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symplectic on the complement of a finite set of unknotted circles Z . The number
of circles, counted with sign, is given by d = (c1(s)2−3σ(X)−2χ(X))/4, where
s is a certain spinC structure naturally associated to ω .

AMS Classification numbers Primary: 57R17

Secondary: 57M50, 32Q60

Keywords: Symplectic, 4–manifold, spinC , almost complex, harmonic

Proposed: Yasha Eliashberg Received: 17 January 2004
Seconded: Leonid Polterovich, Simon Donaldson Revised: 6 May 2004

c© Geometry & Topology Publications



744 David T Gay and Robion Kirby

0 Introduction

Let X4 be a connected, closed, smooth, oriented 4–manifold with b+2 > 0. For a
Riemannian metric g on X , let Λ2

+ be the 3–plane bundle of self-dual 2–forms
on X . Harmonic 2–forms are closed sections of Λ2

+ ; it is known [12] that there
exist metrics on X for which there are harmonic 2–forms which are transverse
to the 0–section of Λ2

+ , so that the 0–locus is 1–dimensional and the 2–forms
are symplectic in the complement of some circles. Here, we explicitly construct
such 2–forms and metrics.

Let us say that a connected subset C in a 4–manifold “uses up all the 3–
handles” if the complement of a regular neighborhood of C has a handlebody
decomposition with only 0–, 1– and 2–handles.

Given α ∈ H2(X;Z) with α · α > 0, let Σ be a smoothly imbedded surface
in X which uses up all the 3–handles and represents α. In Section 3 we show
that such surfaces exist, and that one can arbitrarily increase the genus of Σ
by adding homologically trivial tori while still using up all the 3–handles. Let
c ∈ H2(X;Z) be a cohomology class satisfying c·Σ = 2−2(genus(Σ)+1)+Σ·Σ;
such c exist because genus(Σ) can be increased if necessary. Then choose a
spinC structure s with c1(s) = c.

Theorem 1 Given Σ and s as above, there exist a closed 2–form ω on X ,
a finite set of signed (±1) circles Z ⊂ X − Σ (we will show how this sign is
natural) bounding disjointly imbedded disks, an ω–compatible almost complex
structure J on X − Z , and a Riemannian metric g on X , which satisfy:

(1) [ω] ∈ H2(X;R) is Poincaré dual to [Σ] (and hence integral).

(2) ω ∧ ω > 0 on X − Z .

(3) ω vanishes identically on Z .

(4) There exists a J –holomorphic curve Σ′ which is the connected sum of Σ
with a standard torus in a neighborhood of a point in Σ.

(5) There is at least one circle with sign −1.

(6) The sign (±1) associated to each circle Zi ⊂ Z is the obstruction o(Zi) ∈
π3(S2) = Z to extending J across a 4–ball neighborhood of a certain disk
Di bounded by Zi and the total number of circles in Z , counted with
sign, is d = ((c1(s))2 − 3σ(X) − 2χ(X))/4.

(7) The spinC structure determined by J |(X −D), where D is the union of
the disks Di , is s.
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Constructing symplectic forms which vanish on circles 745

(8) ω is g–self-dual (and thus harmonic) and transverse to the zero section
of Λ2

+ (with zero locus Z ).

Remark 2 The obstruction invariant o(Zi) depends only on the relative ho-
mology class of the disk Di in H2(X,Z;Z), not on the specific disk. We
will show (proposition 26) that o(Zi) can also be computed by counting anti-
complex (or complex, depending on orientation) points on Di .

Note that a spinC structure s is an almost complex structure on the 2–skeleton
of X which extends over the 3–skeleton of X ( see page 48 in [10]). Then J
restricted to the complement of the disks Di is a spinC structure s, and con-
versely, J may be thought of as an extension of s across the 2–disks transverse
to the Di .

Taubes [17] has initiated a program to study the behavior of J –holomorphic
curves in 4–manifolds equipped with symplectic forms which vanish along cir-
cles, in the hope that this will reveal smooth invariants of nonsymplectic 4–
manifolds. We in turn hope that our construction will produce a rich class of
examples in which to pursue this program. In [16], some explicit constructions
in terms of handlebodies are discussed, but not with this much generality and,
in particular, not on closed manifolds. A canonical example that is in some
sense diametrically opposed to our construction is the case of S1 × Y 3 for a
3–manifold Y : One chooses an S1–valued Morse function f on Y with only
critical points of index 1 and 2, and defines ω to be dt∧ df + ?3df , where ?3 is
the Hodge star operator on Y and t is the S1 coordinate on S1×Y . The zero
circles are then S1 × p for critical points p ∈ Y . Here the zero circles are all
homologically nontrivial; in our construction the zero circles all bound disks.

Remark 3 Honda [13] has shown that, given a metric g , when a harmonic
2–form ω is transverse to the zero section of Λ2

+ , the behavior of ω on a
neighborhood S1 × B3 near a component of the zero locus Z is given by one
of two local models. The “orientable” model is ω = dt ∧ dh + ?3dh, as in the
previous paragraph, where h : B3 → R is a standard Morse function with a
single critical point of index 1 (or 2) at 0. Thus there is a natural splitting
of the normal bundle to Z into a 1–dimensional and a 2–dimensional bundle.
The “nonorientable” model is a quotient of the orientable model by a Z2 action
so that the 1–dimensional bundle becomes a Moebius strip. A positive feature
of our construction is that the nonorientable model never arises.

Remark 4 In our construction the adjunction inequality is always violated
in the sense that we have a J –holomorphic curve Σ′ which does not minimize
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746 David T Gay and Robion Kirby

genus. When c1(s)2 − 2χ(X) − 3σ(X) = 0, we can actually cancel the circles
in Z at the level of the almost complex structure, to get an almost complex
structure on all of X with respect to which a surface which does not minimize
genus is J –holomorphic. This supplements examples of Mikhalkin [15] and
Bohr [1]. Furthermore, this almost complex structure is compatible with a
symplectic form outside a ball.

If X does in fact support a symplectic structure, at first glance it appears that
our construction has no hope of recovering that fact, since we always produce
singular circles and we always violate the adjunction inequality. However, there
is a different type of “cancellation of singular circles” that might appear. In
the S1 × Y 3 model described above, a flow line connecting an index–1 critical
point which cancels an index–2 critical point becomes a symplectic cylinder
connecting two singular circles which can be cancelled symplectically. In our
construction, we could search for symplectic cylinders with this local model
connecting two of our circles. To be able to cancel all the circles in this way,
at least one of these symplectic cylinders would have to intersect Σ′ , so that
after the cancellation Σ′ is no longer J –holomorphic. Furthermore, the change
would have to change c1(s), so that c1(s) · [Σ] no longer predicts a minimal
genus in [Σ] of genus(Σ) + 1. An interesting project is to search for explicit
examples of this kind of cancellation.

Example 5 Consider X = #3CP 2 (which cannot support a symplectic struc-
ture), with standard generators α1, α2, α3 ∈ H2(X;Z) such that αi · αj = δij .
Let s be the spinC structure for which c1(s) · α1 = 1, c1(s) · α2 = 3 and
c1(s)·α3 = 3 (s is unique because there is no 2–torsion here). Let Σ be the stan-
dard CP 1 representing α1 and check that c1(s)·α1 = 2−2(genus(Σ)+1)+α1·a1 .

In our construction we first build E , a neighborhood of Σ, as a neighborhood
E′ of a J –holomorphic torus Σ′ together with two extra 2–handles. This will
have a negative overtwisted contact structure on its S3 boundary. Then we
build N = X − int(E) with the standard two 2–handles each with framing
+1; to attach these two 2–handles to the 0–handle along Legendrian knots, we
need the boundary of the 0–handle to be convex and overtwisted. One circle
in Z is introduced precisely to change the standard tight contact structure on
the boundary of the standard symplectic 0–handle by a Lutz twist along a
transverse unknot with self-linking number −1 to achieve overtwistedness; the
second circle is introduced to cancel the first circle at the level of almost complex
structures, since d = (19− 9− 10)/4 = 0 for this choice of s. The second circle
corresponds to a Lutz twist along a transverse unknot with self-linking number
+1; the self-linking numbers are exactly the signs of the circles. If we put the
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two circles in a single 4–ball, the obstruction to extending J across this ball is
zero.

Precisely because the total obstruction to extending J is d (0 in this case), the
contact structures on S3 coming from N and from E are homotopic. They are
also overtwisted and therefore isotopic so we can glue E to N symplectically.
This finishes Example 5.

We can generalize Theorem 1 to make configurations of embedded surfaces
J –holomorphic. Let Σ1, . . . ,Σk be smoothly imbedded surfaces in X with
pairwise intersections transverse and positive (self-intersections not necessarily
positive) such that, for each i, Σi·Σ1+. . .+Σi·Σk > 0. Let Q be the intersection
form for a neighborhood of Σ1∪ . . .∪Σk and assume that det(Q) 6= 0. Suppose
that Σ1 ∪ . . . ∪ Σk uses up all the 3–handles. (Again, at the cost of increasing
genus we can use all the 3–handles.) Let s be a spinC structure on X such
that:

(1) c1(s) · Σ1 = 2− 2(genus(Σ1) + 1) + Σ1 · Σ1 and

(2) for each i > 1, c1(s) · Σi = 2− 2 genus(Σi) + Σi · Σi .

Addendum 6 Given Σ1, . . . ,Σk and s as above, there exist ω , Z , J and
g as in Theorem 1 with the following adjustments to the properties listed in
Theorem 1:

(1) [ω] is Poincaré dual to [Σ1] + . . .+ [Σk].

(4) There exists a J –holomorphic curve Σ′1 which is the connected sum of
Σ1 with a standard torus in a neighborhood of a point in Σ1 .

(4 ′ ) Σ2, . . . ,Σk are all J –holomorphic.

