Geometry \& Topology
Volume 8 (2004) 969\{1012
Published: 8J uly 2004

Increasing trees and K ontsevich cycles

Kiyoshi Igusa
Michael Kleber
Department of Mathematics, Brandeis University
Waltham, MA 02454-9110, USA
Email: i gusađor andei s. edu, kl eber đor andei s. edu

Abstract

It is known that the combinatorial classes in the cohomology of the mapping class group of punctures surfaces de ned by Witten and K ontsevich are polynomials in the adjusted Miller\{Morita\{Mumford classes. The leading coe cient was computed in [4]. Thenext coe cient was computed in [6]. The present paper gives a recursive formula for all of the coe cients. The main combinatorial tool is a generating function for a new statistic on the set of increasing trees on $2 n+1$ vertices. As we already explained in [6] this veri es all of the formulas conjectured by Arbarello and Cornalba [1]. Mondello [10] has obtained similar results using di erent methods.

AMS Classi cation numbers Primary: 55R 40
Secondary: 05C05

Keywords: Ribbon graphs, graph cohomology, mapping class group, Sterling numbers, hypergeometric series, Miller \{M orita\{Mumford classes, tautological classes

Proposed: Shigeyuki Morita
Seconded: Ralph Cohen, Martin Bridson

Received: 30 March 2003
Accepted: 11 J une 2004

Introduction

This is the last of three papers on the relationship between the adjusted Miller \{ Morita\{Mumford (MMM) classes e_{n}, also known as tautological classes (times $\left.(-1)^{\mathrm{n}+1}\right)$, in the integral cohomology of the mapping class group and certain combinatorial classes de ned by Witten and K ontsevich. In the rst paper [4] we showed that these combinatorial classes [W], are polynomials in the MMM classes and we computed the leading coe cient:

$$
\begin{equation*}
[W]=Y_{i=1}^{Y^{r}} \frac{\left((-2)^{k_{i}+1}\left(2 k_{i}+1\right)!!\right)^{n_{i}}}{n_{i}!} e+\text { lower terms } \tag{1}
\end{equation*}
$$

if $=k_{1}^{n_{1}} k_{2}^{n_{2}} \quad k_{r}^{n_{r}}$ is a partition of ${ }^{P} n_{i} k_{i}$ into ${ }^{P} n_{i}$ parts. Here we use the notation of our second paper [6]

$$
e=Y_{i=1}^{Y} e_{k_{i}}^{n_{i}}:
$$

The formula (1) was conjectured by Arbarello and Cornalba [1] and answers questions posed by Witten and K ontsevich [8]. The introduction of [4] gives a more detailed history of the problem.

In the next paper [6] we rephrased the theorem (1) above in terms of graph cohomology using an integral version of Kontsevich's theorem that the cohomology of the mapping class group is rationally isomorphic to the doubledual of the graph homology of connected ribbon graphs. We also computed $a_{n ; 1}^{n+1}$ which is the next case of a coe cient in the polynomial (1) and the dual coe cient $\mathrm{b}_{n ; 1}^{\mathrm{n}+1}$. The notation is:

$$
\begin{equation*}
[W]=^{X} \text { a e; } \quad e=^{X} b[W] \tag{2}
\end{equation*}
$$

where a and b are rational numbers.
The formula proved in [6] is

$$
\begin{equation*}
a_{n ; 1}^{n+1}=\frac{-12 a_{n}-(2 n+5) a_{n+1}}{\operatorname{Sym}(n ; 1)} ; \quad b_{n ; 1}^{n+1}=\frac{2 n+5}{12 a_{n}}+\frac{1}{a_{n+1}} \tag{3}
\end{equation*}
$$

where $a_{n}=(-2)^{n+1}(2 n+1)!$ and $\operatorname{Sym}(n ; 1)=1+n_{n 1}$ is the number of symmetries of $(\mathrm{n} ; 1)$ (equal to 2 if $\mathrm{n}=1$ and 1 otherwise).

The purpose of the present paper is to complete this project by giving an algorithm for computing all of the coe cients a ; b and, as an example, obtaining
the following generalization of (3) conjectured in [6].

$$
\begin{equation*}
a_{n ; k}^{n+k}=\frac{-(2 n+2 k+3) a_{n+k}-a_{n} a_{k}}{\operatorname{Sym}(n ; k)} ; \quad b_{n ; k}^{n+k}=\frac{2 n+2 k+3}{a_{n} a_{k}}+\frac{1}{a_{n+k}} \tag{4}
\end{equation*}
$$

In the meantime, Gabride Mondello has also obtained the same result [10].
The contents of this paper are as follows. The rst section summarizes the de nitions and results of the previous two papers. In section 2 we study the degenerate case corresponding to degree 0 MMM class e_{0} which is equal to the Euler characteristic considered as a function ($0\{$ cocycle) on the space of ribbon graphs. This is related in a simple way to the degenerate dual Witten cycle W_{0} which counts the number of trivalent vertices of a ribbon graph. The formula involves Stirling numbers of the rst and second kind.
In the third section we show that the determination of the numbers a and b is equivalent to the determination of the cup product structure of the dual K ontsevich cycles. This is more or less obvious. The coe cients in the product are not all integers since the dual K ontsevich cycles are not integral generators.
The coe cients a are determined by the coe cients of the inverse matrix b which, by the sum of products formula, are determined by the special cases b^{n}. Section 4 gives a formula for these coe cients b^{n} in terms of the category of ribbon graphs. In the next section this is reduced to a formula involving tree polynomials. As an example we show in Corollary 5.9 that

$$
\begin{equation*}
\left[\mathrm{W}_{111}\right]=288 \mathrm{e}_{1}^{3}+4176 \mathrm{e}_{2} \mathrm{e}_{1}+20736 \mathrm{e}_{3} \tag{5}
\end{equation*}
$$

This formula, together with (1) and (4), veri es all values of the coe cients a conjectured by Arbarello and Cornal ba in [1].
In Section 6 we compute the tre polynomial in the case when almost all of the variables are equal to 1 . The main application is Section 7 , where we prove the formula (4) for $\mathrm{b}_{\mathrm{f} ; \mathrm{k}}^{+\mathrm{k}}$. The problem becomes one of nding the closed form for a double sum of a hypergeometric term.
In Section 8 we obtain the following description of the what we call the reduced tre polynomial. Suppose that T is an increasing tre with vertices $0 ; 1 ; \quad ; 2 k$ in the sense that, for every $0 \quad$ j $\quad 2 k$ the vertices $0 ; 1 ; \quad ; j$ span a connected subgraph of T. Then we associate to T the monomial

$$
x^{\top}=x_{0}^{n_{0}} x_{1}^{n_{1}} \quad x_{2 k}^{n_{2 k}}
$$

where n_{j} is the number of components of $T-f j g$ with an even number of vertices. The reduced tree polynomial is de ned to be

$$
\begin{equation*}
\hat{F}_{k}\left(x_{0} ; \quad ; x_{2 k}\right)=X_{T}^{\top} \tag{6}
\end{equation*}
$$

where the sum is over all increasing trees with vertices $0 ; \quad ; 2 k$. We also show that the reduced tre polynomial T_{k} is related to the tre polynomial T_{k} of the previous section by the formula

$$
T_{k}=x_{0} F_{k}:
$$

This tells us several things that were not obvious before. For example, T_{k} is a homogeneous polynomial of degre $2 k+1$ with nonnegative integer coe cients adding up to (2k)!. In Section 9 we give a recursive formula for the reduced tre polynomial. By Theorem 5.5 this gives a recursive formula for b^{n}. By the sum of products rule (Lemma 1.4) this gives a formula for b and thus for the a . Examples are given in the last section.
The authors would like to thank Danny Ruberman for his support and encouragement during this project. The rst author is supported by NSF Grants DMS-0204386, 0309480.

The section titles are:
1 Preliminaries
2 Sterling numbers and the degenerate case
3 Cup product structure of Kontsevich cycles
4 Formula for b^{n}
5 Reduction to the tree polynomial
6 First formula for T_{k}
7 A double sum
8 Reduced tree polynomial
9 Recursion for F_{k}
10 Examples of \hat{F}_{k}

1 Preliminaries

We work in the category of ribbon graphs. These are de ned to begraphs with a designated cyclic ordering of the half edges incident to each vertex. We consider only nite connected ribbon graphs. We use the Conant \{Vogtmann defnition [3] for the K ontsevid orientation of a connected graph. This is an ordering up to even permutation of the set consisting of the vertices and half-edges of the graph.

Suppose that Γ is an oriented ribbon graph and e is an edge of Γ which is not a loop (ie, the half-edges $e_{1} ; e_{2}$ of e are incident to distinct vertices $v_{1} ; v_{2}$. Then the graph $\Gamma=e$ obtained from Γ by collapsing e to a point v has the structure of a ribbon graph and also has an induced orientation which is given by v (etc:) if the orientation of Γ is written as $\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{e}_{1} \mathrm{e}_{2}$ (etc:). If Γ is obtained from a trivalent graph by collapsing n edges we say that Γ has codimension n.

The category of connected ribbon graphs is denoted F at. The morphisms of this category are compositions of collapsing maps $\Gamma!\Gamma=e$ and isomorphisms. The main property of this category is that its geometric realization is integrally homotopy equivalent to the disjoint union of all mapping class groups $\mathrm{M}_{\mathrm{g}}^{s}$ of punctured surfaces (with s 1 punctures and genus g) except for the once and twice punctured sphere:

$$
\text { jF atj }, \quad \begin{gathered}
\text { s } 1 ;(\mathrm{s} 3 \text { if } g=0) \\
\mathrm{BM}_{\mathrm{g}}^{\mathrm{s}} .
\end{gathered}
$$

This theorem is usually attributed to Strebel [14]. A topological proof using Outer Space (from [2]) can be found in [5].

By a theorem of Kontsevich proved in [3] and re ned in [6], the cohomology of F at (or equivalently, $\mathrm{Mg}_{\mathrm{g}}^{\mathrm{s}}$) is rationally isomorphic to the cohomology of the associative graph cohomology complex. We work in the integer subcomplex of the rational associative graph cohomology complex generated by the cochains
hi := jAut(Г)j[Г]

This is a \mathbb{Z} \{augmented complex of free abelian groups which can be described as follows.

De nition 1.1 For all $n \quad 0$ let $G_{n}^{\mathbb{Z}}$ bethefreeabelian group generated by all isomorphism classes K V of oriented connected ribbon graphs Γ of codimension n without orientation reversing automorphisms modulo the relation $\mathrm{h}-\Gamma \mathrm{i}=$ $-\mathrm{H}^{\mathrm{C}} \mathrm{i}$. For $\mathrm{n} \quad 1$ let $\mathrm{d}: \mathrm{G}_{\mathrm{Z}}^{\mathbb{Z}}$! $\mathrm{G}_{\mathrm{n}-1}^{\mathbb{Z}}$ be given by

$$
d h \Gamma i={ }^{X} W_{i} i
$$

where the sum is over all isomorphism classes of oriented ribbon graphs Γ_{i} over Γ with one extra edge e so that $\Gamma=\Gamma \neq \not$ with the induced orientation.

Theorem 1.2 (Kontsevich [3]) H ($\left.\mathrm{BM}_{\mathrm{g}}^{\mathrm{s}} ; \mathbb{Q}\right)=\mathrm{H}\left(\mathrm{G}^{\mathbb{Z}} ; \mathbb{Q}\right)$.
The re nement of this theorem proved in [6] is:

Theorem 1.3 This rational equivalence is induced by an augmented integral chain map

$$
: C(F a t)!G^{\mathbb{Z}}
$$

where C (F at) is the cellular chain complex of the nerve of F at.
If $=1^{r_{1}} 2^{r_{2}}$ is a partition of $n={ }^{P}$ ir r_{i}, the dual Kontsevich cycles W is the integral 2 n cocycle on the integral cohomology complex $\mathrm{G}^{\mathbb{Z}}$ given as follows:

$$
W(\mathrm{hi})=o(\Gamma)=1
$$

if Γ is an oriented ribbon graph of codimension $2 n$ having exactly r_{i} vertices of valence $2 i+3$ and no even valence vertices. The sign is $+i f \Gamma$ has the natural orientation (given by taking each vertex followed by the incident half edges in cydic order) and - is not. This set of ribbon graphs is denoted W and called the K ontsevich cycle. If Γ is not in W then $W(~(~ T ~ i ~) ~=~ 0 . ~$
Recall that the Miller\{Morita\{Mumford class ${ }_{n} 2 \mathrm{H}^{2 n}\left(B M_{g} ; \mathbb{Z}\right)$ is de ned topologically ([9], [11]) as the image under the transfer

$$
\mathrm{p}: \mathrm{H}^{2 \mathrm{n}+2}(E)!H^{2 n}\left(B M_{g}\right)
$$

of the $n-1^{\text {st }}$ power e^{n} of the Euler class e $2 H^{2}(E)$ of the vertical tangent bundle of the universal surface bundle over $\mathrm{B} \mathrm{M}_{\mathrm{g}}$ with ber an oriented surface
g of genus g . If we pull this surface bundle back to the space $B=B M_{\mathrm{g}}^{\mathrm{s}}$ which maps to $B M_{g}$, we get s points in each ber forming an $s\{f o l d$ covering space over B. The adjusted or punctured Miller\{Morita\{Mumford class is given by

$$
e_{n}=n-p\left(c^{n}\right)
$$

where c $2 \mathrm{H}^{2}(\mathrm{~B})$ is the Euler class of the vertical tangent bundle of E pulled back to \mathbb{B}. (See[7] for more details about this construction and its relationship to higher Franz\{Reidemeister torsion.) Arbarello and Cornalba [1] showed that these are the correct versions of the MMM classes which should be compared to the combinatorial classes of Witten and K ontsevich.

In [4] it was shown that the adjusted MMM classes are represented by the cyclic set cocycle c_{F}^{n} at adjusted by a factor of -2 :

$$
e_{n}=-\frac{1}{2}\left[c_{F a t}^{n}\right]:
$$

Therefore, e_{n} is represented by the adjusted cyclic set cocycle

$$
\mathrm{C}_{\mathrm{h}}=-\frac{1}{2} c_{\mathrm{Fat}}^{\mathrm{n}}:
$$

This cocycle can be de ned as follows. Take any $2 n$ \{simplex

$$
\Gamma: \Gamma_{0}!\Gamma_{1}!\quad!\Gamma_{2 n}
$$

in the category of ribbon graphs. Then

$$
e_{n}(\Gamma)=-\frac{1}{2}_{v}^{X} m(v){ }^{X} \frac{\operatorname{sgn}\left(a_{0} ; a_{1} ; \quad ; a_{2 n}\right)}{j C_{0} j j C_{1} j \quad j C_{2 n} j}
$$

where the rst sum is over all vertices v of $\Gamma_{0}, m(v)$ is the valence of v minus 2 , and the second sum is over all choices of angles a_{i} of the vertex v_{i} which is the image of v in Γ_{i}. The denominator has the sizes $j C_{i j} j$ are the sets C_{i} of angles about v_{i} (so $a_{i} 2 C_{i}$ for each i). The sign is the sign of the permutation of the images of a_{i} in the nal set $C_{2 n}$. When these angles are not distinct, the sign is zero and, more generally, the sign sum is equal to the partial sum given by choosing each a_{i} in the complement of the image of C_{i-1} in C_{i}. For more details, see [4].

The relationship between the adjusted MMM classes e_{n} and the dual Witten cycles $\left[W_{n}\right.$] is given ([4]) by

$$
\left[W_{n}\right]=a_{n} e_{n} ; \quad e_{n}=b_{n}\left[W_{n}\right]
$$

where

$$
a_{n}=\frac{1}{b_{n}}=(-2)^{n+1}(2 n+1)!!
$$

To compute the other coe cients in (2) we need the following formula proved in [6], Lemma 3.15.

Lemma 1.4 (Sum of products rule) If $=\left({ }^{\prime} ;\right.$; ${ }^{\prime}{ }_{r}$) is a partition of n into r parts and $=\left(m_{1} ; \quad ; m_{s}\right)$ is a partition of the same number n into s parts then the coe cient b in equation (2) is equal to the sum

$$
b=\underbrace{X}_{f \quad{ }_{j=1}} b_{(j)}^{m_{j}}
$$

over all epimorphisms

$$
f: f 1 ; \quad ; r g \rightarrow f 1 ; \quad ; s g
$$

having the property that the sum of the numbers ' i over all i $2 \quad(j)=f^{-1}(j)$ is equal to m_{j} of the product over all $1 \quad j \quad s$ of the coe cient $b^{m_{j}}{ }_{(j)}$ where
${ }_{(j)}$ is the partition of m_{j} given by the numbers ' i for i 2 (j).
By this formula it su ces to compute the numbers b^{m}.

