d∗ and d∗d+dd∗ on an asymptotically cylindrical manifold

Let (C, g) be an oriented asymptotically cylindrical Riemannian n–manifold
asymptotic to a Riemannian cylinder (L × R, g0), where g0 = gL + dt2 and
(L, gL) is a compact oriented Riemannian (n − 1)–manifold. Consider the
asymptotically cylindrical linear elliptic operators

d + d∗ and d∗d + dd∗ :
⊕n

k=0C
∞(ΛkT ∗C) −→

⊕n
k=0C

∞(ΛkT ∗C). (12)

We shall apply the theory of Section 3.1 to study the extensions

(d + d∗)pl+2,γ :
⊕n

k=0 L
p
l+2,γ(ΛkT ∗C) −→

⊕n
k=0 L

p
l+1,γ(ΛkT ∗C), (13)

(d∗d + dd∗)pl+2,γ :
⊕n

k=0 L
p
l+2,γ(ΛkT ∗C) −→

⊕n
k=0 L

p
l,γ(ΛkT ∗C), (14)

for p > 1, l > 0 and γ ∈ R, and their kernels and cokernels.

Lemma 3.7 We have Ker
(
(d+d∗)pl+2,γ

)
⊆ Ker

(
(d∗d+dd∗)pl+2,γ

)
for all p > 1,

l > 0 and γ ∈ R, and equality holds if γ < 0.

Proof Since d∗d + dd∗ = (d + d∗)2 we have Ker(d + d∗) ⊆ Ker(d∗d + dd∗)
on any space of twice differentiable forms, giving the inclusion. Suppose γ < 0
and χ ∈ Ker

(
(d∗d + dd∗)pl+2,γ

)
. Write χ =

∑n
k=0 χk for χk ∈ Lp

l+2,γ(ΛkT ∗C).

Then χk ∈ Ker
(
(d∗d + dd∗)pl+2,γ

)
, as d∗d + dd∗ takes k–forms to k–forms.

If γ < 0 then each χk lies in L2
2(Λ

kT ∗C), and

‖dχk‖
2
L2+‖d∗χk‖

2
L2 =

〈
dχk,dχk

〉
L2+

〈
d∗χk,d

∗χk

〉
L2 =

〈
χk, (d

∗d+dd∗)χk

〉
L2 =0.

Thus d∗χk = dχk = 0, so that χk and hence χ lies in Ker
(
(d + d∗)pl+2,γ

)
.

For |γ| close to zero we can say more about the kernels of (13) and (14).

Proposition 3.8 Suppose p, q > 1, l,m > 0 and γ < 0 with 1
p + 1

q = 1 and

[γ,−γ] ∩ D(d+d∗)0 = [γ,−γ] ∩D(d∗d+dd∗)0 = {0}. Then

Ker
(
(d + d∗)pl+2,γ

)
= Ker

(
(d∗d + dd∗)pl+2,γ

)
, (15)

Ker
(
(d + d∗)qm+2,−γ

)
= Ker

(
(d∗d + dd∗)qm+2,−γ

)
, and (16)

dim Ker
(
(d + d∗)qm+2,−γ

)
= dim Ker

(
(d + d∗)pl+2,γ

)
+

∑n−1
k=0 b

k(L). (17)

Moreover all four kernels consist of smooth closed and coclosed forms.
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Proof As [γ,−γ] ∩ D(d+d∗)0 = {0},

ind
(
(d + d∗)qm+2,−γ

)
− ind

(
(d + d∗)pl+2,γ

)
= 2

∑n−1
k=0 b

k(L). (18)

This is because from (11), the l.h.s. of (18) is the dimension of the solution
space of (d + d∗)0χ = 0 on L × R for χ independent of t ∈ R. The space of
such χ is the direct sum over k = 0, . . . , n − 1 of the spaces of k–forms η and
(k+1)–forms η ∧ dt for η ∈ C∞(ΛkT ∗L) with dη = d∗η = 0. By Hodge theory
we deduce (18).

Now d+d∗ is formally self adjoint, that is, A∗ = A in the notation of Section 3.1.
Thus

ind
(
(d + d∗)qm+2,−γ

)
= − ind

(
(d + d∗)pl+2,γ

)
=

dimKer
(
(d + d∗)qm+2,−γ

)
− dim Ker

(
(d + d∗)pl+2,γ

)

by (10), and equation (17) follows from (18). As [γ,−γ] ∩ D(d∗d+dd∗)0 = {0},
the same proof shows that

dim Ker
(
(d∗d + dd∗)qm+2,−γ

)
= dim Ker

(
(d∗d + dd∗)pl+2,γ

)
+

∑n−1
k=0 b

k(L), (19)

since the solutions of (d∗d + dd∗)0χ = 0 and (d + d∗)0χ = 0 for χ on L × R

independent of t coincide. Lemma 3.7 proves (15), and combining this with
(17) and (19) yields

dim Ker
(
(d + d∗)qm+2,−γ

)
= dimKer

(
(d∗d + dd∗)qm+2,−γ

)
.

As the right hand side of (16) contains the left by Lemma 3.7, this implies (16).

It remains to show the four kernels consist of smooth closed and coclosed forms.
Let χ lie in one of the kernels, and write χ =

∑n
k=0 χk for χk a k–form. Since

(d∗d + dd∗)χ = 0 we have (d∗d + dd∗)χk = 0, as d∗d + dd∗ takes k–forms to
k–forms. Thus χk lies in the same kernel, so (d + d∗)χk = 0 by (15) or (16).
But dχk and d∗χk lie in different vector spaces, so dχk = d∗χk = 0 for all k .
Hence dχ = d∗χ = 0, and χ is closed and coclosed. Smoothness follows by
elliptic regularity.

As the forms χ in Ker
(
(d + d∗)pl+2,γ

)
are closed we can map them to de Rham

cohomology H∗(C,R) by χ 7→ [χ]. We identify the kernel and image of this
map.

Proposition 3.9 Suppose p > 1, l > 0 and γ < 0 with [γ,−γ] ∩ D(d+d∗)0 =
[γ,−γ] ∩ D(d∗d+dd∗)0 = {0}. Then the map Ker

(
(d + d∗)pl+2,γ

)
→ H∗(C,R)

given by χ 7→ [χ] is injective, with image that of the natural map H∗
cs(C,R)→

H∗(C,R).
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Proof Lockhart [15, Ex. 0.14] shows that the vector space H2(ΛkT ∗C, g)
of closed, coclosed k–forms in L2(ΛkT ∗C) on an asymptotically cylindrical
Riemannian manifold (C, g) is isomorphic under χ 7→ [χ] with the image of
Hk

cs(C,R) in Hk(C,R). Taking the direct sum over k = 0, . . . , n, this implies
that for l > 0 the map

Ker
(
(d + d∗)2l+2,0

)
→ H∗(C,R), χ 7→ [χ]

is injective, with image that of the natural map H∗
cs(C,R) → H∗(C,R).

Using Proposition 3.5, γ /∈ D(d+d∗)0 and γ < 0 we have

Ker
(
(d + d∗)pl+2,γ

)
= Ker

(
(d + d∗)2l+2,γ

)
⊆ Ker

(
(d + d∗)2l+2,0

)
.