Example 7 Let Y be a closed, oriented 3–manifold with b2(Y ) > 0 and
let X = S1 × Y . (If Y does not fiber over S1 it is not known, in general,
whether X supports a symplectic structure or not.) Let Σ1 be a homologically
nontrivial surface in Y and let Σ2 = S1×γ , where γ is a knot in Y transversely
intersecting Σ1 at one point. Choose s such that c1(s) is Poincaré dual to
(2− 2(genus(Σ1) + 1))[Σ2]. Again we have d = 0, so our construction gives an
almost complex structure which extends across a ball containing the two circles
in Z , and is compatible with a symplectic form outside that ball. Also, Σ′1 is
a J –holomorphic curve which does not minimize genus.

Addendum 6 also allows us to carry out our construction on a 4–manifold
which looks like R4 outside a compact set, to get a standard symplectic form at
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748 David T Gay and Robion Kirby

infinity. To make this more precise, let W be a compact, oriented 4–manifold
with ∂W = S3 . Let Σ ⊂W be a properly imbedded surface which uses up all
the 3–handles, with ∂Σ unknotted in S3 . Let [Σ] refer to the absolute class
obtained by capping off ∂Σ with a disk in S3 , and suppose that [Σ] · [Σ] > 0.
Furthermore suppose there exists an integral lift c of w2(W ) such that c · [Σ] =
−2(genus(Σ) + 1) + [Σ] · [Σ]. At the cost of increasing genus(Σ), we can always
find such a c.

Corollary 8 There exist a closed 2–form ω on W which is symplectic on
the complement of a collection of circles Z ⊂ int(W ) and 0 along Z , an ω–
compatible almost complex structure J on W − Z , and a Riemannian metric
g on W with respect to which ω is self-dual and transverse to 0, such that:

(1) [ω] is Poincaré dual to [Σ].

(2) Σ′ is J –holomorphic, where Σ′ is the connected sum of Σ with a standard
trivial torus in a ball.

(3) ω|∂W = dα0 for the standard contact form α0 on S3 = ∂B4 ⊂ (R4, dx1∧
dy1 + dx2 ∧ dy2)

Proof Let

(1) A = (S2 × S2)−B4 ,

(2) F be a properly embedded disk in A normal to one of the S2 ’s,

(3) X = W ∪S3 A,

(4) Σ1 = Σ ∪ F , a closed surface with Σ1 · Σ1 = [Σ] · [Σ],

(5) Σ2 = S2 × p ⊂ A, and

(6) Σ3 = p× S2 ⊂ A.

This gives the suitable input for Addendum 6, with the determinant of the
intersection matrix equal to −[Σ] · [Σ] and with s chosen so that c1(s) · Σ2 =
c1(s) ·Σ3 = 2. Then the output is standard near Σ2 ∪Σ3 , so we can restrict to
W to get standard behavior along ∂W .

Finally, there are certain special situations where we do not need to increase
the genus of Σ1 . Let Σ1, . . . ,Σk be as in Addendum 6 above, and let s be
chosen so that, for i = 1, . . . , k , c1(s) · Σi = 2− 2g(Σi) + Σi · Σi .

Addendum 9 Suppose that we are in one of the following three cases:

(1) k = 2, both surfaces are spheres, Σ1 · Σ1 ≥ 2 and Σ2 · Σ2 ≥ 1.
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(2) k = 2, genus(Σ1) = 0, genus(Σ2) ≥ 1 and Σi · Σi ≥ 1 for i = 1, 2.

(3) k > 2, genus(Σ1) = 0, Σ1 ·Σ1 ≥ 1, Σ1 ·Σ2 = 1 and Σ1 ·Σi = 0 for i ≥ 2.

Then we have the same conclusions as in Addendum 6 except that Σ1 is J –
holomorphic rather than Σ′1 .
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1 The construction modulo details

Henceforth all manifolds will be oriented, all symplectic structures on 4–mani-
folds will agree with the orientations of the manifolds, and all contact structures
will be co-oriented. However we will work with both positive and negative
contact structures.

Throughout this paper, if we refer to a triple (ω, J, ξ) (appropriately decorated
with subscripts) on a pair (W,∂W ), we mean that W is a 4–manifold with
boundary, ω is a closed 2–form on W which vanishes along a (possibly empty)
collection of circles Z and is symplectic on W − Z , J is an almost complex
structure on W − Z , and ξ is a contact structure on ∂W . For such triples,
J will always be compatible with ω , while ξ will be compatible with ω and
J in the following sense: There should exist a Liouville vector field V defined
on a neighborhood of ∂W and transverse to ∂W , inducing a contact form
α = ıV ω|∂W , with ξ = kerα, J(ξ) = ξ and J(V ) = Rα (the Reeb vector field
for α). Note that when V points out of W , ξ is positive (and ∂W is said to be
convex), and when V points in, ξ is negative (and ∂W is said to be concave).

In this section we will lay out the construction and defer various details to later
sections. First we give the construction starting with a single surface.

The construction (proof of Theorem 1) Split X as X = E∪N , where E
is a B2–bundle neighborhood of Σ and N = X− int(E). Let Y = ∂N = −∂E ,
let c = c1(s) and let g = genus(Σ).
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750 David T Gay and Robion Kirby

Here is a very brief sketch of the construction of ω , Z and J on X such that
c1(J) = c. We will construct triples (ωE, JE , ξE) on (E, ∂E) and (ωN , JN , ξN )
on (N, ∂N) with the following properties:

(1) ωE and JE are defined on all of E .

(2) ωN is defined on all of N but vanishes along Z ⊂ N , while JN is defined
on N − Z .

(3) ξE is negative (as a contact structure on ∂E , hence positive on Y ) and
overtwisted.

(4) ξN is positive and overtwisted.

(5) ξE is homotopic as a plane field to ξN .

(6) c1(JN ) = c|N and c1(JE) = c|E .

Since ξE and ξN are both overtwisted, positive as contact structures on Y ,
and homotopic, we know [4] that they are isotopic as contact structures. This
means that, after rescaling ωE and perturbing ωE and JE on a small collar
neighborhood of ∂E , we can glue (ωE , JE) to (ωN , JN ) to get (ω, J) on X . A
little algebraic topology shows that c1(J) = c.

Now we present the construction in more detail.

Choose integers l1, . . . , ln ∈ {−1,+1}, with l1 = −1, so that Σn
i=1li = d; these

will be the signs associated to the zero circles Z1, . . . , Zn . (If d < 0 a natural
choice is n = d and l1 = . . . = ld = −1 and if d > 0 a natural choice is
n = d+ 2, l1 = −1 and l2 = . . . = ld+2 = 1. However, any choice will work.)

First we establish a Morse function on X with particular properties. Consider
the obvious Morse function on E with one 0–handle, 2g 1–handles and one 2–
handle. Extend this to a Morse function on all of X which has only 2–handles,
3–handles and a single 4–handle in N , and then turn this Morse function upside
down. Introduce a cancelling 1–2–handle pair inside N . Label the 2–handles
H2

1 , . . . ,H
2
p ,H

2
p+1 , where H2

p+1 is the single 2–handle in E and H2
1 is the 2–

handle from the cancelling 1–2 pair. Let H1
1 be the 1–handle cancelled by H2

1 .
Slide H2

p+1 over H2
1 so that H2

p+1 runs over H1
1 once and then (possibly) over

some other 1–handles. Slide H1
1 over these other 1–handles so as to arrange

that H2
p+1 runs only over H1

1 . This gives a new Morse function which we will
call f . Note that f still respects the splitting X = E ∪Y N in the sense that
we may take Y to be a level set. (This is because we did not slide handles from
N over handles from E .)

For any given t ∈ R, let Xt = f−1(−∞, t] and let Yt = f−1(t) = ∂Xt . For
future convenience, reparametrize f so that Xk is the union of the 0– through
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Constructing symplectic forms which vanish on circles 751

k–handles, with N = X1.5 and Y = Y1.5 . Also arrange that all the 1–handles
are in fact in X0.9 ⊂ X1 . (We will put the zero locus Z into f−1[0.9, 1].) Fig-
ure 1 illustrates this Morse function. Note that f gives a cell decomposition
to X , with the descending manifolds for each index k critical point being the
k–cells. Label the k–cells Cki (corresponding to handles Hk

i ). We will work
with cellular cohomology and homology with respect to this cell decomposi-
tion, and represent cohomology classes by cellular cocycles. Since Xk deforma-
tion retracts onto the k–skeleton of X , we will frequently represent classes in
H i(Xk;Z) by cocycles on the k–skeleton of X . Because of the handle slides
in the previous paragraph, we know that ∂C2

p+1 = C1
1 in the cellular chain

complex coming from f .

RX

0

1

4

3

2

1.5

0.9

index 0

index 1

index 2

index 2

index 3

index 4

Z
N

E

Y

Figure 1: The Morse function f : X → R ; dots are critical points, circles in f−1[0.9, 1]
are components of Z .

In Section 3 (Proposition 15), we construct the triple (ωE , JE , ξE). This is
done by seeing E as a neighborhood E′ of Σ′ together with two 2–handles.
The triple is constructed first on E′ as a standard symplectic neighborhood
of a J –holomorphic curve Σ′ , with negative but tight contact boundary, and
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then the triple is extended over the two extra 2–handles required to make E so
that the boundary becomes overtwisted. Here we use a characterization [7] of
neighborhoods of symplectic surfaces in terms of open books. Since Σ′ is JE –
holomorphic we have c1(JE) = c|E . In Section 3 there are various perturbations
of the Morse function inside E (handle slides and introduction of cancelling
pairs); after Section 3 we will abandon these perturbations and return to the
original Morse function f .

