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Introduction

This paper describes two novel phenomena in the study of in�nite group actions
on compact manifolds. We exhibit a �nitely generated group Γ and a manifold
M such that:

� Γ has exactly countably in�nitely many e�ective real-analytic actions on
M , up to conjugacy in Di�!(M);

� every e�ective, real analytic action of Γ on M is Cr locally rigid, for
some r � 3, and for every such r , there are in�nitely many nonconjugate,
e�ective real-analytic actions of Γ on M that are Cr locally rigid, but
not Cr−1 locally rigid.

In the cases we know of where an in�nite group Γ has exactly countably many
smooth e�ective actions on a manifold M , that countable number is �nite, and
indeed usually 0. While many actions have been shown to to be Cr locally
rigid, in the cases where a precise cuto� in rigidity has been established, it
occurs between r = 1 and r = 2. For a survey of some of the recent results on
smooth group actions, see the paper of Labourie [9].

Our manifold M is the circle S1 and our group Γ is the solvable Baumslag{
Solitar group:

BS(1; n) = ha; b; j aba−1 = bni;
where n � 2.

As a natural by-product of our techniques, we obtain a classi�cation of all
solvable subgroups of Di�!(S1). We show that every such subgroup G is either
conjugate in Di�!(S1) to a subgroup of a rami�ed a�ne group A�s(R), or, for
some m 2 Z, the group Gm := fgm : g 2 Gg is abelian. The rami�ed a�ne
groups are de�ned and their properties discussed in Section 2.2. Each rami�ed
a�ne group is abstractly isomorphic to a direct product A�+(R) �H , where
A�+(R) is the group of orientation-preserving a�ne transformations of R, and
H is a subgroup of a �nite dihedral group.

1 Statement of results

1.1 Notation and preliminary de�nitions

In places, we shall use two di�erent analytic coordinatizations of the circle S1 .
To denote an element of the additive group, R=Z, we will use u, and for an
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element of the real projective line RP 1 , we will use x. These coordinate systems
are identi�ed by: u 2 R=Z 7! x = tan(�u) 2 RP 1 . When we are not specifying
a coordinate system, we will use p or q to denote an element of S1 . We �x an
orientation on S1 and use \<" to denote the counterclockwise cyclic ordering
on S1 .

If G is a group, then we denote by Rr(G) the set of all representations �0 : G!
Di�r(S1), and we denote by Rr+(G) the set of all orientation-preserving rep-
resentations in Rr(G). Two representations �1; �2 2 Rr(G) are conjugate
(in Di�r(S1)) if there exists h 2 Di�r(S1) such that, for every γ 2 G,
h�1(γ)h−1 = �2(γ).

We use the standard Ck topology on representations of a �nitely-generated
group into Di�r(S1), r 2 f1; : : : ;1; !g and k � r . If Γ is a �nitely-generated
group, then the Ck{open sets in Rr(Γ) take generators in a �xed generating
set for Γ into Ck{open sets. A representation �0 2 Rr(Γ) is (Cr ) locally rigid
if there exists a C1 neighborhood U of �0 in Rr(Γ) such that every � 2 U is
conjugate in Di�r(S1) to �0 . Finally, we say that Γ is globally rigid in Di�r(S1)
if there exists a countable set of locally rigid representations in Rr(Γ) such that
every faithful representation in Rr(Γ) is conjugate to an element of this set.

To construct the subgroups and representations in this paper, we use a proce-
dure we call real rami�ed lifting.

De�nition A real analytic surjection � : S1 ! S1 is called a rami�ed covering
map over p 2 S1 if the restriction of � to �−1(S1 n fpg) is a regular analytic
covering map onto S1 n fpg of degree d � 1. The degree of of � is de�ned to
be this integer d.

Examples and properties of rami�ed covering maps and rami�ed lifts are de-
scribed in Section 2.

Let � : S1 ! S1 be a rami�ed covering map over p 2 S1 , and let f : S1 ! S1

be a real analytic di�eomorphism that �xes p. We say that f̂ 2 Di�!(S1) is a
�{rami�ed lift of f if the following diagram commutes:

S1 S1

S1 S1

-f̂

-f
?� ?�

More generally, let � : Γ ! Di�!(S1) be a representation with global �xed
point p. A representation �̂ : Γ! Di�!(S1) is a �{rami�ed lift of � if �̂(γ) is
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a �{rami�ed lift �(γ), for every γ 2 Γ. We will show in Proposition 2.3 that a
representation can have more than one �{rami�ed lift.

For G a subgroup of Di�!(S1) with a global �xed point p, we de�ne Ĝ� , the
�{rami�ed lift of G to be the collection of all �{rami�ed lifts of elements of
G. By Proposition 2.3 and Propostion 2.8, Ĝ� is a subgroup of Di�!(S1),
abstractly isomorphic to an H {extension of G+ , where G+ = Di�!+(S1) \G,
and H is a subgroup of a dihedral group determined by � .

1.2 Rigidity of solvable Baumslag{Solitar groups

In real projective coordinates on RP 1 , the standard representation �n of BS(1; n)
into Di�!+(S1) takes the generators a and b to the a�ne maps

x 7! nx; and x 7! x+ 1:

This representation has a global �xed point 1 2 RP 1 . Our �rst result states
that BS(1; n) is globally rigid in Di�!(S1):

Theorem 1.1 For each n � 2, there are exactly countably in�nitely many
faithful representations of BS(1; n) into Di�!(S1), up to conjugacy in Di�!(S1).
Each conjugacy class contains a �{rami�ed lift of �n , where � : RP 1 ! RP 1

is a rational map that is rami�ed over 1. Furthermore, if � : BS(1; n) !
Di�!(S1) is not faithful, then there exists a k � 1 such that �(b)k = id.

We give an explicit description of these conjugacy classes in Section 2.1.

The conclusion of Theorem 1.1 does not hold when C! is replaced by a lower
di�erentiability class such as C1 , even when analytic conjugacy is replaced by
topological conjugacy in the statement. Nonetheless, as r increases, there is
a sort of \quantum rigidity" phenomenon. Let � : BS(1; n) ! Di�2(S1) be a
representation, and let f = �(a). We make a preliminary observation:

Lemma 1.2 If the rotation number of f is irrational, then gk = id, for some
k � n+ 1, where g = �(b).

(See the beginning of Section 5 for a proof). Hence, if � 2 R2(BS(1; n)) is
faithful, then f must have periodic points. For � 2 R2(BS(1; n)) a faithful
representation, we de�ne the inner spectral radius �(�) by:

�(�) = supfj(fk)0(p)j 1k j p 2 Fix(fk) and j(fk)0(p)j � 1g:
For the standard representation, �(�n) = 1

n , and if �̂n is a rami�ed lift of �n ,

then �(�̂n) =
(

1
n

� 1
s , for some s 2 N�1 .
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Theorem 1.3 Let � : BS(1; n)! Di�r(S1) be a faithful representation, where

r 2 [2;1]. If either r <1 and �(�) �
(

1
n

� 1
r−1 , or r =1 and �(�) < 1, then

� is conjugated by an element of Di�r(S1) into a unique conjugacy class in
R!(BS(1; n)).

If � takes values in Di�r+(S1), then � is conjugated by an element of Di�r+(S1)
into a unique conjugacy class in R!+(BS(1; n)).

Theorem 1.3 has the following corollary:

Corollary 1.4 Every representation � : BS(1; n) ! Di�!(S1) is C1 locally

rigid. Further, if �(�) <
(

1
n

� 1
r−1 , then � is Cr locally rigid.

This corollary implies that the standard representation is Cr locally rigid, for
all r � 3, and every representation in R!(BS(1; n)) is locally rigid in some
�nite di�erentiability classes. This local rigidity breaks down, however, if the
di�erentiability class is lowered.

Proposition 1.5 For every representation � : BS(1; n)! Di�!(S1), if �(�) =(
1
n

� 1
r−1 , for some r � 2 then there exists a family of representations �t 2

Rr(BS(1; n)), t 2 (−1; 1), with the following properties:

(1) �0 = �,

(2) t 7! �t is continuous in the Cr−1 topology on Rr(BS(1; n)),

(3) for every t1; t2 2 (−1; 1), if �t1 is conjugate to �t2 in Di�1(S1) then
t1 = t2 .

It follows from our characterization of the conjugacy classes in R!(BS(1; n))
in the next section that, for each value of r 2 [1;1), there are in�nitely many

nonconjugate representations � 2 R!(BS(1; n)) satisfying �(�) =
(

1
n

� 1
r : Hence,

for each r � 3 there are in�nitely many distinct (nonconjugate) representations
in R!(BS(1; n)) that are Cr locally rigid, but not Cr−1 locally rigid.

A. Navas has given a complete classi�cation of C2 solvable group actions, up
to �nite index subgroups and topological semiconjugacy. One corollary of his
result is that every faithful C2 representation � of BS(1; n) into Di�2(S1) is
is virtually topologically semiconjugate to the standard representation:

Theorem 1.6 [11] Let � : BS(1; n) ! Di�r(S1) be a representation, where
r � 2. Then either � is unfaithful, in which case �(b)m = id, for some m,
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or there exists an integer m � 1, a �nite collection of closed, connected sets
I1; : : : ; Ik , and a surjective continuous map ’ : S1 ! RP 1 with the following
properties:

(1) �(b)m is the identity on each set Ik ;

(2) ’ sends each set Ik to 1;

(3) the restriction of ’ to S1 n
Sk
i=1 Ii is a Cr covering map of R;

(4) For every γ 2 BS(1; n), the following diagram commutes:

S1 S1

S1 S1

-�(γm)

-�n(γm)
?

’
?

’

where �n : BS(1; n)! Di�!(S1) is the standard representation.

The map ’ in Theorem 1.6 is a sort of \broken Cr rami�ed cover." The
regularity of ’ at the preimages of the point 1 can be poor, and the map can
be in�nite-to-one on the sets I1; : : : ; Ik , but a map with these features is nothing
more than a deformation of a rami�ed covering map. Combining Theorem 1.6
with Theorem 1.3 and the proof Proposition 1.5, we obtain:

Corollary 1.7 Let � : BS(1; n)! Di�r(S1), be any representation, with r �
2. Then either:

(1) � is not faithful, and there exists an m � 1 such that �(b)m = id;

(2) � admits Cr−1 deformations as in Proposition 1.5; or

(3) � is Cr conjugated into a unique conjugacy class in R!(BS(1; n)).

Since the statement of Theorem 1.6 does not appear explicitly in Navas’s paper,
and we don’t use this result elsewhere in the paper, we sketch the proof at the
end of Section 5.

Finally, note that the trivial representation �0(a) = �0(b) = id is not rigid in
any topology; it can be approximated by the representation �(b) = id; �(a) = f ,
where f is an any di�eomorphism close to the identity. Another nice conse-
quence of Navas’s theorem is that this is the only way to C2 deform the trivial
representation.

Corollary 1.8 There is a C2 neighborhood U � R2(BS(1; n)) of the trivial
representation such that, for all � 2 U , �(b) = id.
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Proof Let � be a C2 representation. Since �(b) is conjugate by �(a) to �(b)n ,
it will have rotation number of the form k

n−1 if �(a) is orientation-preserving,
and of the form k

n+1 if �(a) is orientation-reversing. Therefore, if � is su�ciently
C0{close to �0 and if �(b)m = id, for some m � 1, then m = 1. So we may
assume that there exists a map ’ as in Theorem 1.6 and that m = 1. On a
component of S1n

S
Ii , ’ is a di�eomorphism conjugating the action of � to the

restriction of the standard representation �n to R (in general ’ fails to extend
to a di�eomorphism at either endpoint of R). But in the standard action, the
element �n(a) has a �xed point in R of derivative n. If � is su�ciently C1

close to �0 , this can’t happen.

We remark that, in contrast to the results in this paper, there are uncountably
many topologically distinct faithful representations of BS(1; n) into Di�!(R)
(see [3], Proposition 5.1). The proof of our results uses the existence of a
global �xed point on S1 for a �nite index subgroup of BS(1; n); such a point
need not exist when BS(1; n) acts on R. Farb and Franks [3] studied actions
of Baumslag{Solitar groups on the line and circle. Among their results, they
prove that if m > 1, the (nonsolvable) Baumslag{Solitar group:

BS(m;n) = ha; b j abma−1 = bni;

has no faithful C2 actions on S1 if m does not divide n. They ask whether
the actions of B(1; n) on the circle can be classi�ed. This question inspired the
present paper.

1.3 Classi�cation of solvable subgroups of Di�!(S1)

Several works address the properties of solvable subgroups of Di�r(S1); we
mention a few here. Building on work of Kopell [8], Plante and Thurston
[12] showed that any nilpotent subgroup of Di�2(S1) is in fact abelian. Ghys
[6] proved that any solvable subgroup of Di�!(S1) is metabelian, ie, two-step
solvable. In the same work, he remarks that there are solvable subgroups of
Di�1(S1) that are not metabelian. The subgroups he constructs contain in-
�nitely flat elements | nontrivial di�eomorphisms g 2 Di�1(S1) with the
property that for some p 2 S1 , g(p) = p, g0(p) = 1, and g(k)(p) = 0 for all
k � 2.