2 Sterling numbers and the degenerate case

We start with an examination of the degenerate case $\mathrm{W}_{0 n}$. These are polynomials in the $0^{\text {th }}$ adjusted cyclic set cocycle e_{0}, equal to the $0^{\text {th }}$ (topological) Miller\{Morita\{Mumford class e_{0}, which is the Euler characteristic. If Γ is trivalent with the natural orientation, then

$$
\mathrm{eh} \Gamma \mathrm{i}=(\Gamma)=\frac{\mathrm{v}}{-2}
$$

where v is the number of vertices of Γ. (In general we need to count the number of vertices with multiplicity, ie, valence minus 2.)
Weinterpret the 0 'sin $W_{0 n}$ as counting thenumber of vertices with multiplicity:

$$
\begin{equation*}
W_{0 n} W \Gamma i={ }_{n}^{v}={ }_{n}^{-2 e_{0}}=\frac{1}{n!}_{i=0}^{X n} S_{1}(n ; i)\left(-2 e_{0}\right)^{i} \tag{7}
\end{equation*}
$$

where $S_{1}(n ; i)$ is the Stirling number of the rst kind. This can be solved for the e_{0} to give:

$$
\begin{equation*}
e_{0}^{m}={\frac{1}{(-2)^{m}}}_{n=0}^{X^{m}} n!S_{2}(m ; n) W_{0 n} \tag{8}
\end{equation*}
$$

where $\mathrm{S}_{2}(\mathrm{~m} ; \mathrm{n})$ are the Stirling numbers of the second kind.
In the notation of [6], this is

$$
\epsilon_{0}^{m}={ }_{n=0}^{x^{m}} b_{m}^{n} W_{0 n}
$$

where

$$
\begin{equation*}
b_{o m}^{\rho_{m}^{n}}=\frac{n!S_{2}(m ; n)}{(-2)^{m}}: \tag{9}
\end{equation*}
$$

This is consistent with the formula
where the sum is taken over all surjective mappings

$$
\mathrm{f}: \mathrm{f} 1 ; 2 ; \quad ; \mathrm{mg} \rightarrow \mathrm{f} 1 ; 2 ; \quad ; \mathrm{ng}
$$

with m_{j} being the number of elements in $(j)=f^{-1}(j)$. Since there are $n!S_{2}(m ; n)$ such mappings f, this agrees with (9).
Assume for a moment that the sum of products formula (Lemma 1.4) holds more generally for all partitions with 0 's. Thus, if $=(1 ; 2 ; 2 ; r)$ and
$=(1 ; 2 ; \quad ; \mathrm{s})$ are partitions of the same number n then we have the following which we take as a de nition. (It agrees with the previously de ned terms b when $p=q=0$.)

$$
\begin{equation*}
b_{o p}^{0 a}:=X_{f}^{X} b_{(1)}^{1} \quad b_{(r)}^{r} b_{(r+1)}^{0} \quad b_{(r+q)}^{0} \tag{10}
\end{equation*}
$$

where the sum is over all surjective mappings

$$
f: f 1 ; 2 ; \quad ; s+p g \rightarrow f 1 ; 2 ; \quad ; r+q g
$$

having the property that the sum of the parts j of for $\mathrm{j} 2(\mathrm{i})=\mathrm{f}^{-1}(\mathrm{i})$ is equal to i :

$$
i=X_{j 2(i)}^{X}
$$

where ${ }_{j}=0$ for $\mathrm{i}>\mathrm{s}$ and $\mathrm{i}=0$ for $\mathrm{i}>\mathrm{r}$. When the superscript of b is 0 the subscript must be 0^{m} for some $m \quad 1$ and we have

$$
b_{b m}^{\rho}=\frac{1}{(-2)^{m}}:
$$

If the superscript is i $\in 0$ then the subscript is a partition of \quad, say , plus any number of 0 's. We de ne

$$
b_{o m}^{i}:=\frac{(2 i+1)^{m}}{(-2)^{m}} b^{i}:
$$

This makes sense since it is supposed to be the contribution of a vertex of valence $2 i+3$ to the cup product

$$
\mathrm{e}_{\mathrm{om}}=\mathrm{e}_{0}^{\mathrm{m}}
$$

But each e_{0} is given by

$$
\frac{\mathrm{v}}{-2}=\frac{2 \mathrm{i}+1}{-2}:
$$

Putting these together in (10) we get the following.

Proposition 2.1

$$
b_{0 p}^{0 q}={ }_{m=0}^{p-q}{\underset{m}{p}}_{p!S_{2}(p-m ; q) \frac{(2 n+r)^{m}}{(-2)^{p}} b . ~}^{p}
$$

Weclaim that theseare the coe cients which convert monomials in the adjusted Miller\{Morita\{Mumford classes into linear combinations of dual Kontsevich cycles with 0's.

De nition 2.2 Let $=1^{n_{1}} 2^{n_{2}} \quad$ bea partition of $n={ }^{P} \quad i n_{i}$ into $r={ }^{P} n_{i}$ parts. We de ne the degenerate Kontsevich cycles W_{om} to be the integer cocycle of degre $2 n$ on the integer subcomplex of associative graph cohomology given by

$$
\mathrm{W}_{\mathrm{om}} \mathrm{~W} \Gamma \mathrm{i}=\mathrm{o}(\Gamma) \begin{aligned}
& \mathrm{n}_{0} \\
& \mathrm{~m}
\end{aligned}
$$

provided that Γ is a connected oriented ribbon graph having exactly n_{i} vertices of valence $2 i+1$ for all $i \quad 0$ and no vertices of even valence. The orientation $o(\Gamma)$ is 1 depending on whether or not the orientation of Γ is the natural one.

It is easy to express W_{om} in terms of the Euler characteristic

$$
=e_{0}=\frac{n_{0}+2 n+r}{-2}
$$

and the nondegenerate K ontsevich cycle W :

$$
\begin{aligned}
& W_{0 m}=\frac{1}{m!}{ }_{j=0}^{X^{m}} S_{1}(m ; j)\left(-2 e_{0}-2 n-r\right)^{j} W \\
= & \frac{1}{m!}_{0} X{ }_{j \quad m}^{S_{1}(m ; j)}{ }_{i}^{j}(-2 n-r)^{j-i}\left(-2 e_{0}\right)^{i} W
\end{aligned}
$$

Passing to cohomology classes, this can be written as follows.
Theorem 2.3 The degenerate K ontsevich cycles are related to the adjusted Miller \{M orita\{Mumford classes by

$$
\left[W_{o m}\right]={ }_{; i}^{X} a{ }_{o m}^{0_{m}^{i}} e e_{0}^{i}
$$

and

$$
\left.\mathrm{e} \mathrm{e}_{0}^{\mathrm{p}}={\underset{; q}{\mathrm{X}} \mathrm{~b}_{0 p}^{0 q}\left[W_{0 q}\right]}^{0}\right]
$$

where

$$
a_{o^{m}}^{0^{i}}=\frac{1}{m!}{ }_{j=i}^{x^{m}} S_{1}(m ; j){ }_{i}^{j}(-2 n-r)^{j-i}(-2)^{i} a
$$

and $b_{o p}^{09}$, de ned by (10), is given by Proposition 2.1.
Proof Using the duality between the rst and second Stirling numbers it is easy to see that the matrices with coe cients $b_{0 p}^{09}$, $a_{09}^{0 p}$ are inverse to each other.

3 Cup product structure of Kontsevich cycles

Using K ontsevich's theorem (1.2) the rational cohomology of $\mathrm{G}^{\mathbb{Z}}$ inherits a ring structure.

Theorem 3.1 The determination of the conversion coe cients a and b is equivalent to nding the coe cients m giving the cup product of the K ontsevid cocycles:

$$
[W]\left[[W]={ }^{X} m[W] 2 H(G ; \mathbb{Q})\right.
$$

Remark 3.2 Note that rational numbers mare well-de ned since [W] are linearly independent over \mathbb{Q} and span the same vector subspace as the monomials in the adjusted Miller\{Morita\{Mumford classes e. We also note that these numbers are not all integers. The simplest example is

$$
\left[W_{1}\right]\left[\left[W_{1}\right]=2\left[W_{1 ; 1}\right]+\frac{29}{5}\left[W_{2}\right]\right.
$$

which follows from the equations:

$$
\begin{gathered}
{\left[\mathrm{W}_{1}\right]=\mathrm{a}_{1} \mathrm{e}_{1}=12 \mathrm{e}_{1}} \\
\mathrm{e}_{1}^{2}=2\left(\mathrm{~b}_{1}\right)^{2}\left[\mathrm{~W}_{1 ; 1}\right]+\mathrm{b}_{1 ; 1}^{2}\left[\mathrm{~W}_{2}\right] \\
=\frac{2}{144}\left[\mathrm{~W}_{1 ; 1}\right]+\frac{7}{144}-\frac{1}{120}\left[\mathrm{~W}_{2}\right]
\end{gathered}
$$

Proof In one direction this is clear. If we know the numbers a and b then we can convert $[W]=P$ a e and $[W]=P$ a e, multiply and convert back. Thus,

$$
\begin{equation*}
m==^{x} \text { a a b : } \tag{11}
\end{equation*}
$$

The other direction is also easy. Suppose we know the numbers m and we want to nd a , b. We proceed by induction on the number of parts of . When $=\mathrm{n}$ is a partition of n with one part, then must also be equal to n since cannot have more parts than . But we know these numbers:

$$
a_{n}^{n}=\frac{1}{b_{n}^{n}}=(-2)^{n+1}(2 n+1)!!
$$

Suppose by induction that we know a, b for all partitions with r or fewer parts. Then setting $=\mathrm{n}$ in (11) there will be only one term on the right hand side (when $=$ and $==n$) which is unknown. This gives b_{n}. Taking the inverse matrix we also get all a_{n}.

4 Formula for b^{n}

Using the sum of products rule (Lemma 1.4), the calculation of the numbers b is reduced to the case when $=\mathrm{n}$ is a partition of n with one part. If $=(1 ; \quad ; r)$ is a partition of n into r parts then the number b^{n} is given by

$$
b^{n}=(-1)^{n} e D(\Gamma)=(-1)^{n}\left(e _ { 1 } \left[\quad\left[e_{r}\right) D(\Gamma)\right.\right.
$$

where Γ is a ribbon graph with natural orientation having one vertex of valence $2 n+3$ and all other vertices trivalent and $D(\Gamma)$ is any dual cell of Γ.

$$
D(\Gamma)={ }_{\Gamma}^{X} O(\Gamma)\left(\Gamma_{0}!\quad!\Gamma_{2 n}=\Gamma\right)
$$

wherethe sum is over all sequences of morphisms over Γ between representatives Γ_{i} of the isomorphism classes of ribbon graphs over Γ and $o(\Gamma)=1$ is positive i the natural orientations of $\Gamma=\Gamma_{2 n}$ agrees with the orientation induced from the natural orientation of the trivalent graph Γ_{0} by the collapsing morphisms in the sequence $\Gamma=\left(\Gamma_{0}!\quad!\Gamma_{2 n}=\Gamma\right)$ which we abbreviate as ($\Gamma_{0} ; \quad ; \Gamma_{2 n}$).
Combining these we get

$$
\mathrm{b}^{\mathrm{n}}=(-1)^{\mathrm{n}} \mathrm{X} \quad(\Gamma) \mathrm{e}_{1}\left(\Gamma_{0} ; \quad ; \Gamma_{2_{1}}\right) \quad \mathrm{e}_{\mathrm{r}}\left(\Gamma_{2 n-2} ; \quad ; \Gamma_{2 n}\right)
$$

「
We use the notation

$$
[i]=1+2++i
$$

(with $[0]=0$ and $[r]=n$). Then the $i^{\text {th }}$ factor in the expression for b^{n} is

$$
\begin{equation*}
\mathbf{e}_{\mathrm{i}}\left(\Gamma_{2[\mathrm{i}-1]} ; \Gamma_{2[\mathrm{i}-1]+1} ; \quad ; \Gamma_{2[i]}\right) \tag{12}
\end{equation*}
$$

We will factor the sign terms $(-1)^{\mathrm{n}}$ and $\mathrm{o}(\Gamma)$ into r factors and associate each factor to one of the factors (12).

First, we note that the graphs $\Gamma_{\text {[i] }}$ must all be odd valent in the sense that they have no even valent vertices. If not then one of the e_{i} factors (12) would be zero. Consequently, the orientation term o(Γ) can befactored as:

$$
o(\Gamma)=Y_{i-1}^{Y^{r}} o\left(\Gamma_{2[i-1] ;} ; \Gamma_{2[i]}\right):
$$

The sign $(-1)^{\mathrm{n}}$ also factors:

$$
(-1)^{n}={ }^{Y}(-1)^{i}:
$$

Geometry \& Topology, Volume 8 (2004)

So, b^{n} is a sum of products. Each product has r factors where the $\mathrm{i}^{\text {th }}$ factor has the form

$$
\begin{equation*}
(-1)^{i} \mathrm{O}\left(\Gamma_{2[\mathrm{i}-1]} ; \quad ; \Gamma_{2[\mathrm{ij}}\right) \mathrm{e}_{\mathrm{i}}\left(\Gamma_{2[\mathrm{i}-1]} ; \quad ; \Gamma_{2[\mathrm{ij}}\right) \tag{13}
\end{equation*}
$$

which we abbreviate as $(-1)^{i} o\left(\Gamma^{\mathrm{i}}\right) \mathrm{e}_{\mathrm{i}}\left(\Gamma^{\mathrm{i}}\right)$. But, the graphs $\Gamma_{2[i-1]+\mathrm{j}}$ for $1 \mathrm{j}<$ i occur only in the $i^{\text {th }}$ factor (13). Thus, we have the following.

Lemma 4.1 b^{n} can be expressed as a sum of products of sums:

The rst summation is over all sequences $\Gamma_{2[i]}, i=0 ; \quad ; r$ of (representatives of) isomorphism classes of odd valent graphs over $\Gamma=\Gamma_{2 n}=\Gamma_{2[r]}$ and the second sum is over all sequences of morphisms

$$
\Gamma^{i}=\left(\Gamma_{2[i-1]}!\Gamma_{2[i-1]+1}!\quad!\Gamma_{2[i]}\right)
$$

where each Γ_{j} is from a xed set of representatives from the set of isomorphism classes of oriented ribbon graphs over Γ.

Now we examine the possibilities for the graphs Γ_{2} [i]. Since Γ_{0} has codimension 0 it must be trivalent. In order for the rst factor in (14) to be nonzero, we must have that $\Gamma_{2[1]}$ is trivalent except at one vertex of valence $2_{1}+3$. More generally, we have the following.

Lemma 4.2 Suppose that the nontrivalent vertices of $\Gamma_{2}[i]$ have valences $2 n_{i 1}+3 ; \quad ; 2 n_{i k_{i}}+3$. Then, in order for the corresponding terms in (14) to be nonzero we must have the following.
(1) (i) $=n_{i 1}+\quad+n_{i k_{i}}$
(2) For each i 1 and each $\mathrm{j}<\mathrm{k}_{\mathrm{i}}$ there is an index (j) so that $\mathrm{n}_{\mathrm{i}-1 ;(\mathrm{j})}=$ $-n_{i j}$ and is an injective function.

Proof In order for the term $\mathrm{e}_{\mathrm{i}}\left(\Gamma_{2[i-1]}\right.$! ! $\left.\Gamma_{2[i]}\right)$ to be nonzero, the inverse images in $\Gamma_{2[i-1]}$ of the vertices of $\Gamma_{2[i]}$ must all be vertices (necessarily with the same valence) with only one exception. The exceptional vertex must have valence at least $2 ;+3$ and its inverse image must be a tree in $\Gamma_{2[i-1]}$ with that many leaves.

