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Abstract

Ozsváth and Szabó have defined a knot concordance invariant τ that bounds
the 4–ball genus of a knot. Here we discuss shortcuts to its computation. We
include examples of Alexander polynomial one knots for which the invariant is
nontrivial, including all iterated untwisted positive doubles of knots with non-
negative Thurston–Bennequin number, such as the trefoil, and explicit com-
putations for several 10 crossing knots. We also note that a new proof of the
Slice–Bennequin Inequality quickly follows from these techniques.
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736 Charles Livingston

Using their theory of knot Floer homology, Ozsváth and Szabó [7] defined an
invariant τ of knots in S3 and showed that it induces a homomorphism τ : C →
Z, where C is the concordance group of smooth knots in S3 . Computations of τ
for particular knots, and more generally the application of knot Floer homology
to bound the 4–ball genus of knots (eg [6, 8, 9, 10]), depend upon a detailed
understanding of its definition. Here we show that the most basic properties
of τ developed in [7] are sufficient to yield its quick evaluation for a number
of interesting examples including some pretzel knots of Alexander polynomial
one, iterated untwisted doubles of knots with nonnegative Thurston–Bennequin
number and some interesting 10 crossing knots.

Although we do not use the deeper theoretical work of Rudolph (eg [12]) here,
in ways our approach parallels his extension of the results of Kronheimer–
Mrowka [4] on torus knots to more general knots and his proof of the Slice–
Bennequin Inequality.

Three essential properties of τ are stated in the following theorem.

Theorem 1 There exists an integer valued knot invariant τ satisfying:

(1) τ(K#J) = τ(K) + τ(J) and τ(−K) = −τ(K) for all knots K and J .

(2) The value of τ is bounded by the smooth 4–ball genus, τ(K) ≤ g4(K).

(3) For the (p, q)–torus knot with p, q > 0, Tp,q , τ equals the 3–sphere genus,
g3(Tp,q). Specifically, τ(Tp,q) = (p− 1)(q − 1)/2.

An immediate consequence, as described in [7], is:

Corollary 2 τ induces a homomorphism τ : C → Z and |τ(K)| ≤ g4(K).

Proof That |τ(K)| ≤ g4(K) follows from τ(−K) = −τ(K), g4(K) = g4(−K)
and τ(K) ≤ g4(K). Next, if K is concordant to J , then K#− J is slice, and
hence of 4–genus 0. Thus, τ(K) + τ(−J) = 0, τ(K) = τ(J), and so τ is a
concordance invariant.

The following appears in [7] as a corollary of the general relationship between
τ(K) and the genus of surfaces bounded by K in negative definite 4–manifolds.
Here we note that it follows immediately from Theorem 1.

Corollary 3 If K+ and K− differ by a single crossing change, from positive
to negative, then 0 ≤ τ(K+)− τ(K−) ≤ 1.
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Proof The crossing change provides a genus 1 cobordism from K+ to K− .
Thus, g4(K+#−K−) ≤ 1 and so |τ(K+) − τ(K−)| ≤ 1. A negative crossing
change converts −T2,3 into the unknot, so (K+#−T2,3)#−K− bounds a disk
in B4 with two double points of opposite signs. Tubing these double points
together shows that g4((K+#−T2,3)#−K−) ≤ 1. Thus, |τ(K+)− 1− τ(K−)|
≤ 1. Combining the two inequalities gives the desired result.

1 Subsurfaces of Torus Knot Fibers

For a surface F we let g(F ) denote the genus of F . Recall that for any torus
knot Tp,q the complement is fibered over S1 and the fiber F realizes the 3–genus
of Tp,q , (p− 1)(q − 1)/2.

Theorem 4 Suppose that a knot K is embedded in the interior of a fiber
surface F of a torus knot T = Tp,q with pq > 0 and that K is null homologous
on F , bounding a surface G ⊂ F . Then τ(K) = g4(K) = g3(K) = g(G).