Since X0.9 is built from a 0–handle and some 1–handles, there is a more or less
canonical construction of a triple (ω0.9, J0.9, ξ0.9) on (X0.9, Y0.9), with ω0.9 and
J0.9 defined everywhere and with ξ0.9 positive and tight (see Proposition 10).
In Section 4 (Proposition 20) we show how to extend this to a singular triple
(ω1, J1, ξ1) on (X1, Y1), with ω1 vanishing on a union of circles Z ⊂ f−1[0.9, 1]
and J1 defined on X1 − Z , so that ξ1 is positive and overtwisted. In fact, Z
consists of one circle in each of n levels between Y0.9 and Y1 , in the following
sense: Each component Zi of Z arises in the product cobordism f−1[a(i), a(i+
1)] from (Ya(i), ξa(i)) to (Ya(i+1), ξa(i+1)) (i ranging from 1 to n and a(i) ranging
from 0.9 to 1), where each ξa(i) is a positive contact structure and ξa(i+1) differs
from ξa(i) by a (half) Lutz twist along a transverse unknot Ui ⊂ (Ya(i), ξa(i)).
The circle Zi is 0.5× Ui after identifying f−1[a(i), a(i + 1)] with [0, 1] × Ya(i) .
Also, ω1|f−1[a(i), a(i+1)] is a standard symplectification of ξa(i) outside [0, 1]×
Ti for some solid torus neighborhood Ti of Ui . Here we also construct a metric
g such that ω1 is g–self-dual and transverse to the zero section of Λ2

+ . (Outside
a small neighborhood of Z , g is determined by ω1 and J1 in the usual way,
but the metric determined by ω1 and J1 develops a singularity along Z which
we remove by suitably rescaling.)

A homologically trivial transverse knot K comes with an integer invariant,
the self-linking number lk(K). We will use the fact that any positive contact
manifold has transverse unknots with lk = −1, and that if the contact structure
is overtwisted we can also find transverse unknots with lk = +1 (lemma 12).
Each Ui is chosen so that lk(Ui) = li (hence the requirement that l1 = −1).
In Section 5 (lemma 25) we show that, if Bi is a 4–ball neighborhood of a
disk bounded by Zi , then the obstruction to extending J1 across Bi is exactly
lk(Ui) = li .

At this point fix a trivialization τ of ξ1 (possible because c1(ξ1) = 0). Let
L = K1 ∪ . . . ∪Kp ∪Kp+1 be the link of attaching circles for all the 2–handles
H2

1 ∪ . . .∪H2
p ∪H2

p+1 of X as seen in (Y1, ξ1). Each handle Hi is to be attached
with some framing Fi of Ki . Because ξ1 is overtwisted, we may isotope L to
be Legendrian with tb(Ki) − 1 = Fi (see lemma 11). Thus (Proposition 10,
see [18]), we can extend (ω1, J1, ξ1) to a triple on (X2, Y2) which we will label
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Constructing symplectic forms which vanish on circles 753

(ω′2, J
′
2, ξ
′
2). (We will soon change some choices and replace this triple with a

better one, which we will call (ω2, J2, ξ2).)

With respect to the trivialization τ , each (oriented) Legendrian knot Ki has
a rotation number rot(Ki) (the winding number of TKi in ξ1|Ki relative to
τ ). Let x′ be the cochain whose value on a 2–cell C2

i is exactly rot(Ki) for
the corresponding Ki . As a cochain on the 2–skeleton of X , x′ is trivially a
cocycle; in Section 6 (lemma 27) we show that x′ represents c1(J ′2) ∈ H2(X2;Z)
(since X2 deformation retracts onto the 2–skeleton of X ). We would like to
have c1(J ′2) = c|X2 , but this is probably not the case (x′ is probably not even
a cocycle on X ).

Represent c by a cocycle x on X which is congruent mod 2 to x′ . (For any rep-
resentative x of c, since both c1(J ′2) and c|X2 reduce mod 2 to w2(X2), x−x′
is congruent mod 2 to δy for some 1–cochain y . Thus we can replace x with
x− δy if necessary.) In Section 2 (lemma 11) we show that we can isotope any
Legendrian knot K in an overtwisted contact structure to a new Legendrian
knot, without changing tb(K), so as to change rot(K) by any even number.
Thus we can arrange that rot(Ki) = x(C2

i ) for each 2–cell C2
i . Now discard

(ω′2, J
′
2, ξ
′
2) and use the new Ki ’s as attaching circles. Attach H2

1 , . . . ,H
2
p along

K1, . . . ,Kp to get (ωN , JN , ξN ) on (N,Y ) = (X1.5, Y1.5). Then attach H2
p+1

along Kp+1 to extend (ωN , JN , ξN ) to (ω2, J2, ξ2) on (X2, Y2). Thus (Propo-
sition 27) c1(J2) = [x] = c|X2 and c1(JN ) = [x]|N = c|N . In the end we will
only use (ωN , JN , ξN ), but we need J2 to show that ξN is homotopic to ξE .
Here we use Proposition 10 again to know that our construction extends over
the 2–handles; this proposition also tells us that ωN is exact.

To be sure that ξN is overtwisted we should arrange that there is some fixed
overtwisted disk which is missed by all the attaching circles for the 2–handles.
This is possible because, as a result of a Lutz twist, we have a circles’ worth
of overtwisted disks, whereas to adjust tb and rot for the attaching circles we
only need a neighborhood of a single overtwisted disk.

We show in Section 6 (lemma 28) that, precisely because x is a cocycle on all
of X , the almost complex structure J2 will extend across the 3–cells of X , and
hence will extend to J3 on X3 . (Here we abandon the symplectic form and
contact structure.) We still have c1(J3) = c. Recall the 4–ball neighborhoods
Bi of disks bounded by the circles Zi . Let B∗ = f−1[3,∞) be the single 4–
handle for X . We can think of J3 as defined on X − (B1 ∪ . . .∪Bn ∪B∗). It is
known [11] (and explained in Section 5, lemma 24) that the total obstruction to
extending an almost complex structure J defined on the complement of some
balls in a closed 4–manifold X over those balls is precisely (c1(J)2 − 3σ(X)−
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2χ(X))/4. But we have arranged that the sum of the obstructions to extending
J3 over B1, . . . , Bn is already d = (c1(J3)2 − 3σ(X) − 2χ(X))/4, and thus
the obstruction to extending across B∗ is 0. Therefore J3 extends over the
4–handle to an almost complex structure J∗ on X − Z .

Now compare J∗|E and JE . We know that c1(J∗|E) = c|E = c1(JE), that
H2(E;Z) has no 2–torsion, and that E deformation retracts onto a 2–complex
(coming from the dual Morse function −f ). In Section 7 (lemma 29), we show
that this implies that JE is homotopic to J∗|E . Therefore ξE is homotopic to
ξN (this also follows from [9]) and we can glue (E,ωE , JE) to (N,ωN , JN ) as
described above to get (X,ω, J).

Now we have J on X − Z with c1(J |N) = c|N and c1(JE) = c|E . This
implies that c1(J) = c because, in the cohomology Mayer-Vietoris sequence for
X = E ∪N , the map H1(E)⊕H1(N)→ H1(E ∩N) is surjective, so that the
map H2(X) → H2(E) ⊕H2(N) is injective. (The precise topology of E and
Y = E ∩N is important here.)

Now suppose that our construction produced the spinC structure s0 when in-
stead we wanted s1 = s. We know that s1 is the result of acting on s0 by some
class a ∈ H2(X;Z) of order 2. Our construction above was based on a choice of
cocycle representative x for c. In Section 7 (Proposition 30), we show that if,
instead of x0 = x, we had used x1 = x+ 2z for a special cocycle representative
z of a, then we would have produced the desired spinC structure s1 .

The metric g is constructed first on X1 as mentioned earlier; on the rest of
X , g is determined by ω and J . In dimension 4, if a metric g is given by
a symplectic form ω and a compatible almost complex structure, then ω is
automatically g–self-dual.

Finally we can rescale ω so that
∫

Σ ω = [Σ] · [Σ]. Let σ be the Poincaré dual of
[Σ] in H2(X;R). Then we know that [ω]|E = σ|E . Also, because ω is exact
on N , we know that [ω]|N = σ|N . As with c1(J), the Mayer-Vietoris sequence
then gives that [ω] = σ .

Proof of Addendum 6 Now let E be a regular neighborhood of Σ1∪. . .∪Σn

(a plumbing of B2–bundles given by a plumbing graph G, vertices corre-
sponding to surfaces and edges corresponding to intersections), and let N =
X − int(E). Recall that Q is the intersection form for E . The construction is
essentially the same except for the following changes:

The Morse function we choose on X begins with a standard Morse function
on E with one 0–handle for each edge in G, one 0–handle for each vertex,
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one 1–handle for each incidence between an edge and a vertex, and 2 genus(Σi)
1–handles and one 2–handle for each surface Σi (see [6]). (Of course we can
cancel many 0–1–handle pairs, but then the picture becomes less canonical.)
Extend to X and turn upside down, as before. Now, for each Σi , introduce a
cancelling 1–2–handle pair and slide some handles so that the attaching circle
for the 2–handle coming from Σi runs exactly once over exactly one 1–handle,
as we did for the single 2–handle coming from E in the preceding proof.

Given this handlebody decomposition, the construction of (ωN , JN , ξN ) is un-
changed. In Section 3 (Proposition 16) we show how to adjust the construction
of (ωE, JE , ξE) to handle the case where E is a plumbing of many disk bundles,
again using a characterization of neighborhoods of configurations of symplectic
surfaces in [6].

To see that our construction gives the correct c1(J), again we use the fact that
the map H1(E) → H1(Y ) is surjective for the plumbings that we are dealing
with. (Here is where we need that det(Q) 6= 0.) To see that we can achieve
the correct spinC structure even in the presence of 2–torsion, we use the same
argument from the main proof, since we have arranged that each 2–handle from
E runs once over one 1–handle.

Proposition 16 also arranges that
∫

Σi
ωE = Σ1 · Σi + . . . + Σk · Σi for each Σi .

Thus, if we let σ be the Poincaré dual of [Σ1] + . . . + [Σk], we see again that
[ω]|E = σ|E and [ω]|N = σ|N , so that [ω] = σ .