Next, we look at the factors in (14) for $\mathrm{i}=1 ; \quad ; r$. The rst factor is easy to compute:

$$
{ }_{\Gamma^{1}}(-1)^{1} o\left(\Gamma^{1}\right) e_{i}\left(\Gamma^{1}\right)=b_{1}=\frac{1}{(-2)^{1+1}\left(2_{1}+1\right)!!}
$$

The last factor ($\mathrm{i}=\mathrm{r}$) is more di cult. It is also universal in the sense that, if we can compute the last factor, we can compute all the factors. We make this statement more precise using the tree polynomial.

5 Reduction to the tree polynomial

Suppose that $n_{0} ; n_{1} ; \quad ; n_{2 k}$ are positive odd integers. Then we will de ne an integer $T_{k}\left(n_{0} ; \quad ; n_{2 k}\right)$. We will then show that this integer is given by a homogeneous polynomial in the variables $\mathrm{n}_{0} ; \quad ; \mathrm{n}_{2 k}$ with nonnegative integer coe cients. We call this the tree polynomial. We will also give a formula for the numbers b^{n} in terms of these polynomials.

De nition 5.1 Let $S h_{k}\left(n_{0} ; p ; n_{2 k}\right)$ be the set of permutations of the numbers $1 ; 2 ; \quad ; n$, where $n=n_{i}$, so that
(1) $(1)=1$,
(2) $\left(\mathrm{n}_{\mathrm{i}}+1\right)<\left(\mathrm{n}_{\mathrm{i}}+2\right)<\quad<\left(\mathrm{n}_{\mathrm{i}+1}\right)$ for $\mathrm{i}=-1$; ;2k-1 where $\mathrm{n}_{-1}=0$ and
(3) $\left(n_{i}+1\right)<(j)<\left(n_{i+1}\right)$ only when $j>n_{i}$.

We call these permutations cyclic shu es.
Cyclic shu es can be described as follows. Take the letters $a_{1} ; a_{2} ; \quad ; a_{n_{0}}$ in that order. Then insert the letters $b_{1} ; b_{2} ; \quad ; b_{1}$ in one block between two of the a's or after the last a. There are n_{0} ways to do this. Next, insert the letters $c_{1} ; c_{2} ; \quad ; c_{n_{3}}$ in one block between two letters in the sequence so far or after the last letter. There are $n_{0}+n_{1}$ ways to do this. Thus the number of elements in this set is

$$
j S h_{k}\left(n_{0} ; \quad ; n_{2 k}\right) j=n_{0}\left(n_{0}+n_{1}\right)\left(n_{0}+n_{1}+n_{2}\right) \quad\left(n_{0}+\quad+n_{2 k-1}\right):
$$

Cydic shu es have several signs associated to them. Theordinary sign of will becalled its orientation. We also havetheselected sign denoted sgn ($a_{i} ; b ;$) which are the sign of restricted to a subset given by selecting one letter of each kind. For example, take the cyclic shu e

$$
=a_{1} a_{2} b_{1} c_{1} c_{2} c_{3} c_{4} b_{2} a_{3}:
$$

The orientation is $\operatorname{sgn}()=-1$ and there are 324 selected signs

$$
\operatorname{sgn}\left(a_{i} ; b_{j} ; c_{k}\right)=(-1)^{(j=2)} ;
$$

ie, the selected sign is negative $i \quad b_{2}$ is selected.
The sum of all selected signs will be called the sign sum of . By the oriented sign sum we mean the product of the sign sum with the orientation of :
$\operatorname{sgn}()^{X} \operatorname{sgn}\left(a_{i} ; y_{i} ;\right)=\operatorname{sgn}() \quad \operatorname{sgn}\left((i) ;\left(n_{0}+j\right) ; \quad\right):$
This has ${ }^{Q}{ }_{n i}$ terms. (The sum is for $i=1 ; \quad ; n_{0} ; j=1 ; \quad ; n_{1}$, etc.) It is easy to see that the oriented sign sum is divisible by $n_{2 k}$ since the selected sign sgn ($a_{i} ; b_{i} ; \quad ; y_{p}$) is independent of the last index p. (Note that the English language has an even number of letters so the $2 k+1^{\text {st }}$ letter cannot be z.)

De nition 5.2 Let $T_{k}\left(n_{0} ; \quad ; n_{2 k}\right)$ be the sum over all cyclic shu es of the oriented sign sum of :

$$
\mathrm{T}_{\mathrm{k}}\left(\mathrm{n}_{0} ; \quad ; \mathrm{n}_{2 \mathrm{k}}\right)=\mathrm{X}_{2 S h_{k}\left(\mathrm{n}_{0} ; ; n_{2 k}\right)} \operatorname{sgn}()^{\mathrm{X}} \operatorname{sgn}\left(\mathrm{a}_{\mathrm{i}} ; \mathrm{b} ; \quad\right)
$$

Let

$$
\mathrm{Q}_{\mathrm{k}}\left(\mathrm{n}_{0} ; \quad ; \mathrm{n}_{2 \mathrm{k}}\right)=\frac{\mathrm{T}_{\mathrm{k}}\left(\mathrm{n}_{0} ; \quad ; \mathrm{n}_{2 \mathrm{k}}\right)}{\mathrm{jSh}_{k}\left(\mathrm{n}_{0} ; \quad ; \mathrm{n}_{2 \mathrm{k}}\right) \mathrm{j}}
$$

be the average (expected value) of the oriented sign sum over all cydic shu es

We call $\mathrm{T}_{\mathrm{k}}\left(\mathrm{n}_{0} ; \quad ; \mathrm{n}_{2 \mathrm{k}}\right)$ the tre polynomial since it is a homogeneous polynomial in $\mathrm{n}_{0} ; \quad ; \mathrm{n}_{2 \mathrm{k}}$ with nonnegative integer coe cients. (Theorem 8.6 below). In Section 8 we will show that this polynomial is in fact the generating function for a statistic on the set of increasing trees with labels $0 ;::: ; 2 \mathrm{k}$. First we record some obvious properties of the tree polynomial.

Proposition 5.3 For all positive odd integers $\mathrm{n}_{0} ; \quad ; \mathrm{n}_{2 k}$ we have:
(1) $T_{k}\left(n_{0} ; \quad ; n_{2 k}\right)$ is an integer.
(2) $T_{k}\left(n_{0} ; \quad ; n_{2 k}\right)=n_{2 k} T_{k}\left(n_{0} ; \quad ; n_{2 k-1} ; 1\right)$.
(3) $T_{k}\left(n_{0} ; \quad ; n_{2 k}\right)$ is diyjsible by n_{0} and the quotient $T_{k}\left(n_{0} ; \quad ; n_{2 k}\right)=n_{0}$ is the sum of $\operatorname{sgn}()$ sgn ($a_{i} ; b ;$) over all cyclic shu es which insert the b's after the a's.

This allows us to compute the rst nontrivial treepolynomial. (The trivial case is $\mathrm{T}_{0}\left(\mathrm{n}_{0}\right)=\mathrm{Q}_{0}\left(\mathrm{n}_{0}\right)=\mathrm{n}_{0}$.)

Corollary 5.4 $\mathrm{T}_{1}\left(\mathrm{n}_{0} ; \mathrm{n}_{1} ; \mathrm{n}_{2}\right)=\mathrm{n}_{0}\left(\mathrm{n}_{0}+\mathrm{n}_{1}\right) \mathrm{n}_{2}$, so $\mathrm{Q}_{1}\left(\mathrm{n}_{0} ; \mathrm{n}_{1} ; \mathrm{n}_{2}\right)=\mathrm{n}_{2}$.
Proof Since $T_{1}\left(n_{0} ; n_{1} ; n_{2}\right)=n_{2} T_{1}\left(n_{0} ; n_{1} ; 1\right)$ it su ces to show that

$$
\frac{\mathrm{T}_{1}\left(\mathrm{n}_{0} ; \mathrm{n}_{1} ; 1\right)}{\mathrm{n}_{0}}=\mathrm{n}_{0}+\mathrm{n}_{1}:
$$

By Proposition 5.3(3), this is given by

$$
\frac{T_{1}\left(n_{0} ; n_{1} ; 1\right)}{n_{0}}={ }_{i=1}^{x_{0}}(-1)^{i}\left(n_{0}-2 i\right) n_{1}+{ }_{j=1}^{x_{1}}(-1)^{j+1} n_{0}\left(2 j-n_{1}\right)=n_{1}+n_{0}:
$$

The following theorem tells us that the numbers b^{n} (and thus all b and a) are determined by the tree polynomials.

Theorem $5.5 b^{n}$;k is equal to the sum

$$
\mathrm{b}^{\mathrm{n}}: \mathrm{k}=\underset{\left(\mathrm{m}_{0} ; ; m_{2 k}\right)}{\mathrm{X}} \underset{\mathrm{~b}}{ } \frac{\left(2 \mathrm{~m}_{0}+1\right) \mathrm{Q}_{\mathrm{k}}\left(2 \mathrm{~m}_{0}+3 ; 2 \mathrm{~m}_{1}+1 ; \quad ; 2 \mathrm{~m}_{2 \mathrm{k}}+1\right)}{\left(2 m_{0}+3\right)(-2)^{k+1}(2 \mathrm{k}-1)!!}
$$

where the sum is over all $2 k+1$ tuples of nonnegative integers ($m_{0} ; \quad ; m_{2 k}$) which add up to $n-k$ and is the partition of $n-k$ given by the nonzero m_{i}.

Example 5.6 When $k=1$ this formula becomes

$$
\begin{equation*}
b^{n} ; 1=X_{\substack{a+b+c=n-1 \\ a ; b ; c \quad 0}} \quad b^{[a ; b ; c]} \frac{(2 a+1)(2 c+1)}{(2 a+3) 4} \tag{16}
\end{equation*}
$$

where $[a ; b, c]$ denotes the multiset $f a ; b ; c g$ with the zero's deleted. For example, if $=1$ there are three terms with $[a ; b ; c]=[1 ; 0 ; 0]=f 1 g$ and (16) is

$$
\mathrm{b}_{1 ; 1}^{2}=\frac{\mathrm{b}_{1}^{1}}{4} \quad \frac{3}{5}+\frac{1}{3}+\frac{3}{3}=\frac{29}{60} \mathrm{~b}_{1}=\frac{29}{720}:
$$

Proof The number $b^{n} ; k$ is given by evaluating the cup product e [e_{k} on a dual cell of any graph $\Gamma_{2 n}$ (with natural orientation) in the K ontsevich cycle $\mathrm{W}_{2 \mathrm{n}}$. This is given by

$$
\mathrm{o}_{1} \mathrm{O}_{2} \mathrm{e}\left(\Gamma_{0} ; \quad ; \Gamma \mathrm{g}_{\mathrm{e}}\left(\Gamma^{0}, \quad ; \Gamma_{2 \mathrm{n}}\right)\right.
$$

where $\mathrm{o}_{1}=\mathrm{o}\left(\Gamma_{0} ; \quad ; \Gamma^{9}, \mathrm{o}_{2}=\mathrm{o}\left(\Gamma^{0}, \quad ; \Gamma_{2 \mathrm{n}}\right)\right.$ are the orientations of the front and back face of the 2 n \{simplex ($\Gamma_{0} ; \quad ; \Gamma_{2 n}$). The sum over all sequences $\left(\Gamma_{0} ; \quad ; \Gamma 9\right.$ times O_{1} is the dual cell of Γ^{0} :

$$
\mathrm{o}_{1}\left(\Gamma_{0} ; \quad ; \Gamma 9=\mathrm{D}(\Gamma 9:\right.
$$

Consequently,

$$
\mathrm{X}_{\mathrm{o}_{1} \mathrm{e}\left(\Gamma_{0} ; \quad ; \Gamma 9=\mathrm{b}\right.}
$$

if Γ^{0} lies in the K ontsevich cycle W .
For the other factor, we note that the adjusted cyclic set cocycle e_{k} is a sum of two terms, one for each of the two vertices of $\Gamma^{0}=\Gamma_{2 n-2 k}$ which collapse to a point in the next graph $\Gamma_{2 n-2 k}$. Each of these vertices gives a pointed $2 k$ simplex. For each such pointed $2 k$ \{simplex, let $v_{0} ; v_{1}$ be the two vertices which collapse at the rst step and let $\mathrm{v}_{2} ; \quad ; \mathrm{v}_{2 k}$ be the other vertices of Γ^{0}, indexed according the order in which they merge with v_{0}.
Since Γ^{0} must lie in a K ontsevich cycle W, its vertices v_{i} must have codimensions $2 m_{i}$ with $m_{i} \quad 0$ so that the nonzero m_{i} make up the parts of the partition . For each such sequence (m_{0}; ; $\mathrm{m}_{2 \mathrm{k}}$) we get a subtotal

X

$$
\begin{aligned}
\mathrm{o}_{1} \mathrm{e}_{\mathrm{k}}\left(\Gamma^{\mathrm{o}},\right. & \left.; \Gamma_{2 \mathrm{n}}\right)= \\
\frac{2 \mathrm{n}+3}{2 \mathrm{~m}_{0}+3} & \frac{\left(2 \mathrm{~m}_{0}+1\right) \mathrm{T}_{\mathrm{k}}\left(2 \mathrm{~m}_{0}+3 ; 2 \mathrm{~m}_{1}+1 ; \quad ; 2 \mathrm{~m}_{2 \mathrm{k}}+1\right)}{(-2)^{\mathrm{k}+1}(2 \mathrm{k}-1)!!\left(2 \mathrm{~m}_{0}+3\right)\left(2 m_{0}+2 \mathrm{~m}_{1}+4\right) \quad(2 \mathrm{n}+3)} \\
& =\frac{2 m_{0}+1}{2 m_{0}+3}
\end{aligned} \frac{\mathrm{Q}_{\mathrm{k}}\left(2 \mathrm{~m}_{0}+3 ; 2 \mathrm{~m}_{1}+1 ; \quad ; 2 \mathrm{~m}_{2 \mathrm{k}}+1\right)}{(-2)^{\mathrm{k}+1}(2 \mathrm{k}-1)!!} .
$$

since there is a $(2 n+3)$-to- $\left(2 m_{0}+3\right)$ correspondence between pointed $2 k$ \{ simplices and cydic shu es. Combine this with (17) and sum over all sequences ($\mathrm{m}_{0} ; \quad ; \mathrm{m}_{2 \mathrm{k}}$) to get the result.

Example 5.6 allows us to obtain a recursive formula for $b_{1 n}^{n}$.
Corollary 5.7 For all positive n we have

$$
b_{1 n}^{n}=4^{-n} n!h(n)
$$

where $h(n)$ is given recursively by $h(0)=1$ and

$$
h(n+1)=\underbrace{X}_{\substack{a+b+c=n \\ a ; b ; c}} h(a) h(b) h(c) \frac{(2 a+1)(2 c+1)}{(2 a+3)(n+1)}:
$$

Proof In the recursion (16) we note that, by the sum of products formula for b, we have

$$
b_{1 n}^{a ; b ; c]}=\frac{n!}{a!b!c!} f(a) f(b) f(c)
$$

where $f(n)=b_{1}^{n}$ for $n \quad 1$ and $f(0)=1$. Then (16) becomes

$$
f(n+1)=\underbrace{x!b!c!}_{\substack{a+b+c=n \\ a ; b ; c 0}} f(a) f(b) f(c) \frac{n!}{(2 a+1)(2 c+1)}:
$$

Substitute $f(n)=4^{-n} n!h(n)$ to get the recursion for $h(n)$.

