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702 Weimin Chen

1 Introduction

In this paper, we prove the following theorem.

Theorem 1.1 Let (W,ω) be a symplectic homology cobordism between two
lens spaces which are equipped with their canonical contact structure. Then
W is diffeomorphic to the product of a lens space with the unit interval.

Here the canonical contact structure ξ0 on a lens space L(p, q) is the descendant
of the distribution of complex lines on S3 = {(z1, z2) | |z1|2 + |z2|2 = 1} under
the quotient map S3 → L(p, q) of the Zp–action (z1, z2) 7→ (µpz1, µ

q
pz2). (Here

µp = exp(
√
−12π

p ), and p, q are relatively prime and 0 < q < p.) The contact
structure ξ0 induces a canonical orientation on L(p, q) where a volume form is
given by α ∧ dα for some 1–form α such that ξ0 = kerα. A symplectic cobor-
dism from (L(p′, q′), ξ′0) to (L(p, q), ξ0) is a symplectic 4–manifold (W,ω) with
boundary ∂W = L(p, q) − L(p′, q′), such that there exists a vectorfield v in a
neighborhood of L(p, q)∪L(p′, q′) ⊂W , which is transverse to L(p, q)∪L(p′, q′)
and for which Lvω = ω , ξ′0 = ker (ivω|L(p′,q′)), ξ0 = ker (ivω|L(p,q)), and the
canonical orientations on L(p, q), L(p′, q′) agree with the orientations defined by
the normal vector v . (Here W is canonically oriented by the symplectic form
ω , ie, ω ∧ ω is a volume form.) The cobordism W is called a homology cobor-
dism if each L(p, q) ⊂ W,L(p′, q′) ⊂ W induces an isomorphism on homology
groups (with Z coefficients). In particular, this condition implies p = p′ .

As a special case, consider the following:

Corollary 1.2 Let ρ be a symplectic Zp–action on (R4, ω0) where ω0 =
dx1 ∧ dy1 + dx2 ∧ dy2 . Suppose outside of a ball, ρ is linear and free, and is
orthogonal with respect to the Euclidean metric g0 =

∑2
i=1(dx2

i + dy2
i ). Then

ρ is conjugate to a linear action by a diffeomorphism which is identity outside
of a ball.

Remark 1.3 (1) It is likely that Corollary 1.2 can be strengthened to the as-
sertion that the action ρ is conjugate to a linear action by a symplectomorphism
of (R4, ω0). We plan to address this problem in a separate paper.

(2) Relevant to Theorem 1.1 and Corollary 1.2, we mention two earlier results.
One is due to Eliashberg (cf [6]) which says that a symplectic 4–manifold W
with contact boundary S3 (in the weak sense) is diffeomorphic to a blowup of
the 4–ball B4 . The other is due to Gromov–McDuff (cf for example Theorem
9.4.2 in [16]) which says that if (W,ω) is a minimal symplectic 4–manifold and
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Orbifold adjunction formula and symplectic cobordisms 703

there are compact subsets K ⊂ W and V ⊂ R4 with V being star-shaped
such that (W \K,ω) is symplectormorphic to (R4 \ V, ω0) via a map ψ , then
there exists a symplectomorphism φ : (W,ω) → (R4, ω0) which agrees with ψ
on W \K ′ for some larger compact subset K ′ ⊃ K .

(3) Symplectic fillings (in the weak sense) of lens spaces with the canonical
contact structure are classified up to orientation-preserving diffeomorphisms in
[13], where it is shown that there are infinitely many lens spaces which have a
unique filling up to blowups. For these lens spaces, it is clear that when the two
ends of ∂W are diffeomorphic, the condition that W is a homology cobordism
is equivalent to the condition that (W,ω) is minimal.

The proof of Theorem 1.1 is based on studying pseudoholomorphic curves in a
certain symplectic 4–orbifold in the fashion of Gromov–McDuff in the manifold
setting (cf for example [16]). There are two main ingredients. One is the orb-
ifold analog of the adjunction and intersection formulae for pseudoholomorphic
curves, extending the relevant work of Gromov and McDuff [7, 14, 15] in the
manifold setting. The other is a structural theorem for the space of a certain
notion of maps1 between orbifolds developed in [3], which is needed here for the
corresponding Fredholm theory.