Navas [11] constructed further examples of solvable subgroups of Di�1(S1)
with arbitrary degree of solvability, again using in�nitely flat elements. As men-
tioned above, Navas’s work also contains a topological classi�cation of solvable
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subgroups of Di�2(S1). As part of a study of ergodicity of actions of dis-
crete groups on S1 , Rebelo and Silva [13] also study the solvable subgroups of
Di�!(S1).

Our main result in this part of the paper, Theorem 1.9, implies that any solvable
subgroup of Di�1(S1) that does not contain in�nitely flat elements is either
virtually abelian or conjugate to a subgroup of a rami�ed lift of the a�ne group:

A�(R) = fx 7! cx+ d : RP 1 ! RP 1 j c; d 2 R; c 6= 0g:

Theorem 1.9 Let G < Di�r(S1) be a solvable group, where r 2 f1; !g.
Then either:

(1) for some m 2 Z, the group Gm := fgm : g 2 Gg is abelian,

(2) G contains in�nitely flat elements (which can’t happen if r = !), or

(3) G is conjugate in Di�r(S1) to a subgroup of a �{rami�ed lift of A�(R),
where � : RP 1 ! RP 1 is a rami�ed cover over 1.

Further, if G < Di�r+(S1) and (3) holds, then the conjugacy can be taken in
Di�r+(S1).

In Section 2, we characterize the rami�ed lifts of A�(R). To summarize the
results there, we have:

Theorem 1.10 There exists a collection

RAFF := fcA�
s
(R) < Di�!(S1) j s 2 Sg;

where S is a countably in�nite index set, with the following properties:

(1) if s1; s2 2 S and cA�
s1

(R) is conjugate to cA�
s2

(R) in Di�1(S1), then
s1 = s2 ;

(2) for each s 2 S , there exists a subgroup H of a dihedral group such thatcA�
s
(R) ’ A�+(R)�H ,

(3) for each �nite dihedral or cyclic group H , there exist in�nitely many

s 2 S so that cA�
s
(R) ’ A�+(R)�H ,

(4) each element of RAFF is the �{rami�ed lift of A�(R), for some rational
rami�ed cover � : RP 1 ! RP 1 over 1, and every �{rami�ed lift of
A�(R) is conjugate in Di�!(S1) to an element of RAFF .

There also exists a collection

RAFF+ := fcA�
s

+(R) < Di�!+(S1) j s 2 S+g;
with the same properties, except that in (1) and (4), the conjugacy is orientation-
preserving, and in (2) and (3), H is cyclic.
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Hence we have found all solvable groups that act e�ectively on the circle as
real-analytic di�eomorphisms.

2 Introduction to rami�ed lifts

Let G be a group and let � : G! Di�!(S1) be a representation with a global
�xed point p. Restricting each element of this representation to a suitably small
neighborhood of p, we obtain a representation ~� : G ! G! , where G! is the
group of analytic germs of di�eomorphisms. It is known [1, 10, 2] that if if G is
solvable, then for some k � 1, ~� is conjugate in G! to a representation taking
values in the rami�ed a�ne group A�k(R):

A�k(R) = f x

(axk + b)
1
k

j a; b 2 R; b > 0g

(see [6] for a proof in the context of circle di�eomorphisms). The name \rami�ed
a�ne group" is explained by the fact that the elements of A�k(R) are lifts
of the elements of the a�ne group under the branched (or rami�ed) cover
z 7! zk . These lifts are well-de�ned as holomophic germs, but do not extend to
di�eomorphisms of CP 1 .

The key observation of this paper is that the elements of A�(R) do admit
global rami�ed lifts as di�eomorphisms of RP 1 . The reason is that, in contrast
to a rami�ed cover � : CP 1 ! CP 1 , which must be rami�ed over 2 points, a
rami�ed cover � : RP 1 ! RP 1 is rami�ed over one point, which can be chosen
to coincide with the global �xed point of A�(R).

Examples of real rami�ed covers The map �1 : R=Z ! R=Z given by
�1(u) = sin2(�u) is a rami�ed covering map over 0, with critical points of
order 2 at �−1

1 (0) = f0; 1
2g.

The rational map �2 : RP 1 ! RP 1 given by:

�2(x) =
(x+ 1)2(x− 1)2

x(x2 + 1)

is also a rami�ed covering map over 0, with critical points of order 2 at �1.
It is clear that �1 are critical points of �2 , and one veri�es directly that the
other critical points of �2 in CP 1 occur o� of RP 1 , at �i

p
3�
p

8.

We will de�ne an equivalence relation on rami�ed covering maps in which �1

and �2 are equivalent, and show that, under this notion of equivalence, all
possible rami�ed covering maps occur as rational maps.
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If � : S1 ! S1 is a rami�ed covering map over p then for each q 2 �−1(p),
there exists an integer s(q) � 1 such that the leading (nonconstant) term in
the Taylor expansion of � at q is of order s(q). A regular covering map is
a rami�ed covering map; in this case, d is the topological degree of the map,
and s(q) = 1, for each q 2 �−1(p). As the examples show, a rami�ed covering
map need not be a regular covering map (even topologically), as it is possible
to have s(q) > 1.

Let � be a rami�ed covering map over p, and let q1; : : : ; qd be the elements of
�−1(p), ordered so that p � q1 < q2 < � � � < qd < p. For each i 2 f1; : : : ; dg we
de�ne oi 2 f�1g by:

oi =

(
1 if �j(qi;qi+1) is orientation-preserving,
−1 if �j(qi;qi+1) is orientation-reversing.

We call the vector s(�) = (s(q1); s(q2); : : : ; s(qd); o1; : : : od) 2 Nd � f�1gd the
signature of � . Geometrically, we think of a signature as a regular d{gon in
R2 with vertices labelled by s1; : : : ; sd and edges labelled by o1; : : : ; od . Every
signature vector s = (s1; : : : ; sd; o1; : : : ; od) has the following two properties:

(1) The number of vertices with an even label is even: #f1 � i � d j si 2
2Ng 2 2N:

(2) If a vertex has an odd label, then both edges connected to that vertex
have the same label, and if a vertex has an even label, then the edges
have opposite labels: (−1)si+1 = oi−1 oi; where addition is mod d.

We will call any vector s 2 Nd�f�1gd with these properties a signature vector.
Note that a signature vector of length 2d is determined by its �rst d+1 entries.
Let Sd be the set of all signature vectors with length 2d, and let S be the set
of all signature vectors.

Proposition 2.1 Given any s 2 S and p 2 S1 , there is a rami�ed covering
map � : S1 ! S1 over p with signature s.

Proof Let s = (s1; : : : ; sd; o1; : : : ; od) be a signature, and let p 2 R=Z. Choose
points u1 < � � � < ud evenly spaced in R=Z, and let F : R=Z ! R=Z be the
piecewise a�ne map that sends the ui to p, and which sends each component
of R=Z n fu1; : : : ; udg onto R=Z n fpg, with orientation determined by oi .

Put a new analytic structure on R=Z as follows. In the intervals Ij = (uj ; uj+1)
use the standard analytic charts, but in each interval Jj = (uj − �; uj + �) com-
pose the standard chart (that identi�es uj with 0) with the homeomorphism
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Global rigidity of solvable group actions on S1 887

�j : R! R de�ned by:

�j(x) =

(
x1=sj if x > 0
−jxj1=sj if x � 0:

Since the overlaps are analytic, this de�nes a real anaytic atlas on R=Z.

Note that the map F : (R=Z;new structure) ! (R=Z; standard structure) is
analytic: in charts around uj and p = F (uj), the map F takes the form
x 7! xsj . Since there is a unique real analytic structure on the circle, there
is an analytic homeomorphism of the circle h : (R=Z; standard structure) !
(R=Z;new structure). Let � = F �h. Then � is a a rami�ed covering map over
0 with signature s.

In fact, rami�ed covers exist in the purely algebraic category; every signature
can be realized by a rational map. We have:

Proposition 2.2 Given any s 2 S and p 2 RP 1 , there is a rational map
� : RP 1 ! RP 1 that is a rami�ed cover over p with signature s.

Proof Since the proof of Proposition 2.2 is somewhat lengthy, we omit the
details. The construction proceeds as follows. Let s = (s1; : : : ; sd; o1; : : : ; od)
be a signature, and assume that p = 0 2 RP 1 and o1 = 1. Choose a sequence
of real numbers a0 < a1 < : : : < a2d−2 , let P (x) = (x− a0)s1(x− a2)s2 : : : (x−
a2d−2)sd and let Q(x) = (x − a1)(x − a3) : : : (x − a2d−3). The desired rational
function � will be a modi�cation of P=Q.

Let h(x) be a polynomial of even degree with no zeros, with critical points of
even degree at ai , 0 � i � 2d − 2, and with no other critical points. One �rst
shows that, for N su�ciently large, the rational function:

�0 =
PhN

Q

has zeroes of order s1; : : : ; sd at a0; a2; : : : ; a2d−2 , simple poles at a1; a3; : : : ;
a2d−3 , a pole of odd order at 1, and no other zeroes, poles or critical points.
Hence �0 is a rami�ed covering map over 0 with signature s, except at 1,
where it may fail to be a di�eomorphism.

Choose such an N , and let 2m + 1 be the order of the pole 1 for �0 . One
then shows that for " su�ciently small, the rational function:

�(x) =
�0(x)

1 + "x2m

has the same properties as �0 , except that 1 is now a simple pole; it is the
desired rami�ed cover.
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If � is a rami�ed covering map, then the cyclic and dihedral groups:

Cd = hb : bd = idi; and Dd = ha; b : bd = id; a2 = id; aba−1 = b−1i;

respectively, act on �−1(p) and on the set E(�) of oriented components of
S1 n �−1(p) in a natural way. By an orientation-preserving homeomorphism,
we identify the circle with a regular oriented d{gon, sending the elements of
�−1(p) to the vertices and the elements of E(�) to the edges. The groups
Cd�Dd act by symmetries of the d{gon, inducing actions on �−1(p) and E(�)
that are clearly independent of choice of homeomorphism. For q 2 �−1(p),
e 2 E(�), and � 2 Dd , we write �(q) and �(e) for their images under this
action.

These symmetry groups also act on the signature vectors in Sd in the natural
way, permuting both vertex labels and edge labels. For � 2 Dd , we will write
�(s) for the image of s 2 Sd under this action. In this notation, the action is
generated by:

b(s1; : : : ; sd; o1; : : : ; od) = (s2; s3; : : : ; sd; s1; o2; o3; : : : ; od; o1);

and

a(s1; : : : ; sd; o1; : : : ; od) = (s1; sd; sd−1 : : : ; s3; s2;−od;−od−1; : : : ;−o2;−o1):

Denote by StabCd(s) and StabDd(s) the stabilizer of s in Cd and Dd , respec-
tively, under this action:

StabH(s) = f� 2 H j �(s) = sg;

for H = Cd or Dd .

Examples The signature vector of �1(u) = sin2(�u) is s1 = (2; 2; 1;−1).
The stabilizer of s1 in Dd is StabDd(s1) = hai, and the stabilizer of s1 in Cd
is trivial. The signature vector of �2(x) = ((x − 1)2(x + 1)2)=(x(x2 + 1)) is
s2 = (2; 2;−1; 1). Note that s2 lies in the Cd{orbit of s1 , and so StabCd(s2)
and StabDd(s2) must be conjugate to StabCd(s1) and StabDd(s1), respectively,
by an element of Cd . In this simple case, the stabilizers are equal.

For another example, consider the signature vector

(2; 3; 1; 2; 3; 1;−1;−1;−1; 1; 1; 1);

which geometrically is represented by the following labelled graph:
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This labelling has no symmetries, despite the fact that the edge labels have a flip
symmetry and the vertex labels have a rotational symmetry. By contrast, the
signature (2; 1; 4; 2; 1; 4;−1;−1; 1;−1;−1; 1) has a 180 degree rotational sym-
metry corresponding to the element b3 2 C6 , and so both stabilizer subgroups
are hb3i.

2.1 Characterization of rami�ed lifts of the standard represen-
tation �n of BS(1; n)

The next proposition gives the key tool for lifting representations under rami�ed
covering maps.

Proposition 2.3 Let G be a group, and let � : G! Di�!+(S1) be a represen-
tation with global �xed point p. Let � : S1 ! S1 be a rami�ed covering map
over p with signature s 2 Sd , for some d � 1.

Then for every homomorphism h : G! StabDd(s), there is a unique represen-
tation

�̂ = �̂(�; h) : G! Di�!(S1)

such that, for all γ 2 G,

(1) �̂ is a �{rami�ed lift of �;

(2) �̂(γ)(q) = h(γ)(q), for each q 2 �−1(p);

(3) �̂(γ)(e) = h(γ)(e), for each oriented component e 2 E(�);

Furthermore, if h takes values in StabCd(s), then �̂ takes values in Di�!+(S1).