Example 5.8

$$
\begin{array}{ll}
\mathrm{h}(1)=\frac{1}{3} ; & \mathrm{b}_{1}^{1}=\frac{1}{12} \\
\mathrm{~h}(2)=\frac{29}{90} ; & \mathrm{b}_{11}^{2}=\frac{29}{720} \\
\mathrm{~h}(3)=\frac{263}{630} ; & \mathrm{b}_{111}^{3}=\frac{263}{6720} \\
\mathrm{~h}(4)=\frac{23479}{37800} ; & \mathrm{b}_{1111}^{4}=\frac{23479}{403200}
\end{array}
$$

The value of b_{111}^{3} allows us to compute the expansion of $\left[W_{111}^{3}\right]$ as conjectured by Arbarello and Cornalba [1] and promised in [6].
C orollary $5.9\left[\mathrm{~W}_{111}\right]=288 \mathrm{e}_{1}^{3}+4176 \mathrm{e}_{2} \mathrm{e}_{1}+20736 \mathrm{e}_{3}$
Proof By the sum of products formula we have

$$
\begin{aligned}
& b_{111}^{21}=3 b_{11}^{2} b_{1}^{1}=3 \frac{29}{720} \frac{1}{12}=\frac{29}{2880} \\
& b_{21}^{21}=b_{2} b_{1}=\frac{1}{-120 \quad 12}=-\frac{1}{1440}:
\end{aligned}
$$

By Equation (3) in the introduction which was proved in [6] but which also follows from Example 5.6 above, we have

$$
b_{21}^{3}=-\frac{19}{3360}:
$$

Therefore, the coe cients of the expansion

$$
\left[W_{111}\right]=a_{111}^{111} e_{1}^{3}+a_{111}^{21} e_{2} e_{1}+a_{111}^{3} e_{3}
$$

are given by

$$
\begin{gathered}
a_{111}^{111}=\frac{12^{3}}{3!}=288 \\
a_{111}^{21}=-\frac{a_{111}^{111} b_{111}^{1}}{b_{21}^{21}}=4176 \\
a_{111}^{3}=-\frac{a_{111}^{21} b_{21}^{3}+a_{111}^{111} b_{111}^{3}}{b_{3}}=20736:
\end{gathered}
$$

Geometry \& Topology, Volume 8 (2004)

6 First formula for T_{k}

We will compute the tree polynomial in the case when most of the entries are equal to 1 .

Theorem 6.1

$$
\mathrm{T}_{\mathrm{k}}(\mathrm{n} ; 1 ;::: ; 1 ; m)=(2 k-1)!!m n(n+1)(n+3):::(n+2 k-1)
$$

Proof Dividing by $n(n+1)(n+2) \quad(n+2 k-1)$ and restricting to the case $m=1$, it su ces to show that

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{k}}(\mathrm{n} ; 1 ;:: \cdot ; 1 ; 1)=\frac{(2 \mathrm{k}-1)!!\mathrm{n}!!}{(\mathrm{n}+2 \mathrm{k}-2)!!} \tag{18}
\end{equation*}
$$

But $Q_{k}(n ; 1 ; \quad ; 1)$ is the expected value of the oriented sign sum

$$
\operatorname{sgn}()^{X} \operatorname{sgn}\left(a_{i} ; b_{1} ; b_{2} ; \quad ; b_{2 k}\right)
$$

for a random cyclic shu e. Since any change in the order of the bleaves this sum invariant, we may assume that the b's are in correct cyclic order. By Proposition 5.3(3), we may also assume that $b_{2 k}$ comes after all the a's. Cydic shu es of this kind are in $1\{1$ correspondence with ordinary shu es of $a_{1} ; \quad ; a_{n}$ with $b_{1} ; \quad ; b_{2 k-1}$ whose oriented sign sums have expectation values tabulated in the lemma below:

$$
\mathrm{Q}_{\mathrm{k}}(2 \mathrm{j}-1 ; 1 ; \quad ; 1)=\mathrm{E}_{0}(2 \mathrm{j}-1 ; 2 \mathrm{k}-1)=\frac{(2 \mathrm{j}-1)!(2 \mathrm{k}-1)!!}{(2 \mathrm{j}+2 \mathrm{k}-3)!!}
$$

This gives (18) proving the theorem.

Lemma 6.2 Consider all shu es of $a_{1} ; \quad ; a_{n}$ with $b_{1} ; \quad ; b_{m}$ where $n ; m$ are nonnegative integers. Then the sum of the oriented sign sum

$$
X_{0}(n ; m)={ }^{X} \operatorname{sgn}()_{i=1}^{x^{n}} \operatorname{sgn}\left(a_{i} ; b_{1} ; \quad ; b_{n}\right)
$$

and its expected value

$$
E_{0}(n ; m)=\frac{X_{0}(n ; m)}{n+m}
$$

depend on the parity of $n ; m$ and are given in the following table.

n	m	$\mathrm{X}_{0}(\mathrm{n} ; \mathrm{m})$	$\mathrm{E}_{0}(\mathrm{n} ; \mathrm{m})$
2 j	2k	$2 \mathrm{j}{ }^{\mathrm{j}}{ }_{\mathrm{j}}{ }^{\text {k }}$	$\frac{(2 j)(2 j-1)!!(2 k-1)!!}{(2 j+2 k-1)!!}$
2 j	$2 \mathrm{k}-1$	0	0
2j-1	2 k	$(2 \mathrm{j}+2 \mathrm{k}-1){ }^{\text {j }}$ j ${ }_{\mathrm{k}}^{\text {k-1 }}$	$\frac{(2 j-1)!(2 k-1)!!}{(2 j+2 k-3)!!}$
2j-1	$2 \mathrm{k}-1$	$2 \mathrm{k}{ }_{\substack{\mathrm{j} \\ \mathrm{k}}}^{\mathrm{k}-1}$	$\frac{(2 j-1)!!(2 k-1)!!}{(2 j+2 k-3)!!}$

Proof Shu es are in $1\{1$ correspondence with the ways of writing m as the sum of an $\mathrm{n}+1$ \{tuple of nonnegative integers:

$$
m=m_{0}+m_{1}+\quad+m_{n}:
$$

(The corresponding shu eis $b^{m_{0}} a_{1} b^{m_{1}} a_{2} \quad a_{n} b^{m_{n}}$.) The terms in the oriented sign sum are the product of

$$
\operatorname{sgn}()=(-1)^{m_{n-1}+m_{n-3}+m_{n-5}+}
$$

$$
\operatorname{sgn}\left(a_{i} ; b_{1} ; b_{2} ; \quad ; b_{m}\right)=(-1)^{m_{0}+m_{1}++m_{i-1}} \text { : }
$$

Note that there are $j=\frac{n}{2}$ terms m_{i} in the exponent for sgn(). And, when i is even, $\operatorname{sgn}() \operatorname{sgn}\left(a_{i} ; b_{1} ; \quad ; b_{m}\right)$ has the same form. Thus

$$
E(\operatorname{sgn}())=E\left(\operatorname{sgn}() \operatorname{sgn}\left(a_{2 i} ; b_{1} ; \quad ; b_{m}\right)\right):
$$

Similarly, $\operatorname{sgn}() \operatorname{sgn}\left(a_{\text {odd }} ; b_{1} ; \quad ; b_{m}\right)$ is equal to -1 to the power a sum of $j+(-1)^{n}$ terms m_{i} so its expected value is independent of the subscript of a which can have $\frac{n}{2}$ di erent values. The expected value of the oriented sign sum is thus given by:

$$
\begin{aligned}
& E_{0}(n ; m)={ }^{j} \frac{n}{2}^{k} E(\operatorname{sgn}())+{ }^{I} n^{m} E\left(\operatorname{sgn}() \operatorname{sgn}\left(a_{1} ; b_{1} ; \quad ; b_{n}\right)\right) \\
& =\frac{1}{\substack{n+m}}{ }^{j} \frac{n}{2}^{k}{ }^{k} \operatorname{sgn}()+\frac{1}{2}^{1}{ }^{m X} \operatorname{sgn}() \operatorname{sgn}\left(a_{1} ; b_{1} ; \quad ; b_{n}\right):
\end{aligned}
$$

Geometry \& Topology, Volume 8 (2004)

The lemma now follows from the following eight computations.

n	m	$P^{\operatorname{sgn}(~)}$	$\left.P_{\operatorname{sgn}()}\right) \operatorname{sgn}\left(a_{1} ; b_{1} ;\right.$; b_{m})
2 j	2 k	${ }_{j}^{\text {j }}$ j	${ }_{j}^{\text {j }}$ j	
2 j	$2 \mathrm{k}-1$	${ }_{j}^{\text {j }}$ j-1	$-{ }^{j+k-1}$	
2j-1	2 k	$\underset{\mathrm{k}}{\mathrm{j}} \mathrm{k}$-1	$2{ }_{k}^{\mathrm{j}} \mathrm{k}$ - $-{ }_{k}^{\mathrm{j}}+\mathrm{k}-1$	
2j - 1	$2 \mathrm{k}-1$	0	$2^{\mathrm{j}+\mathrm{k}-1}$	

We verify the entries in this table starting at the bottom left. When both $n ; m$ are odd there is a xed point free involution on the set of spu es given by switching $m_{2 i} \$ m_{2 i-1}$. This always changes the sign of so $\operatorname{sgn}()=0$.

When $n=2 j-1 ; m=2 k$ we have

$$
\operatorname{sgn}()=(-1)^{m_{0}+m_{2}++m_{2 j-2}}:
$$

Take the involution on the set of shu es given as follows. Take the largest i so that $m_{2 i}+m_{2 i+1}$ is odd and switch $m_{2 i} \$ m_{2 i+1}$. If these sums are all even then take the largest i so that $m_{2 i}$ is nonzero. If it is even, subtract 1 from $m_{2 i}$ and add 1 to $m_{2 i+1}$. If $m_{2 i}$ is odd, add 1 to it and subtract 1 from $m_{2 i+1}$. This sign reversing involution does not contain all shu es. The remaining ones have $m_{\text {even }}=0$ and $m_{\text {odd }}$ are all even. These shu es have positive sign and there are ${ }_{\mathrm{j}}^{+\mathrm{k}-1}$ of them.

The other term on the third line is the sum of

$$
\operatorname{sgn}() \operatorname{sgn}\left(a_{1} ; b_{1} ; \quad ; b_{m}\right)=(-1)^{m_{2}+m_{4}++m_{2 j-2}}
$$

Here we apply the involution above to $m_{2} ; \quad ; m_{2 j-1}$. The remaining terms are all positive and have $m_{2}=m_{4}=\quad=0$ and $m_{3} ; m_{5} ;$ all even and $m_{0} ; m_{1}$ are arbitrary (with even sum). There are ${ }_{k}^{j+k}$ such terms where both $m_{0} ; m_{1}$ are even. If they are unequal we can subtract 1 from the larger and add 1 to the smaller, making them both odd. This however overcounts the terms where $m_{0} ; m_{1}$ are odd and equal. Thus there are

$$
\underset{k}{j+k}-\frac{j+k-1}{k}
$$

terms where both $m_{0} ; m_{1}$ are odd. The term ${ }^{j+k-1}$ counts shu es where $m_{0}=m_{1}$ are odd or even, both kinds being overcounted once

By symmetry (switch $n \$ m$ and $j \$ k$) we get ${ }^{P} \operatorname{sgn}()$ for $n=2 j ; m=$ $2 k-1$. Since $m=2 k-1$ is odd,

$$
\operatorname{sgn}()=(-1)^{m_{1}+m_{3}+\quad+m_{2 j-1}}=-(-1)^{m_{0}+m_{2}+\quad+m_{2 j}}:
$$

This accounts for the $-{ }_{j}^{j+k-1}$ in the chart. The remaining three terms are similar.

Lemma 6.3 Consider all shu es of $a_{0} ; \quad ; a_{n}$ with $b_{1} ; \quad ; b_{m}$ so that a_{0} stays on the left (ie, $m_{0}=0$). Then the sum $X_{1}(n ; m)$ and average $E_{1}(n ; m)$ of the oriented sign sum

$$
\operatorname{sgn}()_{i=0}^{X^{n}} \operatorname{sgn}\left(a_{i} ; b_{1} ; \quad ; b_{m}\right)
$$

are given by

n	m	$\mathrm{X}_{1}(\mathrm{n} ; \mathrm{m})$	$E_{1}(\mathrm{n} ; \mathrm{m})$
2 j	2k	$(2 \mathrm{j}+1){ }^{\mathrm{j}}{ }_{\mathrm{j}}+\mathrm{k}$	$\frac{(2 j+1)!(2 k-1)!!}{(2 j+2 k-1)!!}$
2 j	$2 \mathrm{k}-1$	$\underset{j}{\mathrm{j}}+\mathrm{k}-1$	$\frac{(2 j-1)!(2 k-1)!!}{(2 j+2 k-1)!!}$
2j-1	2k	$(2 \mathrm{j}+2 \mathrm{k}){ }^{\mathrm{j}+\mathrm{k}-1} \mathrm{k}$	$\frac{(2 j+2 k)(2 j-1)!!(2 k-1)!!}{(2 j+2 k-1)!!}$
2j-1	$2 \mathrm{k}-1$	$2 \mathrm{k}{ }_{\substack{\mathrm{j} \\ \mathrm{k}}}^{\mathrm{k}-1}$	$\frac{(2 j-1)!(2 k-1)!!}{(2 j+2 k-3)!!}$

Remark 6.4 Note that Proposition 5.3 (3) can be rephrased as:

$$
\mathrm{Q}_{\mathrm{k}}(2 \mathrm{j}+1 ; 1 ; \quad ; 1)=\mathrm{E}_{1}(2 \mathrm{j} ; 2 \mathrm{k})=\mathrm{E}_{0}(2 \mathrm{j}+1 ; 2 \mathrm{k}-1):
$$

Proof The shu es in this lemma are the same as those in Lemma 6.2. The only di erence is that the oriented sign sum has one more term. The extra term is

$$
\operatorname{sgn}() \operatorname{sgn}\left(a_{0} ; b_{1} ; \quad ; b_{m}\right)=\operatorname{sgn}():
$$

Therefore

$$
E_{1}(n ; m)=E(n ; m)+E(\operatorname{sgn}()):
$$

The rst term is given by Lemma 6.2. The second term is given by the rst column of (19) divided by ${ }_{n}^{n+m}$.

Lemma 6.5 Consider all shu es of $a_{0} ; \quad ; a_{n+1}$ with $b_{1} ; \quad ; b_{m}$ so that a_{0} is the rst letter and a_{n+1} is the last. Let $X_{2}(n ; m)$ and $E_{2}(n ; m)$ be the sum and average value of the oriented sign sum

$$
\operatorname{sgn}()_{i=0}^{x+1} \operatorname{sgn}\left(a_{i} ; b_{1} ; \quad ; b_{m}\right):
$$

Then

n	m	$x_{2}(n ; m)$	$E_{2}(n ; m)$
$2 j$	$2 k$	$(2 j+2){ }_{j}^{j+k}$	$\frac{(2 j+2)(2 j-1)!!(2 k-1)!!}{(2 j+2 k-1)!!}$
$2 j$	$2 k-1$	0	0
$2 j-1$	$2 k$	$(2 j+2 k+1){ }_{k}^{j+k-1}$	$\frac{(2 j+2 k+1)(2 j-1)!!(2 k-1)!!}{(2 j+2 k-1)!!}$
$2 j-1$	$2 k-1$	$-2 k{ }_{k}^{j+k-1}$	$-\frac{(2 j-1)!!(2 k-1)!!}{(2 j+2 k-3)!!}$

Proof The shu es in this lemma are the same as those in Lemma 6.2 with a_{0} added on the left and a_{n+1} added on the right. The a_{n+1} on the right changes the sign by $(-1)^{m}$ and there are two extra terms in the oriented sign sum given by
$\operatorname{sgn}()\left(\operatorname{sgn}\left(a_{0} ; b_{1} ; \quad ; b_{m}\right)+\operatorname{sgn}\left(a_{n+1} ; b_{1} ; \quad ; b_{m}\right)\right)=\left(1+(-1)^{m}\right) \operatorname{sgn}():$
Therefore

$$
E_{0}(n ; m)=(-1)^{m} E(n ; m)+\left(1+(-1)^{m}\right) E(\operatorname{sgn}()):
$$

The rst term is given by Lemma 6.2. The second term is given by the rst column of (19) times $1+(-1)^{m}$ divided by $\begin{gathered}n+m \\ n\end{gathered}$.