The paper is organized as follows. In Section 2 we introduce a notion of dif-
ferentiable chains in orbifolds, which serves as a bridge between the de Rham
cohomology of an orbifold and the singular cohomology of its underlying space
via integration. Section 3 is devoted to the proof of the orbifold analog of the
adjunction and intersection formulae. The main results are proved in Section 4.
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704 Weimin Chen

2 Differentiable chains in orbifolds

We introduce here a notion of differentiable chains in orbifolds. The homology
groups of the corresponding chain complex are naturally isomorphic to the sin-
gular homology groups of the underlying space over Q, so that this construction
yields an explicit pairing between the de Rham cohomology groups of the orb-
ifold and the singular homology groups of the underlying space via integration
over differentiable chains. In light of the development in [3], the notion intro-
duced here may be regarded as a natural generalization to the orbifold category
of the notion of differentiable singular chains in smooth manifolds.

A differentiable r–chain in an orbifold X (of class C l for some l ≥ 1) is a finite
linear combination of differentiable r–simplexes in X , where a differentiable
r–simplex σ in X is a differentiable map (in the sense of [3]) from a certain
r–dimensional orbihedron into X . More precisely, the said r–dimensional or-
bihedron is an orbispace where the underlying space is the standard r–simplex
∆r in Rr , and the orbispace structure is given by a complex of finite groups over
∆r in the sense of Haefliger [8] (see also Part II of [3]). Recall that a complex of
groups consists of the following data: (K,Gτ , ψa, ga,b), where K is a simplicial
complex, Gτ is a group assigned to each cell τ ∈ K , ψa : Gi(a) → Gt(a) is an
injective homomorphism assigned to each edge a in the barycentric subdivision
of K with i(a), t(a) being the cells of K whose barycenters are the end points
of a such that t(a) is a face of i(a), and ga,b is an element of Gt(a) assigned to
each pair of composable edges a, b such that

Ad(ga,b) ◦ ψab = ψa ◦ ψb, ψa(gb,c)ga,bc = ga,bgab,c.

The orbihedron is covered by a set of “uniformizing systems” which are given
with compatible equivariant simplicial structures. The r–simplex σ being a
differentiable map means that the representatives of σ are differentiable when
restricted to each simplex in the corresponding uniformizing system.

Let α be a differential r–form on X . Then a differentiable r–simplex σ in X
pulls back α to a differential r–form σ∗α on ∆r , the standard r–simplex in
Rr . We define the integration of α over σ by∫

σ
α =

1
|G|

∫
∆r

σ∗α

where |G| is the order of the group G assigned to the top cell of ∆r in the
complex of finite groups that defines the orbispace structure of the orbihedron
over which σ is defined. The integration over a differentiable r–chain c =
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Orbifold adjunction formula and symplectic cobordisms 705

∑
k akσk is defined to be ∫

c
α =

∑
k

ak

∫
σk

α.

Next we introduce a boundary operator ∂ on the set of differentiable chains.
To this end, let ∆r

i , 0 ≤ i ≤ r , be the i-th face of the standard r–simplex ∆r .
The restriction of a differentiable r–simplex σ to ∆r

i (given the suborbihedron
structure, cf [3]) is a differentiable (r − 1)–simplex, which will be denoted by
σi . We define

∂σ =
r∑
i=0

(−1)i
|Gi|
|G| σi

where Gi, G are the groups assigned to the top cell of ∆r
i ,∆

r respectively.
The boundary of a differentiable r–chain c =

∑
k akσk is defined to be ∂c =∑

k ak∂σk , which clearly satisfies

∂ ◦ ∂ = 0.

Finally, the Stokes’ theorem implies that for any differentiable r–chain c and
(r − 1)–form α, ∫

c
dα =

∫
∂c
α.