Therefore χ 7→ [χ] is injective on Ker
(
(d + d∗)pl+2,γ

)
, with image contained in

that of H∗
cs(C,R) → H∗(C,R). It remains to show χ 7→ [χ] is surjective on this

image.

Suppose η ∈ Hj(C,R) lies in the image of Hj
cs(C,R). Then we may write

η = [φ] for φ a smooth, closed, compactly-supported j–form on C . Hence
d∗φ ∈

⊕n
k=0 L

p
l+1,γ(ΛkT ∗C). We shall show that d∗φ lies in the image of (14)

with l + 1 in place of l . Since γ /∈ D(d∗d+dd∗)0 , as in Section 3.1 this holds if
and only if 〈d∗φ, ξ〉L2 = 0 for all ξ in Ker

(
(d∗d + dd∗)qm+2,−γ

)
.

But all such ξ are closed by Proposition 3.8, so 〈d∗φ, ξ〉L2 = 〈φ,dξ〉L2 = 0.
Therefore d∗φ = (d∗d + dd∗)ψ for some ψ ∈ Lp

l+3,γ(Λj−1T ∗C). Hence

(d∗d + dd∗)(φ− dψ) = d
(
d∗φ− (d∗d + dd∗)ψ

)
= 0,

and φ− dψ lies in Ker
(
(d∗d + dd∗)pl+2,γ

)
, which is Ker

(
(d + d∗)pl+2,γ

)
by (15).

As [φ− dψ] = [φ] = η we have proved the surjectivity we need.

3.3 d+ + d∗ on a 4–manifold

Now we restrict to dimC = 4, so that (C, g) is an oriented asymptotically cylin-
drical Riemannian 4–manifold asymptotic to a Riemannian cylinder (L×R, g0).
In Section 4 we will take C to be an asymptotically cylindrical coassociative 4–

fold. Consider the asymptotically cylindrical linear elliptic operator

d+ + d∗ : C∞(Λ2
+T

∗C) ⊕ C∞(Λ4T ∗C) −→ C∞(Λ3T ∗C).

Here d+ is the restriction of d to the self-dual 2–forms. We use this notation
to distinguish d+ + d∗ from d + d∗ in (12). Roughly speaking, d+ + d∗ is a
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quarter of d + d∗ in (12), as it acts on half of the even forms, rather than on
all forms. Its formal adjoint is

d∗
+ + d: C∞(Λ3T ∗C) −→ C∞(Λ2

+T
∗C) ⊕ C∞(Λ4T ∗C),

where d∗
+ is the projection of d∗ to the self-dual 2–forms. We shall apply the

results of Section 3.2 to study the extension

(d+ + d∗)pl+2,γ : Lp
l+2,γ(Λ2

+T
∗C) ⊕ Lp

l+2,γ(Λ4T ∗C) −→ Lp
l+1,γ(Λ3T ∗C), (20)

for p > 1, l > 0 and γ ∈ R. We begin with some algebraic topology.

Suppose for simplicity that C has no compact connected components, so that
H4(C,R) = H0

cs(C,R) = 0. Then L is a compact, oriented 3–manifold, and
C is the interior (C)◦ of a compact, oriented 4–manifold C with boundary
∂C = L. Thus we have a long exact sequence in cohomology:

0 // H0(C) // H0(L) // H1
cs(C) // H1(C) // H1(L) // H2

cs(C)

��

0 H4
cs(C)oo H3(L)oo H3(C)oo H3

cs(C)oo H2(L)oo H2(C)oo

(21)

where Hk(C) = Hk(C,R) and Hk(L) = Hk(L,R) are the de Rham cohomology
groups, and Hk

cs(C,R) is compactly-supported de Rham cohomology. Let bk(C),
bk(L) and bkcs(C) be the corresponding Betti numbers.

By Poincaré duality we have Hk(C) ∼= H4−k
cs (C)∗ and Hk(L) ∼= H3−k(L)∗ , so

that bk(C) = b4−k
cs (C) and bk(L) = b3−k(L). Note that (21) is written so that

each vertically aligned pair of spaces are dual vector spaces, and each vertically
aligned pair of maps are dual linear maps.

Let V ⊆ H2(C,R) be the image of the natural map H2
cs(C,R) → H2(C,R).

Taking alternating sums of dimensions in (21) shows that

dimV = b2cs(C) − b1(L) + b1(C) − b1cs(C) − b0(L) + b0(C)

= b0(C) + b1(C) + b2(C) − b3(C) − b0(L) − b1(L).

Now the cup product ∪ : H2
cs(C,R)×H2(C,R) → R restricted to H2

cs(C,R)×V
is zero on the product of the kernel of H2

cs(C,R) → H2(C,R) with V . Hence
it pushes forward to a quadratic form ∪ : V × V → R, which is symmetric and
nondegenerate.

Suppose V = V+ ⊕ V− is a decomposition of V into subspaces with ∪ positive
definite on V+ and negative definite on V− . Then dimV+ and dimV− are
topological invariants of C,L. That is, they depend only on C as an oriented
4–manifold, and not on the choice of subspaces V± .

We now identify the kernel and cokernel of (d++d∗)pl+2,γ in (20) for small γ < 0.
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Theorem 3.10 Let (C, g) be an oriented, asymptotically cylindrical Rie-

mannian 4–manifold asymptotic to (L × R, g0), and use the notation of Sec-

tions 3.1–3.2. Suppose max
(
D(d++d∗)0 ∩ (−∞, 0)

)
< γ < 0, and let p, q > 1

with 1
p + 1

q = 1 and l,m > 0. Then from Section 3.1 the operator (d++d∗)pl+2,γ
of (20) is Fredholm with

Coker
(
(d+ + d∗)pl+2,γ

)
∼= Ker

(
(d∗

+ + d)qm+2,−γ

)∗
. (22)

The kernel Ker
(
(d+ + d∗)pl+2,γ

)
is a vector space of smooth, closed, self-dual

2–forms. The map Ker
(
(d+ + d∗)pl+2,γ

)
→ H2(C,R), χ 7→ [χ] induces an iso-

morphism of Ker
(
(d+ +d∗)pl+2,γ

)
with a maximal subspace V+ of the subspace

V ⊆ H2(C,R) defined above on which the cup product ∪ : V × V → R is

positive definite. Hence

dim Ker
(
(d+ + d∗)pl+2,γ

)
= dimV+, (23)

which is a topological invariant of C,L from above. Also, Ker
(
(d∗

++d)qm+2,−γ

)

is a vector space of smooth, closed and coclosed 3–forms.

Proof The first part follows immediately from Section 3.1. As Ker
(
(d+ +

d∗)pl+2,γ

)
and Ker

(
(d∗

+ + d)qm+2,−γ

)
depend only on the connected component

of R \ D(d++d∗)0 containing γ , we can make |γ| smaller if necessary to ensure
that [γ,−γ] ∩ D(d+d∗)0 = [γ,−γ] ∩ D(d∗d+dd∗)0 = {0}, using the notation of
Section 3.2.