Proposition 2.3 is a special case of Proposition 4.4, which is proved in Section 4.
Note that the representation � in Proposition 2.3 must be orientation preserv-
ing, although the lift �̂ might not be, depending on where the image of h lies.
There is also a criterion for lifting representations into Di�!(S1) that are not
necessarily orientation-preserving. We discuss this issue in the next subsection.
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Lemma 2.4 Suppose that �1 and �2 are two rami�ed covering maps over
p such that s(�2) lies in the Dd{orbit of s(�1); that is, suppose there exists
� 2 Dd such that s(�2) = �(s(�1)): Then given any representation � : G !
Di�!+(S1) with global �xed point p and homomorphism h : G ! StabDd(s1),
the representations �̂(�1; h) and �̂(�2; �h�

−1) are conjugate in Di�!(S1), where

(�h�−1)(γ) := �h(γ)�−1:

Furthermore, if � 2 Cd and h takes values in StabCd(s), then �̂(�1; h) and
�̂(�2; �h�

−1) are conjugate in Di�!+(S1).

Lemma 2.4 follows from Lemma 4.5, which is proved in Section 4. We now
characterize the countably many conjugacy classes in R!(BS(1; n)). Note that
the elements of Sd are totally ordered by the lexicographical order on Rn .
Hence we can write Sd as a disjoint union of Cd{orbits:

Sd =
G

�2A+

Cd(s�);

where for each � 2 A+ , s� is the smallest element in its Cd{orbit. Similarly,
there is an index set A � A+ such that:

Sd =
G
�2A

Dd(s�):

Let Sd = fs� j � 2 Ag, and let S+
d = fs� j � 2 A+g. Finally, let S =

S
d Sd

and let S+ =
S
d S

+
d .

De�nition Let �n : BS(1; n) ! Di�!+(S1) denote the standard projective
action, with global �xed point at 1 2 RP 1 . Then we de�ne:

V = f�̂n(�s; h) j s 2 Sd; h 2 Hom(BS(1; n); StabDd(s))= �; d 2 N; d � 1g;
and let

V+ = f�̂n(�s; h) j s 2 S+
d ; h 2 Hom(BS(1; n); StabCd(s)); d 2 N; d � 1g;

where, for s 2 Sd , �s : S1 ! S1 is the rational rami�ed cover over 1 with
signature s given by Proposition 2.2, and � denotes conjugacy in StabDd(s).

Proposition 2.5 Each element of V and V+ represents a distinct conjugacy
class of faithful representations.

That is, if �̂n(�s1 ; h1); �̂n(�s2 ; h2) 2 V (resp. 2 V+ ) are conjugate in Di�1(S1)
(resp. in Di�1

+(S1)), then s1 = s2 and h1 = h2 .

Proposition 2.5 is proved at the end of Section 4. Our main result, Theorem 1.1,
states that the elements of V and V+ are the only faithful representations of
BS(1; n), up to conjugacy in Di�!(S1) and Di�!+(S1), respectively.
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2.2 Proof of Theorem 1.10

To characterize the rami�ed lifts of A�(R), we need to de�ne rami�ed lifts of
orientation-reversing di�eomorphisms. In the end, our description is compli-
cated by the following fact: in contrast to lifts by regular covering maps, rami-
�ed lifts of orientation-preserving di�eomorphisms can be orientation-reversing,
and vice versa.

To deal with this issue, we introduce another action of the dihedral group
Dd = ha; b; j a2 = 1; bd = 1; aba−1 = b−1i on Sd that ignores the edge labels
completely. To distinguish from the action of Dd on Sd already de�ned, we
will write �# : Sd ! Sd for the action of an element � 2 Dd . In this notation,
the action is generated by:

b#(s1; : : : ; sd; o1; : : : ; od) = (s2; s3; : : : ; sd; s1; o1; o2; : : : ; od);

and

a#(s1; : : : ; sd; o1; : : : ; od) = (s1; sd; sd−1 : : : ; s3; s2; o1; o2; : : : ; od):

For s 2 Sd , we denote by Stab#
Dd

(s) and Stab#
Cd

(s) the stabilizers of s in Dd

and Cd , respectively under this action.

Lemma 2.6 For each s 2 Sd , there exists a homomorphism

�s : Stab#
Dd

(s)! Z=2Z;

such that StabDd(s) = ker(�s).

Proof Let s 2 Sd be given. Clearly StabDd(s) is a subgroup of Stab#
Dd

(s).
Let I : Sd ! Sd be the involution:

I(s1; : : : ; sd; o1; : : : ; od) = (s1; : : : ; sd;−o1; : : : ;−od):

We show that for every � 2 Stab#
Dd

(s), either �(s) = s (so that � 2 StabDd(s))
or �(s) = I(s). This follows from the property (2) in the de�nition of signature
vector, which implies that every element of Sd is determined by its �rst d + 1
entries. Hence we may de�ne �s(�) to be 0 if �(s) = s and 1 otherwise. Since
I is an involution, �s is a homomorphism.

Example Consider the signature

s = (2; 1; 2; 1; 2; 1; 2; 1; 1; 1;−1;−1; 1; 1;−1;−1):
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For this example we have StabC8(s) = hb4i, StabD8(s) = ha; b4i, Stab#
C8

(s) =
hb2i, and Stab#

D8
(s) = ha; b2i. In this example the homomorphism �s is surjec-

tive, with nontrivial kernel. For s = (2; 1; 4; 1; 2; 1; 4; 1; 1; 1;−1;−1; 1; 1;−1;−1),
on the other hand, the image of �s is trivial, and StabD8(s) = Stab#

D8
(s) =

ha; b4i, StabC8(s) = Stab#
C8

(s) = hb4i.

For a third example, recall that the stabilizer StabD6(s) of the signature vector
s = (2; 3; 1; 2; 3; 1;−1;−1;−1; 1; 1; 1) is trivial. Because of the rotational sym-
metry of the vertex labels, however, Stab#

C6
(s) = Stab#

D6
(s) = hb3i ’ Z=2Z. In

this example, �s is an isomorphism.

Let G < Di�!(S1) be a subgroup with global �xed point p 2 S1 : f(p) = p,
for all f 2 G: We now show how to assign, to each s 2 S , a subgroup Ĝs

consisting of rami�ed lifts of elements of G. We �rst write G = G+ t G− ,
where G+ = G \Di�!+(S1) is the kernel of the homomorphism O : G! Z=2Z
given by:

O(f) =

(
0 if f is orientation-preserving,
1 otherwise.

Suppose that � : S1 ! S1 is a rami�ed covering map over p. Then, for every
f 2 G+ , Proposition 2.3 implies that for every � 2 StabDd(s(�)), there is a
unique lift f̂(�; �) 2 Di�!(S1) satisfying:

(1) f̂(�; �) is a �{rami�ed lift of f ,

(2) f̂(�; �)(q) = �(q), for all q 2 �−1(p), and

(3) f̂(�; �)(e) = �(e), for all e 2 E(p)

(Further, this lift is orientation-preserving if � 2 StabCd(s).) Suppose, on the
other hand, that f 2 G− . In Section 4, we prove Lemma 4.2, which implies
that if � 2 Stab#

Dd
(s) satis�es:

�(s) = I(s); (1)

then there exists a unique lift f̂(�; �) 2 Di�!(S1) satisfying (1){(3) (and, fur-
ther, f̂(�; �) 2 Di�!+(S1) if � 2 Stab#

Cd
(s).) We can rephrase condition (1)

as:

�s(�) = 1:

To summarize this discussion, we have proved the following:
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Lemma 2.7 If f 2 G, and � 2 Stab#
Dd

(s), then there exists a lift f̂(�; �)
satisfying (1){(3) if and only if:

O(f) = �s(�):

For s 2 S , let �s be the rami�ed covering map over p with signature s given
by Proposition 2.1. If G < Di�!(S1) has global �xed point p, we de�ne
Ĝs � Di�!(S1) to be the �bered product of G and Stab#

Dd
(s) with respect

to O and �s :

Ĝs := ff̂(�s; �) j (f; �) 2 G� Stab#
Dd

(s); O(f) = �s(�)g:

Similarly, we de�ne:

Ĝs
+ := ff̂(�s; �) j (f; �) 2 G� Stab#

Cd
(s); O(f) = �s(�)g:

Lemma 2.7 tells us that Ĝs coincides with Ĝ�s , the set of all �s{rami�ed lifts
of G, and, similarly, that Ĝs

+ = Ĝ�s \ Di�+(S1). It follows from Lemma 4.3
that Ĝs and Ĝs

+ are subgroups of Di�!(S1) and Di�!+(S1), respectively, with:

f̂1(�s; �1) � f̂2(�s; �2) = f̂1 � f2(�s; �1�2):

Further, we have:

Proposition 2.8 Assume that G− is nonempty. Then Ĝs and Ĝs
+ are both

�nite extensions of G+ ; there exist exact sequences:

1! G+ ! Ĝs ! Stab#
Dd

(s)! 1; (2)

and

1! G+ ! Ĝs
+ ! Stab#

Cd
(s)! 1: (3)

Furthermore, if the sequence

1! G+ ! G
O! O(G)! 1

splits, where O : G ! Z=2Z is the orientation homomorphism, then the se-
quences (2) and (3) are split, and so is the sequence

1! Ĝs
+ ! Ĝs ! O(Ĝs)! 1: (4)

Proof The maps in the �rst sequence (2) are given by:

� : G+ ! Ĝs f 7! f̂(�s; id)

� : Ĝs ! Stab#
Dd

(s) f̂(�s; �) 7! �:
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It is easy to see that � is injective and � is surjective. Moreover, f̂(�s; �) is in
the kernel of � if and only if � = id, if and only if f is orientation-preserving,
if and only if f̂(�s; id) is in the image of �. Hence the �rst sequence is exact.
Similarly, the second sequence (3) is exact.

Now suppose that 1! G+ ! G! O(G)! 1 is split exact. If O(G) is trivial
then G+ = G, and there is nothing to prove. If O(G) = Z=2Z, then G contains
an involution g 2 G− with g2 = id, namely the image of 1 under the homomor-
phism O(G) ! G. We use g to de�ne a homomorphism j : Stab#

Dd
(s) ! Ĝs

as follows:

j(�) =

(
îd(�s; �) if �s(�) = 0
ĝ(�s; �) if �s(�) = 1:

Hence the sequence (2) is split. The restriction of j to Stab#
Cd

(s) splits the
sequence (3).

If O(Ĝs) is trivial, then the last sequence (4) is trivially split. If O(Ĝs) =
Z=2Z, then there exists a � 2 Stab#

Dd
(s) such that �s(�) = 1. We then de�ne

k : O(Ĝs) ! Gs by k(0) = id, k(1) = ĝ(�s; �), which implies that (4) is
split.

Setting G = A�(R), which has the global �xed point 1 2 RP 1 , we thereby
de�ne cA�

s
(R) and cA�

s

+(R), for s 2 S . Let S and S+ be the sets of signatures
de�ned at the end of the previous subsection. The elements of S and S+ are
representatives of distinct orbits in S under the dihedral and cyclic actions,
respectively. We now de�ne:

RAFF := fcA�
s
(R) j s 2 Sg; and RAFF+ := fcA�

s

+(R) j s 2 S+g:

Since A�(R) contains the involution x 7! −x, the sequence

1! A�+(R)! A�(R) O! Z=2Z! 1

splits. Proposition 2.8 implies thatcA�
s
(R) ’ A�+(R)� Stab#

Dd
(s); cA�

s

+(R) ’ A�+(R)� Stab#
Cd

(s);

and either cA�
s
(R) = cA�

s

+(R) or cA�
s
(R) ’ cA�

s

+(R) � Z=2Z, depending on
whether �s is surjective. This proves (2) of Theorem 1.10.

Corollary 4.7 implies that cA�
s1

(R) and cA�
s2

(R) are conjugate subgroups in
Di�1(S1), only if s1 2 Dds2 . Similarly, cA�

s1

+ (R) and cA�
s2

+ (R) are conjugate
subgroups in Di�1

+(S1), if and only if s1 2 Cds2 . This proves (1) of the theorem.
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Finally, every �nite dihedral or cyclic group H is the stabilizer of in�nitely
many s 2 S , and hence there are in�nitely many s 2 S so that cA�

s
(R) ’

A�+(R)�H . This proves part (3). Property (4) follows from the de�nition of
RAFF . This completes the proof of Theorem 1.10.

3 The relation fgf−1 = g� : the central technical re-
sult

In this section we analyze the relation fgf−1 = g� near a common �xed point of
f and g . If f and g are real-analytic, then they can be locally conjugated into
one of the rami�ed a�ne groups described at the beginning of Section 2 [1, 10,
2]. This gives a local characterization of di�eomorphisms of S1 satisfying this
relation about each common �xed point, and to obtain a global characterization,
it is a matter of gluing together these local ones. This was the way Ghys
[6] proved that every solvable subgroup of Di�!(S1) is metabelian. To prove
Theorems 1.1 and 1.3, we adapt the arguments in [10] to the Cr setting, where
additional hypotheses on f and g are required.

The initial draft of this paper contained a completely di�erent proof of the local
characterization of [1, 10, 2] that does not rely on vector �elds and works for
Cr di�eomorphisms as well, under the right assumptions. In the C! and C1

case, this original proof gives identical results as the vector �elds proof, but in
the general Cr setting, the proof using vector �elds gives sharper results. At
the end of this section, we outline the alternate proof method. The main idea
behind this method is to study the implications of the relation fgf−1 = g� for
the Schwarzian derivative of g near a common �xed point at 0.