Proof of Addendum 9 In Section 5.4 of [8], Goodman investigates condi-
tions under which concave boundaries of configurations of symplectic surfaces
have overtwisted boundaries. The techniques there show precisely that the
configurations in Addendum 9 have symplectic neighborhoods with concave
overtwisted boundary. We use this structure for (ωE, JE , ξE) and the rest of
the construction is as before.

2 Brief symplectic and contact prerequisites

Suppose that W 4 is a 4–manifold with boundary ∂W = M3 , and suppose
that a triple (ω, J, ξ) has been constructed on (W,M). Let K be a Legendrian
knot in (M, ξ). K comes with a natural contact framing tb(K) (standing for
“Thurston-Bennequin”), given by any vector field in ξ|K orthogonal to K . Let
W ′ be the result of attaching a 2–handle H along K with framing tb(K)− 1.
Alternatively, suppose that W ′ is the result of attaching a 1–handle H to W ,
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with no constraints on the attaching map, but with the assumption that ξ is
positive. In either case, we have the following well known result:

Proposition 10 (Weinstein [18], Eliashberg [5]) The triple (ω, J, ξ) extends
to (ω′, J ′, ξ′) on (W ′,M ′ = ∂W ′), with ω′ symplectic on all of H and J ′

defined on all of H . Furthermore ξ = ξ′ outside the surgery that changes M
to M ′ . If ω was exact then ω′ is also exact.

As originally presented in [18] and [5], this applied only to the case where ω
was symplectic everywhere and ξ was positive. As long as the singularities of
ω stay in int(W ), extending to singular symplectic forms is trivial. When ξ
is negative and H is a 2–handle, we should turn the original model handles
of [18] and [5] upside down. This is discussed in [2].

In [2] it is also shown that, in the 2–handle case, the surgery that turns (M, ξ)
into (M ′, ξ′) is uniquely determined up to isotopy fixed outside a neighborhood
of K by the property that it preserves tightness near K . This unique contact
surgery is called tb−1 surgery along K . There is also a uniquely determined
tb +1 surgery, which is precisely what we see if we attach a 2–handle as in the
proposition to a negative contact boundary, but reverse orientations so that we
see our contact structure as positive.

When an oriented Legendrian knot K bounds a surface F ⊂M , there is a well-
defined integer rot(K), the rotation number of K , given by trivializing ξ over
F and counting the winding number of TK relative to this trivialization. If
c1(ξ) = 0, then we can pick a global trivialization of ξ which works for all F ’s.
Then, even for homologically nontrivial knots K , we get a well-defined rotation
number relative to this trivialization, which we again call rot(K). (Note that
rot(−K) = − rot(K).)

Lemma 11 In the above situation, suppose that a, b are integers with a+ b ≡
tb(K) + rot(K) mod 2. If ξ is overtwisted then we may smoothly isotope K
to another Legendrian knot K ′ such that tb(K ′) = a and rot(K ′) = b.

Proof In a standard contact chart we can perform a connected sum between
two Legendrian knots K0 and K1 as illustrated in Figure 2 (which is a standard
“front projection” onto the yz coordinate plane, where the contact structure
is ker(dz + xdy) ). Locally we can assume that our trivialization of ξ is the
vector field ∂

∂x . Then tb(K0#K1) = tb(K0) + tb(K1) + 1 and rot(K0#K1) =
rot(K0) + rot(K1). In any positive contact 3–manifold, there is a Legendrian
unknot K−2,1 with tb(K−2,1) = −2 and rot(K−2,1) = ±1. For example, see
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Figure 3. In any positive, overtwisted contact 3–manifold there is a Legendrian
unknot K0,1 with tb(K0,1) = 0 and rot(K0,1) = ±1. (Consider the contact
structure ξ0 = ker(cos(r2)dz + sin(r2)dθ) on R3 with cylindrical coordinates
(r, θ, z), and let D be the overtwisted disk {r2 ≤ π, z = 0}. In every overtwisted
contact 3–manifold one can find a ball contactomorphic to a neighborhood of
D with this contact structure. Let K0,1 be the preimage of ∂D under this
contactomorphism. One can check explicitly that tb(∂D) = 0 and rot(∂D) =
±1.) We construct K ′ as the connected sum of K with some number of copies
of K−2,1 and K0,1 so as to arrange that tb(K ′) = a and rot(K ′) = b. Of course
K ′ is smoothly isotopic to K .

K0

K0#K1

K1

Figure 2: Connected sum of Legendrian knots

Figure 3: Knot with (tb, rot) = (−2,±1)

Now let K be a homologically trivial transverse knot in (M, ξ). There is
an integer invariant of K known as the self-linking number lk(K) given by
trivializing ξ over a surface F bounded by K and seeing this trivialization
restricted to K as a framing of K . Again consider the contact structure
ξ0 = ker(cos(r2)dz + sin(r2)dθ) on R3 . Every contact 3–manifold has charts
contactomorphic to small neighborhoods of 0 in (R3, ξ0), and every overtwisted
manifold has charts contactomorphic to small neighborhoods of D = {r2 ≤ π}.
Consider the circles KR = {r = R}. The following can be easily checked:

Lemma 12 For small positive ε, Kε is transverse with lk(Kε) = −1, and
K√π+ε is transverse with lk(K√π+ε) = +1. Thus every contact manifold has
knots with self-linking number −1, and every overtwisted contact manifold has
knots with self-linking number +1.
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3 Constructing (ωE, JE, ξE)

As a warmup and for the sake of completeness, we prove the following:

Lemma 13 Given any class α ∈ H2(X;Z), there exists an integer g(α) with
the following property: For any g ≥ g(α), there is a genus g surface Σ with
[Σ] = α which uses up all the 3–handles.

Proof Choose some embedded surface Σ representing α. Let g = genus(Σ)
and let W be a B2–neighborhood of Σ. There exists a handlebody decompo-
sition of X with one 0–handle, 2g 1–handles and one 2–handle, forming W ,
together with l more 1–handles, some more 2–handles, some 3–handles and a
4–handle. Let H be the single 2–handle in W ; Figure 4 is a picture of W .
(The framing for H is α · α.)

H

Figure 4: The initial handlebody decomposition for W , with one 2–handle H

Let g(α) = g + l . Given g′ = g(α) + k ≥ g(α), introduce k cancelling pairs of
1– and 2–handles, so that now we have q = l + k extra 1–handles.

Let A1, . . . , Aq be the extra 1–handles and introduce q more cancelling 1–
2–handle pairs, with the 1–handles labelled B1, . . . , Bq and the respective 2–
handles labelled C1, . . . , Cq . Let W ′ = W ∪ (A1∪ . . .∪Aq) = W ∪ (A1∪ . . . Aq∪
B1 ∪ . . .∪Bq ∪C1 . . .∪Cq). Now, for i = 1 up to q , slide H over Ai then over
Ci twice, as in Figure 5, to get Figure 6. (We have suppressed framings in the
figures, but the Ci ’s should be 0–framed so that, after sliding, the framing on
H is still α · α.)

With this new handlebody decomposition let W ′′ = W ′ − (C1 ∪ . . . ∪ Cq), and
note that W ′′ is a neighborhood of a surface Σ′ of genus g+ q = g(α) + k = g′ .
The remainder of X is built with C1, . . . , Cq and some more 2–handles, 3–
handles and a 4–handle. Thus X −W ′′ has a handlebody decomposition with
only 0–, 1– and 2–handles.

To see that [Σ′] = [Σ], note that we slid H over each Ci once in a positive
direction and once in a negative direction.
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Ai Bi Ai Bi Ai Bi

BiAiBiAi BiAi

CiCiCi

Ci Ci Ci

H H H

HHH

Figure 5: Sliding H over a 1–handle then twice over a 2–handle

A1 B1 A2 B2 Aq Bq
H

CqC2C1

Figure 6: Handlebody decomposition of W ′

Now we return to the notation in the introduction: Σ is a given surface of
genus g representing a class α ∈ H2(X;Z), with B2–neighborhood E . Let
m = α ·α > 0. The Morse function −f : X → R restricts to the obvious Morse
function on E with one 0–handle, 2g 1–handles and one 2–handle, which we
will label H as in the proof of the preceding lemma. First introduce m − 1
cancelling 1–2–handle pairs inside E (each new 2–handle framed +1) and slide
H over all the new 2–handles so that E gets a handlebody decomposition with
one 0–handle, (2g+m−1) 1–handles and m 2–handles attached as in Figure 7.
Now the framing on H will also be +1.

Next introduce a 1–handle A cancelled by a 2–handle B and a 1–handle C
cancelled by a 2–handle D , inside E . As in the proof of the preceding lemma,

Geometry & Topology, Volume 8 (2004)



760 David T Gay and Robion Kirby

H

+1 +1 +1

+1

(m− 1) 1–handles

2g 1–handles

Figure 7: Handlebody decomposition of E

as in Figure 5, slide H over A and then over D twice, to get Figure 8. To
get the right picture, the framing of D should be 0 but the framing of B can
be anything so we have left it unlabelled in the figure. With respect to this

+1

A C

DB

+1 +1 +1

H

0

Figure 8: Another handlebody decomposition of E

new handlebody decomposition, let E′ = E − (B ∪ D). Note that E′ is a
neighborhood of a surface Σ′ of genus g′ = g + 1 formed as the connected sum
of Σ with a standard torus in a 4–ball neighborhood of a point in Σ.

The first important point is that, if we attach D to E′ then we can slide
H back off of D (twice) and over A and then cancel C and D . Therefore
E′ ∪D = E\(S1 ×B3), where the S1 ×B3 summand comes precisely from A.
Thus ∂(E′ ∪ D) = ∂E#(S1 × S2), and B is to be attached along any circle
isotopic to S1 × {p} in the S1 × S2 summand.