For any orbifold X , let H∗(X), H∗(X) be the homology and cohomology groups
of differentiable chains (with Z coefficients) in X . There are canonical homo-
morphisms

H∗dR(X)→H∗(X) ⊗ R

induced by integration over differentiable chains, and

H∗(X)→ H∗(X;Q)

which is defined at the chain level by

σ 7→ 1
|G| |σ|

for each differentiable r–simplex σ : ∆r → X , where |σ| is the induced singular
r–simplex in the underlying space, and |G| is the order of the group G assigned
to the top cell of ∆r .

Theorem 2.1 The canonical homomorphism H∗dR(X) → H∗(X) ⊗ R is iso-
morphic, and the canonical homomorphism H∗(X) → H∗(X;Q) is isomorphic
over Q.

Geometry & Topology, Volume 8 (2004)



706 Weimin Chen

Theorem 2.1 will not be used in this paper, and its proof will be given elsewhere.
But we remark that the key point in the proof is to show that H∗(X) ⊗ Q
are the cohomology groups associated to a fine torsionless resolution of the
constant sheaf Q×X , with which the proof follows by the usual sheaf theoretical
argument, for instance, as in [20].

In light of Theorem 2.1, we will say that a differentiable cycle c in X (ie,
a differentiable chain c such that ∂c = 0) is Poincaré dual to a de Rham
cohomology class γ ∈ H∗dR(X) if there is a closed form α ∈ γ such that for any
closed form β on X , ∫

c
β =

∫
X
α ∧ β.

Here is a typical situation: Let Y be a compact, closed, and oriented r–
dimensional orbifold and f : Y → X be a differentiable map in the sense of
[3]. Note that Y can be triangulated such that with respect to the triangula-
tion, Y is natually an orbihedron (cf Part II of [3]). Thus the restriction of f
to each top simplex in the triangulation of Y defines a differentiable r–simplex
in X , and in this way f(Y ) naturally becomes a differentiable r–chain in X
which is a cycle because Y is compact, closed, and oriented. Clearly, in this
case we have ∫

f(Y )
β =

∫
Y
f∗β

for any differential form β on X .

3 Adjunction and intersection formulae

In this section, we derive the adjunction formula for pseudoholomorphic curves
in an almost complex 4–orbifold and a corresponding formula which expresses
the algebraic intersection number of two distinct pseudoholomorphic curves in
terms of local contributions from their geometric intersection, extending rele-
vant work of Gromov [7] and McDuff [14, 15] in the manifold setting.

First of all, some convention and terminology. In this section (and the previous
one as well), the notion of orbifolds is more general in the sense that the group
action on each uniformizing system needs not to be effective. The orbifolds
in the classical sense where the group actions are effective are called reduced.
The points which are the principal orbits in each uniformizing system are called
regular points. They have the smallest isotropy groups in each connected com-
ponent of the orbifold, which are all isomorphic, and they form an open, dense
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Orbifold adjunction formula and symplectic cobordisms 707

submanifold of the orbifold. The points in the complement of regular points are
called orbifold points. When the orbifold is reduced and has no codimension 2
subsets of orbifold points, we also allow ourselves to use the usual terminologies,
ie, “orbifold point” = “singular point” and “regular point” = “smooth point”.

We now begin by setting the stage. Let X be a compact, closed, and al-
most complex 4–dimensional orbifold which is canonically oriented by the al-
most complex structure J . We shall assume that the 4–orbifold X is reduced
throughout. We shall also consider connected, compact, and closed complex
orbifolds Σ with dimCΣ = 1, namely the orbifold Riemann surfaces, which are
not assumed to be reduced in general.

Definition A

A J –holomorphic curve in X is a closed subset C ⊂ X such that there is a
nonconstant map f : Σ→ X in the sense of [3] with C = Im f ,2 which obeys

(a) The representatives of f are J –holomorphic.

(b) The homomorphisms between isotropy groups in each representative of f
are injective, and are isomorphic at all but at most finitely many regular
points of Σ.