We now state the main technical result of this section. Let [q; q1) be a half open
interval, let r 2 [2;1] [ f!g, and let f; g 2 Di�r([q; q1)) be di�eomorphisms.
Assume that g has no �xed points in (q; q1).

Standing Assumptions We assume that either (A), (B), (C) or (D) holds:

(A) r = ! , and there exists an integer � > 1 such that fgf−1 = g�:

(B) r 2 [2;1), and there is an integer � > 1 such that fgf−1 = g�; and

f 0(q) �
(

1
�

� 1
r−1 .

(C) r =1, f 0(q) < 1, and for some integer � > 1, fgf−1 = g�:

(D) r 2 f1; !g, g is not in�nitely flat, and there is a C1 flow gt : [q; q1) !
[q; q1) such that:
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(1) g1 = g , and
(2) fgf−1 = g� for some positive real number � 6= 1.

Assumptions (A), (B) and (C) will arise in the proof of Theorems 1.1 and 1.3,
and assumption (D) will arise in the proof of Theorem 1.9. The main technical
result that we will use in these proofs is the following.

Proposition 3.1 Assume that either (A), (B), (C) or (D) holds. Then there
is a Cr di�eomorphism � : (q; q1) ! (−1;1) � RP 1 such that for all p 2
(q; �−1(0)):

(1) �(p) = �h(p)s; where h : [q; �−1(0)) ! [−1; 0) is a Cr di�eomorphism,
s is an integer satisfying 1 � s < r , and � 2 f�1g,

(2) �g(p) = �(p) + 1 and �f(p) = ��(p):

We start with a lemma describing which values of f 0(q) and g0(q) can occur.

Lemma 3.2 Assume that one of assumptions (A){(D) holds. Then g0(q) = 1,
and either

(1) g(i)(q) = 0 for 2 � i � r (in particular, neither assumption (A) nor (D)
can hold in this case), or

(2) f 0(q) = ( 1
� )

1
s for some integer 1 � s < r , and

g(i)(q) = 0 for 2 � i � s; and g(s+1)(q) 6= 0:

Proof Since fg = g�f ,

f 0(g(p)) g0(p) = (g�)0(f(p)) f 0(p):

When p = q , we thus have g0(q) = (g�)0(q): But (g�)0(q) = (g0(q))� , and so
g0(q) = 1.

Suppose that f 0(q) = � 6= 1. Then there is an interval [q; p) on which f is Cr

conjugate to the linear map x 7! �x ([14], Theorem 2). So in local coordinates,
identifying q with 0,

f(x) = �x; and
g(x) = x+ axs+1 + o(xs+1) for some s � 1:

Then

fgf−1(x) = x+ (
a

�s
)xs+1 + o(xs+1); and

g�(x) = x+ �axs+1 + o(xs+1):

So either
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(1) a = 0, and therefore g(i)(q) = 0 for 2 � i � r , or

(2) a 6= 0, in which case � = ( 1
�)

1
s , and

g(i)(q) = 0 for 2 � i � s
6= 0 for i = s+ 1:

Now suppose that f 0(q) = 1. Then in a neighborhood of q , we can write

f(x) = x+ bxk+1 + o(xk+1) and g(x) = x+ axs+1 + o(xs+1)

for some k , s � 1. If k = s, then

[f; g](x) := fgf−1g−1(x) = x+ o(xs+1)
= g�−1(x) = x+ (�− 1)axs+1 + o(xs+1):

So a = 0, and hence g(i)(0) = 0 for 2 � i � r .

If k 6= s, then we use the following well known result (see, eg, [13]):

Lemma 3.3 If f(x) = x+ bxk+1 + o(xk+1) and g(x) = x+ axs+1 + o(xs+1),
and if s > k � 1, then

[f; g](x) = x+ (s− k)abxs+k + o(xs+k):

Assume that s > k . (If s < k , then the proof is similar). It follows from
Lemma 3.3 that

x+ (s− k)abxs+k + o(xs+k) = [f; g](x)
= g�−1(x) = x+ (�− 1)axs+1 + o(xs+1):

So either

(1) k � 2, and therefore a = 0 and g(i)(q) = 0, for 2 � i � r , or

(2) k = 1, and therefore b = �−1
s−1 .

But if k = 1, then

x+ (s− 1)2abxs+1 + o(xs+1) = [f2; g](x)

= f2gf−2g−1(x) = g�
2−1(x)

= x+ (�2 − 1)axs+1 + o(xs+1):

So b = �2−1
2(s−1) = �−1

s−1 , which is impossible, since � 6= 1. Therefore g(i)(q) = 0,
for 2 � i � r .

Lemma 3.4 Assume that (A), (B), (C) or (D) holds. Then there is a neighbor-
hood [q; p1) � [q; q1) and a Cr map A : [q; p1)! R such that for all p 2 [q; p1),
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(1) A(p) = oH(p)s , where H : [q; p1) ! [0;1) is a Cr di�eomorphism,
1 � s < r is an integer, and o 2 f�1g;

(2)

Af(p) =
1
�
A(p);

(3)

Ag(p) =
A(p)

1−A(p)
:

Consequently, f 0(q) = ( 1
� )

1
s for some integer 1 � s < r , and g(s+1)(q) 6= 0.

Before giving a proof of Lemma 3.4, we will show how this lemma implies
Proposition 3.1.

Lemma 3.5 Assume that (A), (B), (C) or (D) holds. Let A;H; s, and o be
given by Lemma 3.4. For p 2 [q; p1), let

h(p) =
−1
H(p)

; �0(p) =
−1
A(p)

:

Then �0 extends to a Cr map � : (q; q1)! (−1;1) satisfying the conclusions
of Proposition 3.1.

Proof Lemma 3.4 implies that for all p 2 (q; p1), �0g(p) = �0(p) + 1 and
�0f(p) = ��0(p). Since �0 has been de�ned in a fundamental domain for g ,
we can now extend this map to a Cr di�eomorphism � from (q; q1) to (−1;1)
as follows. Since g has no �xed points in (q; q1), given any p 2 (q; q1), there is
some j 2 Z such that gj(p) 2 (q; p1). Let �(p) = �0(gj(p))− j (which is easily
seen to be independent of choice of j ). By construction, �g(p) = �(p) + 1 for
all p 2 (q; q1). Since f(p) = (g−j)�fgj(p), we also have:

�f(p) = (�(g−j)��−1
0 )(�0f�

−1
0 )(�0g

j(p)) = �(�(p) + j)− j� = ��(p):

Hence the conclusions of Proposition 3.1 hold.

Proof of Lemma 3.4 We say that a C2 function c : [a; b) ! [a; b) is a C2

contraction if c0 is positive on [a; b) and c(x) < x, for all x 2 (a; b). Since g has
no �xed points in (q; q1), either g or g−1 is a C2 contraction. We will assume
until the end of the proof that g is a C2 contraction. Replacing g by g−1 does
not change the relation fgf−1 = g� .

Since g has no �xed points in (q; q1), there is a a unique C1 vector �eld X0 on
[q; q1) that generates a C1 flow gt such that gj[q;q1) = g1 (Szekeres, see [11] for
a discussion).
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Lemma 3.6 For all j 2 N and x 2 [q; q1), f−jgf j(x) = g
1

�j (x).

Proof We will use the following result of Kopell:

Lemma 3.7 ([8] Lemma 1) Let g 2 Di�2[q; q1) be a C2 contraction that
embeds in a C1 flow gt , so that g = g1 . If h 2 Di�1[q; q1) satis�es hg = gh,
then h = gt for some t 2 R.

It follows from the relation f jgf−j = g�
j

that f−jgf j commutes with g , and
therefore Lemma 3.7 implies that f−jgf j = gt for some t 2 R. This relation
also implies that (f−jgf j)�

j
= g . So f−jgf j = g

1

�j .

Let � = f 0(q). We may assume, by Lemma 3.2, that � 6= 1, and therefore there
is an interval (q; p1) on which f has no �xed points, and a Cr di�eomorphism
H : [q; p1) ! [0;1) such that H f H−1(x) = �x ([14], Theorem 2). The
di�eomorphism H is unique up to multiplication by a constant. Let F =
HfH−1 and let G = HgH−1 . Since we have assumed that g is a contraction,
we have g([q; p1)) � [q; p1).

Let X be the push-forward of the vector �eld X0 to [0;1) under H , and let
Gt be the semiflow generated by X0 , so that G = G1 .

Lemma 3.8 If F 0(0) � ( 1
� )

1
r−1 and G is r{flat at 0, then X(x) = 0 on [0;1).

Proof We will show that for all x 2 [0;1),

lim
t!0

Gt(x)− x
t

= 0:

Since the limit exists, it is enough to show that it converges to 0 for a subse-
quence ti ! 0. We will use the subsequence ti = 1

�i
. Writing � = F 0(0) as

before, we have
F (x) = �x and G(x) = x+R(x);

where R(x)=xr ! 0 as x! 0, and therefore:

Gti(x) = F−iGF i(x) = x+
1
�i
R((�ix)):

So

0 � lim
i!1

jGti(x)− xj
ti

= lim
i!1

�i
�

1
�i
jR(�ix)j

�
= lim

i!1
(��r−1)ixr

jR((�ix))j
(�ix)r

� lim
i!1

xr
jR((�ix))j

(�ix)r
= 0;
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since �r−1 � 1
� .

Corollary 3.9 Under any assumption (A){(D), g is not r{flat at q , and

therefore f 0(q) = ( 1
�)

1
s , for some integer 1 � s < r .

Proof Clearly g cannot be in�nitely flat if (A) or (D) holds. Under assumption
(C), f 0(q) < ( 1

�)
1
k , for some k > 0 and f; g are Ck , so (C) reduces to (B). By

Lemma 3.8, under assumption (B), if g is r{flat at q , then the semiflow Gt is
tangent to the trivial vector �eld, X(x) = 0. But then G = id, and therefore
g = id on [q; p1), contradicting the assumption that g has no �xed points in
(q; q1).

Lemma 3.10 If F 0(0) = ( 1
� )

1
s for some integer 1 � s < r , then for some

a < 0, X(x) = axs+1 on [0;1).

Proof As in the proof of Lemma 3.8, it is enough to show that for all x 2
[0;1), and for ti = 1

�i
,

lim
i!1

Gti(x)− x
ti

= axs+1

for some a 2 R. If F 0(0) = ( 1
�)

1
s for some integer 1 � s < r , then by

Lemma 3.2,

F (x) = (
1
�

)
1
sx and G(x) = x+ axs+1 +R(x)

for some a 2 R, where R(x)=xs+1 ! 0 as x ! 0. The value of a depends on
the choice of linearizing map h for f j[q;p1) . For all i 2 N,

Gti(x) = F−iGF i(x) = �
i
s G

�
x

�
i
s

�
= x+ axs+1 1

�i
+ �

i
s R

�
x

�
i
s

�
:

So

lim
i!1

Gti(x)− x
ti

= lim
i!1

�i
�
axs+1 1

�i
+ �

i
s R

�
x

�
i
s

��
= lim

i!1
axs+1 +R

�
x

�
i
s

�
�
i(s+1)
s

xs+1
xs+1 = axs+1

Since G is a contraction on [0;1), it follows that a � 0, and since G 6= id, we
must have a < 0.
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Corollary 3.11 If one of (A){(D) holds, then f 0(q) = ( 1
�)

1
s for some integer

1 � s < r , and, after a suitable rescaling of the linearizing map H ,

G(x) =
x

(1 + xs)
1
s

:

Proof Choose H so that a = −1=s. Solving the di�erential equation �
�tG

t(x)
= aGt(x)s+1 with initial condition G0(x) = x, we obtain Gt(x) = x=(1+ txs)

1
s .

Since G(x) = G1(x), the conclusion follows.

To complete the proof of Lemma 3.4 assuming that g is a contraction, let s;H
be given by Corollary 3.11, and let o = −1. Then Corollary 3.11 implies that
A(p) = o(H(p)s) satis�es the desired conditions. If g is not a contraction, we
replace g by g−1 in the proof. Setting o = 1, we obtain the desired conclusions.

3.1 Idea behind an alternate proof of Proposition 3.1

Suppose that f and g 6= id are Cr di�eomorphisms, de�ned in a neighborhood
of 0 in R, both �xing the origin, and satisfying the relation:

fgf−1 = g�;

for some � > 1. In this context, the conclusion of Proposition 3.1 can be
reformulated as follows: f and g are conjugate, via −1=h, to the maps

x 7! (
1
�

)
1
sx and x 7! x

(1− oxs) 1
s

for some integer 1 � s � r and some o 2 f�1g. The proof of Proposition 3.1
uses vector �elds; here we sketch an alternative proof of this reformulation, using
the Schwarzian derivative. This sketch can be made into a complete proof of
Proposition 3.1 under assumptions (A), (C) and (D), but gives a weaker result
in case (B): for this proof we will need both r � 2s+ 1 and f 0(q) � ( 1

�)1=(s−1) ,
for some s � 1.

For simplicity, assume that r = ! and that � = 2. First note that, since g

is not in�nitely flat, Lemma 3.2 implies that f 0(0) 2 f
(

1
2

� 1
s j s � 1g. After

conjugating f and g by an analytic di�eomorphism, we may assume, then,
that:

f(x) =
x

2
1
s

;
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for some s � 1.