Proof A Morse function h : F − int(G) → [0, 1] taking value 0 on K and 1
on T gives the cobordism (id × h) : F − int(G) → S3 × [0, 1] from Tp,q to K
of genus g(F ) − g(G). Hence, T#−K bounds a surface of genus g(F ) − g(G)
in B4 and g4(T#−K) ≤ g(F ) − g(G). Thus τ(T )− τ(K) ≤ g(F ) − g(G). By
Theorem 1, τ(T ) = g(F ) and hence g(G) ≤ τ(K). We then have the string of
inequalities

τ(K) ≤ g4(K) ≤ g3(K) ≤ g(G) ≤ τ(K)

and these yield the desired result.

In the language of Rudolph (eg [12]), such surfaces G on fibers of torus knots
are called quasipositive surfaces. One quick consequence of Rudolph’s work is
the following.

Corollary 5 The untwisted positive double of the trefoil and the pretzel knot
P (3,−5,−7) (both of Alexander polynomial one) have τ = 1.

Proof Rudolph [12] has drawn an explicit illustration of P (3,−5,−7) on the
fiber surface for the torus link T5,5 and that illustration applies as well for T5,6 .
Rudolph also indicates how a similar illustration can be drawn for the double
of the trefoil. (Our sign convention for pretzel knots here is the opposite of that
in [12] and is consistent with Rudolph’s more general work on pretzel knots
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in [14]. The positive double is the double formed from two parallel unlinked
copies of the knot by adding a clasp with two crossing points, both of which
have positive sign.)

Corollary 6 The subgroup P ⊂ C generated by knots of Alexander poly-
nomial one contains a summand isomorphic to Z. The knot P (3,−5,−7)
represents a generator of such a summand and in particular is not divisible:
P (3,−5,−7) 6= aK ∈ C for any a 6= ±1.

Proof The argument is the same as in [5] where A instead of P is consid-
ered. Since τ maps P onto the free abelian group Z the map splits. Since
τ(P (3,−5,−7)) = 1, P (3,−5,−7) cannot be divisible.

Rudolph’s results along these lines have further applications. In particular, his
work on pretzel knots [13] implies that the pretzel knot P (t1, . . . , tk) with all
ti and k odd (and its standard Seifert surface) embeds on the fiber of a torus
knot with pq > 0 if and only if ti + tj < 0 for all 1 ≤ i < j ≤ k and thus for
such pretzel knots τ = (k − 1)/2.

Corollary 7 If β̂ is the closure of a positive braid of n strands and word
length k , then τ(β̂) = k−n+1

2 = g4(β̂).

Proof The torus knot Tn,q can be drawn as an n–stranded positive braid.
Its fibered Seifert surface is formed from n parallel disks joined by q(n − 1)
twisted bands, one for each crossing point. Similarly, the Seifert surface G for
β̂ is built from n parallel disks by joining them with k twisted bands. The
resulting surface has Euler characteristic n − k , and hence genus k−n+1

2 . By
adding more bands to this surface, one can construct the fiber Seifert surface F
of the torus knot Tn,q for some large q . Thus, removing a small open tubular
neighborhood, on G, of the boundary of G yields a surface homeomorphic to G
with boundary isotopic to K in the interior of F . The proof is now completed
by applying Theorem 4.

2 Examples

In [3] there is a table listing the 4–genera of prime knots with 10 or fewer
crossings, as then known. Since the appearance of that table, most of the
unknown values have been determined. (See [15] for an updated table, where it
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appears that 1051 remains as the only unknown case.) However, the unknown
cases of [3] continue to provide interesting test cases for new techniques, since
classical methods could not resolve them. The few examples presented here
were chosen because of their appearance in [6, 7], where direct application of
the theory therein developed was used. Explicit calculations were not included
in [7], in that they were lengthy and demanded the use of Mathematica.

Example 8 Using the notation of Rolfsen [11], the knots 10139 and −10152 as
shown in Figure 1 each are closures of positive braids with 3 strands and word
length 10. Thus, by Corollary 7, the value of τ and g4 for each of these is 4.
(The 4–ball genus of each of these was first computed in [2].)