(c) The map f is not multiply covered in the following sense: f does not
factor through any holomorphic map φ : Σ → Σ′ to a map f ′ : Σ′ → X
such that the degree of the map induced by φ between the underlying
Riemann surfaces is greater than one.

A J –holomorphic curve C is called of type I if Σ is reduced, and is called of
type II otherwise. Clearly this definition is independent of the parametrization
f : Σ → X . Likewise, the order of the isotropy groups of the “regular” points
in C , ie, the images of all but at most finitely many regular points in Σ under
f , depends only on C , and is called the multiplicity of C and is denoted by
mC throughout. A J –holomorphic curve C is of type I if and only if mC = 1.
A type I J –holomorphic curve is contained in the set of regular points of X
except for possibly finitely many points, and a type II J –holomorphic curve is
contained entirely in the set of orbifold points of X . Finally, we remark that
for a type I J –holomorphic curve C , any parametrization f : Σ → X of C is
uniquely determined by the induced map between the underlying spaces.

2Each map f in the sense of [3] induces a continuous map between the underlying
spaces; by the image under such an f , we always mean the image under the map
induced by f .

Geometry & Topology, Volume 8 (2004)
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Definition B

(1) For any J –holomorphic curve C in X , the Poincaré dual of C is defined
to be the class PD(C) ∈ H2(X;Q) which is uniquely determined by

m−1
C α[C] = PD(C) ∪ α[X],∀α ∈ H2(X;Q),

where [C] is the class of C in H2(X;Z).

(2) The algebraic intersection number of two J –holomorphic curves C,C ′ (not
necessarily distinct) is defined to be

C · C ′ = PD(C) ∪ PD(C ′)[X].

We remark that the Poincaré dual PD(C) differs from the usual one by a factor
m−1
C , thus is different for a type II J –holomorphic curve. On the other hand,

if C is parametrized by f : Σ → X , the class of the differentiable cycle f(Σ)
in H2(X) is sent to m−1

C [C] under the canonical homomorphism H2(X) →
H2(X;Q). In light of Theorem 2.1, PD(C) is Poincaré dual to f(Σ) under the
canonical isomorphisms H2

dR(X) ∼= H2(X)⊗ R ∼= H2(X;R).

We proceed further with a digression on some crucial local properties of J –
holomorphic curves in C2 due to McDuff, cf [14, 15], where we assume that
C2 is given with an almost complex structure J which equals the standard
structure at the origin. To fix the notation, the disc of radius R in C centered
at 0 is denoted by D(R).

First, some local analytic properties of J –holomorphic curves:

• For any J –holomorphic curve f : (D(R), 0) → (C2, 0) where f is not
multiply covered, there exists an 0 < R′ ≤ R such that f |D(R′)\{0} is
embedded.

• Let f : (D(R), 0)→(C2, 0) be a J –holomorphic curve such that f |D(R)\{0}
is embedded. Then for any sufficiently small ε > 0, there is an almost
complex structure Jε and a Jε–holomorphic immersion fε (not multiply
covered) such that as ε → 0, Jε → J in C1 topology and fε → f in C2

topology. Moreover, given any annuli {λ ≤ |z| ≤ R} and {λ′ ≤ |z| ≤ λ}
in D(R), one can arrange to have f = fε in {λ ≤ |z| ≤ R} and to have
Jε = J except in a chosen neighborhood of the image of {λ′ ≤ |z| ≤ λ}
under f by letting ε > 0 sufficiently small.

• Any two distinct J –holomorphic curves f : D(R)→ C2 , f ′ : D(R′)→ C2

intersect at only finitely many points, ie, the set {(z, z′) ∈ D(R)×D(R′) |
f(z) = f ′(z′)} is finite.