Let F (x) = f(x
1
s )s = x=2 and let G(x) = g(x

1
s )s . Rewriting the relation

FGF−1 = G2 , we obtain:
1
2
G(2x) = G2(x);

rearranging and iterating this relation, we obtain:

G(x) = 2kG2k
� x

2k
�
; (5)

for all k � 1.

Recall that the Schwarzian derivative of a C3 function H is de�ned by:

S(H)(x) =
H 000(x)
H 0(x)

− 3
2

�
H 00(x)
H 0(x)

�2

;

and has the following properties:

(1) S(H)(x) = 0 for all x i� G is Möbius, and
(2) for any C3 function K , S(H �K)(x) = K 0(x)2S(H)(K(x)) + S(K)(x).

Combining these properties with (5), we will show that S(G) = 0, which implies
that G is Möbius. Lemma 3.2 implies that G0(0) = 1 and G00(0) 6= 0, so we
have G(x) = x

1−ox for o 2 f�1g. Writing g(x) = G(xs)1=s , we obtain the
desired result.

The �rst thing to check is that G is C3 . To obtain this, we use a slightly
stronger version of Lemma 3.2 (whose proof is left as an exercise), which states
that, if g is not in�nitely flat, then

g(x) = x+ axs+1 + bx2s+1 + � � �
Performing the substitution G = g(x1=s)s in this series, one �nds that G is C3 .
(This requires that g be at least C2s+1 , in contrast to the proof of Proposi-
tion 3.1, which requires only Cs+1).

Equation (5) implies that

S(G)(x) =
1

22k
S(G2k )(

x

2k
);

for all k � 1. Thus, by the cocycle condition (2) of the Schwarzian, we have:

S(G)(x) =
1

22k

2kX
i=1

S(G)(Gi−1(
x

2k
))
�

(Gi−1)0(
x

2k
)
�2

(6)

=
1

22k

2kX
i=1

S(G)(xi)
�

�i−1
j=1G

0(xj)
�2

(7)
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where xi := Gi−1( x
2k

).

Fix x, and assume without loss of generality that Gj(x)! 0 as j !1. Since
G is C3 and G0(0) = 1, there is a constant C > 0 such that jG0(xi)j � 1 + C

2k
,

and jS(G)(xi)j � C , for all i between 1 and 2k and all k � 1. Combined with
(6), this gives us a bound on the Schwarzian of G at x:

jS(G)(x)j � C

22k

2kX
i=1

�
1 +

C

2k

�2(i−1)

� C

22k

 
1− (1 + C

2k
)2k+1

1− (1 + C
2k

)2

!

� 1
2k

 
e2C − 1
2 + C

2k

!
;

for all k � 1. Hence S(G)(x) = 0, for all x, which implies that G is Möbius.

4 Further properties of rami�ed covers: proofs of

Proposition 2.3, Lemma 2.4 and Proposition 2.5

The next lemma describes a useful normal form for rami�ed covering maps.

Lemma 4.1 Let � : RP 1 ! RP 1 be a rami�ed covering map over 0, where
�−1(0) = fx1; : : : ; xdg. Let s = (s(x1); : : : ; s(xd); o1; : : : ; od) be the signature
of � . Then given any xi 2 �−1(0), there is a neighborhood U of xi and an
analytic di�eomorphism h : U ! R such that for all x 2 U ,

�(x) = h(x)s(xi):

Proof In local coordinates at xi , identifying xi with 0, we can write

�(x) = axs(1 +O(x))
= axsg(x)

where a > 0, s = s(xi) and g(x) = (1 + O(x)). Let h(x) = a
1
sxg(x)

1
s . Then

h(x) is analytic in a neighborhood of 0, and �(x) = h(x)s .

This lemma motivates the following de�nition.

De�nition A Cr rami�ed cover over p 2 S1 is a map � : S1 ! S1 satisfying:

Geometry & Topology, Volume 8 (2004)



904 Lizzie Burslem and Amie Wilkinson

(1) �−1(p) = fq1; q2; : : : ; qdg, where q1 < q2 < : : : < qd ;

(2) the restriction of � to �−1(S1 n fpg) is a regular Cr covering map onto
S1 n fpg of degree d � 1;

(3) for all 1 � i � d, there are neighborhoods Ui of qi and V of p, and Cr

charts hi : Ui ! R and ki : V ! R with hi(qi) = 0 and ki(p) = 0, such
that

ki � h
−1
i (x) = xsi

for some integer si > 0.

Remark By Lemma 4.1, a rami�ed cover is a C! rami�ed cover.

We de�ne the signature of a Cr rami�ed cover in the obvious way.

De�nition Let �1 and �2 be Cr rami�ed covering maps of degree d over
p1 and p2 , respectively. Fix an orientation preserving identi�cation between
�−1

1 (p) and �−1
2 (p) and between E(�1) and E(�2). Suppose that f 2 Di�r(S1)

satis�es f(p1) = p2 , and let � 2 Dd . We say that f̂ 2 Di�r(S1) is a (�1; �2; �){
rami�ed lift of f if:

(1) f̂(q) = �(q), for all q 2 �−1
1 (p1),

(2) f̂(e) = �(e), for all e 2 E(�1), and

(3) the following diagram commutes:

S1 S1

S1 S1

-f̂

-f
?

�1 ?
�2

Lemma 4.2 Let �1 , �2 and f be as above. Suppose that � 2 Dd satis�es

� �(s(�1)) = s(�2), if f 2 Di�r+(S1), or

� �(s(�1)) = I(s(�2)), if f 2 Di�r−(S1),

where I : Sd ! Sd is the involution that reverses the sign of the last d coordi-
nates.

Then there exists a unique (�1; �2; �){rami�ed lift of f . We denote this lift by
f̂(�1; �2; �), or by f̂(�; �), if �1 = �2 = � .

Furthermore, we have that if � 2 Cd , then f̂(�1; �2; �) 2 Di�r+(S1).
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Proof Suppose �rst that f preserves orientation. Since the restriction of �1 to
�−1

1 (S1 n fp1g) and the restriction of �2 to �−1
2 (S1 n fp2g) are both regular Cr

covering maps of degree d, for any � 2 Dd there is a unique Cr di�eomorphism
f̂0 : S1 n �−1

1 fp1g ! S1 n �−1
2 fp2g such that f̂0(e) = �(e) for all e 2 E(�1), and

the diagram (3) commutes on the restricted domains. The condition s(�2) =
�(s(�1)) implies that f̂0 extends to a unique homeomorphism f̂ such that
f̂(q) = �(q), for all q 2 �−1

1 (p1) and such that the diagram in (3) commutes.
It remains to show that f̂ is a Cr di�eomorphism.

It su�ces to show that f̂ is a Cr di�eomorphism at each q 2 �−1
1 (p1). By

Lemma 5.6, there are local coordinates near q and f̂(q), identifying both of
these points with 0, such that

(f̂(x))s(f̂(q)) = f(xs(q))

for some integers s(f̂(q)) and s(q). Since s(�2) = �(s(�1)), we have s(�(q)) =
s(q). Let j = s(q) = s(f̂(q)). Since f is Cr and has a �xed point at 0,

f(x) = a1x+ a2x
2 + : : :+ xr + o(xr)

and we can assume that the coordinates have been chosen so that a1 > 0. So
near x = 0,

f̂(x) = (a1x
j + a2x

2j + : : : + xrj + o(xrj))
1
j

= x (a1 + a2x
j + : : :+ x(r−1)j + o(x(r−1)j))

1
j ;

where the root is chosen so that f̂ 0(0) > 0. Since a1 > 0 and r � 2, f̂ is a Cr

di�eomorphism at 0. Similarly, we see that if f is analytic, then f̂ is analytic.
Finally, we note that since f is orientation preserving, if � 2 Cd , then f̂ must
also be orientation preserving.

Now suppose that f 2 Di�r−(S1), and that �(s(�1)) = I(s(�2)). Let �1 = f��1 .
Setting f̂ to be the (�1; �2; �){lift of the identity map, we obtain the desired
conclusions.

Lemma 4.3 Let f1 and f2 be Cr di�eomorphisms of S1 , both with a �xed
point at p, let � : S1 ! S1 be a Cr rami�ed covering map over p with signature
s, and let �1 , �2 2 Dd . Suppose that �1 and �2 satisfy �i(s) = s if fi 2
Di�r+(S1), and �i(s) = I(s) if fi 2 Di�r−(S1). Then

f̂2(�; �2) � f̂1(�; �1) = f̂2 � f1(�; �2 � �1):

Proof The map f̂2(�; �2) � f̂1(�; �1)(q) satis�es:
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(1) f̂2(�; �2) � f̂1(�; �1)(q) = �2 � �1(q), for all q 2 �−1(p),

(2) f̂2(�; �2) � f̂1(�; �1)(e) = �2 � �1(e), for all e 2 E(�), and

(3) the following diagram commutes:

S1 S1

S1 S1

S1

S1

-f̂1(�; �1)

-f1
?� ?�

-f̂2(�; �2)

-f2
?�

By Lemma 4.2, we must have f̂2(�; �2) � f̂1(�; �1) = f̂2 � f1(�; �2 � �1):

The following proposition is a Cr version of Proposition 2.3.

Proposition 4.4 Suppose that G is a group, and that � : G ! Di�r+(S1) is
a representation with global �xed point p. Let � : S1 ! S1 be a Cr rami�ed
cover over p with signature vector s. Then for every homomorphism h : G !
StabDd(s), there is a unique representation

�̂ = �̂(�; h) : G! Di�r(S1)

such that, for all γ 2 G, �̂(γ) is the (�; h(γ)){ rami�ed lift of �(γ). If h takes
values in StabCd(s), then �̂ takes values in Di�r+(S1).

Proof This follows immediately from the previous two lemmas.

The following lemma is a Cr version of Lemma 2.4.

Lemma 4.5 Let G be a group, and let � : G! Di�!(S1) be a representation
with global �xed point p. Let �1; �2 : S1 ! S1 be Cr rami�ed covers over
p 2 S1 , with s(�1) = �(s(�2)), for some � 2 Dd .

Then for every homomorphism h : G! StabDd(s), the representation ~�(�1; h)
is conjugate to ~�(�2; �h�

−1) in Di�r(S1), where (�h�−1)(γ) := �h(γ)�−1 . If �
takes values in Di�!+(S1), if � 2 Cd , and if h takes values in StabCd(s), then
~�(�1; h) and ~�(�2; �h�

−1) are conjugate in Di�r+(S1).

Proof This lemma follows from the diagram below, which commutes by Propo-
sition 4.4 and Lemma 4.2. (Here bid = bid(�1; �2; �

−1)).
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S1 S1

S1 S1

S1 S1

S1 S1

-�̂(�1; h)

-�
?

�1

?

�1

-�̂(�2; �h�
−1)

-�
?

�2

?

�2

�
�
�
�
�
�
�
��

bid
�
�
�
�
�
�
�
��

bid

�
�
�
�
�
�
�
��

id

�
�
�
�
�
�
�
��

id

Consider two lifts f̂(�1; �), f̂(�2; �) of the same di�eomorphism f (or, more
generally, of conjugate di�eomorphisms). For purely topological reasons, if
these lifts are conjugate by a map with rotation number 0, then s(�1) and
s(�2) have the same length 2d, and the �nal d entries in these vectors must
agree. (More generally, if the conjugacy has nonzero rotation number, then the
�nal d entries of the �rst vector must lie in the Dd{orbit of the �nal d entries
of the second). We now examine the �rst d entries of both vectors. We show
that, under appropriate regularity assumptions on f and on the conjugacy,
these entries must also agree, so that s(�1) = s(�2). The next lemma is the
key reason for this.

Lemma 4.6 Let c : [0;1) ! [0;1) be a C2 contraction. Suppose that, for
some integers m;n > 0, the maps v1(x) = c(xm)1=m and v2(x) = c(xn)1=n are
conjugate by a C1 di�eomorphism h : [0;1)! [0;1). Then m = n.

Proof Since c is a C2 contraction, the standard distortion estimate (see, eg
[8]) implies that for all x; y 2 [0;1), there exists an M � 1, such that for all
k � 0,

1
M

� (ck)0(x)
(ck)0(y)

�M: (8)

Assume without loss of generality that n > m and suppose that there exists
a C1 di�eomorphism h : [0;1) ! [0;1) such that hv1(x) = v2(h(x)), for all
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x 2 [0;1). Let H(x) = h(x1=m)n . Note that the C1 function H : [0;1) !
[0;1) has the following properties:

(1) H 0(x) � 0, for all x 2 [0;1), and H 0(x) = 0 i� x = 0;

(2) for all k � 0, H � ck = ck �H .

Then (2) implies that for every x 2 [0;1):

H 0(x) = H 0(ck(x))
(ck)0(x)

(ck)0(H(x))

for all k � 0. But (8) implies that (ck)0(x)=(ck)0(H(x)) is bounded indepen-
dently of k , so that H 0(x) = limk!1H

0(ck(x)) = 0, contradicting property
(1).

Corollary 4.7 Let G and H be in�nite subgroups of cA�
s1

(R) and cA�
s2

(R),
respectively, for some s1; s2 2 S . If there exists � 2 Di�1(S1) such that
�G�−1 = H , then s1 = s2 .