Theorem 6.6 If $p+q=2 k-1$ and $n=2 r+1$ we get:

$$
\begin{array}{r}
T_{k}\left(3 ; 1^{p} ; n ; 1^{q}\right)={ }_{s=0}^{\text {dx }=2 e} \frac{q!}{(q-2 s+1)!}{ }_{s}^{r-1+s}(2 k-2 s)!3(k-s+1) \\
\\
\quad(q-2 s+1)(2 r+2 s+1)-2 s(2 k-2 s+3)
\end{array}
$$

where we use the notation

Proof Take cyclic shu es of

$$
a_{1} a_{2} a_{3} b^{1} b^{2} \quad b^{b} c_{1} \quad c_{n} d^{1} \quad d^{a}
$$

Then

$$
T_{k}\left(3 ; 1^{p} ; n ; 1^{q}\right)=^{X} \operatorname{sgn}()_{i=1 j=1}^{X^{3}} X^{n} \operatorname{sgn}\left(a ; b^{1} \quad b^{p} c_{j} d^{1} \quad d^{q}\right)
$$

The cyclic shu e permutes the b's and shu es them with the a's, inserts $c_{1} \quad c_{n}$ as one block, then permutes the d's and shu es them in.
However, any permutation of the b's will not change the oriented sign sum since it changes both the orientation and the sign sum by the same sign. Therefore, it su ces to consider those which do not permute the bS and multiply the result by p !.
Similarly, we may assume that the q are in a xed order, so that $q^{1} ; \quad ; q$ are shu ed between the c's and $d^{\prime+1}$; ; d^{q} are shu ed into the $a^{\prime} s$ and b^{\prime} s. The resulting sum should be multiplied by q !. The oriented sign sum for the shu es of the d's between the c's is $X_{2}\left(n-2 ;{ }^{\prime}\right)$. The value of this terms and the remaining factrors depends on the parity of '.

Case 1 ' $=2 s$ is even In this case there are an odd number of letters and an odd number of kinds of letters in the set

$$
\mathrm{S}=\mathrm{fc}_{1} ; \quad ; \mathrm{c}_{\mathrm{n}} ; \mathrm{d}^{1} ; \quad ; \mathrm{d}^{\prime} \mathrm{g}:
$$

So, S behaves like a single letter and we have $\mathrm{p}+1+\mathrm{q}$ - ‘ $=2 \mathrm{k}-2 \mathrm{~s}$ letters shu ed together in ($2 \mathrm{k}-2 \mathrm{~s}$)! ! p !($\left.q-{ }^{\prime}\right)$!) ways and then shu ed with $\mathrm{a}_{1} ; \mathrm{a}_{2} ; \mathrm{a}_{3}$ keping a_{1} rst. The contribution to the tre polynomial given by these shu es is then

$$
\begin{equation*}
\mathrm{p}!\mathrm{q}!\frac{(2 \mathrm{k}-2 \mathrm{~s})!}{\mathrm{p}!(\mathrm{q}-‘)!} \mathrm{X}_{1}(2 ; 2 \mathrm{k}-2 \mathrm{~s}) \mathrm{X}_{2}(2 \mathrm{r}-1 ; 2 \mathrm{~s}): \tag{20}
\end{equation*}
$$

By Lemmas 6.2 and 6.5 this is equal to

$$
\begin{equation*}
\frac{q!(2 k-2 s)!}{(q-2 s)!} 3(k-s+1)(2 r+2 s+1) \quad r+s-1 \tag{21}
\end{equation*}
$$

Case 2 ' $=2 s-1$ is odd In this case the set S has an even number of letters and an even number of kinds of letters. Therefore, S can be placed anywhere with the samee ect. Since there are $3+p+q-{ }^{\prime}=2 k-2 s+3$ remaining letters we multiply by this factor. There are p b's and q - ' d 's shu ed together in

$$
\underset{p}{p+q--^{\prime}}=\frac{(2 k-2 s)!}{p!(q-‘)!}
$$

ways. So the contribution to the tree polynomial of these shu es is

$$
\begin{equation*}
p!q!(2 k-2 s+3) \frac{(2 k-2 s)!}{p!\left(q-{ }^{\prime}\right)!} X_{1}(2 ; 2 k-2 s) X_{2}(2 r-1 ; 2 s-1): \tag{22}
\end{equation*}
$$

By Lemmas 6.2 and 6.5 this is equal to

$$
\begin{equation*}
-(2 k-2 s+3) \frac{q!(2 k-2 s)!}{(q-2 s+1)!} 3(k-s+1) 2 s \quad r+s-1 \tag{23}
\end{equation*}
$$

Therefore, $T_{k}\left(3 ; 1^{p} ; 2 r+1 ; 1^{q}\right)$ is equal to the sum of (21) for $s=0 \quad \frac{q}{2}$ and (23) for $s=1 \quad \frac{q}{2}$. Since (21) and (23) are so similar we can simplify the sum by adding them together to get

$$
\begin{align*}
& { }_{s=0}^{d x=2 e} \frac{q!}{(q-2 s+1)!} \quad r-1+s \quad(2 k-2 s)!3(k-s+1) \tag{24}\\
& (q-2 s+1)(2 r+2 s+1)-2 s(2 k-2 s+3):
\end{align*}
$$

The polynomial on the second line consists of the places where the " $=2 \mathrm{~s}$ and ' $=2 s-1$ terms di er. The sum now runs from $s=0$ to $s=d q=2 e$, which means we have introduced the extra terms corresponding to ' $=-1$ and, when q is odd, ' $=\mathrm{q}+1$, but both of these are zero.

7 A double sum

Using the formula (24) for the tree polynomial $T_{k}\left(3 ; 1^{p} ; 2 r+1 ; 1^{q}\right)$ we are now in a position to compute the coe cient $\mathrm{b}_{\mathrm{r} ; \mathrm{k}}^{+\mathrm{k}}$ for any $\mathrm{r} ; \mathrm{k} \quad 0$. This section bene tted greatly from the advice of Christian K rattenthaler, who pointed out that the techniques of summation in an earlier version were unnecessarily complicated.

By Theorem 5.5 we have:

$$
\begin{gather*}
b_{r ; k}^{++k}={ }^{X} b_{p} \frac{\left(2 m_{0}+1\right) Q_{k}\left(2 m_{0}+3 ; 2 m_{1}+1 ; \quad ; 2 m_{2 k}+1\right)}{\left(2 m_{0}+3\right)(-2)^{k+1}(2 k-1)!!} \\
=\frac{(2 r+1) Q_{k}(2 r+3 ; 1 ; \quad ; 1)}{(2 r+3) a_{r}(-2)^{k+1}(2 k-1)!!}+\quad X \quad \frac{Q_{k}\left(3 ; 1^{p} ; 2 r+1 ; 19\right)}{3 a_{r}(-2)^{k+1}(2 k-1)!!} \tag{25}
\end{gather*}
$$

where $a_{r}=1 \Rightarrow b_{r}=(-2)^{r+1}(2 r+1)!!$. By Theorem 6.1 we know that

$$
\mathrm{Q}_{\mathrm{k}}(2 \mathrm{r}+1 ; 1 ; \quad ; 1)=\frac{(2 \mathrm{k}-1)!!(2 \mathrm{r}+3)!!}{(2 \mathrm{r}+2 \mathrm{k}+1)!!}
$$

so the rst term in (25) above is equal to

$$
\frac{2 r+1}{a_{r}(-2)^{k+1}(2 k-1)!!} \frac{(2 k-1)!(2 r+1)!!}{(2 r+2 k+1)!!}=\frac{2 r+1}{(-2)^{r+k+2}(2 r+2 k+1)!!}:
$$

Lemma 7.1

$$
\underset{p+q=2 k-1}{X} Q_{k}\left(3 ; 1^{p} ; 2 r+1 ; 1^{q}\right)=3 \frac{(2 k+2 r+3)}{2 k+1}-3 \frac{(2 r+3)!!(2 k-1)!!}{(2 k+2 r+1)!!}
$$

Suppose for a moment that this is true Then the second term of (25) is equal to

$$
\quad X \quad \frac{Q_{k}\left(3 ; 1^{p} ; 2 r+1 ; 1^{q}\right)}{3 a_{r}(-2)^{k+1}(2 k-1)!!}=\frac{2 r+2 k+3}{a_{r} a_{k}}-\frac{2 r+3}{(-2)^{r+k+2}(2 r+2 k+1)!!}:
$$

Putting these together we get

$$
\mathrm{b}_{\mathrm{r} ; \mathrm{k}}^{+\mathrm{k}}=\frac{2 \mathrm{r}+2 \mathrm{k}+3}{\mathrm{a}_{\mathrm{r}} \mathrm{a}_{\mathrm{k}}}+\frac{1}{\mathrm{a}_{\mathrm{r}+\mathrm{k}}}
$$

which can be simpli ed to

$$
b_{r ; k}^{++k}=b_{1} b_{k}(2 r+2 k+3)+b_{+k}:
$$

In terms of the adjusted Miller \{Morita\{Mumford classes this says

$$
\begin{equation*}
\mathrm{e}_{\mathrm{r}} \mathrm{e}_{\mathrm{k}}=\left(\mathrm{b}_{1} \mathrm{~b}_{\mathrm{k}}(2 \mathrm{r}+2 \mathrm{k}+3)+\mathrm{b}_{\mathrm{r}+\mathrm{k}}\right)\left[\mathrm{W}_{\mathrm{r}+\mathrm{k}}\right]+\operatorname{Sym}(\mathrm{r} ; \mathrm{k}) \mathrm{b} \mathrm{~b}_{k}\left[\mathrm{~W}_{\mathrm{r} ; \mathrm{k}}\right] \tag{26}
\end{equation*}
$$

where $\operatorname{Sym}(r ; k)$ is 2 for $r=k$ and 1 for $r \in k$. Solving the equation

$$
a_{r ; k}^{r+k} b_{+k}+a_{r ; k}^{r ; k} b_{r ; k}^{+k}=0
$$

in which $a_{r ; k}^{r ; k}=a_{r} a_{k}=\operatorname{Sym}(r ; k)$ we see that the inverse coe cient $a_{r ; k}^{r+k}$ is given by:

$$
\begin{array}{r}
a_{r ; k}^{r+k}=-\frac{a_{r} a_{k}\left(b_{+} b_{k}(2 r+2 k+3)+b_{+k}\right)}{\operatorname{Sym}(r ; k) b_{r+k}}=-\frac{a_{r} a_{k}+(2 r+2 k+3) a_{r+k}}{\operatorname{Sym}(r ; k)} \\
=\frac{(-2)^{r+k+1}}{\operatorname{Sym}(r ; k)}(2(2 r+1)!(2 k+1)!!-(2 r+2 k+3)!!)
\end{array}
$$

The Kontsevich cyde $W_{r ; k}$ is related to the adjusted MMM classes by the formula

$$
\left[W_{r ; k}\right]=a_{r ; k}^{r+k} e_{r+k}+a_{r ; k}^{r ; k} e_{r} e_{k}:
$$

This gives the following equation as conjectured in [6].

Theorem 7.2

$$
\left[\mathrm{W}_{r ; k}\right]=\frac{(-2)^{r+k+1}}{\operatorname{Sym}(r ; k)}\left(2(2 r+1)!(2 k+1)!!\left(\mathrm{e}_{\mathrm{r}+\mathrm{k}}-\mathrm{e}_{\mathrm{r}} \mathrm{e}_{\mathrm{k}}\right)-(2 \mathrm{r}+2 \mathrm{k}+3)!!\mathrm{e}_{\mathrm{r}+\mathrm{k}}\right)
$$

Proof of Lemma 7.1 It remains to calculate the sum

$$
\mathrm{Q}_{\mathrm{k}}\left(3 ; 1^{\mathrm{p}} ; 2 \mathrm{r}+1 ; 1^{\mathrm{q}}\right) ;
$$

$$
\mathrm{p}+\mathrm{q}=2 \mathrm{k}-1
$$

where in this case

$$
\begin{equation*}
Q_{k}\left(3 ; 1^{p} ; 2 r+1 ; 1^{q}\right)=\frac{2(p+2 r+3)!}{(p+3)!(p+q+2 r+3)!} T_{k}\left(3 ; 1^{p} ; 2 r+1 ; 1^{q}\right): \tag{27}
\end{equation*}
$$

By Theorem 6.6 the tree polynomial T_{k} is given by

$$
\begin{align*}
& \mathrm{T}_{\mathrm{k}}\left(3 ; 1^{\mathrm{p}} ; 2 \mathrm{r}+1 ; 1^{\mathrm{q}}\right)= \\
& { }_{s=0}^{d x}=2 e \quad \frac{q!}{(q-2 s+1)!} \stackrel{r-1+s}{s}(2 k-2 s)!3(k-s+1) \tag{28}\\
& (q-2 s+1)(2 r+2 s+1)-2 s(2 k-2 s+3):
\end{align*}
$$

We combine equations (27) and (28), eliminating the variable $p=2 k-1-q$ and expressing everything in terms of factorials. We seek the double sum:

$$
\begin{align*}
& 2 \mathrm{x}-1 \text { dx }=2 \mathrm{e} \\
& F(k ; r ; s ; q) \text {, where } \\
& \mathrm{q}=0 \mathrm{~s}=0 \\
& F(k ; r ; s ; q)=\frac{6(2 k+2 r-q+2)!q!(r+s-1)!(2 k-2 s)!(k-s+1)}{(2 k+2 r+2)!(2 k-q+2)!(q-2 s+1)!s!(r-1)!} \tag{29}\\
& (q-2 s+1)(2 r+2 s+1)-(2 s)(2 k-2 s+3):
\end{align*}
$$

The summand $\mathrm{F}(\mathrm{k} ; \mathrm{r} ; \mathrm{s} ; \mathrm{q})$ is a hypergeometric term in each of its variables, so sophisticated summation techniques are available; see [12] for an introduction. We are grateful to Christian K rattenthaler for suggesting the following path.
The summand $F(k ; r ; s ; q)$ is more manageable as a sum over q, so we will switch the order of the double summation. The result is almost

$$
\begin{align*}
& \mathrm{X}^{k} \quad{ }^{2 \mathrm{k}^{-1}} \mathrm{~F}(\mathrm{k} ; \mathrm{r} ; \mathrm{s} ; q) \\
& \mathrm{s}=0 \tag{30}\\
& \mathrm{q}=2 \mathrm{~s}-1
\end{align*}
$$

except that this introduces one new term where $s=0$ and $q=-1$. Here F would need delicate handling owing to the q ! in its numerator. We proceed by rst calculating the sum in (30) formally, and then dealing with the error term that arises when $\mathrm{s}=0$.

The inner summation is now over q with s xed, and the summand is a q\{free part times an expression of the form

$$
G(q)=\frac{(A+B-q)!q!}{(A-q)!(q-C)!}(q-C)(B+C+2)-(C+1)(A-C)
$$

where $A=2 k+2, B=2 r, C=2 s-1$. Gosper's summation algorithm quickly points out that G has a discrete antiderivative: $G(q)=H(q+1)-H(q)$, where

$$
H(q)=\frac{-(A+B+1-q)!q!}{(A-q)!(q-C-1)}
$$

a relation easily veri ed byphand. Any de nite sum is now easily computed, and in particular we want ${ }_{\mathrm{q}=\mathrm{C}}^{\mathrm{A}-3} \mathrm{G}(\mathrm{q})=\mathrm{H}(\mathrm{A}-2)-\mathrm{H}(\mathrm{C})$. Now note that $H(C)=0$ owing to the (-1) ! in the denominator, and we nd that the sum is just

$$
H(A-2)=\frac{-(A-2)!(B+3)!}{2(A-C-3)!}
$$

Returning to the original variables and replacing the q \{free coe cient, we have found that:

$$
\begin{equation*}
\underset{q=2 s-1}{2 k-1} F(k ; r ; s ; q)=\frac{-3(2 k)!(2 r+3)!}{(r-1)!(2 k+2 r+2)!} \frac{(k+1-s)(r-1+s)!}{s!} \tag{31}
\end{equation*}
$$

Gosper's algorithm reveals that this too has a discrete antiderivative with re spect to s :

$$
\begin{aligned}
H(s) & =\frac{-3(2 k)!(2 r+3)!}{(r-1)!(2 k+2 r+2)!} \frac{(k r-r s+2 r+k+1)(r+s-1)!}{r(r+1)(s-1)!} \\
& =\frac{-3(2 k)!(2 r+3)!(k r-r s+2 r+k+1)(r+s-1)!}{(r+1)!(2 k+2 r+2)!(s-1)!}
\end{aligned}
$$

The sum from $s=0$ to $s=k$ is then $H(k+1)-H(0)$, and again we nd that $H(0)=0$. The full sum is therefore $H(k+1)$, and pulling factorials together, we get:

$$
\begin{align*}
x^{k} \quad z^{2 k-1} F(k ; r ; s ; q) & =\frac{-6(2 k-1)!(2 r+3)!(k+r+1)!}{(k-1)!(r+1)!(2 k+2 r+2)!} \\
& =\frac{-3(2 k-1)!!(2 r+3)!!}{(2 k+2 r+1)!!} \tag{32}
\end{align*}
$$

Now we compute the error term. At $s=0$, the left-hand side of (31) is problematic, but the right-hand side which we used for further computations is

$$
\frac{-3(2 k)!(2 r+3)!(k+1)}{(2 k+2 r+2)!}:
$$

The actual desired value can be easily computed since $F(k ; r ; 0 ; q)$ is a $q\{$ independent factor times the binomial coe cient $2 \mathrm{k}+2 \mathrm{r}+2 \mathrm{r}-\mathrm{q}$.

$$
{ }_{q=0}^{2 k-1} F(k ; r ; 0 ; q)=\frac{6(k+1)(2 k)!}{(2 k+2 r+2)!} \frac{(2 k+2 r+3)!}{(2 k+2)!}-\frac{(2 r+3)!}{2!}
$$

We subtract to nd that the error introduced by using the formal answer at $\mathrm{s}=0 \mathrm{was}$

$$
\begin{equation*}
-\frac{3(3+2 k+2 r)}{(2 k+1)}: \tag{33}
\end{equation*}
$$

The nal answer is the formal sum (32) minus the error term (33), which is precisely the conjectured value:

$$
3 \frac{(2 k+2 r+3)}{2 k+1}-3 \frac{(2 r+3)!!(2 k-1)!!}{(2 k+2 r+1)!!}
$$

8 Reduced tree polynomial

The second formula for the tre polynomial is based on the following lemma.
Lemma 8.1 The sum over all sequences of positive integers

$$
1 \quad z_{1} ; z_{2} ; \quad ; z_{s} \quad n
$$

of the quantity

$$
(-1)^{z_{1}++z_{s}}(B(z)-A(z))
$$

where $A(z)$ is the number of positive integers j which are z_{i} for an odd number of indices i and $B(z)$ is the number of positive integers $j \quad n$ so that $j \quad z_{i}$ for an even number of i is equal to
(1) 1 if s ; n are both odd,
(2) n if $\mathrm{s} \quad 0$ is even and n is odd, and
(3) $\frac{n}{2}(-2)^{\mathrm{s}}$ if $\mathrm{n} \quad 0$ is even.