The second important point is an understanding of the framings of the can-
celling 2–handles B and D . When constructing E′ there is a natural open
book decomposition of #(2g′+m−1)(S1 × S2) (the boundary of the 0–handle
and the 1–handles) with page an m–punctured genus g′ surface and trivial
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monodromy. The construction of E′ is completed by attaching m 2–handles
along the binding, each with framing +1 (relative to the page), so that ∂E′

inherits a natural open book decomposition. The page can still be seen clearly
in Figure 8 as the disk bounded by the attaching circles for the 2–handles (not
including B and D) together with 2–dimensional 1–handles embedded in the
4–dimensional 1–handles. The attaching circles for B and D can be isotoped
to lie on this page. To make the sliding of H work right, we needed D to be
attached with framing 0 measured relative to this page.

To put a symplectic structure on E with concave, overtwisted boundary, we
will need the following:

Lemma 14 Given any negative contact structure ξ on a 3–manifold M3 and
any Legendrian knot K which transversely intersects a 2–sphere S in M at
one point, tb(K)−1 surgery along K leads to an overtwisted contact structure.

Proof First reverse the orientation of M . Then ξ is a positive contact struc-
ture and we need to show that tb(K) + 1 surgery along K leads to an over-
twisted contact structure. We will show that, after surgery, S becomes a disk
with Legendrian boundary K ′ (the dual circle to K ) with tb(K ′) = +1, which
is not possible in a positive tight contact structure.

Let T0 = D2 × S1 be a solid torus with coordinates (r, µ, λ), where (r, µ) are
polar coordinates on D2 and D2 = {r ≤ 1}. Every Legendrian knot has a
neighborhood which is contactomorphic to T0 with a certain standard contact
structure ξ0 with the property that ∂T0 = S1 × S1 is a convex surface with
dividing set Γ0 = {r = 1, µ ∈ {0, π}} (see [2], for example). Here K0 = {r = 0}
is Legendrian and tb(K0) is the 0–framing coming from our splitting of T0

as D2 × S1 . To perform surgery along a Legendrian knot K ⊂ (M, ξ), find
a neighborhood T of K contactomorphic to (T0, ξ0). Then M − int(T ) has
convex torus boundary with dividing set Γ equal to two parallel longitudes.
Now glue (T0, ξ0) back in via any diffeomorphism φ : ∂T0 → ∂T which takes
Γ0 to Γ. Identifying ∂T with ∂T0 via the original contactomorphism between
(T, ξ) and (T0, ξ0), we think of φ as an automorphism of ∂T0 taking Γ0 to Γ0 ,
and hence we think of φ ∈ SL(2,Z). Legendrian tb +1 surgery corresponds to

φ =
(

1 0
1 1

)
, using the basis (µ, λ).

Recall our 2–sphere S : Note that S ∩ ∂T is a meridian, or, after identifying
T with T0 and lifting to the universal cover, the line spanned by v = (1, 0)T .
Then φ−1(v) = (1,−1)T . In other words, after surgery, D = S − int(T ) is
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a disk which meets ∂T0 in a longitude representing the framing tb(K0) − 1.
Extend D in to T0 by the obvious annulus so that ∂D = K0 = K ′ . Then
the (topological) canonical zero-framing of K ′ given by D is tb(K ′)− 1, hence
tb(K ′) = +1.

Proposition 15 There exists a triple (ωE , JE , ξE) on (E, ∂E) such that ξE
is negative and overtwisted, Σ′ is JE –holomorphic and c1(JE) = c|E .

Proof Since E′ is a neighborhood of a surface Σ′ with positive self-inter-
section, E′ has a symplectic structure ωE′ with concave boundary (by Theo-
rem 1.1 in [7]), in which Σ′ is symplectic. We can find a compatible almost
complex structure JE′ with respect to which Σ′ is holomorphic, and thus we
get our triple (ωE′ , JE′ , ξE′), with ξE′ negative. Theorem 1.1 in [7] also says
that ξE′ is supported by the open book on ∂E′ described above. (See Section 2
of [6] and Section 1 of [7] for background on the important relationship between
contact structures and open books established by Giroux.) Let KD be the at-
taching circle for the 2–handle D ; we noted earlier that KD lies in a page of
the open book. Since KD is also homologically nontrivial in that page, we may
assume that KD is Legendrian, with tb(KD) equal to the framing coming from
the page, which in this case means tb(KD) = 0 (see, for example, Remark 4.1
in [6], or the Legendrian realization principle of [14]). Since ξE′ is a negative
contact structure, we can easily isotope KD to another Legendrian knot so as
to increase tb(KD), so that tb(KD) = 1, and hence tb(KD) − 1 = 0, the de-
sired framing for D . Thus (ωE′ , JE′ , ξE′) extends over (E′ ∪D,∂(E′∪D)) (see
Proposition 10).

In ∂(E′ ∪D), the attaching circle KB of B transversely intersects a 2–sphere
at one point; make KB Legendrian with this property and attach B along this
Legendrian knot with framing tb(KB) − 1, to get (ωE , JE , ξE) (again using
Proposition 10). (In the 1–handle A = B1 × B3 , the required 2–sphere is
p× ∂B3 for any p ∈ B1 .) By lemma 14, ξE is overtwisted.

Since Σ′ is symplectic, we may choose an ωE –compatible almost complex
structure JE such that Σ′ is JE –holomorphic. Since E′ is a neighborhood
of Σ′ , c1(JE)|E′ is determined by its action on [Σ′], which is 2− 2g′ + α · α =
2 − 2(g + 1) + α · α. But i∗ : H2(E;Z) → H2(E′;Z) is an isomorphism, and
thus c1(JE) = c|E .

Now recall the more general setting in Addendum 6: We have a configuration
of surfaces Σ1, . . . ,Σk , intersecting transversely and positively, such that Σ1 ·
Σi + . . .+ Σk ·Σi > 0. Let E be a plumbed neighborhood of Σ1 ∪ . . . ∪Σk , let
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Σ′1 be the connected sum of Σ1 with a trivial torus and let E′ be a plumbed
neighborhood of Σ′1 ∪ . . . ∪ Σk . There is a natural open book on ∂E′ and two
2–handles B and D which, when attached to E′ , give back E . Locally near
B and D the picture looks exactly like Figure 8.

Proposition 16 There exists a triple (ωE, JE , ξE) on (E, ∂E) such that ξE is
negative and overtwisted, Σ′1,Σ2, . . . ,Σk are all JE –holomorphic and c1(JE) =
c|E . Furthermore we can arrange that the ωE area of each Σi is Σ1 ·Σi + . . .+
Σk · Σi .

Proof Theorem 1.1 in [7] gives a construction of symplectic forms on neigh-
borhoods of configurations exactly of the type we are dealing with here. We
use this to construct E′ with concave boundary; Theorem 1.1 of [7] also says
that the contact structure on ∂E′ is supported by the natural open book men-
tioned above, so that B and D can be attached to get an overtwisted contact
boundary for E . Furthermore the areas of each Σi produced in [7] are precisely
the areas stated above, and the surfaces Σ′1,Σ2, . . . ,Σk are symplectic and can
therefore be made J –holomorphic.

As mentioned in the introduction, we should now abandon all perturbations of
our Morse function that have been introduced in this section, and return for
the rest of this paper to the original Morse function f .

4 Lutz twist cobordisms

In this section we show how to construct a singular symplectic form on a product
cobordism which connects a contact structure ξ0 at the bottom to a contact
structure ξ1 at the top, with ξ1 being the result of changing ξ0 by a Lutz twist
along some transverse knot.

Let K be a transverse knot in some positive contact 3–manifold. Since K is
transverse, it has a solid torus neighborhood which is contactomorphic to the
following model. (Any two transverse knots have contactomorphic neighbor-
hoods due to a standard Moser-Weinstein-Darboux argument.)

On the solid torus εB2×S1 , choose polar coordinates (r, µ), 0 ≤ r ≤ ε, on εB2 ,
and λ on S1 . It is convenient to reparameterize by letting ρ = r2/2 so that
dρ = rdr and rdrdµdλ = dρdµdλ = dV , the volume form for the solid torus.

Consider a µλ–invariant form α0 = f0(ρ)dµ + g0(ρ)dλ. Then dα0 = f ′0dρdµ +
g′0dρdλ and then α0 ∧ dα0 = (g0f

′
0 − f0g

′
0)dV > 0 implies d

dρ (f0

g0
) > 0. The
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contact planes, namely ξ0 = kerα0 = span{ ∂∂ρ , g0(ρ) ∂
∂µ − f0(ρ) ∂

∂λ}, should be
orthogonal to the core circle 0 × S1 parameterized by λ, so f0(0) = 0 and
g0(0) = 1 is a good choice, and the map ρ→ (g0(ρ), f0(ρ)) looks qualitatively
like that drawn in Figure 9A.

g0

A B

g1
ρ = 0

ρ = 1
2ε

2

ρ = 0

ρ = 1
2ε

2

f0 f1

Figure 9: Graphs of ρ 7→ (g0(ρ), f1(ρ)) and ρ 7→ (g1(ρ), f1(ρ))

The graph of (g0(ρ), f0(ρ)) in Figure 9A indicates that the contact planes,
orthogonal to 0×S1 , rotate in a left handed fashion as they move radially away
from 0×S1 (left-handed because { ∂∂ρ , g0(ρ) ∂

∂µ−f0(ρ) ∂
∂λ} span the planes). We

can assume they rotate only slightly as ρ traverses [0, 1
2ε

2].

Introducing a Lutz twist about 0×S1 means that we change the contact struc-
ture rel ∂εB2 × S1 so that the contact planes rotate left-handedly an extra π
as ρ runs through [0, 1

2ε
2], starting at ρ = 0 orthogonal to 0 × S1 but with

the opposite orientation, and ending up in the same position as in the standard
model above when ρ = 1

2ε
2 (see Figure 9B). This produces a new contact form

α1 = f1(ρ)dµ + g1(ρ)dλ, which we may assume exactly equals α0 for ρ near
ε2/2. Note that some authors would call this a “half Lutz twist”.