Suppose (ζ2
+, ζ

4) ∈ Ker
(
(d++d∗)pl+2,γ

)
. Then dζ2

++d∗ζ4 = 0, so applying ∗ and

noting that ∗ζ2
+ = ζ2

+ gives d∗ζ2
+−d(∗ζ4) = 0. Hence (d+d∗)(−∗ζ4+ζ2

++ζ4) =
0, that is, the mixed form −∗ζ4 +ζ2

+ +ζ4 lies in the kernel of (13). Proposition
3.8 now implies that ζ2

+ and ζ4 are smooth, closed and coclosed, and therefore
ζ2
+ and ζ4 also lie in the kernel, and Ker

(
(d+ + d∗)pl+2,γ

)
⊆ Ker

(
(d + d∗)pl+2,γ

)
,

where (d + d∗)pl+2,γ is as in Section 3.2.

Since H4(C,R) = 0, injectivity in Proposition 3.9 implies that ζ4 = 0. Thus
Ker

(
(d+ + d∗)pl+2,γ

)
is a vector space of smooth, closed, self-dual 2–forms, as

we have to prove. Write H2 for the space of 2–forms in Ker
(
(d + d∗)pl+2,γ

)
.

Then by Proposition 3.9 the map H2 → H2(C,R), χ 7→ [χ] is injective with
image that of H2

cs(C,R) in H2(C,R), which is V in the notation above.

Under this isomorphism, the cup product on V is given by

χ ∪ ξ =

∫

C
χ ∧ ξ =

∫

C
(χ, ∗ξ)dVg = 〈χ, ∗ξ〉L2 , (24)
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for χ, ξ ∈ H2 . The Hodge star ∗ maps H2 ∼= V to itself with ∗2 = 1. Let
V± be the ±1 eigenspaces of ∗ on V . Then V = V+ ⊕ V− , and (24) implies
that ∪ is positive definite on V+ and negative definite on V− . Hence dimV+

is a topological invariant, from above. But Ker
(
(d+ + d∗)pl+2,γ

)
is the self-dual

2–forms in H2 . Thus χ 7→ [χ] induces an isomorphism of Ker
(
(d+ + d∗)pl+2,γ

)

with V+ , as we have to prove.

Finally, suppose ζ3 ∈ Ker
(
(d∗

+ + d)qm+2,−γ

)
, so that d∗

+ζ
3 = dζ3 = 0. Then

0 = d∗(dζ3) + 2d(d∗
+ζ

3) = d∗dζ3 + d(d∗ζ3 − d(∗ζ3)) = (d∗d + dd∗)ζ3,

so ζ3 lies in Ker
(
(d∗d + dd∗)qm+2,−γ

)
, which consists of smooth closed and

coclosed forms by Proposition 3.8. Thus Ker
(
(d∗

+ +d)qm+2,−γ

)
is a vector space

of smooth, closed and coclosed 3–forms.

We can say more about the cokernel (22). Its dimension is

dim Ker
(
(d∗

+ + d)qm+2,−γ

)
= b0(L) − b0(C) + b1(C).

The map Ker
(
(d∗

+ + d)qm+2,−γ

)
→ H3(C,R), χ 7→ [χ] is surjective, with kernel

of dimension b0(L)− b0(C) + b1(C)− b3(C) > 0, which is the dimension of the
kernel of H3

cs(C,R) → H3(C,R). So we can think of Ker
(
(d∗

+ + d)qm+2,−γ

)
as a

space of closed and coclosed 3–forms filling out all of H3
cs(C,R) and H3(C,R).

But we will not need these facts, so we shall not prove them.

3.4 Conditions on the rate γ for d+ + d∗ to be Fredholm

Finally we determine the set D(d++d∗)0 for the cylindrical operator (d++d∗)0 on
L×R, which by Theorem 3.4 gives the set of γ for which (20) is not Fredholm.

Proposition 3.11 Let (C, g) be an oriented, asymptotically cylindrical Rie-

mannian 4–manifold asymptotic to (L × R, g0), let p > 1, l > 0 and γ ∈ R,

and define (d+ +d∗)pl+2,γ as in (20). Then (d+ +d∗)pl+2,γ is not Fredholm if and

only if either γ = 0, or γ2 is a positive eigenvalue of ∆ = d∗d on functions on

L, or γ is an eigenvalue of − ∗ d on coexact 1–forms on L.

Proof Throughout the proof ∗, d∗ mean the Hodge star and d∗ on L, not on
L×R, and d∗

4 is d∗ on L×R. An element of C∞(Λ2
+T

∗(L×R)⊗R C) invariant
under translations in R may be written uniquely in the form χ ∧ dt + ∗χ for
χ ∈ C∞(T ∗L ⊗R C). An element of C∞(Λ4T ∗(L × R) ⊗R C) invariant under
translations in R may be written uniquely as f dVL∧dt for f : L→ C smooth,

Geometry & Topology, Volume 9 (2005)



1134 Dominic Joyce and Sema Salur

where dVL is the volume form on L. By Definition 3.3 and Theorem 3.4, (20)
is not Fredholm if and only if there exist δ ∈ R and χ, f as above and not both
zero, satisfying

d
(
e(γ+iδ)t(χ ∧ dt+ ∗χ)

)
+ d∗

4

(
e(γ+iδ)tf dVL ∧ dt

)
≡ 0. (25)

Expanding (25) yields

e(γ+iδ)t
[
dχ ∧ dt+ (γ + iδ)(∗χ) ∧ dt+ d(∗χ) − (∗df) ∧ dt+ (γ + iδ)f dVL

]
≡ 0

on L× R, and separating components with and without dt gives

dχ+ (γ + iδ)(∗χ) − (∗df) ≡ 0 and d(∗χ) + (γ + iδ)f dVL ≡ 0,

equations in 2– and 3–forms on L respectively. Applying the Hodge star ∗ on
L shows that (25) is equivalent to the two equations

∗dχ+ (γ + iδ)χ − df ≡ 0 and d∗χ− (γ + iδ)f ≡ 0 (26)

in 1–forms and functions on L.

Since χ is a 1–form on L which is a compact manifold, one can use Hodge
decomposition and write χ = χ0 ⊕ χ1 ⊕ χ2 where χ0 is a harmonic 1–form,
χ1 = df1 is an exact 1–form, f1 ∈ C∞(L) and χ2 = d∗η is a co-exact 1–form,
η ∈ C∞(Λ2T ∗L). Dividing the first equation of (26) into harmonic, exact and
coexact components, the system becomes

(γ+iδ)χ0 = 0, (γ+iδ)df1 = df, −∗dχ2 = (γ+iδ)χ2, d∗df1 = (γ+iδ)f. (27)

The second and fourth equations of (27) give d∗df = (γ + iδ)2f , and substi-
tuting the third equation into itself gives d∗dχ2 = ∗d ∗ dχ2 = (γ + iδ)2χ2 . But
d∗χ2 = 0 by definition. Thus χ0, χ1, χ2, f satisfy the equations

(γ + iδ)χ0 = 0, (γ + iδ)χ1 = df,

(d∗d + dd∗)χ2 = (γ + iδ)2χ2, d∗df = (γ + iδ)2f.
(28)

When γ = δ = 0, χ = 0 and f ≡ 1 are a solution, so (20) is not Fredholm.
So suppose γ + iδ 6= 0. Then χ0 = 0, and χ1 = 0 if f = 0 by (28), so as
χ, f are not both zero either f 6= 0 or χ2 6= 0. If f 6= 0 then (γ + iδ)2 is a
nonzero eigenvalue of ∆ = d∗d on functions by the last equation of (28), so
δ = 0 as such eigenvalues are positive, and γ2 is a positive eigenvalue of ∆ as
we want. Conversely, if ∆f = γ2f for nonzero γ, f then χ = γ−1df satisfies
the equations, so (20) is not Fredholm.