Proof First note that this sum can be written as
where $L_{p}(z)$ is the set of all $j 2 f 1 ; 2 ; \quad$ ng so that $j \quad z_{i}$ for exactly p values of i , ie, so that $z^{-1}[j ; n]$ has p elements where $[j ; n]$ denotes the set of integers from j through n . This can also be written as

$$
\begin{aligned}
& X^{n} X \\
& \substack{j=1 \\
X^{n} \\
X^{n} X^{s}})^{\sum z_{i}}(-1)^{j z^{-1}[j ; n j j} \\
&(-1)^{p j} N(j)^{s-p} N(n-j)^{p}
\end{aligned}
$$

where

$$
N(j)={\underset{i=1}{x^{-1}}(-1)^{i}=x_{i=1}^{x^{+1}}(-1)^{i}=\begin{array}{l}
-1 \\
0
\end{array} j \text { even } .}^{2}
$$

C ase 1 n is odd Then either j or $\mathrm{n}-\mathrm{j}$ is odd for each j . So the summand is nonzero only for $p=0$ or s :
X^{5}
$\mathrm{p}=0$

$$
\begin{aligned}
& s \\
& p
\end{aligned}(-1)^{p j} N(j)^{s-p} N(n-j)^{p}=N(j)^{s}+(-1)^{k j} N(n-j)^{s}=(-1)^{s(j+1)}
$$

So the sum (34) is equal to

C ase 2 n is even In this case it is possible for both j and $\mathrm{n}-\mathrm{j}$ to be even. But then we get

$$
\mathrm{X}_{\mathrm{p}=0}^{X^{\mathrm{s}}} \mathrm{p}^{\mathrm{s}}(-1)^{\mathrm{pj}}(-1)^{\mathrm{s}}=(-1)^{\mathrm{s}}\left(1+(-1)^{j}\right)^{\mathrm{s}}=(-2)^{\mathrm{s}}:
$$

There are $\frac{\mathrm{n}}{2}$ such terms and the other terms, where $\mathrm{j} ; \mathrm{n}-\mathrm{j}$ are both odd, are all zero.

Using this lemma we get another formula for the tree polynomial showing that the monomials correspond to increasing trees. Recall that an increasing tre T with vertices $0 ; 1 ; 2 ; \quad ; 2 \mathrm{k}$ is a tree constructed by attaching the vertices in order. In other words, 0 is the root and children are always larger than their parents. (Se [13] for more details about increasing tres.) For each such T take the monomial in the variables $\mathrm{x}_{0} ; \mathrm{x}_{1} ; \quad ; \mathrm{x}_{2 k}$ given as follows.
For each vertex $\mathrm{i}=0 ; 1 ; \quad ; 2 k$ of T let n_{i} be the number of trees in the forest $\mathrm{T}-\mathrm{fig}$ with an even number of vertices. Associate to T the tre monomial

$$
x^{\top}=x_{0}^{n_{0}} \quad x_{2 k}^{n_{2 k}}:
$$

Example 8.2 In the simplest case $k=1$ there are are two increasing trees: $0-1-2$ and 1-0-2. The corresponding tre monomials are $x_{0} x_{2}$ and $x_{1} x_{2}$.

Lemma 8.3 Each tree monomial x^{\top} has degree 2 k .

Proof Since T has an odd number of vertices we can orient each edge so that it points in the direction in which there are an even number of vertices. Then n_{i} is the number of outward pointing edges at vertex i. The sum of the n_{i} must the number of edges which is 2 k .

Theorem 8.4 The sum of the tree monomials x^{\top} is related to the tre polynomial by:

$$
\mathrm{x}_{0}^{\mathrm{X}} \mathrm{x}^{\top}=\mathrm{T}_{\mathrm{k}}\left(\mathrm{x}_{0} ; \mathrm{x}_{1} ; \quad ; \mathrm{x}_{2 \mathrm{k}}\right):
$$

Suppose for a moment that this is true.
De nition 8.5 We will call

$$
\mathcal{R}_{k}\left(x_{0} ; \quad ; \mathrm{x}_{2 \mathrm{k}}\right):={ }_{\mathrm{T}}^{\mathrm{X}} \mathrm{x}^{\top}=\frac{1}{\mathrm{x}_{0}} \mathrm{~T}_{\mathrm{k}}\left(\mathrm{x}_{0} ; \quad ; \mathrm{x}_{2 \mathrm{k}}\right)
$$

the reduced tree polynomial.
Since increasing trees are in $1\{1$ correspondence with permutations of $1 ; \quad ; 2 k$ we get the following.

Corollary 8.6 The tre polynomial $T_{k}\left(x_{0} ; \quad ; x_{2 k}\right)$ is a homogeneous polynomial of degree $2 \mathrm{k}+1$ with nonnegative integer coe cients which add up to $(2 k)!$, ie, $T_{k}(1 ; 1 ; \quad ; 1)=(2 k)!$.

Calculations of the reduced tre polynomial tell us something about permutation. For example, we have the following.

C orollary 8.7 In the special case $\mathrm{x}_{1}=\mathrm{x}_{2}=\quad=\mathrm{x}_{2 \mathrm{k}}=1$ the reduced tree polynomial is the generating function

$$
\mathcal{R}_{k}(x ; 1 ; 1 ;::: 1)=(2 k-1)!!(x+1)(x+3):::(x+2 k-1)={ }_{i=0}^{x^{k}} p_{i} x^{i}
$$

where p_{i} is the number of permutations of $2 k$ with i even cycles.

Proof For every increasing tree T the coe cient of x_{0} in the monomial x^{\top} is equal to the number of even cycles in the permutation of $2 k$ corresponding to T.

By the following proposition the rst variable x_{0} in the reduced tree polynomial F_{k} is superfluous.

Proposition 8.8 Thereduced trepolynomial $\hat{\epsilon}_{k}\left(x_{0} ; \quad ; x_{2 k}\right)$ is a polynomial in the variables $x_{0}+x_{1} ; x_{2} ; x_{3} ; \quad ; x_{2 k}$. In other words,

$$
F_{k}\left(x_{0} ; x_{1} ; \quad ; x_{2 k}\right)=F_{k}\left(0 ; x_{0}+x_{1} ; x_{2} ; \quad ; x_{2 k}\right):
$$

Remark 8.9 This means that it su ces to compute F_{k} in the case when $x_{0}=0$ since we can recover the general polynomial by substituting $x_{0}+x_{1}$ for x_{1}.

Proof Any increasing tree T contains vertices $0 ; 1$ connected by an edge together with a certain number of trees $a_{1} ; \quad ; a_{r}$ with an odd number of vertices and other trees $\mathrm{b}_{1} ; \quad ; \mathrm{b}_{5}$ with an even number of vertices. These trees can be attached to either 0 or 1 giving 2^{r+s} di erent increasing trees. Let S be this set of increasing trees.

Each b gives a factor of either x_{0} or x_{1} for x^{\top} depending on whether it is attached to 0 or 1 . Therefore the b^{\prime} 's altogether give a factor of

$$
\left(x_{0}+x_{1}\right)^{s}
$$

to the sum of x^{\top} for all increasing trees in S.
The number r must be odd in order for the total number of vertices to be equal to $2 k+1$. Exactly half of the time an odd number of a_{i} will be attached to 0 and the other half of the time an odd number of a_{i} will be attached to 1 . Consequently, the a_{j} give a factor of

$$
\left(x_{0}+x_{1}\right)^{r-1}
$$

to the sum of x^{\top} for all increasing trees in S. Thus, the sum of x^{\top} for all T $2 S$ is equal to $\left(x_{0}+x_{1}\right)^{r+s-1}$ times a polynomial in the other variables $\mathrm{x}_{2} ; \quad ; \mathrm{X}_{2 \mathrm{k}}$.

Proof of Theorem 8.4 Suppose that is a cyclic shu e of the letters

$$
a_{1}^{0} ; \quad ; a_{x_{0}}^{0} ; a_{1}^{1} ; \quad ; a_{x_{1}}^{1} ; \quad ; a_{1}^{2 k} ; \quad ; a_{x_{2 k}}^{2 k}:
$$

Then we associate to an increasing tree T() as follows.
To each letter a^{i} we associate the vertex i . We start with $\mathrm{T}_{0}($) being just the root 0 which is associated to $a_{1}^{0} \quad a_{x_{0}}^{0}$. We attach to $T_{0}()$ the vertex 1 corresponding to a^{1}. This gives $T_{1}()$. There are two possibilities for $T_{2}()$ as in Example 8.2. We get $0-1-2$ if a^{2} is inserted after (on the right of) an a_{i}^{1}. We get $1-0-2$ is a^{2} is inserted after an a^{0}. Proceeding by induction suppose that we have constructed the increasing tree $T_{n}()$ with vertices $0 ; 1 ; \quad ; n$. Then $T_{n+1}()$ is obtained from $T_{n}()$ by attaching the new vertex $n+1$ to vertex j if inserts a^{n+1} after some a_{i}^{j}.

Since there are x_{j} letters a_{i}^{j}, the number of cyclic shu es giving the same increasing tree T is equal to

$$
x_{0}^{m_{0}} x_{1}^{m_{1}} \quad x_{2 k-1}^{m_{2 k}-1}
$$

where m_{j} is the number of children that vertex j has.
C laim The sum

$$
\begin{equation*}
{ }_{T(~)=T}^{X} \operatorname{sgn}()^{X} \operatorname{sgn}\left(a_{i_{0}}^{0} a_{i_{1}}^{1} \quad a_{i_{2 k}}^{2 k}\right) \tag{35}
\end{equation*}
$$

of the oriented sign sum of for all with $T()=T$ is equal to the tree monomial x^{\top} times x_{0}.

Since the tree polynomial is the sum of (35) over all increasing trees T, this claim will prove the theorem.

To prove the claim we rst consider the unique shu e o with $\mathrm{T}(0)=\mathrm{T}$ having the property that each letter is inserted in the last allowed slot (after the last letter corresponding to its parent in theincreasing tree T). Theoriented sign sum of ${ }_{0}$ is equal to the product

$$
\begin{equation*}
\operatorname{sgn}(0)^{X} \operatorname{sgn}\left(a_{i_{0}}^{0} a_{i_{1}}^{1} \quad a_{i_{2 k}}^{2 k}\right)=x_{0} x_{1} \quad x_{2 k} \tag{36}
\end{equation*}
$$

since every summand is equal to 1.
The statement (36) is the base case $(\mathrm{j}=0)$ of the following induction hypothesis: $\quad \mathrm{X}$

$$
\begin{equation*}
\operatorname{sgn}()^{X} \operatorname{sgn}\left(a_{i_{0}}^{0} a_{i_{1}}^{1} \quad a_{i_{2 k}}^{2 k}\right)=x_{0}^{n_{0}} \quad x_{j-1}^{n_{j}-1} x_{j} \quad x_{2 k} \tag{37}
\end{equation*}
$$

if the sum is taken over all so that
(1) $\mathrm{T}(\mathrm{)}=$
(2) for all i j the children of i are inserted in the last allowed slot (after the last a^{i}).
We recall that n_{i} is the number of components of $T()-i$ having an even number over vertices.

Suppose by induction that (37) holds for j. To extend it to $j+1$ we need to allow the children of vertex j to be inserted at any of the x_{j} allowed points.
Let $b^{1} ; b^{2} ; \quad ; b$ be the letters corresponding to the children of j with $a n$ odd number of descendants. Then each b has the property that it, together with all its descendants, can be moved to any other slot without changing the oriented sign sum. This is because both the shu e and the permutation of selected letters changes by an even permutation. Consequently, the sum (37) is multiplied by X_{j}^{r} bringing the value of (37) to

$$
\begin{equation*}
x_{0}^{n_{0}} \quad x_{j-1}^{n_{j}-1} x_{j}^{r+1} \quad x_{2 k}: \tag{38}
\end{equation*}
$$

Let c^{1}; $\quad c^{s}$ be the other children of j, the ones with an even number of descendants. Let $z_{1} ; \quad ; z_{s}$ denote the indices of the letter a^{j} after which these letters are inserted, eg, c^{1} is inserted after $\alpha_{z_{1}}^{j}$. Take the sum:

$$
\begin{equation*}
\left.X_{\operatorname{sgn}(~)}\right)^{X} \operatorname{sgn}\left(a_{i_{0}}^{0} \quad a_{i_{2 k}}^{2 k}\right) \tag{39}
\end{equation*}
$$

over all $\left(x_{j}\right)^{\text {s }}$ insertion points $z=\left(z_{1} ; \quad ; z_{s}\right)$ for all of the children c together with their descendants. The question is: How do the terms in this sum compare to the term in which all of the z_{i} are maximal (equal to x_{j})?

C ase 1 s is odd (Then there are an odd number of vertices in T minus j and its descendants. So $n_{j}=r$.) In this case we claim that the sum (39) is equal to $\frac{1}{x_{j}}$ times the summand in which each z_{i} is maximal. This is the rst case of Lemma 8.1. To see this consider what happens when we decrease by one the insertion point z_{i} of C and its descendants. This will change the sign of by $(-1)^{m+1}$ where m is the number of other b_{p} which are transposed with c. But the selected sign sgn ($a_{i_{0}}^{0} \quad a_{i_{2 k}}^{2 k}$) also changes by $(-1)^{m}$ so the net e ect is to dhange the sign of the oriented sign sum. Since x_{j} is odd and the sign changes $x_{j}-z_{i}$ times, this gives a sign factor of

$$
\begin{equation*}
(-1)^{s+z_{1}++z_{s}}=-(-1)^{z_{1}+}+z_{s}: \tag{40}
\end{equation*}
$$

For each value of the index i_{j} of a^{j}, the selected sign only changes when some z_{i} goes below i_{j}. Taking the sum over all values of i_{j} we get a factor of

$$
A(z)-B(z)
$$

instead of x_{j} where $A(z) ; B(z)$ are as de ned in Lemma 8.1. This factor, together with (40), adds up to 1 by the lemma. This is instead of the factor of x_{j} which we get in the case when each z_{i} is maximal. So, the sum (37) for $j+1$ is equal to

$$
x_{0}^{n_{0}} \quad x_{j-1}^{n_{j}-1} x_{j}^{r} \quad x_{2 k}
$$

which is correct since $r=n_{j}$.
Case 2 s is even (Then there are an even number of vertices in T minus j and its descendants making $n_{j}=r+1$.) In this case we claim that the sum (39) is equal to the term in which all the z_{i} are maximal. The proof is the same as in Case 1, using the second case of Lemma 8.1. This leaves the product (38) unchanged. But this is correct since $n_{j}=r+1$.