On the trivial bordism I × εB2 × S1 the standard symplectization of α0 is
d(etα0) = et(dt ∧ α0 + dα0), t ∈ I .

Proposition 17 On I× εB2×S1 , there exists a closed 2-form ω and a metric
g satisfying

(1) ω ≡ 0 on Z = 1
2 × 0× S1 ,

(2) ω ∧ ω > 0 on the complement of Z ,

(3) ω = d(etα0) on a neighborhood of 0× εB2 × S1 and I × ∂εB2 × S1 ,

(4) ω = d(etα1) on a neighborhood of 1× εB2 × S1 ,

(5) ω is self-dual with respect to g and transverse to the zero section of Λ2
+ .
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f

1 1 e

ρ

t −e g

1
2ε

2

Figure 10: The map φ

(6) ω and g define an ω–compatible almost complex structure outside a small
neighborhood of Z .

Proof Let φ : [0, 1]× [0, ε2/2] ↪→ R2 be a smooth map satisfying the following
properties (see Figure 10) (we use the coordinates (t, ρ) on the domain and
(g, f) on the range for reasons which will become clear shortly):

(1) φ is an orientation preserving immersion away from (t = 1/2, ρ = 0).

(2) φ(t, 0) = (g(t, 0), 0) for all t ∈ [0, 1].

(3) On a neighborhood of 0× [0, ε2/2] and [0, 1] × 1
2ε

2 ,

φ(t, ρ) = et(g0(ρ), f0(ρ))

where g0 and f0 are as in the preceding paragraphs.

(4) On a neighborhood of 1× [0, ε2/2], φ(t, ρ) = et(g1(ρ), f1(ρ).

(5) φ|[0, 1
2) × 0 moves monotically from (1, 0) to (1 + δ, 0) for some δ > 0,

and φ|(1
2 , 1]× 0 moves monotonically from (1 + δ, 0) to (−e, 0).

(6) In a neighborhood of (1/2, 0) 7→ (1 + δ, 0),

φ(t, ρ) = (ρ− (t− 1
2

)2 + 1 + δ,−2ρ(t − 1
2

)).

(The specified map near (1/2, 0) 7→ (1 + δ, 0) behaves much like the complex
map z 7→ z2 , and in particular folds a half-disk neighborhood of (1/2, 0) in the
upper half plane onto a disk neighborhood of (1 + δ, 0).)

Letting t be the coordinate on I , we have coordinates (t, ρ = r2/2, µ, λ) on
I × εB2 × S1 . Writing φ(t, ρ) = (g(t, ρ), f(t, ρ)), let α = f(t, ρ)dµ + g(t, ρ)dλ,
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which is a 1–form on I × εB2 × S1 . (The fact that f(t, 0) = 0 means that α
is well-defined along 0 × 0 × S1 .) Finally, let ω = dα. The fact that φ is an
orientation preserving immersion away from (1/2, 0) implies that ω ∧ ω > 0
away from Z . The fact that dφ = 0 at (1/2, 0) implies that ω ≡ 0 along Z .
The given boundary conditions for φ give the announced boundary conditions
for ω .

Now we must construct g and verify self-duality, transversality, and compati-
bility with ω . Near Z , we have

ω = dα = −2ρdt ∧ dµ− 2tdρ ∧ dµ− 2tdt ∧ dλ+ dρ ∧ dλ.
Now convert polar coordinates (r, µ) (recalling that ρ = r2/2) back to cartesian
coordinates (x, y) on εB2 and let T = t−1/2, to get that ω = y(dT ∧dx+dy∧
dλ)− x(dT ∧ dy − dx ∧ dλ)− 2T (dx ∧ dy + dT ∧ dλ). With respect to the flat
metric g0 = dT 2 + dx2 + dy2 + dλ2 , the three sections A = dT ∧ dx+ dy ∧ dλ,
B = dT ∧ dy− dx∧ dλ and C = dx∧ dy+ dT ∧ dλ give a frame for the bundle
of self-dual 2–forms, and thus ω = yA− xB − 2TC is self-dual and transverse
to the zero section.

Let R =
√

4T 2 + x2 + y2 and let f(R) be a smooth, positive function which
equals R for R ≥ ε′ and equals 1 for R ≤ ε′/2, for some small ε′ > 0. Let
g = f(R)g0 . Note that ω is still g–self-dual and transverse to the zero section
of Λ2

+ (since g = g0 near Z ). But now g and ω induce an ω–compatible almost
complex structure J for R ≥ ε′ , by J = g̃−1 ◦ ω̃ . (Here g̃ and ω̃ are the maps
from the tangent space to the cotangent space induced by g and ω .) In fact,
in local coordinates (T, x, y, λ) on R ≥ ε′ , g̃ = RI (where I is the identity
matrix) and ω̃ can be calculated from the explicit form of ω in the preceding
paragraph, to get that ω̃ is the matrix:

Q =


0 −y x 2T
y 0 2T −x
−x −2T 0 −y
−2T x y 0


Then J = (1/R)Q, J2 = (1/R)2Q2 = −I and ω(Jv, Jw) = vTJTQJw , with
JTQJ = −(1/R)2Q3 = Q, so that ω(Jv, Jw) = ω(v,w).

Remark 18 In the proof above, we can rewrite ω near Z as dλ ∧ (2TdT −
xdx − ydy) + (−2Tdx ∧ dy − xdT ∧ dy + ydT ∧ dx) = dλ ∧ dh + ?3dh, where
h = −1

2x
2 − 1

2y
2 + T 2 and ?3 is the Hodge star operator on R3 with the flat

metric dy2 + dx2 + dT 2 . (Note that (y, x, T ) is the correct orientation for R3

here because we are now writing our 4–manifold as S1 × R3 .) This is exactly
the oriented local model given by Honda [13].
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Remark 19 If ξ0 is a negative contact structure, we can also perform a Lutz
twist along a transverse knot to get an overtwisted negative contact structure
ξ1 . One might expect a similar singular symplectic cobordism from ξ0 on the
bottom to ξ1 on the top. Upside down, this would be a cobordism from a
positive contact structure to a positive contact structure which eliminates a
Lutz twist. There does exist a singular almost complex structure on such a
cobordism, but it is not clear how to construct a singular symplectic form with
the desired properties. Much of this paper would be simplified if such a 2–form
could be constructed.

Now recall the notation from the main construction in the introduction.

Proposition 20 There exists a triple (ω1, J1, ξ1) on (X1, Y1), with the follow-
ing properties:

(1) ω1 vanishes on a union of circles Z ⊂ f−1[0.9, 1].
(2) J1 is defined on X1 − Z .

(3) ξ1 is positive and overtwisted.

(4) Z consists of one unknotted circle Zi in each of n levels between Y0.9

and Y1 .

(5) The obstruction to extending J1 across a 4–ball neighborhood Bi of a
disk bounded by Zi is li .

(6) The metric defined by ω1 and J1 can be modified in a small neighborhood
of Z to be a metric on all of X1 such that ω is g–self-dual and transverse
to the zero section of Λ2

+ .

Proof First build (ω0.9, J0.9, ξ0.9) on (X0.9, Y0.9) using standard symplectic
0– and 1–handles, as discussed in Section 2, Proposition 10. Choose numbers
0.9 = a(1) < . . . < a(n+1) = 1. Choose K1 ⊂ (Y0.9, ξ0.9) to be a transverse un-
knot with lk(K1) = l1 = −1. First put a standard symplectification of ξ0.9 on
f−1[0.9, a(2)] ∼= [0, 1]× Y0.9 , and then replace this symplectification with a sin-
gular symplectic form on [0, 1]×T1 , as constructed in Proposition 17, for a small
neighborhood T1 of K1 . (This is possible because the symplectification and the
singular form constructed in Proposition 17 agree on ∂([0, 1]×T1).) This gives
ξa(2) on Ya(2) which is overtwisted. Now we can choose K2 a transverse unknot
in (Ya(2), ξa(2)) to have lk(K2) = l2 , and repeat. We will prove the statement
about the obstruction to extending J1 in the next section (lemma 25). Note
that the metrics coming from Proposition 17 fit together smoothly because,
away from Z , they are defined by the symplectic and almost complex struc-
tures, which fit together smoothly.
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Remark 21 There is an alternate construction for (ω1, J1, ξ1) as follows. Be-
gin with the disjoint union of several copies of S1×B3 , on each of which we put
the singular symplectic form dt∧ df + ?3df for f = −x2 + y2 + z2 on B3 . The
boundary is convex and overtwisted. Connect these together with 1–handles,
preserving convexity on the boundary, and then kill each S1 with a Legendrian
2–handle to get B4 , and then attach extra 1–handles as necessary. Then one
needs to understand how the obstruction to extending J1 across various balls
depends on the Legendrian 2–handles used to kill the S1 ’s. In the end this
construction should be equivalent to that outlined above.

5 Extending almost complex structures

Consider an almost complex structure J on TS3 ⊕ ε1 where ε1 is a trivial line
bundle which we identify with the normal bundle ν to S3 = ∂B4 . Also let ν
denote the outward unit normal vector field spanning the bundle ν . We define
four invariants of J up to homotopy:

(1) Trivialize TS3 using a right-invariant quaternionic frame and thus iden-
tify unit vectors in TS3 with points in S2 . With respect to this trivial-
ization, J(ν) then gives a map S3 → S2 , and thus an element h(J) ∈
π3(S2) = Z.

(2) Using coordinates (t, x, y, z) on B4 , J( ∂∂t) gives a map S3 → S2 , where
S2 is now the unit (x, y, z) sphere. This gives an element h′(J) ∈
π3(S2) = Z.