If χ2 6= 0 then (γ + iδ)2 is a nonzero eigenvalue of ∆ = d∗d + dd∗ on coexact
1–forms by the third equation of (28), so δ = 0 as above. The third equation
of (27) then shows that γ is an eigenvalue of − ∗ d on coexact 1–forms on
L. Conversely, taking χ2 to be an eigenvector of − ∗ d on coexact 1–forms
with eigenvalue γ and χ0 = χ1 = f = 0 solves the equations, so (20) is not
Fredholm.
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4 Proof of Theorem 1.1

We now prove Theorem 1.1. Let (M,ϕ, g) be an asymptotically cylindrical
G2–manifold asymptotic to X × (R,∞), R > 0, with decay rate α < 0. Let
C be an asymptotically cylindrical coassociative 4–fold in X asymptotic to
L × (R′,∞) for R′ > R with decay rate β for α 6 β < 0. Write gC = g|C
for the metric on C , gX for the Calabi–Yau metric on X , and gL = gX |L for
the metric on L. Then (C, gC ) is an asymptotically cylindrical Riemannian

4–manifold, with rate β .

Suppose γ satisfies β < γ < 0, and (0, γ2] contains no eigenvalues of the
Laplacian ∆L on functions on L, and [γ, 0) contains no eigenvalues of the
operator − ∗ d on coexact 1–forms on L. Let p > 4 and l > 1, and define

(d+ + d∗)pl+2,γ : Lp
l+2,γ(Λ2

+T
∗C) ⊕ Lp

l+2,γ(Λ4T ∗C) −→ Lp
l+1,γ(Λ3T ∗C) (29)

as in Section 3.3. Then Proposition 3.11 and the conditions on γ imply that
[γ, 0)∩D(d++d∗)0 = ∅. Hence γ /∈ D(d++d∗)0 , so that (d+ +d∗)pl+2,γ is Fredholm

by Theorem 3.4. Also, Theorem 3.10 applies to (d+ + d∗)pl+2,γ .

Let νL be the normal bundle of L in X , regarded as the orthogonal subbundle

to TL in TX|L , and expL : νL → X the exponential map. For r > 0, write
Br(νL) for the subbundle of νL with fibre at x the open ball about 0 in νL|x with
radius r . Then for small ǫ > 0, there is a tubular neighbourhood TL of L in X
such that expL : B2ǫ(νL) → TL is a diffeomorphism. Also, νL×R → L×R is the
normal bundle to L× R in X × R with exponential map expL ×id : νL × R →
X × R. Then TL × R is a tubular neighborhood of L × R in X × R, and
expL ×id : B2ǫ(νL) × R → TL × R is a diffeomorphism.

Let K,R, Ψ: X×(R,∞) →M \K , and K ′, R′ > R, Φ: L×(R′,∞) → C \K ′ ,
and the normal vector field v on L× (R′,∞) be as in Section 2.3, so that (3)
commutes. Then v is a section of νL × (R′,∞) → L× (R′,∞), decaying at rate
O(eβt). Therefore making K ′ and R′ larger if necessary, we can suppose the
graph of v lies in Bǫ(νL) × (R′,∞).

Write π : Bǫ(νL) × (R′,∞) → L× (R′,∞) for the natural projection. Define

Ξ: Bǫ(νL) × (R′,∞) →M by Ξ: w 7→ Ψ
[
(expL ×id)(v|π(w) + w)

]
. (30)

Here w is a point in Bǫ(νL) × (R′,∞), in the fibre over π(w) ∈ L × (R′,∞).
Thus v|π(w) is a point in the same fibre, which is a ball of radius ǫ in a vector
space.

Hence v|π(w)+w lies in the open ball of radius 2ǫ in the same vector space, that
is, in the fibre of B2ǫ(νL)×(R′,∞) over π(w). Therefore (expL ×id)(v|π(w)+w)
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is well-defined and lies in TL×(R′,∞) ⊂ X×(R′,∞), and Ξ(w) is well-defined.
Since expL ×id : B2ǫ(νL) × R → TL × R and Ψ: X × (R,∞) → M \ K are
diffeomorphisms, we see that Ξ is a diffeomorphism with its image.

Identify L × (R′,∞) with the zero section in Bǫ(νL) × (R′,∞). Then as (3)
commutes we see that Ξ|L×(R′,∞) ≡ Φ. Let νC be the normal bundle of C in
M , which we regard not as the orthogonal subbundle to TC in TM |C , but
rather as the quotient bundle TM |C/TC . Define an isomorphism ξ between
the vector bundles νL × (R′,∞) and Φ∗(νC) over L× (R′,∞) as follows.

As Ξ is a diffeomorphism with its image, dΞ: T
(
Bǫ(νL)× (R′,∞)

)
→ Ξ∗(TM)

is an isomorphism. Restricting this to the zero section L× (R′,∞) and noting
that Ξ|L×(R′,∞) ≡ Φ, we see that

dΞ|L×(R′,∞) : T
(
Bǫ(νL) × (R′,∞)

)
|L×(R′,∞) −→ Φ∗(TM) (31)

is an isomorphism. As Φ: L× (R′,∞) → C \K ′ is a diffeomorphism,

dΦ: T
(
L× (R′,∞)

)
−→ Φ∗(TN) (32)

is an isomorphism. But (32) is the restriction of (31) to a vector subbundle.
Quotienting (31) by (32) gives an isomorphism

ξ = dΞ|L×(R′,∞) : νL × (R′,∞) ∼=
T

(
Bǫ(νL) × (R′,∞)

)
|L×(R′,∞)

T
(
L× (R′,∞)

)

−→ Φ∗(TM)/Φ∗(TN) ∼= Φ∗(TM/TN) = Φ∗(νC). (33)

Now choose a small ǫ′ > 0, a tubular neighborhood TC of C in M , and a
diffeomorphism Θ: Bǫ′(νC) → TC satisfying the conditions:

(i) Θ|C ≡ idC : C → C , where C ⊂ Bǫ′(νC) is the zero section.

(ii) By (i), dΘ|C : T (Bǫ′(νC))|C → TM |C is an isomorphism, which restricts
to the identity on the subbundles TC of each side. Hence it induces an
isomorphism dΘ|C : νC

∼= T
(
Bǫ(νC)

)
|C/TC → TM |C/TC = νC . This

isomorphism is the identity map.

(iii) ǫ′ is small enough that ξ∗
(
Bǫ′(νC)

)
⊂ Bǫ(νL) × (R′,∞) ⊂ νL × (R′,∞),

and Θ ◦ ξ ≡ Ξ on ξ∗
(
Bǫ′(νC)

)
.

Notice that (iii) determines Θ and TC uniquely on Bǫ′(νC)|C\K ′ , and by con-
struction here it satisfies (i) and (ii). Thus, it remains only to choose TC and Θ
satisfying (i), (ii) over the compact set K ′ ⊂ C , which is possible by standard
differential topology.