9 Recursion for \hat{F}_{k}

We will show that the reduced tree polynomial F_{k} (in variables $x_{0} ; \quad ; x_{2 k}$) satis es a recursion which we can express in terms of an exponential generating function. First we need to generalize the reduced tre polynomial.

De nition 9.1 For $k ; n \quad 0$ let L_{k}^{n} bethepolynomial in generators $x_{0} ; \quad ; x_{2 k}$ given by

$$
L_{k}^{n}={ }_{T}^{X} \frac{x^{\top}}{x_{2 k+1} \quad X_{2 k+2 n}}
$$

where the sum is taken over all increasing trees T with vertices 0 through $2 k+2 n$ of which the last $2 n$ are leaves. To simplify notation we write the summand above as \bar{X}^{\top} (ie, this is X^{\top} with $\mathrm{x}_{2 \mathrm{k}+1} ; \quad ; \mathrm{x}_{2 \mathrm{k}+2 \mathrm{n}}$ set equal to zero. If we delete the last $2 n$ vertices from T we get what we call the base tree T_{0} which is an arbitrary increasing tree with vertices 0; ;2k.

We make some trivial observations about this polynomial.

Proposition 9.2 (1) $L_{k}^{0}=F_{k}$ is the reduced tree polynomial.
(2) $L_{0}^{n}\left(x_{0}\right)=1$
(3) The polynomial $\mathrm{L}_{\mathrm{k}}^{n}$ has nonnegative integer coe cients adding up to

$$
\mathrm{L}_{\mathrm{k}}^{\mathrm{n}}(1 ; \quad ; 1)=(2 \mathrm{k})!(2 \mathrm{k}+1)^{2 \mathrm{n}}:
$$

Let $g_{k}(t)$ be the exponential generating function:

$$
g_{k}(t)={ }_{n=0}^{\lambda} L_{k}^{n} \frac{t^{2 n}}{(2 n)!}
$$

Then $g_{k}(0)=L_{k}^{0}=e_{k}$. So it su ces to compute $g_{k}(t)$ for all k. When $k=0$ we have $L_{0}^{n}=1$ so

$$
g_{0}(t)={ }^{x} \frac{t^{2 n}}{(2 n)!}=\cosh t:
$$

Theorem 9.3 The generating function $g_{k}(t)$ which gives $g_{k}(0)=f_{k}$ is given recursively as follows.
(1) $g_{0}(t)=$ cosht
(2) $g_{k+1}(t)=g_{k}(t) z_{2 k} z_{2 k+2} \sinh ^{2} t+z_{2 k} y_{2}$

$$
+g_{k}^{0}(t) z_{2 k+1}\left(y_{1}+y_{2}\right) \sinh t \cosh t+g_{k}^{0}(t) y_{1} y_{2} \cosh ^{2} t
$$

where we use the notation: $\mathrm{z}_{\mathrm{j}}=\mathrm{x}_{0}+\quad+\mathrm{x}_{\mathrm{j}} ; \mathrm{y}_{\mathrm{i}}=\mathrm{x}_{2 \mathrm{k}+\mathrm{i}}$.
We will obtain a recursive formula to compute the polynomials L_{k}^{n} and use the recursion to show the theorem. We begin with the rst nontrivial case $\mathrm{k}=1$.
For $k=1$ there are two possibilities for the base tree (consisting of the vertices $0 ; 1 ; 2$). They are connected either as $1-0-2$ or $0-1-2$. In each case we attach $2 n$ leaves in all $3^{2 n}$ possible ways.
Let ; ; γ be the number of leaves attached to $1 ; 2 ; 0$ respectively. We note that there are

$$
\sum_{j=1}^{x} \quad 2 n^{2 j} 2^{2 j-1}=\frac{3^{2 n}-1}{4}
$$

ways for $=\Rightarrow y$ to be odd/ odd/ even and similarly for the cases odd/ even/ odd and even/ odd/ odd. This leaves

$$
\frac{3^{2 n}+3}{4}
$$

ways for ; ; Y to be all even. We determine the monomials \widehat{X}^{\top} in each case.
(1) Base $1-0-2$ with ; ; y all even. In this case the monomial is $\widehat{x}^{\top}=$ $x_{1} x_{2}$. So the contribution is

$$
\frac{3^{2 n}+3}{4} x_{1} x_{2}
$$

(2) Base 1-0-2 with ; both odd (and γ even). Then the monomial is $x^{\top}=x_{0}^{2}$. So the contribution is

$$
\frac{3^{2 n}-1}{4} x_{0}^{2}
$$

(3) Base $1-0-2$ with y odd. Then the monomial is $\widehat{x}^{\top}=x_{0} x_{i}$ where $i=1 ; 2$ with equal probability. So the contribution is

$$
\frac{3^{2 n}-1}{4} x_{0}\left(x_{1}+x_{2}\right):
$$

Adding these three together we get

$$
\frac{3^{2 n}}{4}\left(x_{0}\left(x_{0}+x_{1}+x_{2}\right)+x_{1} x_{2}\right)+\frac{1}{4}\left(3 x_{1} x_{2}-x_{0}\left(x_{0}+x_{1}+x_{2}\right)\right)
$$

If the base tree is $0-1-2$ then wejust switch x_{0} and x_{1} in the above expression. Adding these two cases gives

$$
\begin{equation*}
L_{1}^{n}=\frac{3^{2 n}}{4}\left(x_{0}+x_{1}\right)\left(2 x_{2}+x_{0}+x_{1}\right)+\frac{1}{4}\left(x_{0}+x_{1}\right)\left(2 x_{2}-x_{0}-x_{1}\right): \tag{41}
\end{equation*}
$$

Note that n occurs only in the exponent of 3 . More generally, we have the following.

Lemma 9.4

$$
L_{k}^{n}={ }_{s=0}^{x^{k}} 4^{-k}(2 s+1)^{2 n} P_{k}^{2 s+1}
$$

where $P_{k}^{2 s+1}$ is a polynomial in $x_{0} ; \quad ; x_{2 k}$ with integer coe cients depending only on k ; s .

Remark 9.5 This lemma can be rephrased in terms of the exponential generating function $g_{k}(t)$ as follows.

$$
g_{k}(t)={ }_{n 0}^{X} L_{k}^{n} \frac{t^{2 n}}{(2 n)!}={ }_{n ; c}^{X} \frac{P_{k}^{c}}{4^{k}} \frac{c^{2 n} t^{2 n}}{(2 n)!}={ }_{s=0}^{X^{k}} 4^{-k} P_{k}^{2 s+1} \cosh ((2 s+1) t):
$$

We will prove Lemma 9.5 and nd a recursion for L_{k}^{n} at the same time Suppose we know the polynomial L_{k}^{n} for all n and we wish to compute L_{k+1}^{n}. This is a sum of monomials \widehat{x}^{\top}. There are again two cases for the base tree T_{0}. Either $2 k+1 ; 2 k+2$ are leaves of the base tre or $2 k+2$ is attached to $2 k+1$. In both cases we attach $2 n$ leaves to T_{0}, on $2 k+1$, on $2 k+2$ and γ on T_{-} where T_{-}is T_{0} with the vertices $2 \mathrm{k}+1 ; 2 \mathrm{k}+2$ removed.

Case $12 k+1 ; 2 k+2$ are leaves of the base tre T_{0}.
(1) ; ; γ all even with $\gamma=2 \mathrm{~m}$. In this case the vertices $2 \mathrm{k}+1 ; 2 \mathrm{k}+2$ act like leaves and T looks like T_{-}with $2 m+2$ leaves. The monomials in this case add up to

$$
L_{k}^{m+1} x_{2 k+1} x_{2 k+2}
$$

We need to multiply this with the number of choices for the ; ; γ leaves which is

$$
\begin{aligned}
& 2 n \\
& 2 m
\end{aligned} 2^{2 n-2 m-1}
$$

if $0 \mathrm{~m}<\mathrm{n}$ and 1 if $\mathrm{m}=\mathrm{n}$. This gives a contribution of

$$
\begin{equation*}
L_{k}^{n+1} x_{2 k+1} x_{2 k+2}+{ }_{m=0}^{x-1} L_{k}^{m+1} \quad 2 n 2^{2 n-2 m-1} x_{2 k+1} x_{2 k+2} \tag{42}
\end{equation*}
$$

(2) ; both odd with $\gamma=2 m$. In this case the vertices $2 k+1 ; 2 k+2$ simply add a factor of $x_{i} x_{j}$ to \bar{x}^{\top} if they are attached to vertices $i ; j \quad 2 k$. Taking the sum over all $i ; j$ we get a factor of $z_{2 k}^{2}$ where

$$
\mathrm{z}_{2 \mathrm{k}}=\mathrm{x}_{0}+\mathrm{x}_{1}+\quad+\mathrm{x}_{2 \mathrm{k}}:
$$

The contribution to L_{k+1}^{n} is thus

$$
\begin{equation*}
\underset{m=0}{x-1} L_{k}^{m} \underset{2 m}{2 n} 2^{2 n-2 m-1} z_{2 k}^{2}: \tag{43}
\end{equation*}
$$

(3) $\gamma=2 m-1$. In this case one of ; is odd and the other is even. This gives a factor of $z_{2 k}\left(x_{2 k+1}+x_{2 k+2}\right)$ for a contribution of

$$
\begin{equation*}
X_{m=1}^{X_{k}^{n}} L_{2 m-1}^{2 n} 2^{2 n-2 m} z_{2 k}\left(x_{2 k+1}+x_{2 k+2}\right): \tag{44}
\end{equation*}
$$

Case $22 \mathrm{k}+2$ is attached on $2 \mathrm{k}+1$.
(1) ; ; γ all even with $\gamma=2 m$. Then the tre consisting of vertices $2 k+$ $1 ; 2 \mathrm{k}+2$ and + leaves has an even number of vertices and contributes a factor of $z_{2 k} x_{2 k+2}$. As in Case 1(1) we get a contribution to L_{k+1}^{n} of

$$
\begin{equation*}
L_{k}^{n} z_{2 k} x_{2 k+2}+{ }_{m=0}^{x-1} L_{k}^{m} \underset{2 m}{2 n} 2^{2 n-2 m-1} z_{2 k} x_{2 k+2}: \tag{45}
\end{equation*}
$$

(2) ; both odd with $\gamma=2 \mathrm{~m}$. This time we get a factor of $z_{2 k} x_{2 k+1}$ so the contribution is

$$
\begin{equation*}
{\underset{m=0}{x-1} L_{k}^{m} \quad \underset{2 m}{2 n} 2^{2 n-2 m-1} z_{2 k} x_{2 k+1}: ~}_{\text {: }} \tag{46}
\end{equation*}
$$

(3) $\mathrm{Y}=2 \mathrm{~m}-1$. This is just likeCase 1 (3). Thetree with vertices $2 \mathrm{k}+1 ; 2 \mathrm{k}+2$ and + leaves acts like one leaf. We get a factor of $x_{2 k+1}^{2}$ or $x_{2 k+1} x_{2 k+2}$ depending on whether or is even. Thus the contribution is

$$
\begin{equation*}
x_{m=1}^{n} L_{k}^{m} \underset{2 m-1}{2 n} 2^{2 n-2 m} x_{2 k+1}\left(x_{2 k+1}+x_{2 k+2}\right): \tag{47}
\end{equation*}
$$

The value of L_{k+1}^{n} is given by adding these six terms:

$$
L_{k+1}^{n}=(42)+(43)+(44)+(45)+(46)+(47):
$$

To simplify the computation we need to use Lemma 9.4 and the following two formulas.

$$
\begin{array}{lc}
x^{-1} & 2 n \\
m=0 & 2 m \\
x^{2 m} & 2 n \\
m=1 & 2 m-1
\end{array} c^{2 m-2 m}=\frac{(c+2)^{2 n}+(c-2)^{2 n}}{2}-c^{2 n}-2 m=\frac{c}{2} \frac{(c+2)^{2 n}-(c-2)^{2 n}}{2} .
$$

Proof of Lemma 9.4 We know that the lemma holds for $k=0 ; 1$ so suppose that $k \quad 1$ and the lemma holds for k. Substituting the expression $c^{2 m}$ for L_{k}^{m} and letting $y_{i}=x_{2 k+i}$ we get the following.

$$
\begin{aligned}
& \text { expression(42) }=c^{2 n+2} y_{1} y_{2}+\frac{c^{2}}{2} \frac{(c+2)^{2 n}+(c-2)^{2 n}}{2}-c^{2 n} y_{1} y_{2} \\
& =c^{2} \quad \frac{(c+2)^{2 n}+(c-2)^{2 n}}{4}+\frac{c^{2 n}}{2} \quad y_{1} y_{2} \\
& \text { expression }(43)=\frac{(c+2)^{2 n}+(c-2)^{2 n}}{4}-\frac{c^{2 n}}{2} \quad z_{2 k}^{2} \\
& \text { expression(44) }=c \frac{(c+2)^{2 n}-(c-2)^{2 n}}{4} z_{2 k}\left(y_{1}+y_{2}\right) \\
& \text { expression(45) }=c^{2 n} z_{2 k} y_{2}+\frac{1}{2} \frac{(c+2)^{2 n}+(c-2)^{2 n}}{2}-c^{2 n} z_{2 k} y_{2} \\
& \\
& =\frac{(c+2)^{2 n}+(c-2)^{2 n}}{4}+\frac{c^{2 n}}{2} z_{2 k} y_{2} \\
& \text { expression }(46)=\frac{(c+2)^{2 n}+(c-2)^{2 n}}{4}-\frac{c^{2 n}}{2} z_{2 k} y_{1} \\
& \text { expression(47) }=c \frac{(c+2)^{2 n}-(c-2)^{2 n}}{4} y_{1}\left(y_{1}+y_{2}\right)
\end{aligned}
$$

Collect together the terms with $c^{2 n}=4 ;\left(\begin{array}{ll}c & 2)^{2 n} \\ =4\end{array}\right.$. Then, for every $c^{2 n}$ term which occurs in L_{k}^{n} we get the following three terms in L_{k+1}^{n}.

$$
\begin{align*}
& \frac{c^{2 n}}{4} 2 c^{2} y_{1} y_{2}-2 z_{2 k}^{2}+2 z_{2 k} y_{2}-2 z_{2 k} y_{1}=\frac{c^{2 n}}{4} 2 c^{2} y_{1} y_{2}-2 z_{2 k}\left(z_{2 k+1}-y_{2}\right) \tag{48}\\
& \begin{array}{r}
\frac{(c+2)^{2 n}}{4} c^{2} y_{1} y_{2}+z_{2 k}^{2}+c z_{2 k}\left(y_{1}+y_{2}\right)+z_{2 k} y_{2}+z_{2 k} y_{1}+c y_{1}\left(y_{1}+y_{2}\right) \\
\\
=\frac{(c+2)^{2 n}}{4} c^{2} y_{1} y_{2}+z_{2 k+1}\left(y_{1}+y_{2}\right)+z_{2 k} z_{2 k+2}
\end{array} \\
& \begin{array}{r}
\frac{(c-2)^{2 n}}{4} c^{2} y_{1} y_{2}+z_{2 k}^{2}-c z_{2 k}\left(y_{1}+y_{2}\right)+z_{2 k} y_{2}+z_{2 k} y_{1}-c y_{1}\left(y_{1}+y_{2}\right) \\
\\
=\frac{(c-2)^{2 n}}{4} c^{2} y_{1} y_{2}-z_{2 k+1}\left(y_{1}+y_{2}\right)+z_{2 k} z_{2 k+2}
\end{array} \tag{49}
\end{align*}
$$

If L_{k}^{n} is a linear combination of $c^{2 n}=4^{k}$ for $c=1 ; 3 ; \quad ; 2 k+1$ then L_{k+1}^{n} is a linear combination of the above three expressions which in turn are linear combinations of $c^{2 n}=4^{k+1}$ for $c=1 ; 3 ; \quad ; 2 k+3$. This proves the lemma.