(3) Using coordinates (t, x, y, z) on B4 , let u, v,w be any field of frames for
span( ∂

∂x ,
∂
∂y ,

∂
∂z ). Now, at each point in S3 , interpret J( ∂∂t) as a point in

the (u, v,w) sphere, giving another element h′′(J) ∈ π3(S2) = Z.

(4) Choose some 4–manifold W with ∂W = S3 such that J extends over
W . This gives the invariant θ(J) = (c1(J)2 − 2χ(W )− 3σ(W ))/4.

Remark 22 The invariant h′(J) is simply the obstruction to extending J
across B4 . Thus if we have an almost complex structure defined on the com-
plement of two balls B1 and B2 in a 4–manifold X , and B is a ball contain-
ing B1 and B2 , then h′(J |∂B) = h′(J |∂B1) + h′(J |∂B2). Conversely, if J is
an almost complex structure on ∂B and we choose two integers k1, k2 with
k1 + k2 = h′(J), we can put two balls B1 and B2 in B and extend J across
B − (B1 ∪B2) so that h′(J |∂Bi) = ki .
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Lemma 23 These invariants are related by h(J) = h′(J) = h′′(J) and θ(J) =
−h(J)− 1

2 and each uniquely characterizes J up to homotopy.

Proof A direct computation shows that h(J) = h′(J). Since the field of
frames ( ∂

∂x ,
∂
∂y ,

∂
∂z ) is homotopic to any other field of frames (u, v,w) on B4 ,

we get that h′(J) = h′′(J).

Note that J defines an oriented plane field ξ on S3 , the field of J –complex
tangencies to S3 . The homotopy class of J is uniquely determined by the
homotopy class of ξ .

That θ(J) = −h(J)− 1
2 follows from Section 4 of [9]: We are really looking at

invariants of ξ ; θ(J) is Gompf’s θ(ξ). The invariant h(ξ) = h(J) can be defined
with respect to any trivialization of TS3 . Whichever trivialization we choose,
there is a canonical Z action on homotopy classes of oriented plane fields which
adds 1 to h(ξ), and Gompf proves (Theorem 4.5 in [9]) that adding 1 to h(ξ)
corresponds to subtracting 1 from θ(ξ). Let ξ0 be the standard tight positive
contact structure on S3 . Direct calculation shows that h(ξ0) = 0 (for our
particular trivialization of TS3 ) and that θ(ξ0) = −1

2 . Thus θ(J) = −h(J)− 1
2 .

Finally it is well known that h(ξ) is a complete invariant for homotopy classes
of oriented plane fields on S3 .

Lemma 24 Given any closed X4 with balls B1, . . . , Bn ⊂ X and an almost
complex structure J on X − (B1 ∪ . . . ∪ Bn), let d(J) = (c1(J)2 − 2χ(X) −
3σ(X))/4. Then d(J) = Σn

i=1h(J |∂Bi).

Proof By Remark 22, we can assume that ki = h(J |∂Bi) = ±1 for each i. Let
X ′ = X#nCP 2 , formed by replacing each Bi with the complement of a ball
in CP 2 . Let Ei be the i’th new generator in H2(X ′;Z) coming from the i’th
CP 2 − B4 . On the i’th CP 2 − B4 , put an almost complex structure Ji such
that c1(Ji) ·Ei = −2ki + 1. We claim that J and Ji are homotopic on ∂Bi , so
that we can glue them together to get an almost complex structure J ′ on all of
X ′ . This is true because θ(Ji|∂Bi) = −ki − 1

2 = −h(J |∂Bi)− 1
2 = θ(J |∂Bi).

Now, since J ′ is defined on all of X ′ , we know (by [11]) that 0 = d(J ′) =
d(J)− Σn

i=1ki = d(J)− Σn
i=1h(J |∂Bi), and hence d(J) = Σn

i=1(h|∂Bi).

Now we want to understand the obstruction o(Zi) to extending J across a
ball containing a component Zi of the singular locus Z for an almost complex
structure J coming from our Lutz twist construction. Suppose U is a transverse
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unknot in a 3–manifold with positive contact structure ξ , with a chosen vector
field w normal to ξ and tangent to U . Let D be a 2–disk bounded by K
and let B be a 3–ball neighborhood of D . Let ξ′ be the result of performing
a Lutz twist along U , with vector field w′ which is normal to ξ′ , tangent
to U , and agrees with w outside a neighborhood of U . The relevant almost
complex structure J is (up to homotopy) defined on ∂(I × B) as follows: On
(0 × B) ∪ (I × ∂B), J( ∂∂t) = w and J preserves ξ , and on 1× B , J( ∂∂t) = w′

and J preserves ξ′ .

Lemma 25 With definitions as above, o({0.5} × U) = h(J) = lk(U).

Proof Recall that lk(U) is determined by choosing any nonzero section u of
ξ|D and measuring the framing of U given by u|U relative to the canonical
zero-framing of U coming from D .

Extend u to a section of ξ on all of B and let v = Ju. We will com-
pute h′′(J) using the frame (u, v,w) on B and the Thom-Pontrjagin con-
struction. At each point (t, p) on ∂(I × B), we write J(t,p)( ∂∂t) = a(t, p)u +
b(t, p)v + c(t, p)w , normalized so that ||(a, b, c)|| = 1, giving a map φ : (t, p) 7→
(a(t, p), b(t, p), c(t, p)) ∈ S2 . Let q = (0, 0,−1) and q′ = (−0.1, 0,−1) normal-
ized to be in S2 . We want to compute the framed cobordism class of L = φ−1(q)
framed by L′ = φ−1(q′). On (0×B)∪ (I×∂B), φ maps everything to (0, 0, 1).
On 1×B , L is exactly U , and L′ is a parallel copy of U realizing the framing
given by u. Thus h(J) = h′′(J) = lk(U).

More generally, suppose we have any harmonic 2–form ω on X (with respect
to some metric g) which is transverse to 0 and that Z is a single unknotted
component of the zero locus, with the orientable local model for ω near Z (see
Remark 3). Now we do not have in mind a particular contact 3–manifold M
near Z or a Morse function with Z lying in a regular level set. However we
can still choose a 2–disk D bounded by Z (disjoint from the rest of the zero
locus) and a 4–ball neighborhood B of D and let o(Z,D) be the obstruction
to extending J across B . Although it is not necessary for this construction, it
would be nice to see how to compute o(Z,D) by looking directly at the behavior
of J along D .

For this we prescribe the manner in which D approaches Z , since ω induces
a natural splitting of the normal bundle to Z into 1– and 2–dimensional sub-
bundles. Choose local, oriented coordinates (θ, u, v, w) near Z , with θ ∈ S1

and (u, v,w) ∈ B3 , such that ω = dθ∧df+?3df , f = (−u2−v2 +w2)/2 and ?3

is the Hodge star operator on B3 with metric du2 + dv2 + dw2 and orientation
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(u, v,w). Note that our choice to make f have index 2 at 0 fixes an orientation
of Z , given by θ . Let D be an oriented, imbedded 2–disk with ∂D = Z with
respect to this orientation, such that, near Z , D coincides with the annulus
{(θ, u, v, w)|v = w = 0, u ≥ 0}. Note that D has a singular foliation with
singularities corresponding to complex and anticomplex points (points p where
J(TpD) = TpD and J agrees with or disagrees with the orientation of D). The
foliation can be defined by splitting TX|D as νD⊕TD (νD being the normal
bundle to D), choosing a section V of νD , homotoping J to be compatible
with a product metric on νD ⊕ TD , and projecting J(V ) onto TD to get a
vector field on D which we then integrate to get an oriented singular foliation.
Thus, generically, both complex and anticomplex points can have either elliptic
or hyperbolic neighborhoods. With our boundary conditions on D , we will
see that D is complex on a neighborhood of ∂D , so that the foliation is not
generic there. However, we may make the foliation generic away from this
neighborhood. With respect to this foliation, let e− be the number of elliptic
anticomplex points and let h− be the number of hyperbolic anticomplex points.

Proposition 26 In the above situation, o(Z,D) = −1 + 2(e− − h−).

Proof A model for a neighborhood of D is W = D2
1+ε×D2

ε (where D2
r is the

disk of radius r and S1
r = ∂D1

r ), with D = D2
1 × {0} and Z = S1

1 × {0}. Let
(x, y) be cartesian coordinates on D2

1+ε and (z, t) be cartesion coordinates on
D2
ε . Let (r, θ) be polar coordinates on D2

1+ε . The coordinates in the discussion
above on a neighborhood of Z are then (θ, u = 1− r, v = z,w = t). Assume J
is compatible with the metric dx2 + dy2 + dz2 + dt2 and let φ : (W −Z)→ S2

be the map given by seeing J(∂t) as a point in the unit (∂x, ∂y, ∂t)–sphere.

Consider the following subsets of W (see Figure 11):

(1) A = {(r, θ, z, t)|1 − ε ≤ r ≤ 1 + ε}
(2) B = {(r, θ, z, t)|0 ≤ r ≤ 1− ε, z = t = 0}
(3) C = ∂A ∩ ∂W
(4) E = {(r, θ, z, t)|0 ≤ r ≤ 1− ε,

√
z2 + t2 = ε} = D2

1−ε × S1
ε ⊂ ∂W

(5) F = {(r, θ, z, t)|r = 1− ε} = S1
1−ε ×D2

ε ⊂ ∂A.