The point of all this is that we have chosen a local identification Θ between
νC and M near C that is compatible in a nice way with the asymptotic iden-
tifications Φ,Ψ of C , M with L × R and X × R. Using Θ, submanifolds C̃

Geometry & Topology, Volume 9 (2005)



Deformations of AC coassociative 4–folds 1137

of M close to C are identified with small sections s of νC , and importantly,
the asymptotic convergence of C̃ to C , and so to L × R, is reflected in the
asymptotic convergence of s to 0.

As in the proof of Theorem 2.5, the map V 7→ (V ·ϕ|x)|TxC defines an isomor-

phism νC → Λ2
+T

∗C . (Note that since ϕ|C ≡ 0, this map is well-defined for
V ∈ TxM/TxC , rather than just for V ∈ TxM orthogonal to TxC .) We now
identify νC with Λ2

+T
∗C , and regard Θ as a map Θ: Bǫ′(Λ

2
+T

∗C) → TC ⊂M .

Write Lp
l+2,γ

(
Bǫ′(Λ

2
+T

∗C)
)

for the subset of ζ2
+ ∈ Lp

l+2,γ(Λ2
+T

∗C) which are

sections of Bǫ′(Λ
2
+T

∗C), that is, |ζ2
+| < ǫ′ on C . Since Lp

l+1,γ →֒ C0 by

Sobolev embedding this is an open condition on ζ2
+ , so Lp

l+2,γ

(
Bǫ′(Λ

2
+T

∗C)
)

is

an open subset of the Banach space Lp
l+2,γ(Λ2

+T
∗C).

Define Q : Lp
l+2,γ

(
Bǫ′(Λ

2
+T

∗C)
)
→ {3–forms on C} by Q(ζ2

+) = (Θ ◦ ζ2
+)∗(ϕ).

That is, we regard the section ζ2
+ as a map C → Bǫ′(Λ

2
+T

∗C), so Θ ◦ ζ2
+ is a

map C → TC ⊂M , and thus (Θ ◦ ζ2
+)∗(ϕ) is a 3–form on C . The point of this

definition is that if Γζ2
+

is the graph of ζ2
+ in Bǫ′(Λ

2
+T

∗C) and C̃ = Θ(Γζ2
+
) its

image in M , then C̃ is coassociative if and only if ϕ| eC ≡ 0, which holds if and

only if Q(ζ2
+) = 0. So Q−1(0) parametrizes coassociative 4–folds C̃ close to C .

We now consider which class of 3–forms Q maps to.

Proposition 4.1 Q : Lp
l+2,γ

(
Bǫ′(Λ

2
+T

∗C)
)
−→ Lp

l+1,γ(Λ3T ∗C) is a smooth

map of Banach manifolds. The linearization of Q at 0 is dQ(0) : ζ2
+ 7→ dζ2

+ .

Proof As in the proof of Theorem 2.5, the functional form of Q is

Q(ζ2
+)|x = F

(
x, ζ2

+|x,∇ζ
2
+|x

)
for x ∈ C ,

where F is a smooth function of its arguments. Since p > 4 and l > 1 we have
Lp

l+2,γ(Λ2
+T

∗C) →֒ C1
γ(Λ2

+T
∗C) by Sobolev embedding. General arguments

then show that locally Q(ζ2
+) is Lp

l+1 .

To show Q(ζ2
+) lies in Lp

l+1,γ(Λ3T ∗C), we must know something of the asymp-

totic behavior of F at infinity. Essentially Q(ζ2
+) is the restriction to Γ(ζ2

+) of
the 3–form Θ∗(ϕ) on Bǫ′(Λ

2
+T

∗C). Using the identifications Φ: L′× (R′∞) →
C \ K ′ and ξ : νL × (R′,∞) → Φ∗(Λ2

+T
∗C) over C \ K ′ , by (iii) above this

3–form becomes Ξ∗(ϕ) on Bǫ(νL) × (R′,∞).

But the asymptotic conditions on Φ,Ψ and v imply that Ξ∗(ϕ) is the sum of a
translation-invariant 3–form on Bǫ(νL) × R, the pullback of the cylindrical G2
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form ϕ0 on X × R, and an error term which decays at rate O(eβt), with all
its derivatives. As β < γ < 0, it is not difficult to see from this that Q maps
to Lp

l+1,γ(Λ3T ∗C). Smoothness of Q holds by general principles. Finally, the
linearization of Q is d, by the calculation of McLean alluded to in Theorem
2.5. As the calculation is local, it does not matter that we are on a noncompact
manifold C .

Next we show that the image of Q consists of exact 3–forms. Notice that we lose
one degree of differentiability: although the image of Q lies in Lp

l+1,γ(Λ3T ∗C),

we claim only that it lies in the exact 3–forms in Lp
l,γ(Λ3T ∗C).

Proposition 4.2

Q
(
Lp

l+2,γ(Bǫ′(Λ
2
+T

∗C))
)
⊆d

(
Lp

l+1,γ(Λ2T ∗C)
)
⊂Lp

l,γ(Λ3T ∗C).

Proof Consider the restriction of the 3–form ϕ to the tubular neighborhood
TC of C . As ϕ is closed, and TC retracts onto C , and ϕ|C ≡ 0, we see that
ϕ|TC

is exact. Thus we may write ϕ|TC
= dθ for θ ∈ C∞(Λ2T ∗TC). Since

ϕ|C ≡ 0 we may choose θ|C ≡ 0. Also, as ϕ is asymptotic to O(eβt) with all
its derivatives to a translation-invariant 3–form ϕ0 on X × R, we may take θ
to be asymptotic to O(eβt) with all its derivatives to a translation-invariant
2–form on TL × R.

The proof of Proposition 4.1 now shows that the map ζ2
+ 7→ (Θ ◦ ζ2

+)∗(θ) maps
Lp

l+2,γ

(
Bǫ′(Λ

2
+T

∗C)
)
→ Lp

l+1,γ(Λ2T ∗C). But

Q(ζ2
+) = (Θ ◦ ζ2

+)∗(ϕ) = (Θ ◦ ζ2
+)∗(dθ) = d

[
(Θ ◦ ζ2

+)∗(θ)
]
,

so Q(ζ2
+) ∈ d

(
Lp

l+1,γ(Λ2T ∗C)
)

for ζ2
+ ∈ Lp

l+2,γ(Bǫ′(Λ
2
+T

∗C)).

As in the proof of Theorem 2.5, we augment Q by a space of 4–forms on C to
make it elliptic. Define

P : Lp
l+2,γ

(
Bǫ′(Λ

2
+T

∗C)
)
× Lp

l+2,γ(Λ4T ∗C) −→ Lp
l+1,γ(Λ3T ∗C)

by P (ζ2
+, ζ

4) = Q(ζ2
+) + d∗ζ4.

Proposition 4.1 implies that the linearization dP (0, 0) of P at 0 is the Fredholm
operator (d++d∗)pl+2,γ of (29). Define C to be the image of (d++d∗)pl+2,γ . Then

C is a Banach subspace of Lp
l+1,γ(Λ3T ∗C), since (d+ +d∗)pl+2,γ is Fredholm. We

show P maps into C .