If G < cA�
s1

+ (R) and H < cA�
s2

+ (R), with s1; s2 2 S+ , and there exists � 2
Di�1

+(S1) such that �G�−1 = H , then s1 = s2 .

Proof Let G;H and � be given. Note that s1 and s2 must have the same
length 2d, since the global �nite invariant sets of G and H must be isomorphic.
Let g; h be elements of G and H with rotation number 0 such that h = �g�−1 .
Since dilations have twice as many �xed points in RP 1 as translations, if g is
a rami�ed lift of a translation, then so is h. Assume that g = Ŝ(�s1 ; id) and
h = T̂ (�s2 ; id), where S : x 7! x + s and T : x 7! x + t are translations with
s; t > 0. Let q1; : : : ; qd and �(q1); : : : ; �(qd) be the preimages of 1 under
�s1 and �s2 , respectively. In a neighborhood of qi , the map g is conjugate
to x 7! (S(x)mi)1=mi and in a neighborhood of �(qi), h is conjugate to x 7!
(T (x)ni)1=ni , where mi = s(qi) and ni = s(�(qi)). Since S is a C2 contraction
in a neighborhood of 1 and T is conjugate to S , it follows from Lemma 4.6
that mi = ni for 1 � i � d, which implies that s1 = s2 .

Suppose instead that g is a rami�ed lift of a map in A�(R) conjugate to the
dilation D : x 7! ax, for some a > 1. Since g must have d �xed points with
derivative a, so must h, and so h is also a rami�ed lift of a map in A�(R)
conjugate to D . Around 1, the map D is a C2 contraction, and the same
proof as above shows that s1 = s2 .

The proof in the orientation-preserving case is analogous.
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Proof of Proposition 2.5 Let �n : BS(1; n) ! Di�!(S1) be the standard
representation. Suppose that �̂n(�s1 ; h1) and �̂n(�s2 ; h2) 2 V are conjugate by
� 2 Di�1(S1), where s1; s2 2 S . It follows from Corollary 4.7 that s1 = ss .

We next show h1 = h2 . Let γ 2 BS(1; n) and let k = �n(γ). Let k1 =
k̂(�s1 ; h1(γ)) and k2 = k̂(�s2 ; h2(γ)) Then for all q 2 �−1

s1
(1), we have:

�h1(γ)(q) = �k1(q) = k2(�(q)) = h2(γ)(�(q));

and for all e 2 E(�1),

�h1(γ)(e) = �k1(e) = k2(�(e)) = h2(γ)(�(e)):

Since �(�−1
s1

(1)) = �−1
s1

(1) and �(E(�1)) = E(�1), it follows that h1(γ) =
h2(γ). So �h1 = h2�. Recall that each element c�n(�s; h) of V is given
by a signature vector s 2 S and a representative h of a conjugacy class in
Hom(BS(1; n); StabDd(s)). So h1 = h2 .

5 Proof of Theorems 1.1 and 1.3

The construction behind this proof is very simple. We are given a Cr represen-
tation � of BS(1; n). Using elementary arguments, we are reduced to the case
where f = �(a) and g = �(b) have a common �nite invariant set, the set of
periodic orbits of g . Assume that the rotation numbers of f and g are both 0.
Using the results from Section 3, we obtain a local characterization of f and g
on the intervals between the common �xed points. On each of these intervals,
f is conjugate to the dilation x 7! nx and g is conjugate to the translation
x 7! x+1. Gluing together the conjugating maps gives us a Cr rami�ed cover-
ing map over 1. Hence � is a Cr rami�ed lift of the standard representation.
Proposition 2.2 implies that there is a rational rami�ed cover with the same
signature as the the given Cr rami�ed cover. Lemma 4.5 implies that � is Cr

conjugate to a rami�ed lift of �n under the rational rami�ed cover. It remains
to handle the case where the rotation numbers of f and g are not 0, but this
is fairly simple to do, since the elements of the standard representation embed
in analytic vector �elds. We now give the complete proof.

Let � : BS(1; n) ! Di�r(S1) be a representation, where r 2 [2;1], or r = ! .

If r <1, assume that �(�) �
(

1
n

� 1
r−1 : If r =1, we assume that �(�) < 1:

Let f = �(a) and g = �(b), where aba−1 = bn . Since g is conjugate to gn , it
follows that �(g) = ��(gn) = �n�(g), where �(h) denotes the rotation number
of h 2 Homeo(S1). Hence g has rational rotation number.
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Lemma 5.1 f preserves the set of periodic points of g .

Proof This follows from the relation fg = gnf . If gk(q) = q , then gnk(f(q)) =
fgk(q) = f(q). So f(q) is also periodic for g .

Suppose that �(f) is irrational. Then by Lemma 5.1, the periodic points of g
are dense in S1 , which implies that gk = id, for some k � n+ 1. This implies
that conclusion (1) of Theorem 1.1 holds.

Suppose, on the other hand, that �(f) is rational. Choose l so that gl and
f l are both orientation-preserving and both have rotation number 0. Then f l

leaves Fix(gl) invariant. Choose p 2 Fix(gl). Any accumulation of ff ln(p)g
must be a �xed point for f l and for gl . We have shown:

Lemma 5.2 f l and gl have a common �xed point.

Note that the �xed points for f l are isolated; if f is not analytic, then �(�) < 1,
which implies that the �xed points for f l are hyperbolic. Let w1 < w2 < : : : <
wk be the set of �xed points of f l . We will see that if gl is not the identity
map, then the set of �xed points for gl is exactly equal to the set of sinks for
f l .

Lemma 5.3 If gl(wi) = wi and (f l)0(wi) > 1, then gl = id on [wi−1; wi+1].

Proof Suppose that (f l)0(wi) = � > 1, and let � : [wi; wi+1) ! [0;1) be a
C1 linearizing di�eomorphism such that �f l�−1(x) = �x for all x 2 [0;1).
Let F = �f l�−1 , and let G = �gl�−1 . If gl 6= id on [wi; wi+1), then there is
a point x0 2 [0;1) such that G(x0) 6= x0 . Let x0 be any such point. We may
assume that Gk(x0)! c as k !1, for some c <1, because this will be true
for either G or G−1 . Since GF−k = F−kGn

k
for all k 2 N, it follows that

G0(F−k(x0)) =
(F−k)0(Gn

k
(x0))

(F−k)0(x0)
(Gn

k
)0(x0);

for all k 2 N. But since G0(0) = 1 (by Lemma 3.2), this means that (Gn
k
)0(x0)

! 1, as k !1 (or k ! −1), for every point x0 that is not �xed by G. Since
G is not the identity, this is not possible. Hence g = id on [wi; wi+1]. A similar
argument shows that g = id on [wi−1; wi],

Corollary 5.4 If gl has a �xed point in the interval (wi; wi+1), then gl = id
on [wi; wi+1]. That is, @Fix(gl) � Fix(f l).
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Proof Suppose that gl(p) = p for some p 2 (wi; wi+1), and suppose that
fkl(p) ! wi as k ! −1. By Lemma 5.1, f lk(p) is periodic for gl for all
k 2 Z. Since gl is an orientation preserving circle di�eomorphism with a
�xed point, f lk(p) is a �xed point of gl for all k . By continuity, wi is a
common �xed point for f l and gl . Since (f l)0(wi) > 1, Lemma 5.3 implies that
gl = id on [wi; wi+1]. Similarly, if fkl(p)! wi+1 as k ! −1, then g = id on
[wi; wi+1].

This has the immediate corollary:

Corollary 5.5 f l �xes every component of S1 n Fix(gl).

Remark Corollary 5.5 also follows from Theorem 1.6. We have given a dif-
ferent proof here since we will need Lemma 5.3 for the proof of Lemma 5.6.

Let −1 � q1 < q2 < � � � < qd <1 be the elements of @Fix(gl).

Lemma 5.6 On each interval (qi−1; qi], either gl = id, or there is a Cr map
�i : (qi−1; qi]! (−1;1] such that

(1) �i conjugates f l to the map x 7! nlx, and conjugates gl to the map
x 7! x+ 1;

(2) �ij(qi−1;qi) is a Cr di�eomorphism onto (−1;1)
(3) For all p in a neighborhood of qi ,

�i(p) = oih(p)s

where h is a Cr orientation-preserving di�eomorphism onto a neighbor-
hood of 1, 1 � s < r , and oi 2 f�1g.

Proof This follows from Proposition 3.1. Note that we can apply Propo-
sition 3.1 in this setting since we know that if gl 6= id on (qi−1; qi], then
(f l)0(qi) � 1 (by Lemma 5.3). By our assumptions on �(�), if 2 � r < 1,
then (f l)0(qi) � ( 1

n)
1
r−1 , and if r =1, then (f l)0(qi) < 1. Therefore one of the

assumptions (A){(C) of Proposition 3.1 will hold.

Corollary 5.7 Either gl = id, or @Fix(gl) = Fix(gl) = fq1; : : : ; qdg:

Proof Assume that @Fix(gl) = fq1; : : : ; qdg 6= Fix(gl), but gl 6= id. Then
there is an interval [qi−1; qi] on which gl = id but where gl 6= id on [qi; qi+1].
By Lemma 3.4, either gl or g−l is Cr conjugate in a neighborhood [qi; p) to
the map x 7! x=(1 − xs) 1

s for some integer 1 � s < r . But this map is not
r{flat at x = 0, so gl is not Cr at qi , a contradiction.
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Corollary 5.8 If gl 6= id, then the map � : S1 ! RP 1 de�ned by:

�(p) = �i(p); for p 2 (qi−1; qi]

is a Cr rami�ed covering map over 1, f l is a �{rami�ed lift of x 7! nlx, and
gl is a �{rami�ed lift of the map x 7! x+ 1.

Proof Let qi 2 Fix(gl). Applying Lemma 5.6 to the interval [qi; qi+1), we
obtain a map �i+1 : [qi; qi+1) ! [−1;1) which is a Cr di�eomorphism on
(qi; qi+1), and which is a power of a Cr di�eomorphism in a (right) neigh-
borhood of qi ; �i+1(p) = h(p)s for p near qi , for some Cr di�eomorphism h
and some integer 1 � s < r . Similarly, on the interval (qi−1; qi] there is a
map �i : (qi−1; qi]! (1;−1] which is a power of a di�eomorphism in a (left)
neighborhood of qi ; �i(p) = h�(p)s� near qi . We will show that s = s� , and
that the di�eomorphisms h and h� glue together to give a Cr di�eomorphism
in a neighborhood of qi . This will prove that the map

�i(p) =

(
�i(p); for p 2 (qi−1; qi]
�i+1(p); for p 2 [qi; qi+1)

is the restriction to (qi−1; qi+1) of a Cr rami�ed covering map over 1. By
construction, the restrictions of f l and gl to (qi−1; qi+1) are �i{rami�ed lifts
of the maps x 7! nlx and x 7! x+ 1 respectively.

The di�eomorphism 1=h maps qi to 0, and conjugates gl to the map x 7!
x=(1 + xs)1=s . Similarly, 1=h� conjugates gl to x 7! x=(1 + xs�)1=s� . Since
g is Cr , we must have s = s� . Both 1=h and 1=h� are linearizing maps
for f l at qi , and it is not hard to see that they de�ne a Cr di�eomorphism
H in a neighborhood of qi . Therefore h and h� glue together to give a Cr

di�eomorphism 1=H in a neighborhood of qi .

It remains to show that �i = �i+1 on (qi; qi+1). Since the restriction of both
of these maps to (qi; qi+1) are di�eomorphisms which linearize f l , they are
the same up to a constant multiple. There is a unique point x0 2 (qi−1; qi)
satisfying f l(x0) = gn

l−l(x0); { this is the point x0 = gl(y), where y is the
unique �xed point for f l in (qi; qi+1). Both �i and �i+1 send the point x0 to
the same point 1 2 R. So we have �i = �i+1 on (qi; qi+1).

It follows from Lemma 4.5 that the representation of BS(1; nl) generated by f l

and gl is Cr conjugate to an element of V . In the remainder of this section,
we will show that the di�eomorphisms f and g are Cr rami�ed lifts of the
generators of the standard action of BS(1; n) on S1 , hence the representation
they generate is also Cr conjugate to an element of V . We begin with some
lemmas about rami�ed lifts of flows on S1 .
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Lemma 5.9 Let ’ : S1 ! S1 be a Cr flow with a �xed point at p, and let

� : S1 ! S1 be a Cr rami�ed covering map over p. Let F = c’1(�; id) be
the �{rami�ed lift of the time-1 map ’1 with rotation number zero. Then
F embeds as the time-1 map of a Cr flow F t on S1 , and for all t 2 R,
F t = b’t(�; id).

Proof By Lemma 4.2, given any t 2 R there is a unique (�; id) - rami�ed lift
of ’t , F t := b’t(�; id). Lemma 4.3 imples that F t � F s = F s+t = F s � F t for
all s; t 2 R.