If we change the sign of c then (49), (50) are interchanged and (48) remains the same. Consequently, these three expressions directly translate into the following recursion for the coe cients P_{k}^{c}.
Theorem 9.6 $L_{k}^{n}={ }^{P} \underset{s=0}{k} 4^{-k} P_{k}^{2 s+1}(2 s+1)^{2 n}$ where $P_{k}^{c}=P_{k}^{-c}$ is given for all odd integers c as follows.

$$
\begin{gathered}
P_{0}^{1}=P_{0}^{-1}=1 ; P_{0}^{c}=0 \text { if } j c>1 \\
P_{k+1}^{c}=P_{k}^{c}\left(2 c^{2} y_{1} y_{2}-2 z_{2 k}\left(z_{2 k+1}-y_{2}\right)\right) \\
+P_{k}^{c-2}(c-2)^{2} y_{1} y_{2}+(c-2) z_{2 k+1}\left(y_{1}+y_{2}\right)+z_{2 k} z_{2 k}+2 \\
+P_{k}^{c+2}(c+2)^{2} y_{1} y_{2}-(c+2) z_{2 k+1}\left(y_{1}+y_{2}\right)+z_{2 k} z_{2 k}+2
\end{gathered}
$$

where $z_{j}=x_{0}+\quad+x_{j}$ and $y_{i}=x_{2 k+i}$.
Corollary 9.7 The reduced tree polynomial is given by

$$
\mathcal{F}_{\mathrm{k}}=\mathrm{L}_{\mathrm{k}}^{0}={ }_{\mathrm{s}=0}^{\mathrm{X}^{k}} 4^{-\mathrm{k}} \mathrm{P}_{\mathrm{k}}^{2 \mathrm{~s}+1}:
$$

Proof of Theorem 9.3 The exponential generating function for L_{k}^{n} is

$$
g_{k}(t)=\sum_{n ; c}^{X} \frac{P_{k}^{c}}{4^{k}} c^{2 n} \frac{t^{2 n}}{(2 n)!}=x \frac{P}{k}_{4^{k}}^{4^{k}} \cosh c t:
$$

Using the hypertrigonometric identity

$$
\cosh (c t \quad 2 t)=\cosh c t \cosh 2 t \quad \sinh c t \sinh 2 t
$$

we get:

$$
\begin{aligned}
& g_{k} \cosh 2 t=x \quad \frac{P_{k}^{c}}{4^{k}} \frac{1}{2}(\cosh (c t+2 t)+\cosh (c t-2 t)) \\
& g_{k}^{0} \sinh 2 t=x^{c} \frac{P_{k}^{c} c}{4^{k}} \frac{c}{2}(\cosh (c t+2 t)-\cosh (c t-2 t)) \\
& g_{k}^{\infty} \cosh 2 t={ }_{c}^{X} \frac{P_{k}^{c}}{4^{k}} \frac{c^{2}}{2}(\cosh (c t+2 t)+\cosh (c t-2 t)):
\end{aligned}
$$

So, the recursion in Theorem 9.6 gives us:

$$
\begin{aligned}
g_{k+1}= & \frac{g_{k}^{\infty}}{2} y_{1} y_{2}-\frac{g_{k}}{2} z_{2 k}\left(z_{2 k+1}-y_{2}\right) \\
& +\frac{g_{k}^{\infty}}{2}(\cosh 2 t) y_{1} y_{2}+\frac{g_{k}^{0}}{2}(\sinh 2 t) z_{2 k+1}\left(y_{1}+y_{2}\right)+\frac{g_{k}}{2}(\cosh 2 t) z_{2 k} z_{2 k+2}
\end{aligned}
$$

Simplify this to get the theorem.

10 Examples of \bar{F}_{k}

We will use the following version of Theorem 9.6 to compute the reduced tree polynomial F_{k} for small k. By Proposition 8.8 it su ces to consider the case when $x_{0}=0$. We use the following version of the recurrence.

$$
\begin{gathered}
P_{k+1}^{c}=P_{k}^{c}\left(2 c^{2} x_{2 k+1} x_{2 k+2}-2 z_{2 k}\left(z_{2 k+1}-x_{2 k+2}\right)\right) \\
+P_{k}^{c-2}\left(z_{2 k}+(c-2) x_{2 k+1}\right)\left(z_{2 k+1}+(c-1) x_{2 k+2}\right) \\
+P_{k}^{c+2}\left(z_{2 k}-(c+2) x_{2 k+1}\right)\left(z_{2 k+1}-(c+1) x_{2 k+2}\right) \\
P_{0}^{1}=1 \quad F_{0}=P_{0}^{1}=1
\end{gathered}
$$

Since $z_{0}=x_{0}=0$ we get:

$$
P_{1}^{3}=P_{0}^{1} x_{1}\left(x_{1}+2 x_{2}\right)=x_{1}^{2}+2 x_{1} x_{2}
$$

$$
\begin{array}{r}
P_{1}^{1}=P_{0}^{1}\left(2 x_{1} x_{2}-x_{1}\left(x_{1}\right)\right)=-x_{1}^{2}+2 x_{1} x_{2} \\
P_{1}=\frac{1}{4}\left(P_{1}^{1}+P_{1}^{3}\right)=x_{1} x_{2}
\end{array}
$$

When $k=2$ the polynomials P_{k}^{c} and R_{2} are still manageable:

$$
\begin{aligned}
P_{2}^{5}= & P_{1}^{3}\left(z_{2}+3 x_{3}\right)\left(z_{3}+4 x_{4}\right) \\
= & x_{1}\left(x_{1}+2 x_{2}\right)\left(z_{2}+3 x_{3}\right)\left(z_{3}+4 x_{4}\right) \\
P_{2}^{3}= & P_{1}^{3}\left(18 x_{3} x_{4}-2 z_{2}\left(z_{3}-x_{4}\right)\right)+P_{1}^{1}\left(z_{2}+x_{3}\right)\left(z_{3}+2 x_{4}\right) \\
= & x_{1}\left(x_{1}+2 x_{2}\right)\left(18 x_{3} x_{4}-2 z_{2}\left(z_{3}-x_{4}\right)\right)+x_{1}\left(-x_{1}+2 x_{2}\right)\left(z_{2}+x_{3}\right)\left(z_{3}+2 x_{4}\right) \\
P_{2}^{1}= & P_{1}^{1}\left(2 x_{3} x_{4}-2 z_{2}\left(z_{3}-x_{4}\right)+\left(z_{2}-x_{3}\right) z_{3}\right)+P_{1}^{3}\left(z_{2}-3 x_{3}\right)\left(z_{3}-2 x_{4}\right) \\
= & x_{1}\left(-x_{1}+2 x_{2}\right)\left(2 x_{3} x_{4}-2 z_{2}\left(z_{3}-x_{4}\right)+\left(z_{2}-x_{3}\right) z_{3}\right)+x_{1}\left(x_{1}+2 x_{2}\right) \\
& \quad\left(z_{2}-3 x_{3}\right)\left(z_{3}-2 x_{4}\right) \\
& R_{2}=\frac{1}{4^{2}}\left(P_{2}^{1}+P_{2}^{3}+P_{2}^{5}\right)=x_{1}^{2} x_{2} x_{4}+x_{1} x_{2}^{2} x_{4}+2 x_{1}^{2} x_{3} x_{4}+5 x_{1} x_{2} x_{3} x_{4}
\end{aligned}
$$

For $k \quad 3$ both P_{k}^{c} and \hat{F}_{k} become more complex (except for $P_{k}^{2 k+1}$):

$$
\begin{aligned}
P_{3}^{7} & =x_{1}\left(x_{1}+2 x_{2}\right)\left(z_{2}+3 x_{3}\right)\left(z_{3}+4 x_{4}\right)\left(z_{4}+5 x_{5}\right)\left(z_{5}+6 x_{6}\right) \\
P_{3} & =\frac{1}{4^{3}}\left(P_{3}^{1}+P_{3}^{3}+P_{3}^{5}+P_{3}^{7}\right) \\
& =8 x_{1}^{2} x_{2} x_{3} x_{4} x_{6}+16 x_{1}^{2} x_{2} x_{3} x_{5} x_{6}+x_{1}^{3} x_{2} x_{4} x_{6}+2 x_{1}^{2} x_{2}^{2} x_{4} x_{6}+x_{1}^{2} x_{2} x_{4}^{2} x_{6} \\
& +23 x_{1}^{2} x_{2} x_{4} x_{5} x_{6}+6 x_{1} x_{2}^{2} x_{3} x_{4} x_{6}+12 x_{1} x_{2}^{2} x_{3} x_{5} x_{6}+2 x_{1}^{3} x_{3} x_{4} x_{6}+2 x_{1}^{2} x_{3}^{2} x_{4} x_{6} \\
& +2 x_{1}^{2} x_{3} x_{4}^{2} x_{6}+28 x_{1}^{2} x_{3} x_{4} x_{5} x_{6}+5 x_{1} x_{2} x_{3}^{2} x_{4} x_{6}+10 x_{1} x_{2} x_{3}^{2} x_{5} x_{6}+2 x_{1}^{3} x_{2} x_{5} x_{6} \\
& +4 x_{1}^{2} x_{2}^{2} x_{5} x_{6}+6 x_{1}^{3} x_{4} x_{5} x_{6}+4 x_{1}^{2} x_{3}^{2} x_{5} x_{6}+5 x_{1} x_{2} x_{3} x_{4}^{2} x_{6}+61 x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} \\
& +x_{1} x_{2}^{3} x_{4} x_{6}+x_{1} x_{2}^{2} x_{4}^{2} x_{6}+2 x_{1} x_{2}^{3} x_{5} x_{6}+4 x_{1}^{3} x_{3} x_{5} x_{6}+17 x_{1} x_{2}^{2} x_{4} x_{5} x_{6}
\end{aligned}
$$

The coe cients of F_{k} tell us something about increasing trees. For example, 61 (the coe cient of $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}$) is the number of increasing trees in which each node has an even number of children.

Summary of algorithm

First we obtain the reduced tree polynomial by substituting $x_{0}+x_{1}$ for x_{1}. For example F_{2} is given by:
$F_{2}\left(x_{0} ; \quad ; x_{4}\right)=$

$$
\left(x_{0}+x_{1}\right)^{2} x_{2} x_{4}+\left(x_{0}+x_{1}\right) x_{2}^{2} x_{4}+2\left(x_{0}+x_{1}\right)^{2} x_{3} x_{4}+5\left(x_{0}+x_{1}\right) x_{2} x_{3} x_{4}
$$

Geometry \& Topology, Volume 8 (2004)

Next, we need to $n d \mathrm{Q}_{\mathrm{k}}$ which is given in general by

$$
\mathrm{Q}_{\mathrm{k}}\left(\mathrm{x}_{0} ; \quad ; \mathrm{x}_{2 \mathrm{k}}\right)=\frac{\mathrm{f}_{\mathrm{k}}\left(\mathrm{x}_{0} ; \quad ; \mathrm{x}_{2 \mathrm{k}}\right)}{\mathrm{z}_{1} z_{2} \quad z_{2 \mathrm{k}-1}}:
$$

For $\mathrm{k}=2$ this is

$$
\mathrm{Q}_{\mathrm{k}}\left(\mathrm{x}_{0} ; \quad ; \mathrm{x}_{4}\right)=\frac{\left(\mathrm{x}_{0}+\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}\right) \mathrm{x}_{2} \mathrm{x}_{4}+2\left(\mathrm{x}_{0}+\mathrm{x}_{1}+\mathrm{x}_{2}\right) \mathrm{x}_{3} \mathrm{x}_{4}+2 \mathrm{x}_{2} \mathrm{x}_{3} \mathrm{x}_{4}}{\left(\mathrm{x}_{0}+\mathrm{x}_{1}+\mathrm{x}_{2}\right)\left(\mathrm{x}_{0}+\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}\right)}
$$

Take any partition of m with at most $2 k+1$ parts. Write the parts in any order and insert 0 at the end:

$$
=\left(m_{0} ; m_{1} ; \quad ; \mathrm{m}_{2 \mathrm{k}}\right) ; \quad \wedge \quad \mathrm{m}_{\mathrm{i}}=\mathrm{m}:
$$

The simplest example has only one part: $=m 0^{2 \mathrm{k}}$. Let

$$
\mathrm{R}_{\mathrm{k}}():=\frac{2 \mathrm{~m}_{0}+1}{2 \mathrm{~m}_{0}+3} \mathrm{Q}_{\mathrm{k}}\left(2 \mathrm{~m}_{0}+3 ; 2 \mathrm{~m}_{1}+1 ; \quad ; 2 \mathrm{~m}_{2 \mathrm{k}}+1\right):
$$

Let $S_{k}()$ be the symmetrized version of R_{k} :

$$
\mathrm{S}_{\mathrm{k}}\left(\mathrm{)}:=\frac{1}{\operatorname{Sym}()}^{\mathrm{X}} \mathrm{R}_{\mathrm{k}}\left(\mathrm{~m}_{(0)} ; \mathrm{m}_{(1)} ; \quad ; \mathrm{m}_{(2 \mathrm{k})}\right) ;\right.
$$

where the sum is over all permutations of the letters $0 ; \quad ; 2 \mathrm{k}$ and $\operatorname{Sym}()$ is the number of which leave xed. (Or equivalently, we take the sum over all distinct permutations of the numbers m_{i}.) For example:

$$
\begin{gathered}
S_{2}(m)=R_{2}\left(m ; 0^{4}\right)+R_{2}\left(0 ; m ; 0^{3}\right)+R_{2}\left(0^{2} ; m ; 0^{2}\right)+R_{2}\left(0^{3} ; m ; 0\right)+R_{2}\left(0^{4} ; m\right) \\
=\frac{2 m+1}{2 m+3} Q_{2}\left(2 m+3 ; 1^{4}\right)+{ }_{q=0}^{2 k-1} \frac{1}{3} Q_{2}\left(1^{2 k-q-1} ; m ; 1^{q}\right) \\
=\frac{2 m+7}{5}-\frac{6}{(2 m+5)(2 m+3)}
\end{gathered}
$$

If is any partition of m then Theorem 5.5 says that

$$
\mathrm{b}_{; \mathrm{k}}^{m+\mathrm{k}}=\mathrm{X} \frac{\mathrm{~b} \mathrm{~S}}{\mathrm{k}}(\mathrm{r})
$$

where the sum is over all partitions of m with at most $2 k+1$ parts. This gives a recursive formula for b^{m}. The coe cients b are then given by the sum of products formula (Lemma 1.4).

Geometry \& Topology, Volume 8 (2004)

References

[1] E Arbarello, M Cornalba, Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves, J. Alg. Geom. 5 (1996) $705\{749$
[2] Marc Culler, K aren Vogtmann, Moduli of graphs and automorphisms of fre groups, Invent. Math. 84 (1986) $91\{119$
[3] J ames Conant, Karen Vogtmann, On a theorem of Kontsevich, Algebr. Geom. Topol. 3 (2003) 1167\{1224
[4] K iyoshi Igusa, Combinatorial Miller \{Morita\{Mumford classes and Witten cycles, Algebr. Geom. Topol. 4 (2004) 473\{520
[5] Kiyoshi Igusa, Higher Franz\{Reidemeister Torsion, AMS/IP Studies in Advance Mathematics, vol. 31, International Press (2002)
[6] Kiyoshi Igusa, Graph cohomology and K ontsevich cycles, to appear in Topology, arXi v: mat h. AT/ 0303157
[7] K iyoshi Igusa, Higher complex torsion and the framing principle, to appear in Memoirs of AMS arXiv: nath. KT/ 0303047
[8] Maxim K ontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1 \{23
[9] Edward Y. M iller, The homology of the mapping class group, J. Di erential Geom. 24 (1986) 1 \{14
[10] Gabriele M ondello, Combinatorial classes on the moduli space of curves are tautological, to appear in IMRN, ar Xi v: nath. AT/ 0303207
[11] Shigeyuki Morita, Characteristic classes of surface bundles, Bull. Amer. Math. Soc. 11 (1984) 386\{388
[12] Marko Petkovsek, Herbert S Wilf, Doron Zeilberger, A = B , published by A K Peters Ltd. Wellesley, MA (1996)
[13] R ichard P Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge (1997) with a foreword by Gian-Carlo Rota (corrected reprint of the 1986 original)
[14] K urt Strebel, Quadratic Di erentials, Springer-Verlag, Berlin (1984)