Proposition 4.3 P maps Lp
l+2,γ

(
Bǫ′(Λ

2
+T

∗C)
)
× Lp

l+2,γ(Λ4T ∗C) −→ C .
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Proof Let (ζ2
+, ζ

4) ∈ Lp
l+2,γ

(
Bǫ′(Λ

2
+T

∗C)
)
×Lp

l+2,γ(Λ4T ∗C) so that P (ζ2
+, ζ

4)

= Q(ζ2
+) + d∗ζ4 lies in Lp

l+1,γ(Λ3T ∗C). We must show it lies in C . Since
γ /∈ D(d++d∗)0 , from Section 3 this holds if and only if

〈
Q(ζ2

+) + d∗ζ4, χ
〉
L2 = 0 for all χ ∈ Ker

(
(d∗

+ + d)qm+2,−γ

)
, (34)

where 1
p + 1

q = 1 and m > 0.

By Theorem 3.10, Ker
(
(d∗

+ +d)qm+2,−γ

)
consists of closed and coclosed 3–forms

χ. By Proposition 4.2 we have Q(ζ2
+) = dλ for λ ∈ Lp

l+1,γ(Λ2T ∗C). So
〈
Q(ζ2

+) + d∗ζ4, χ
〉
L2 =

〈
dλ, χ

〉
L2 +

〈
d∗ζ4, χ

〉
L2 =

〈
λ,d∗χ

〉
L2 +

〈
ζ4,dχ

〉
L2 = 0

for χ ∈ Ker
(
(d∗

++d)qm+2,−γ

)
, as χ is closed and coclosed, and the inner products

and integration by parts are valid because of the matching of rates γ,−γ and
Lp, Lq with 1

p + 1
q = 1. So (34) holds, and P maps into C .

We now apply the Implicit Mapping Theorem for Banach spaces, [7, Theo-
rem 1.2.5].

Theorem 4.4 Let A,B and C be Banach spaces, and U ,V open neighbor-

hoods of 0 in A and B . Suppose that the function P : U × V → C is smooth

with P (0, 0) = 0, and that dP(0,0)|B : B → C is an isomorphism of B, C as vec-

tor and topological spaces. Then there exists a connected open neighbourhood

U ′ ⊂ U of 0 in A and a unique smooth map G : U ′ → V such that G(0) = 0
and P (x,G(x)) = 0 for all x ∈ U ′ .

Define A to be Ker
(
(d++d∗)pl+2,γ

)
, and B to be the subspace of Lp

l+2,γ(Λ2
+T

∗C)

⊕Lp
l+2,γ(Λ4T ∗C) which is L2–orthogonal to A. As A is finite-dimensional and

the L2 inner product is continuous on Lp
l+2,γ(Λ

2
+T

∗C) ⊕ Lp
l+2,γ(Λ4T ∗C), both

A,B are Banach spaces, and A⊕B = Lp
l+2,γ(Λ2

+T
∗C)⊕Lp

l+2,γ(Λ4T ∗C). Choose

open neighborhoods U ,V of 0 in A,B such that U×V ⊆ Lp
l+2,γ

(
Bǫ′(Λ

2
+T

∗C)
)
×

Lp
l+2,γ(Λ4T ∗C).

Let P, C be as above. Then by Propositions 4.1 and 4.3, P : U × V → C is a
smooth map of Banach manifolds with P (0, 0) = 0, and linearization dP (0, 0) =
(d+ + d∗)pl+2,γ : A⊕ B → C . By definition A is the kernel and C is the image

of (d+ + d∗)pl+2,γ . Hence dP(0,0)|B : B → C is an isomorphism of vector spaces,
and as it is a continuous linear map of Banach spaces, it is an isomorphism of
topological spaces by the Open Mapping Theorem.

Thus Theorem 4.4 applies, and gives a connected open neighborhood U ′ of 0
in U , and a smooth map G : U ′ → V such that G(0) = 0 and P (x,G(x)) ≡ 0.
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Moreover P−1(0) coincides with
{
(x,G(x)) : x ∈ U ′

}
near (0, 0), and so is

smooth, finite-dimensional and locally isomorphic to A = Ker
(
(d+ + d∗)pl+2,γ

)
.

Lemma 4.5 P−1(0) = Q−1(0) × {0}.

Proof Clearly Q−1(0) × {0} ⊆ P−1(0). Suppose (ζ2
+, ζ

4) ∈ P−1(0), so that
Q(ζ2

+) + d∗ζ4 = 0. We shall show that ζ4 = 0, so that Q(ζ2
+) = 0, and

thus P−1(0) ⊆ Q−1(0) × {0}. By Proposition 4.2 we have Q(ζ2
+) = dλ for

λ ∈ Lp
l+1,γ(Λ2T ∗C), so dλ = −d∗ζ4 . Hence

‖d∗ζ4‖2
L2 =

〈
d∗ζ4,d∗ζ4

〉
L2 = −

〈
d∗ζ4,dλ

〉
L2 = −

〈
ζ4,d2λ

〉
L2 = 0,

where the inner products and integration by parts are valid as Lp
l+2,γ →֒ L2

2 .

Thus Q(ζ2
+) = d∗ζ4 = 0. But d∗ζ4 ∼= ∇ζ4 as ζ4 is a 4–form, so ζ4 is constant.

Since also ζ4 → 0 near infinity in C , we have ζ4 ≡ 0.

Combining this with the previous description of P−1(0) shows that Q−1(0) is
smooth, finite-dimensional and locally isomorphic to Ker

(
(d++d∗)pl+2,γ

)
. Next

we show that Q−1(0) is independent of l , and so consists of smooth solutions.

Proposition 4.6 If ζ2
+ ∈ Q−1(0) then ζ2

+ ∈ Lp
m+2,γ(Λ2

+T
∗C) for all m > 1.

Proof Let m > 1 and (ζ2
+, ζ

4) ∈ Lp
m+2,γ

(
Bǫ′(Λ

2
+T

∗C)
)
× Lp

m+2,γ(Λ4T ∗C),

so that P (ζ2
+, ζ

4) = Q(ζ2
+) + d∗ζ4 lies in Lp

m+1,γ(Λ3T ∗C). Write ∇ for the
Levi–Civita connection of gC on C . We shall apply the ∇–Laplacian ∆C =
gab
C ∇a∇b to P (ζ2

+, ζ
4), using the index notation. Writing Q in terms of F as

in Proposition 4.1, we have

∆C

[
P (ζ2

+, ζ
4)

]
= gab

C ∇a∇b

[
F

(
x, ζ2

+|x,∇ζ
2
+|x

)]
+ ∆Cd∗ζ4. (35)

We shall expand (35) in terms of the derivatives of F by the chain rule, using the
following notation. Write F = F (x, y, z). Write ∇xF for the derivative of F
‘in the x direction’ using ∇. That is, (∇xF )(x′, y′, z′) = ∇

(
F (x, y(x), z(x)

)
|x′ ,

where y(x), z(x) satisfy y(x′) = y′ , z(x′) = z′ and (∇y)(x′) = (∇z)(x′) = 0.
Write ∂yF and ∂zF for the partial derivatives of F in the y, z directions. That
is, with x held constant the domains Λ2

+T
∗
xC and T ∗

xC ⊗ Λ2
+T

∗
xC of y, z and

the range Λ3T ∗
xC of F are vector spaces, so the map (y, z) 7→ F (x, y, z) is a

smooth map between vector spaces, and has well-defined partial derivatives.