Geometry & Topology, Volume 8 (2004)



Orbifold adjunction formula and symplectic cobordisms 709

Second, the local intersection and self-intersection number of J –holomorphic
curves:

• Let C , C ′ be distinct J –holomorphic curves which are parametrized
by f : (D(R), 0) → (C2, 0) and f ′ : (D(R′), 0) → (C2, 0), such that
f |D(R)\{0} and f ′|D(R′)\{0} are embedded and 0 ∈ C2 is the only in-
tersection of C and C ′ . Perturb C into C (which may not be pseudo-
holomorphic), keeping ∂C and C disjoint from C ′ and ∂C ′ respectively,
such that C intersects with C ′ transversely. Then the intersection num-
ber C ·C ′ is defined by counting the intersection of C and C ′ with signs.
C · C ′ may be determined using the following recipe: perturb f, f ′ into
Jε–holomorphic immersions fε, f ′ε , then

C · C ′ =
∑

{(z,z′)|fε(z)=f ′ε(z′)}
t(z,z′)

where t(z,z′) = 1 when fε(z) = f ′ε(z
′) is a transverse intersection, and

t(z,z′) = n ≥ 2 when fε(z) = f ′ε(z
′) has tangency of order n. The inter-

section number C ·C ′ has the following properties: it depends only on the
germs of C,C ′ at 0 ∈ C2 , it is always positive, and it equals one if and
only if C,C ′ are both embedded and intersect at 0 ∈ C2 transversely.

• Let C be a J –holomorphic curve which is parametrized by f : (D(R), 0)
→ (C2, 0) such that f |D(R)\{0} is embedded. Then the local self-inter-
section number C · C is well-defined, which can be determined using the
following recipe: perturb f into a Jε–holomorphic immersion fε , then

C · C =
∑

{[z,z′]|z 6=z′,fε(z)=fε(z′)}
t[z,z′],

where [z, z′] denotes the unordered pair of z, z′ , and where t[z,z′] = 1
when fε(z) = fε(z′) is a transverse intersection, and t[z,z′] = n ≥ 2 when
fε(z) = fε(z′) has tangency of order n. The local self-intersection number
C · C has the following properties: it depends only on the germ of C at
0 ∈ C2 , and it is non-negative which equals zero if and only if C is
embedded.

End of digression.

In order to state the adjunction and intersection formulae, we need to further
introduce some definitions.

(1) Recall from [3] that a representative of a map f : Σ → X parametrizing
a J –holomorphic curve C gives rise to a collection of pairs (fi, ρi) : (D̂i, GDi)→
(Ûi, GUi) satisfying certain compatibility conditions, where {(D̂i, GDi)},
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{(Ûi, GUi)} are a collection of uniformizing systems of Σ and X respectively,
and each ρi is a homomorphism, which is injective by (b) of Definition A, and
each fi is a ρi–equivariant J –holomorphic map. We may assume without loss
of generality that each D̂i is a disc centered at 0 ∈ C and each Ûi is a ball
centered at 0 ∈ C2 , and GDi , GUi act linearly. Moreover, because of (b) and
(c) in Definition A, we may assume that each fi is embedded when restricted
to D̂i \ {0} and ρi(GDi) is the subgroup of GUi which leaves fi(D̂i) ⊂ Ûi in-
variant. (The case of type II is explained in the proof of Lemma 3.4 below.)
Let z be the orbit of 0 ∈ D̂i in Σ. We shall call the germ of Imfi at 0 ∈ D̂i a
local representative of the J –holomorphic curve C = Imf at z ∈ Σ. The set
Λ(C)z of all local representatives of C at z is clearly the set of germs of the
elements in

{Im(g ◦ fi) | g ∈ GUi},
which is naturally parametrized by the coset GUi/ρi(GDi). Note that for all
but at most finitely many points z ∈ Σ, the set Λ(C)z of local representatives
of C at z contains only one element.

(2) For any J –holomorphic curve C in X , its virtual genus is defined to be

g(C) =
1
2

(C · C + c(C)) +
1
mC

where c = −c1(TX). Note that g(C) is a rational number in general.