Let X be the Cr−1 vector �eld that generates ’, and let X̂ be the lift of X
under � . This vector �eld is clearly Cr−1 on S1 n �−1(p) and clearly generates
the flow F t on S1 . In a neighborhood of qi 2 �−1(p), X̂ takes the form

X̂(q) = d�(q)�
−1X(�q);

and � takes the form �(x) = xs: A straightforward calculation shows that the
vector �eld X̂ is Cr−1 . Similarly, X̂ is analytic if X and � are. This completes
the proof.

Lemma 5.10 Let F : S1 ! S1 be the time-1 map of a Cr flow F t , where
r � 2. Suppose that F is not r{flat, and �(F ) = 0. If G is a Cr orientation
preserving di�eomorphism such that FG = GF , and if �(G) = 0, then G = F t

for some t 2 R.

Proof Since �(F ) = 0 and F is not r{flat, F has a �nite set of �xed points.
Let q1 < : : : < qd be the elements of Fix(F ). If FG = GF , then G permutes
the �xed points of F , and since G is orientation preserving and has rotation
number zero, G([qi; qi+1]) = [qi; qi+1] for all qi 2 Fix(F ). By Lemma 3.7, on
[qi; qi+1), G = F ti for some ti 2 R, and on (qi; qi+1], G = F si for some si .
Clearly, ti = si . So for 1 � i � d,

Gj[qi;qi+1] = F ti ; for some ti 2 R:
If F 0(qi) 6= 1 for some qi 2 Fix(F ), then since G is C1 at qi , it follows that
ti = ti−1 . If F 0(qi) = 1, then in local coordinates, identifying qi with 0,

F (x) = F 1(x) = x+ axk + o(xk)

for some a 6= 0 and k � r . Therefore

G(x) =

(
x+ ti−1ax

k + o(xk); for x 2 (qi−1; qi]
x+ tiax

k + o(xk); for x 2 [qi; qi+1):

Since k � r and G is Cr , ti = ti−1 .
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Corollary 5.11 Let � : S1 ! S1 be a Cr rami�ed covering map over 1,
and let F = k̂(�; id) be the (�; id){rami�ed lift of k 2 A�(R), k 6= id. Let
s(�) = (s1; : : : ; sd; o1; : : : ; od), where si � r−1 for 1 � i � d. By Lemma 5.9, F
embeds as the time-1 map of a Cr flow F t . If H : S1 ! S1 is a Cr orientation
preserving di�eomorphism such that FH = HF , and if �(H) = 0, then H = F t

for some t 2 R.

Proof By Lemma 5.10, it is enough to show that F is not r{flat. In coordi-
nates identifying a �xed point with 0,

F (x) =
x

(b+ axs)
1
s

;

where either a 6= 1 or b 6= 0, which is clearly not r{flat, if s < r .

Proposition 5.12 Let F 2 Di�r(S1) be a di�eomorphism such that F l is
orientation-preserving and �(F l) = 0, for some l > 0. Suppose that F l =bkl(�; id) is a Cr rami�ed lift of kl 6= id, where k 2 A�+(R), and suppose that
s(�) = (s(q1); : : : ; s(qd); o1; : : : ; od), where s(qi) � r − 1 for 1 � i � d. Then
either F is a �{rami�ed lift of k or F is a �{rami�ed lift of −k .

Proof Let � 2 Dd be such that �(q) = F (q) for all q 2 �−1(1), and �(e) =
F (e) for all e 2 E(�).

Lemma 5.13 � 2 Stab#
Dd

(s(�)).

Proof Given any q 2 �−1(1), there is an interval [q; p) and Cr di�eomor-
phisms h1 : [q; p)! [0;1) and h2 : [F (q); F (p)) ! [0;1) such that

h1F
lh−1

1 (x) = [kl(xs)]
1
s ; and h2F

lh−1
2 (x) = [kl(xt)]

1
t ;

where s = s(q) and t = s(F (q)). We can assume that kl is a contraction
on [0;1). (If not, then use k−l and F−l ). Since F lj[q;p) is conjugate by F

to F lj[F (q);F (p)) , Lemma 4.6 implies that s(q) = s(F (q)), and therefore � 2
Stab#

Dd
(s(�)).

By Lemma 5.13, either �(s(�)) = s(�), or �(s(�)) = I(s(�)). If �(s(�)) =
s(�), then let � : S1 ! S1 be the (�; �){rami�ed lift of the identity map:
� = bid(�; �). By Lemma 4.3, � commutes with F l . So F�−1 commutes with
F l , and by construction, F�−1 �xes every interval (qi; qi+1) � �−1(RP 1nf1g).
By Lemma 5.10, F l embeds as the time-1 map of a Cr flow, F t , and F�−1 =
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F t0 = c�t0(�; id) for some t0 2 R, where � is an analytic flow with �1 = kl .
Therefore F = c�t0(�; id) � bid(�; �) = c�t0(�; �) (using Lemma 4.3). It follows
that t0 = 1=l , and therefore F is the (�; �){rami�ed lift of the map k .

If �(s(�)) = I(s(�)), then we let � = d−id(�; �), the (�; �){rami�ed lift of
−id : x ! −x. As above, F�−1 is the (�; �){rami�ed lift of k , and therefore
F =  t� = c−k(�; �).

Corollary 5.14 f and g are Cr rami�ed lifts under � of the generators of
the standard action of BS(1; n) on S1 .

Proof The standard representation �nl : BS(1; nl) ! Di�!(RP 1) is analyti-
cally conjugate to the representation � : BS(1; nl) ! Di�!(RP 1) with genera-
tors �(al) : x 7! nlx and �(bl) : x 7! x+ l . So there is a Cr rami�ed covering
map � : S1 ! S1 over p such that f l = �̂(al)(�; id) and gl = �̂(bl)(�; id).
By Proposition 5.12, either f is a rami�ed lift of �n(a) : x 7! nx, or f is
a rami�ed lift of −�n(a) : x 7! −nx. Similarly, g is either a rami�ed lift of
�n(b) : x 7! x + 1, or a rami�ed lift of −�n(b) : x 7! −x − 1. Since f and g
satisfy the relation fgf−1 = gn , the maps that they are lifted from must also
satisfy this relation. Given this requirement, the only possibility is that f is a
�{rami�ed lift of �n(a) and g is a �{rami�ed lift of �n(b).

Since the generators �(a) = f and �(b) = g of the representation � are rami�ed
lifts under � of the generators �n(a) and �n(b), respectively, of �n , it follows
that, for every γ 2 BS(1; n), there exists a unique h(γ) 2 Dd (or in Cd if � is
orientation-preserving) such that:

�(γ) = �̂n(γ)(�; h(γ)):

Since �(γ1γ2) = �(γ1)�(γ2), it follows that h : BS(1; n) ! Dd (Cd ) is a homo-
morphism. Finally, note that h must take values in StabDd(s) (or StabCd(s),
if � is orientation-preserving).

This concludes the proof of Theorems 1.1 and 1.3.

Finally, we sketch the proof of Theorem 1.6.

Sketch of proof of Theorem 1.6 Let � be a Cr representation of BS(1; n),
with r � 2, let f = �(a) and g = �(b). We may assume that f has rational
rotation number. By taking powers of the elements of BS(1; n), we may assume
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that both f and g have rotation number 0. Assume that g is not the identity
map.

Let J be a component of the complement of Fix(g). Using a distortion esti-
mate and the group relation one shows that J must be �xed by f , as follows.
Otherwise, the f {orbit of J must accumulate at both ends on a �xed point of
f . The standard C2 distortion estimate shows that there is an M > 1 such
that for all x; y in same component of the f {orbit of J , and for all k 2 Z,

1
M

< j(f
k)0(x)

(fk)0(y)
j < M:

But, for all k 2 N , we have that fkgf−k = gn
k
. Hence, for all p 2 J , we have:

(gn
k
)0(p) = g0(y)

(fk)0(g(y))
(fk)0(y)

;

where y = f−k(p). Note that y and g(y) lie in the same component f−k(J),
and g0(y) is uniformly bounded. This implies that for all p 2 J and all k 2 N,
(gn

k
)0(p) is bounded, so that g = id on J , a contradiction.

So f �xes each component of the complement of Fix(g). Let J be such a
component. Since g has no �xed points on J , g embeds in a C1 flow gt ,
de�ned on J minus one of its endpoints, that is Cr in the interior of J (see, eg
[16]). Furthermore, for all t, fgtf−1 = gnt (this follows from Kopell’s lemma).
Fixing some point p in the interior of J , this flow de�nes a Cr di�eomorphism
between the real line and the interior of J , sending t 2 R to gt(p) 2 J .
Conjugating by this di�eomorphism, gt is sent to a translation by t, and f is
sent to a di�eomorphism F satisfying F (x+t) = F (x)+tn, for all t; x 2 R. But
this means that F 0(x) = n for all x 2 R. Up to an a�ne change of coordinates,
g is conjugate on J to x 7! x+ 1 and f is conjugate to x 7! nx.

6 Proof of Proposition 1.5

Let � : BS(1; n) ! Di�!(S1) be a �{rami�ed lift of the standard representa-

tion �n with �(�) =
(

1
n

� 1
r−1 , for some r � 2. Let Q be the set of all points

q 2 �−1(1) satisfying s(q) = r − 1; this set is nonempty since �(�) =
(

1
n

� 1
r−1 .

Lemma 4.1 implies that, in a neighborhood of q , � : x 7! xr−1 , in the appro-
priate coordinates identifying q with 0.

For t 2 (−1; 1) we deform � to obtain a Cr−1+t2 map �t : S1 ! S1 with the
following properties:
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� �0 = � and �−1(1) = �−1
t (1), for all t;

� �tjS1n�−1
t (1) is a C1 covering map onto its image;

� about each q 2 �−1(1) n Q, �t is locally equal to � ;

� about each q 2 Q, �t is locally x 7! xr−1+t2 , in the same charts identi-
fying q with 0 described above.

A slight modi�cation of the proof of Proposition 4.4 also shows that �n has
a lift to a Cr representation �t : BS(1; n) ! Di�r(S1) so that the following
diagram commutes, for all γ 2 BS(1; n):

S1 S1

S1 S1

-�t(γ)

-�n(γ)
?

�t ?
�t

(One merely needs to check that the integer j in the proof of Lemma 4.2 can
be replaced by the real number r − 1 + t2 ).

Notice that �t has the property that �(�t) =
(

1
n

� 1
r−1+t2 , so that �s is not

C1 conjugate to �t unles s = t. One can further modify this construction by
replacing the points of Q by intervals of length "t , extending �t(b) isometrically
across these intervals, and extending �t(a) in an arbitrary Cr fashion to these
intervals. Since �t(b) is r{flat (by Lemma 3.2) on Q for t 6= 0 and r − 1 flat
for t = 0, the representation �t is Cr and varies Cr−1 continuously in t if
we choose "t ! 0 as t ! 0. In this way, one can create uncountably many
deformations of �. (Note that, in essence, we have deformed � to obtain a
\broken Cr rami�ed cover" �a la Theorem 1.6).

7 Proof of Theorem 1.9

Let r 2 f1; !g, and let G < Di�r(S1) be a solvable group without in�nitely
flat elements. Suppose that Gm := fgm : g 2 Gg is not abelian, for any m 2 Z.
We begin by showing that the group G2 < Di�r+(S1) has a �nite set of points
that is globally invariant.

Lemma 7.1 G2 contains a non-trivial normal abelian subgroup N , such that
N contains an element of in�nite order. There is an integer d > 0, and a �nite
set fq1; : : : ; qdg, with q1 < q2 < � � � < qd , such that:
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(1) for all f 2 G2 , �(fd) = 0 and ffq1; : : : ; qdg = fq1; : : : ; qdg;
(2) for all g 2 N , either gd = id or Fix(gd) = fq1; : : : ; qdg.

Proof Note that G2 is a solvable group, and every di�eomorphism in G2 is
orientation preserving. Let

G2 = G0 > G1 > : : : > Gn > Gn+1 = fidg
be the derived series for G2 , and let N = Gn be the terminal subgroup in this
series. Recall that N is a normal abelian subgroup of G2 . We �rst show that
N contains an element of in�nite order. We will use the following result of
Ghys ([7] Proposition 6.17):

Lemma 7.2 If H � Homeo+(S1) is solvable, then the rotation number � : H
! R=Z is a homomorphism.

Suppose that every di�eomorphism in N has �nite order. Since G2 6= N
(because G2 is not abelian), Gn−1 cannot be abelian { if it were, then Gn would
be trivial. Suppose that f; h 2 Gn−1 . By Lemma 7.2, �(fhf−1h−1) = 0. But
fhf−1h−1 is orientation preserving and has �nite order, since fhf−1h−1 2 Gn .
Therefore fhf−1h−1 = id, and Gn−1 is abelian, a contradiction. So N contains
a di�eomorphism with in�nite order.

If �(g) is irrational, for some orientation-preserving g 2 N , then the elements
of N are simultaneously conjugate to rotations. But, since N is normal in G2 ,
this implies that the elements of G2 are simultanously conjugate to rotations,
which implies that G2 is abelian, a contradiction.

Hence �(g) 2 Q=Z, for every g 2 N . Note that every g 2 N either has �nite
order, or a �nite set of periodic points: if Fix(gl) is in�nite, for some integer
l 6= 0, then there is a point q 2 Fix(gl) that is an accumulation point for a
sequence fqig � Fix(gl). But this implies that gl is in�nitely flat at q , and
therefore gl = id.