Then expanding (35) gives

∆C

[
P (ζ2

+, ζ
4)

]
= Lζ2

+
(ζ2

+, ζ
4) + E(x, ζ2

+,∇ζ
2
+,∇

2ζ2
+), (36)
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where Lζ2
+

is the linear third-order operator for 0 6 n 6 m+ 1 given by

Lζ2
+

: Lp
n+3,γ(Λ2

+T
∗C ⊕ Λ4T ∗C) −→ Lp

n,γ(Λ
3T ∗C),

Lζ2
+
(ξ2+, ξ

4)|x = (∂zF )(x, ζ2
+|x,∇ζ

2
+|x) · ∆C∇ξ

2
+|x + ∆Cd∗ξ4|x,

(37)

and E(x, ζ2
+,∇ζ

2
+,∇

2ζ2
+) is the ‘error term’ given by

E(x, ζ2
+,∇ζ

2
+,∇

2ζ2
+) = (∂yF )(x, y, z) · ∆Cζ

2
+ + gab

C (∇x
a∇

x
bF )(x, y, z)

+gab
C (∇x

a∂
yF )(x, y, z) · ∇bζ

2
+ + gab

C (∇x
a∂

zF )(x, y, z) · ∇b∇ζ
2
+

+gab
C (∂y∇x

bF )(x, y, z) · ∇aζ
2
+ + gab

C (∂y∂yF )(x, y, z) · (∇aζ
2
+ ⊗∇bζ

2
+)

+gab
C (∂y∂zF )(x, y, z) · (∇aζ

2
+ ⊗∇b∇ζ

2
+) + gab

C (∂z∇x
bF )(x, y, z) · ∇a∇ζ

2
+

+gab
C (∂z∂yF )(x, y, z)·(∇a∇ζ

2
+⊗∇bζ

2
+)

+gab
C (∂z∂zF )(x, y, z)·(∇a∇ζ

2
+⊗∇b∇ζ

2
+).

(38)

Here in (37) and (38) we have used ‘ · ’ to denote various natural bilinear prod-
ucts, and in (38) we write y = ζ2

+|x and z = ∇ζ2
+|x in the arguments of F .

The point is that (36) splits ∆C [P (ζ2
+, ζ

4)] up into the piece Lζ2
+
(ζ2

+, ζ
4) con-

taining all the third derivative terms of ζ2
+, ζ

4 , plus a term E(x, ζ2
+,∇ζ

2
+,∇

2ζ2
+)

depending only on ζ2
+ up to second derivatives. Furthermore, we may write

Lζ2
+
(ζ2

+, ζ
4) as a linear operator Lζ2

+
applied to (ζ2

+, ζ
4), where the coefficients

of Lζ2
+

depend on ζ2
+ only up to first derivatives.

The operator Lζ2
+

is essentially ∆C(d+ + d∗), and so is a linear third-order

elliptic operator. Note that we allow 0 6 n 6 m + 1 in (37). The reason
for this is that the coefficients of Lζ2

+
depend on ζ2

+,∇ζ
2
+ , and so lie in Lp

m+1

locally. So the maximum regularity we can expect for Lζ2
+
(ξ2+, ξ

4) is Lp
m+1 ,

forcing n 6 m+ 1.

The most obvious value for n in (37) is n = m− 1, as then the domain of Lζ2
+

is the space Lp
m+2,γ containing (ζ2

+, ζ
4). However, our next lemma is an elliptic

regularity result for Lζ2
+

when n = m. This is because we will use it to increase

the regularity of (ζ2
+, ζ

4) from Lp
m+2,γ to Lp

m+3,γ by ‘bootstrapping’.

Lemma 4.7 There exists A > 0 such that if (ξ2+, ξ
4) ∈ Lp

3,γ(Λ2
+T

∗C⊕Λ4T ∗C)

with Lζ2
+
(ξ2+, ξ

4) ∈ Lp
m,γ(Λ3T ∗C) then (ξ2+, ξ

4) ∈ Lp
m+3,γ(Λ2

+T
∗C ⊕ Λ4T ∗C),

and ∥∥(ξ2+, ξ
4)

∥∥
Lp

m+3,γ
6 A

(∥∥Lζ2
+
(ξ2+, ξ

4)
∥∥

Lp
m,γ

+
∥∥(ξ2+, ξ

4)
∥∥

Lp
0,γ

)
. (39)
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Proof If Lζ2
+

were a smooth, asymptotically cylindrical elliptic operator the

lemma would follow from Lockhart and McOwen [15, Theorem 3.7.2], [16, Equa-
tion (2.4)]. We have to deal with the fact that the coefficients of Lζ2

+
depend

on ζ2
+,∇ζ

2
+ , and so are only Lp

m+1 locally rather than smooth. Unfortunately,
Lockhart and McOwen’s proof [16, p420] is not very informative, saying only
that (39) is established ‘by standard parametric techniques’.

Local results of this form are proved by Morrey [23, Section 6.2]. Supposing only
that the coefficients of the third-order elliptic operator Lζ2

+
are Cm , Morrey [23,

Theorem 6.2.5] implies that if (ξ2+, ξ
4) is locally Lp

3 and Lζ2
+
(ξ2+, ξ

4) is locally

Lp
m then (ξ2+, ξ

4) is locally Lp
m+3 . Also, [23, Theorem 6.2.6] proves a local

interior estimate of the form (39), where A > 0 depends on m,p, the domains
involved, Cm bounds on the coefficients of Lζ2

+
, and a modulus of continuity

for their mth derivatives.

Such a modulus of continuity is provided by a Hölder C0,α bound for the mth

derivatives, for α ∈ (0, 1). Thus, we can prove local estimates of the form (39)
provided we have local Cm,α bounds for the coefficients of Lζ2

+
, which follow

from local Cm+1,α bounds for ζ2
+ . Now ζ2

+ ∈ Lp
m+2,γ(Λ2

+T
∗C) and p > 4,

so the Sobolev Embedding Theorem shows that Lp
m+2 embeds in Cm+1,α for

α = 1 − 4/p. Therefore we do have Cm,α control on the coefficients of Lζ2
+

,

and can show that Lζ2
+

is asymptotic in a weighted Hölder Cm,α
γ sense to a

cylindrical operator. So (39) holds as in [16], and the lemma is proved.

Suppose now that ζ2
+ ∈ Q−1(0). Then for m = l > 1 we have (ζ2

+, 0) ∈
Lp

m+2,γ

(
Bǫ′(Λ

2
+T

∗C)
)
× Lp

m+2,γ(Λ4T ∗C), with P (ζ2
+, 0) ≡ 0. So (36) gives

Lζ2
+
(ζ2

+, 0) = −E(x, ζ2
+,∇ζ

2
+,∇

2ζ2
+). (40)

As ζ2
+ ∈ Lp

m+2,γ(Λ2
+T

∗C) we see from (38) and the asymptotic behavior of F

that the right hand side of (40) lies in Lp
m,γ(Λ3T ∗C). Lemma 4.7 with (ξ2+, ξ

4) =
(ζ2

+, 0) then shows that ζ2
+ ∈ Lp

m+3,γ(Λ2
+T

∗C). So we have increased the regu-

larity of ζ2
+ by one derivative. By induction we have ζ2

+ ∈ Lp
m+2,γ(Λ2

+T
∗C) for

m = l, l + 1, l + 2, . . . , and Proposition 4.6 is proved.