(3) Let Σ be an (connected) orbifold Riemann surface, and let mΣ be the order
(of isotropy groups) of its regular points and m1,m2, · · · ,mk be the orders (of
isotropy groups) of its orbifold points. We define the orbifold genus of Σ by

gΣ =
g|Σ|
mΣ

+
k∑
i=1

(
1

2mΣ
− 1

2mi
),

where g|Σ| is the genus of the underlying Riemann surface of Σ. Note that
with the above definition, c1(TΣ)(Σ) = 2m−1

Σ − 2gΣ where TΣ is the orbifold
tangent bundle.

With the preceding understood, consider the following:

Theorem 3.1 (Adjunction Formula) Let C be a J –holomorphic curve which
is parametrized by f : Σ→ X . Then

g(C) = gΣ +
∑

{[z,z′]|z 6=z′,f(z)=f(z′)}
k[z,z′] +

∑
z∈Σ

kz,

where [z, z′] denotes the unordered pair of z, z′ , and where the numbers k[z,z′], kz
are defined as follows.

Geometry & Topology, Volume 8 (2004)
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• Let G[z,z′] be the isotropy group at f(z) = f(z′) and Λ(C)z = {Cz,α},
Λ(C)z′ = {Cz′,α′}, then

k[z,z′] =
1

|G[z,z′]|
∑
α,α′

Cz,α · Cz′,α′ .

• Let Gz be the isotropy group at f(z) and Λ(C)z = {Cz,α}, then

kz =
1

2|Gz |
(
∑
α

Cz,α · Cz,α +
∑
α,β

Cz,α · Cz,β).

(Note: the second sum is over all α, β which are not necessarily distinct.)

Theorem 3.2 (Intersection Formula) Let C,C ′ be distinct J –holomorphic
curves parametrized by f : Σ → X , f ′ : Σ′ → X respectively. Then the alge-
braic intersection number

C · C ′ =
∑

{(z,z′)|f(z)=f ′(z′)}
k(z,z′)

where k(z,z′) is defined as follows. Let G(z,z′) be the isotropy group at f(z) =
f ′(z′) and Λ(C)z = {Cz,α}, Λ(C ′)z′ = {C ′z′,α′}, then

k(z,z′) =
1

|G(z,z′)|
∑
α,α′

Cz,α · C ′z′,α′ .

The adjunction formula implies the following:

Corollary 3.3 Let C be a J –holomorphic curve parametrized by f : Σ→ X .
Then the virtual genus of C is greater than or equal to the orbifold genus of Σ,
ie, g(C) ≥ gΣ , with g(C) = gΣ iff C is a suborbifold of X and f is an orbifold
embedding.

The rest of this section is occupied by the proof of Theorem 3.1 and Theorem
3.2. We begin with some preliminary lemmas.

Lemma 3.4 Let C be a type II J –holomorphic curve parametrized by f : Σ→
X . Then f is represented by a collection of pairs {(fi, ρi)} where each fi is an
embedding.

Proof Let (Û ,GU ) be a uniformizing system of X , where Û is a ball in C2

and GU is nontrivial and acts linearly. We say that GU is of type A if the

Geometry & Topology, Volume 8 (2004)
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fixed-point set of GU is a complex line in C2 , and that GU is of type B if
0 ∈ C2 is the only fixed point.

Let {(fi, ρi)} be a representative of f (cf [3]), where each (fi, ρi) : (D̂i, GDi)→
(Ûi, GUi). Since C is of type II, each GUi is nontrivial. Consider the case
where GUi is of type A first. In this case, Im fi lies in the complex line which
is fixed by GUi , therefore fi is a holomorphic map between two discs in C.
It follows that fi is either an embedding or a branched covering. Suppose fi
is a branched covering, and without loss of generality assume that 0 ∈ D̂i is
the only branching point. Then there are z, z′ 6= 0 in D̂i with z 6= z′ , such
that fi(z) = fi(z′) ∈ Ûi . Since f is not multiply covered, there must be a
g ∈ GDi such that g · z = z′ . On the other hand, by (b) of Definition A, ρi
is an isomorphism onto GUi when restricted to the isotropy subgroup of z , so
that there is an h ∈ GDi fixing z such that ρi(h) = ρi(g). It is easily seen that
ρi(gh−1) = 1 ∈ GUi but gh−1 6= 1 ∈ GDi , a contradiction to the assumption
in (b) of Definition A that ρi is injective. Hence fi is an embedding. When
GUi is of type B, Imfi lies in a complex line in C2 whose isotropy is a proper
subgroup H of GUi . Again fi is either an embedding or a branched covering.
If fi is a branched covering, then there are z, z′ 6= 0 in D̂i with z 6= z′ , such
that fi(z) = fi(z′) ∈ Ûi . Moreover, since f is not multiply covered, there is a
g ∈ GDi such that g ·z = z′ , and in this case, note that ρi(g) ∈ H . On the other
hand, there is an h in the isotropy subgroup of z such that ρi(h) = ρi(g) ∈ H ,
which gives a contradiction as in the type A case. Hence the lemma.