Figure 1: 10139 and –10152

Example 9 The knot −10161 as illustrated in Figure 2 is a 3 stranded braid
with 9 positive and 1 negative crossings. Thus changing one crossing yields a
knot with τ = 4. This implies that τ(−10161) ≥ 3. But, since g3(−10161) = 3,
we also have that τ(−10161) ≤ 3. So, τ(−10161) = 3. Since g3(−10161) = 3
it follows that g4(10161) = 3 also. (The first calculation of the 4–genus of this
knot appeared in [16].)

Figure 2: −10161

Example 10 The knot 10145 is discussed in [6]. Changing orientation, −10145

can be drawn as a braid with 4 strands and 11 crossings, 9 of which are positive.
This is illustrated in Figure 3. Changing two crossing yield a knot K which
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by Corollary 7 has τ(K) = 4 and so τ(−10145) ≥ 2. On the other hand,
−10145 can be unknotted with 2 crossing changes, so τ(−10145) ≤ 2. Hence,
τ(−10145) = 2. Since the unknotting number of 10145 is at most 2, it follows
that g4(10145) = 2. (The first calculation of the 4–genus of this knot also
appeared in [16].)

Figure 3: 10145

Examples 9 and 10 illustrate the following result, extending Corollary 7. Its
proof follows the exact same lines as the computations in those examples.

Corollary 11 If β̂ is the closure of a braid of n strands with k+ positive
crossings and k− negative crossings (k+ > k− ), then τ(β̂) ≥ k+−k−−n+1

2 .

This corollary immediately gives the bound g4(β̂) ≥ k+−k−−n+1
2 , the Slice–

Bennequin Inequality first proved by Rudolph in [12].

3 Thurston–Bennequin Numbers

Every knot has a polygonal diagram D consisting of only vertical and horizontal
segments, with each horizontal segment passing over the vertical. Corners in
such a diagram are naturally labelled northeast, etc. As described in [13],
the Thurston–Bennequin number of such a diagram, tb(D), is the difference
of the writhe of the diagram and the number of northeast corners. Figure 4
illustrates a diagram D of the trefoil knot with tb(D) = 0. (In defining the
Thurston–Bennequin number, one usually considers knot diagrams in which all
crossings are left handed with respect to the vertical direction and then takes
the difference of the writhe and the number of right cusps. The definition here
is simply obtained by “rotating” the standard definition by 45 degrees.) The
Thurston–Bennequin number of a knot K , TB(K ), is the maximum value of
this quantity over all such diagrams for K .

Geometry & Topology, Volume 8 (2004)
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Figure 4

Theorem 12 If the Thurston–Bennequin number of a knot satisfies TB(K) ≥
0 then all iterated untwisted (positive) Whitehead doubles of K , Whn(K),
satisfy τ(Whn(K)) = 1 and thus g4(Whn(K)) = 1.

Proof Any polygonal diagram D as above can be isotoped to a diagram D′

with tb(D′) = tb(D)− 1; just add a new northeast corner without introducing
any new crossings. (In Figure 4 an extra northeast corner was added to a
diagram of the trefoil to illustrate this process.) Thus, we assume tb(D) = 0.
As observed by Rudolph [13], this diagram quickly yields a placement of K
on the fiber F of a torus knot for which the parallel copy K ′ of K on F has
link(K,K ′) = 0. From this (eg, as in [13]) one sees there is also an unknotted
curve α on F meeting K transversely in one point, with induced framing −1.
A neighborhood G of K ∪ α on F is seen to be a genus 1 Seifert surface for
the positive untwisted double of K , and hence by Theorem 4, τ(Wh1(K)) = 1.
(For this argument to work, one must in fact be a bit careful in the initial choice
of Tp,q and F ; for some choices K embeds, but not α. Details can be found in
the work of Rudolph.)

As shown in [1] and [13], a simple diagram reveals that TB(Wh1(K)) ≥ 1.
Thus, this process can be iterated.

We close this section by noting that in independent work from that presented
here, Olga Plamenevskaya [8] has described connections between the Ozsváth–
Szabó theory, Thurston–Bennequin invariants, and their relationship to the
4–ball genus.
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