Now let Mγ
C be the moduli space of asymptotically cylindrical coassociative

submanifolds in M close to C , and asymptotic to L× (R′,∞) with decay rate
γ , as in Theorem 1.1. Define a map S : Q−1(0) → {4–submanifolds of M} by
S : ζ2

+ → Θ(Γζ2
+
), where Γζ2

+
is the graph of ζ2

+ in Bǫ′(Λ
2
+T

∗C) as above.
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Proposition 4.8 S is a homeomorphism from Q−1(0) to a neighborhood of

C in Mγ
C .

Proof First we must show that S maps Q−1(0) → Mγ
C . Let ζ2

+ ∈ Q−1(0),

and set C̃ = S(ζ2
+). Then (Θ ◦ ζ2

+)∗(ϕ) = Q(ζ2
+) = 0, so ϕ| eC = 0 as C̃ is the

image of the map Θ ◦ ζ2
+ : C → M . Hence C̃ is coassociative. Proposition 4.6

and Sobolev Embedding shows that ζ2
+ is smooth, so C̃ is a smooth submanifold

of M .

To show C̃ is asymptotically cylindrical with rate γ , note that Θ ◦ ζ2
+ : C → C̃

is a diffeomorphism. Define K̃ ′ = Θ ◦ ζ2
+(K ′) and Φ̃ : L× (R′,∞) → C̃ \ K̃ ′ by

Φ̃ = Θ ◦ ζ2
+ ◦ Φ. Then K̃ ′ is compact, and Φ̃ is a diffeomorphism. Now ζ2

+ is
a section of Λ2

+T
∗C ∼= νC , so Φ∗(ζ2

+) is a section of Φ∗(νC) over L× (R′,∞).
Pulling back by the isomorphism ξ gives a section ξ∗ ◦ Φ∗(ζ2

+) of the vector
bundle νL × (R′,∞) over L× (R′,∞).

Now the normal vector field v on L × (R′,∞) making (3) commute is also a
section of νL × (R′,∞). Define ṽ = v+ ξ∗ ◦Φ∗(ζ2

+). Then ṽ is a section of L×
(R′,∞), and the definition of Ξ in (30) and part (iii) of the definition of Θ after
(33) show that (3) commutes with C,K ′,Φ, v replaced by C̃, K̃ ′, Φ̃, ṽ . Therefore
by Definition 2.9, C̃ is asymptotically cylindrical with rate γ if

∣∣∇kṽ
∣∣ = O(eγt)

on L× (R′,∞) for all k > 0.

As C is asymptotically cylindrical with rate β < γ we have
∣∣∇kv

∣∣ = O(eβt) for
all k > 0. Proposition 4.6 and Sobolev Embedding for weighted spaces, which
holds as in Lockhart [15, Theorem 3.10] and Bartnik [2, Theorem 1.2], then
imply that

∣∣∇kζ2
+

∣∣ = O(eγρ) on C for all k > 0, where ρ is as in Definition 3.1.
Therefore ∇k(ξ∗ ◦Φ∗(ζ2

+)) = O(eγt) on L× (R′,∞), as Φ∗(ρ) ≡ t, and ξ,Φ are
asymptotically cylindrical. As β < γ this gives

∣∣∇kṽ
∣∣ = O(eγt) for all k > 0,

and C̃ is asymptotically cylindrical with weight γ . Hence S maps Q−1(0) →
Mγ

C .

Next we reverse the argument. Suppose C̃ is close to C in Mγ
C . As C̃, C

are C1 close there exists a unique smooth section ζ2
+ of Bǫ′(Λ

2
+T

∗C) such

that Θ ◦ ζ2
+ : C → C̃ is a diffeomorphism. Since ϕ| eC ≡ 0 we have Q(ζ2

+) =

(Θ◦ζ2
+)∗(ϕ) = 0. Let C̃ have data K̃ ′ , Φ̃, ṽ as in Definition 2.9. The argument

above shows that ṽ = v+ ξ∗ ◦Φ∗(ζ2
+). But

∣∣∇kv
∣∣ = O(eγt) and

∣∣∇kṽ
∣∣ = O(eγt)

for all k > 0. Subtracting implies that
∣∣∇kζ2

+

∣∣ = O(eγρ) on C for all k > 0.

We need to show that ζ2
+ ∈ Lp

l+2,γ

(
Bǫ′(Λ

2
+T

∗C)
)
. The estimate

∣∣∇kζ2
+

∣∣ =

O(eγρ) for k > 0 does not prove this, however it does imply that ζ2
+ lies in
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Lp
l+2,γ′

(
Bǫ′(Λ

2
+T

∗C)
)

for any γ′ > γ . Hence ζ2
+ lies in Q′−1(0), where Q′ is Q

defined with rate γ′ .

Choose γ′ > γ such that [γ, γ′] ∩ D(d++d∗)0 = ∅. Then Q−1(0) ⊆ Q′−1(0),
and from above Q−1(0), Q′−1(0) are smooth, finite-dimensional and locally
isomorphic to Ker

(
(d+ + d∗)pl+2,γ

)
, Ker

(
(d+ + d∗)pl+2,γ′

)
respectively. But as

[γ, γ′]∩D(d++d∗)0 = ∅ these kernels are equal, so Q−1(0) and Q′−1(0) coincide

near 0. Thus if C̃ is close enough to C in Mγ
C then ζ2

+ lies in Q−1(0), as we
want.

To show S is a homeomorphism requires us to specify the topology on Mγ
C ,

which we have not done. The natural way to define a topology on a space of
submanifolds is to identify submanifolds C̃ near C with sections of the normal
bundle νC to C , and induce the topology from some Banach norm on a space
of sections of νC . In our case, this just means that the topology on Mγ

C is
induced from some choice of Banach norm on sections ζ2

+ of Λ2
+T

∗C , say the
C1

γ topology.

But since Q−1(0) with its Lp
l+2,γ topology is locally homeomorphic to the finite-

dimensional vector space Ker
(
(d++d∗)pl+2,γ

)
, any choice of topology on sections

ζ2
+ gives the same topology on Mγ

C , as all Banach norms give the same topology
on a finite-dimensional space. So S is a local homeomorphism.

As from above Q−1(0) is smooth, finite-dimensional and locally isomorphic to
Ker

(
(d++d∗)pl+2,γ

)
, Theorem 3.10 and Proposition 4.8 now prove Theorem 1.1.

Remark 4.9 In a forthcoming paper, we study the deformation space of
asymptotically cylindrical coassociative submanifolds with moving boundary.
Similarly to the setting here, we work with an asymptotically cylindrical G2–
manifold M with a Calabi–Yau boundary X at infinity. We also assume that
the boundary of the coassociative submanifold at infinity is a special Lagrangian
submanifold of X and is allowed to move. The details of this construction will
appear in [26].
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