Hence there exists g 2 N with in�nite order and a �nite �xed set, Fix(g) =
fq1; : : : ; qdg. If h 2 N is another element of N , then, since h commutes with
g , it follows that h(fq1; : : : ; qdg) = fq1; : : : ; qdg, and so �(hd) = 0. If the set
of �xed points for hd is in�nite, then hd = id, and if Fix(hd) is �nite, then
Fix(hd) = fq1; : : : ; qdg.
Finally, let f 2 G2 nN and pick g 2 N satisfying Fix(g) = fq1; : : : ; qdg. Then
there exists a g 2 N such that fgf−1 = g . This implies that f(Fix(g)) =
Fix(g); that is, f(fq1; : : : ; qdg) = fq1; : : : ; qdg. It follows that �(fd) = 0. This
completes the proof.
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Let fq1; : : : ; qdg be given by the previous lemma, labelled so that −1 � q1 <
q2 < � � � < qd < 1, and let l = 2d. We will begin by working with the
group Gl . Note that every g 2 Gl is orientation-preserving, has zero rotation
number, and �xes every point in the set fq1; : : : ; qdg. Throughout this section,
we will be working on the intervals (qi; qi+1), where we adopt the convention
that qd+1 = q1 .

Let M be a normal abelian subgroup of Gl which contains an element of in�nite
order. For the rest of the proof, �x a di�eomorphism g 2M which has in�nite
order.

Lemma 7.3 Let C(g) = ff 2 Gl j gf = fgg. Then C(g) 6= Gl .

Proof A proof of this lemma is essentially contained in [5]. This lemma is
implied by the following theorem, which is classical.

Theorem 7.4 (Hölder’s Theorem) If a group of homomorphisms acts freely
on R, then it is abelian.

If f 2 C(g), then Fix(f) = Fix(g). So on every interval (qi; qi+1), 1 � i � d,
no element of C(g) has a �xed point. By Theorem 7.4, the restriction of the
action of C(g) to each interval (qi; qi+1) is abelian. Since f(qi) = qi for all
f 2 C(g) and for all qi 2 Fix(g), C(g) is an abelian subset of Gl . But Gl is
not abelian, so C(g) 6= Gl .

Lemma 7.5 Let f 2 Gl n C(g). Then for every interval (qi−1; qi] there is a
positive real number �i and a Cr map �i : (qi−1; qi]! RP 1 with the following
properties:

(1) �ig(p) = �i(p) + 1 and �if(p) = �i�i(p);

(2) �ij(qi−1;qi) is a Cr di�eomorphism onto (−1;1);

(3) there is an orientation-preserving Cr di�eomorphism hi from a neigh-
borhood of qi to a neighborhood of 1 and integers si 2 f1; : : : ; r − 1g,
oi 2 f�1g, such that, for all p in this neighborhood:

�i(p) = oihi(p)si

The same conclusions hold, with the same �i , oi and �ij(qi−1;qi) , but di�er-
ent local (orientation-reversing) di�eomorphism h�i and integer s�i , when qi is
replaced by qi−1 and the interval (qi−1; qi] is replaced by [qi−1; qi).
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Remark To ensure that the conditions �i > 0 (as opposed to �i 6= 0) hold in
Lemma 7.5, it is necessary that we chose l to be even.

Proof We use the following fact, proved by Takens:

Theorem 7.6 ([15], Theorem 4) Let h : [0; 1) ! [0; 1) be a C1 di�eomor-
phism with unique �xed point 0 2 [0; 1). If h is not in�nitely flat, then there
exists a unique C1 vector �eld X on [0; 1) such that h = h1 , where ht is the
flow generated by X .

For each 1 � i � d, Let gti : (qi−1; qi] ! (qi−1; qi] be the flow given by this
theorem with g1

i = gj(qi−1;qi] . If f 2 Gl n C(g), then since g 2 M , we have
fgf−1 2 M , and therefore fgf−1 2 C(g). By Lemma 3.7, for 1 � i � d, we
must have

fgf−1 = g�ii

on (qi−1; qi], for some �i 2 R n f0g, �i 6= 1. Note that, because l is even, �i
must be positive, for all i. So assumption (D) of Section 3 holds in the interval
(qi−1; qi] for each qi 2 fq1; : : : ; qdg.

The same reasoning can be applied to [qi−1; qi), using a possibly di�erent flow
~gti and constant �i with

fgf−1 = ~g�ii :

Since g�ii and ~g�ii coincide on (qi; qi+1), it is not hard to see that we must
have �i = �i . Now the result follows from Proposition 3.1, as in the proof of
Lemma 5.6 and Corollary 5.8.

Corollary 7.7 For every f 2 Gl n C(g), there is a positive real number � =
�(f) 6= 1 such that �i = �, for all 1 � i � d, where �i is given by Lemma 7.5.
For every i, si = s�i+1 , where addition is mod d.

Proof Let 1 � i � d. As in the proof of Corollary 5.8, we have that g is
conjugate in a left neighborhood of qi to x 7! x=(1+xsi)1=si and g is conjugate
in a right neighborhood of qi to x 7! x=(1 + xs

�
i+1)1=s�i+1 . Since g is C1 ,

we must have si = s�i+1 . But then f is conjugate in a left neighborhood
of qi to x 7! x=�

1=si
i and f is conjugate in a right neighborhood of qi to

x 7! x=(�i+1)1=s�i+1 . It follows that �i = �i+1 . Set � to be this common
value.

The proof of the next corollary is identical to the proof of Corollary 5.8.
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Corollary 7.8 For every f 2 Gl n C(g), the map � : S1 ! RP 1 de�ned by:

�(p) = �i(p); for p 2 (qi−1; qi]

is a Cr rami�ed cover with signature s = (s1; : : : sd; o1; : : : ; od). The di�eomor-
phism f is a �{rami�ed lift of the map x 7! �(f)x, and g is a �{rami�ed lift
of the map x 7! x+ 1.

Corollary 7.9 g embeds in a unique Cr flow gt , with g = g1 . The elements
of C(g) belong in the flow for g and, for each f 2 Gl n C(g), lie in the rami�ed
lift under �f of the translation group fx 7! x + � j � 2 Rg. That is, for any
h 2 C(g), there exist real numbers � , t such that h = gt is a �f {rami�ed lift
of the map x 7! x+ � .

Proof This corollary follows directly from Corollary 7.8, Lemma 5.9 and
Lemma 5.10.

Lemma 7.10 For any f1; f2 2 Gl n C(g), there exists a real number γ such
that f2 is a �f1 {rami�ed lift of the map x 7! �(f2)x+ γ .

Proof The proof is expressed in a series of commutative diagrams.

Lemma 7.11 There exists an � 2 R such that g� is the (�f1 ; �f2 ; id){rami�ed
lift of the identity map.

Proof The following diagram shows that if bid is the (�f1; �f2 ; id){rami�ed lift
of the identity map on RP 1 , then bid � g = g �bid:

S1 S1

RP 1 RP 1

S1 S1

RP 1 RP 1

-g

-x 7! x+ 1
?

�f1

?

�f1

-g

-x 7! x+ 1
?

�f2

?

�f2

�
�
�
�
�
�
�
��

bid
�
�
�
�
�
�
�
��

bid

�
�
�
�
�
�
�
��

id

�
�
�
�
�
�
�
��

id
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Since g embeds in a flow gt that is a rami�ed lift of an a�ne flow, it follows
from Corollary 7.9 that there exists an � such that bid = g� .

Lemma 7.12 For every t0 2 R there exists γ 2 R such that gt0 is the
(�f1 ; �f2 ; id){rami�ed lift of the map x 7! x− γ .

Proof Let � be given by the previous lemma. Let γ be the real number such
that gt0−� is a �f1 - rami�ed lift of x 7! x − γ . The proof follows from the
following diagram:

S1 S1

RP 1 RP 1

S1

RP 1

-gt0−�

-x 7! x− γ?
�f1 ?

�f1

-
bid = g�

-id
?

�f2

The composition of the maps on the top row is g��gt0−� = gt0 . The composition
of the maps on the bottom row is x 7! x− γ .

Lemma 7.13 For all t 2 R, f2g
tf−1

2 = g�(f2)t .

Proof The proof follows from the following diagram:

S1 S1

RP 1 RP 1

S1

RP 1

S1

RP 1

-f−1
2

-
x 7! 1

�(f2)x
?

�f2 ?
�f2 ?

�f2

-gt

-x 7! x+ t
?

�f2

-f2

-x 7! �(f2)x

The composition of the maps on the bottom row gives x 7! x + �(f2)t. By
uniqueness (Lemma 5.9), f2g

tf−1
2 = g�(f2)t for all t 2 R.

Let � be given by Lemma 7.11, and let γ be given by Lemma 7.12, with
t0 = �(f2)�. From the following diagram:
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S1 S1

RP 1 RP 1

S1 S1

RP 1 RP 1

-
bid = g�

-id
?

�f1

?

�f2

-g��

-x 7! x− γ?

�f1

?

�f2

�
�
�
�
�
�
�
��

f2

�
�
�
�
�
�
�
��

f2

�
�
�
�
�
�
�
��

F

�
�
�
�
�
�
�
��

x 7! �(f2)x

it follows that F (x) = �(f2)x+ γ , completing the proof of Lemma 7.10.

Proposition 7.14 Fix f 2 Gl n C(g). Then for each h 2 G, there exists
F 2 A�(R) such that h is a �f {rami�ed lift of F .

Proof By Corollary 7.9 and Lemma 7.10, we have that for each h 2 G, there
exists k 2 A�+(R), so that hl is a �f {rami�ed lift of kl . Therefore, by Propo-
sition 5.12, h is a �f {rami�ed lift of either k or −k .

By Lemma 4.5, this completes the proof of Theorem 1.9.

Acknowledgements

Many useful conversations with Gautam Bharali, Christian Bonatti, Keith
Burns, Matthew Emerton, Benson Farb, Giovanni Forni, John Franks, Ralf
Spatzier, Jared Wunsch and Eric Zaslow are gratefully acknowledged. We thank
Andr�es Navas and Etienne Ghys for very useful comments on earlier versions
of this paper, and for pointing out several references to us. Ghys supplied the
simple proof of Proposition 2.1, and Curt McMullen supplied the simple proof
of Lemma 4.1. Finally, we thank Benson Farb for reminding us that the BS
groups are often interesting. The second author was supported by an NSF
grant.

Geometry & Topology, Volume 8 (2004)



924 Lizzie Burslem and Amie Wilkinson

References

[1] D Cerveau, R Moussu, Groupes d’automorphismes de (C; 0) et �equations
di��erentielles ydy + � � � = 0, Bull. Soc. Math. France 116 (1989) 459{488

[2] P M Elizarov, Yu S Ilyashenko, A A Shcherbakov, S M Voronin, Finitely
generated groups of germs of one-dimensional conformal mappings, and invari-
ants for complex singular points of analytic foliations of the complex plane, Adv.
Soviet Math. 14, Amer. Math. Soc. Providence, RI (1993)

[3] B Farb, J Franks, Groups of homeomorphisms of one-manifolds, I: Actions of
nonlinear groups, preprint

[4] B Farb, L Mosher, On the asymptotic geometry of abelian-by-cyclic groups,
Acta Math. 184 (2000) 145{202

[5] B Farb, P Shalen, Groups of real-analytic di�eomorphisms of the circle, Er-
godic Theory and Dynam. Syst. 22 (2002) 835-844

[6] �E Ghys, Sur les groupes engendr�es par des di��eomorphismes proches de
l’identit�e, Bol. Soc. Brasil. Mat. (N.S.) 24 (1993) 137{178

[7] �E Ghys, Groups acting on the circle, L’Ensiegnement Math�ematique, 47 (2001)
329-407

[8] N Kopell, Commuting Di�eomorphisms, Global Analysis (Proc. Sympos. Pure
Math., Vol. XIV, Berkeley, Calif. (1968) 165{184

[9] F Labourie, Large groups actions on manifolds, Proceedings of the Interna-
tional Congress of Mathematicians, Vol. II (Berlin, 1998) Doc. Math. (1998)
Extra Vol. II, 371{380

[10] I Nakai, Separatrices for nonsolvable dynamics on C; 0, Ann. Inst. Fourier
(Grenoble) 44 (1994) 569{599

[11] A Navas, Groups r�esolubles de di��emorphismes de l’intervalle, du cercle et de
la droite, to appear in Bol. Soc. Brasil. Mat.

[12] J F Plante, W P Thurston, Polynomial growth in holonomy groups of folia-
tions, Comment. Math. Helv. 51 (1976) 567{584

[13] J Rebelo, R Silva, The multiple ergodicity of non-discrete subgroups of
Di�!(S1), Mosc. Math. J. 3 (2003) 123{171

[14] S Sternberg, Local Contractions and a theorem of Poincar�e, Amer. J. Math.
79 (1957) 809-824

[15] F Takens, Normal forms for certain singularities of vector�elds, Ann. Inst.
Fourier (Grenoble) 23 (1973) 163{195

[16] M Zhang, W Li, Embedding flows and smooth conjugacy, Chinese Ann. Math.
Ser. B, 18 (1997) 125{138

Geometry & Topology, Volume 8 (2004)