Note that ∂W = C∪E . Let π : ∂W → B∪C∪F = B∪∂A be the map defined
as follows: On C , π is the identity map. On E , π maps {1 − 2ε ≤ r ≤ 1− ε}
onto F , {1 − 3ε ≤ r ≤ 1 − 2ε} onto {1 − ε ≤ r ≤ 1 − 3ε, z = t = 0} ⊂ B
and {0 ≤ r ≤ 1 − 3ε} onto {0 ≤ r ≤ 1 − 3ε, z = t = 0} ⊂ B , as indicated in
Figure 12. Let ψ = φ ◦π : ∂W → S2 , and note that ψ is homotopic to φ|∂W .
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C C

E

E

F F

(x, y)

(z, t)

B
A A

Figure 11: Various labelled subsets of W

(x, y)

(z, t)

Figure 12: The projection π : ∂W → B ∪C ∪ F

We will compute o(Z,D) as the oriented framed cobordism class of the oriented
link ψ−1(0, 0,−1). From the local form ω = dθ ∧ df + ?3df near Z , with
f = (−u2−v2 +t2)/2 = (−(1−r)2−z2 +t2)/2, we compute that, on A, J(∂t) =
(z∂r − t∂θ + (1 − r)∂z)/ρ, where ρ =

√
(1− r)2 + z2 + t2 . Thus, on ∂A, the

set of points where J(∂t) = −∂z is just L0 = {(r, θ, z, t)|r = 1 + ε, z = t = 0} =
S1

1+ε×{0} ⊂ C ⊂ ∂W . Furthermore, as (φ|∂A)−1(0, 0,−1) = ψ−1(0, 0,−1)∩C ,
L0 has framing −1 and is oriented in the negative θ direction.

On E , ψ−1(0, 0,−1) is π−1(φ−1(0, 0,−1)). Since φ−1(0, 0,−1)∩F = ∅, we are
only interested in φ−1(0, 0,−1) ∩ B , which is precisely the set of anticomplex
points in the original disk D . Each such anticomplex point (xi, yi) becomes a
circle Li = {(xi, yi, z, t)|

√
z2 + t2 = ε} in E with framing 0, oriented against

the orientation of S1
ε = ∂D2

ε if (xi, yi) is elliptic, and with the orientation of S1
ε

if (xi, yi) is hyperbolic. Thus the complete oriented framed link ψ−1(0, 0,−1)
is a −1–framed unknot L0 with n 0–framed meridians L1, . . . , Ln (where D
has n anticomplex points), with lk(L0, Li) = +1 (respctively −1) if (xi, yi) is
elliptic (respectively hyperbolic); see Figure 13. This is framed cobordant to
an unknot with framing equal to the sum of the entries in the linking matrix,
which is −1 + 2e− − 2h− .
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−1

0 0 0

Figure 13: ψ−1(0, 0,−1), in the case of two elliptic anticomplex points and one hyper-
bolic anticomplex point

6 Cocycles that guide our construction

Recall that X1 is the union of the 0– and 1–handles of X , and that we have
a triple (ω1, J1, ξ1) on (X1, Y1), with zero circles Z = Z1 ∪ . . . ∪ Zn ⊂ int(X1).
As in the introduction, fix a trivialization τ of ξ1 ; this can be done because
c1(ξ1) = c1(J1|Y1) = c1(J1)|Y1 = 0, since H2(X1;Z) = 0.

Now suppose that K1, . . . ,Kq , for some q , are disjoint Legendrian knots in
(Y1, ξ1), with rotation numbers rot(Ki) measured relative to τ . Attach sym-
plectic 2–handles H2

1 , . . . ,H
2
q along K1, . . . ,Kq to produce a 4–manifold W

with boundary and a triple (ωW , JW , ξW ) on (W,∂W ) that extends (ω1, J1, ξ1).
W deformation retracts onto a 2–complex, with 2–cells C2

1 , . . . , C
2
q correspond-

ing to the 2–handles H2
1 , . . . ,H

2
q , with 1–cells coming from the 1–handles of

X1 , and with one 0–cell at the center of the 0–handle. We may assume that
Z misses the 2–skeleton. Thus we get a 2–cochain r on the 2–skeleton given
by r(C2

i ) = rot(Ki). This is trivially a cocycle on the 2–skeleton (there are no
3–cells), and therefore defines a cohomology class [r] ∈ H2(W ;Z). The follow-
ing result is a slight generalization of a standard fact (see [9]) relating rotation
numbers and Chern classes.

Lemma 27 [r] = c1(JW )

Proof In fact we will show that r is a cocycle given by trivializing JW (by
which we mean the C2–bundle defined by JW ) over the 1–skeleton and measur-
ing the obstruction to extending this trivialization over each 2–cell. τ together
with the outward normal ν to ∂X1 defines a trivialization (τ, ν) of JW over
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∂X1 . By an isotopy of W we can arrange that the 1–skeleton lies in ∂X1

and that the 2–skeleton misses the interior of W1 . Thus we take (τ, ν) as the
starting trivialization of JW over the 1–skeleton. Clearly (τ, ν) extends across
as much of each 2–cell C2

i as lies in ∂W1 ; the rest of C2
i is simply the core

of H2
i and our task is to show that the obstruction to extending (τ, ν) across

H2
i is exactly rot(Ki). Let κ be the unit tangent vector to Ki ; in the proof

of Proposition 2.3 in [9] it is shown that (κ, ν) extends across Hi . From this
we see that the winding of κ with respect to τ is precisely the obstruction in
question.

In our main construction outlined in the introduction, we use this lemma three
times, once to recognize c1(J ′2) in our “false start” construction of (ω′2, J

′
2, ξ
′
2),

and then to construct the correct (ωN , JN , ξN ) and its extension to (ω2, J2, ξ2).
Recall that the cocycle x used to determine the rotation numbers which produce
(ω2, J2, ξ2) is an honest cocycle for the full 4–complex decomposition of X .

Lemma 28 Because x is a cocycle, J2 extends over the 3–skeleton X .

Proof Consider a 3–cell C3
j . Since x is a cocycle, x(∂C3

j ) = 0, which,
by the same argument as in the preceding lemma, means that c1(J2|∂C3

j ) =
0 ∈ H2(∂C3

j ;Z). Trivialize TX|C3
j as R4 × C3

j , with standard basis vectors
e1, e2, e3, e4 for R4 ; almost complex structures on C3

j and on ∂C3
j are then

determined up to homotopy by the map J(e4) : ∂C3
j → S2 , where S2 is the

unit (e1, e2, e3)–sphere. For any almost complex structure J on ∂C3
j , it is not

hard to see that c1(J) ∈ H2(∂C3
j ;Z) = Z is twice the degree of J(e4). (This is

most easily seen by noting that the C2 bundle over ∂C3
j is the Whitney sum of

a trivial complex line bundle spanned by e4 and a complex line bundle ξ ; but
ξ is visibly the tangent bundle of S2 when J(e4) is the identity map, so c1(J)
is twice the degree in the generating case.) Thus in our case J2(e4) has degree
0 and therefore extends over C3

j .

7 Plane fields and spinC structures

Recall that in our main construction we had constructed two almost complex
structure JE and J∗|E on E , with c1(JE) = c1(J∗|E).

Lemma 29 This implies that JE is homotopic to J∗|E .
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Proof Pick a nowhere zero section τ of TE (an orientable R4–bundle over
a 2–complex always has a nonzero section) and let J be the unit S2 bundle
orthogonal to τ ; up to homotopy we can view JE and J∗ as sections of J . (This
is simply the bundle of local almost complex structures.) We can homotope JE
to agree with J∗ over the 1–skeleton. Over each 2–cell C2

i , we can trivialize
J as S2 × C2

i so that JE is a constant section. Then J∗ becomes a map
from C2

i to S2 which is constant on ∂C2
i , which we can think of as a map

from S2 to S2 , and read off the degree of this map. This gives a cocycle and,
much as in the preceding section, it is not hard to see that twice this cocycle
represents c1(JE) − c1(J∗). Thus, because H2(E;Z) has no 2–torsion and
c1(JE) − c1(J∗) = 0, we see that this cocycle is a coboundary, which implies
that we can change our choice of trivialization over the 1–skeleton to make the
cocycle 0. Thus JE is homotopic to J∗|E .

Next we show how to hit the right spinC structure in our construction. Here
we recall a special property of our cell decomposition of X , that ∂C2

p+1 = C1
1 ,

where C2
p+1 is the 2–cell associated to the 2–handle H2

p+1 coming from E , and
C1

1 is a 1–cell. Let b be the 1–cochain that is 1 on C1
1 and 0 on everything

else. Then every class a ∈ H2(X;Z) can be represented by a cocycle z with
z(C2

p+1) = 0; if z(C2
p+1) 6= 0, then replace z with z − (z(C2

p+1))δb.

For our purposes we will think of a spinC structure on X as a homotopy class
of almost complex structures over the 2–skeleton which extends over the 3–
skeleton. As mentioned above, we should think of almost complex structures
as sections of an S2–bundle J . For our fixed class c ∈ H2(X;Z), let Sc be the
set of all spinC structures s with c1(s) = c. It is well known that H2(X;Z)
acts freely and transitively on the set of all spinC structures on X , changing c1
by twice the cohomology class that is acting. Thus the difference between two
spinC structures s0, s1 ∈ Sc is a cohomology class of order 2.

Proposition 30 Suppose that, in our construction, we used a cocycle repre-
sentative x0 of c, and that this produced s0 ∈ Sc . Let a ∈ H2(X;Z) be the
class of order 2 which acts on s0 to give s1 = s. Choose a representative z
for a with z(C2

p+1) = 0. Then, if we repeat our construction with the cocycle
x1 = x0 − 2z instead of x0 , we will produce s1 instead of s0 .

Proof Let J0, J1 be the almost complex structures produced by x1, x0 , respec-
tively. Recall that our construction depended on a fixed trivialization over the
1–skeleton, and that we can homotope J0 to J1 over the 1–skeleton. Again,
over each 2–cell C2

i we can trivialize J so that J0 is a constant section. Then
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the action of a is given precisely by changing this section to a section of degree
z(C2

i ). The difference between the obstructions to extending the trivialization
of J1 = J0 on the 1–skeleton to a trivialization of J1 or J0 over C2

i is twice this
degree, and thus we see that changing the rotation numbers by 2z implements
this action of a.

It is important that z(C2
p+1) = 0 because in our final construction we discard

J2 and only use JN . Thus, if we had changed our construction on H2
p+1 , the

change would not survive to the end of the construction.
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