Lemma 3.5 Let C be a J –holomorphic curve parametrized by f : Σ → X .
Then there is a closed 2–form ηC on X which represents the Poincaré dual of
the differentiable cycle f(Σ) in X , ie, for any 2–form α on X ,∫

Σ
f∗α =

∫
X
ηC ∧ α.

Moreover, ηC may be chosen such that it is supported in any given neighbor-
hood of C in X .

Proof We consider the case where C is of type I first.

To fix the notation, let z1, z2, · · · , zk be the set of points in Σ whose image
under f is an orbifold point in X . For each i = 1, 2, · · · , k , we set pi = f(zi)
and let mi ≥ 1 be the order of the isotropy group at zi . Furthermore, we denote
by (D̂i,Zmi), (V̂i, Gi) some local uniformizing systems at zi , pi respectively,
and denote by (fi, ρi) : (D̂i,Zmi) → (V̂i, Gi) a local representative of f at zi
such that fi is embedded when restricted to D̂i \ {0}. Set Di = D̂i/Zmi
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and Vi = V̂i/Gi for the corresponding neighborhood of zi and pi in Σ and
X respectively. Without loss of generality, we may assume that Di is the
connected component of f−1(Vi) that contains zi .

For each critical point z of f (ie df(z) = 0) where f(z) is a regular point in
X , we perturb f locally in a small neighborhood of z into a Jε–holomorphic
immersion, which is supported in the complement of

⋃k
i=1Di , and for each

i = 1, 2, · · · , k , we perturb fi into a Jε–holomorphic immersion fi,ε (if fi is
already embedded, we simply let fi,ε = fi ). Let D̂′i ⊂ D̂i be a closed disc of a
smaller radius such that fi,ε = fi over D̂i \ D̂′i . We set Σ0 = Σ \

⋃k
i=1 Di and

Σ′0 = Σ \
⋃k
i=1D

′
i where D′i = D̂′i/Zmi , and we denote the perturbation of f

over Σ′0 by fε , which is a Jε–holomorphic immersion into X0 , the complement
of orbifold points in X . Note that fi,ε may not be ρi–equivariant, and Jε may
not be Gi–equivariant over V̂i . Hence fε , fi,ε , i = 1, 2, · · · , k , may not define a
pseudoholomorphic curve in X . Nevertheless, for any closed 2–form α on X ,
it is easily seen that

∫
Σ
f∗α =

∫
Σ0

f∗ε α+
k∑
i=1

1
mi

∫
D̂i

f∗i,εα.

Let νε = f∗ε TX
0/TΣ′0 be the normal bundle of the immersion fε in X0 , and

let νi,ε = f∗i,εT V̂i/TD̂i be the normal bundle of the immersion fi,ε in V̂i , i =
1, 2, · · · , k . We fix an immersion f̄ε of a tubular neighborhood of the zero
section of νε into X0 , and fix an immersion f̄i,ε of a tubular neighborhood of
the zero section of νi,ε into V̂i for each i, which are assumed to be compatible
on the overlaps. We denote by Θε , Θi,ε the push-forward of some Thom forms
Θε , Θi,ε of νε , νi,ε by f̄ε , f̄i,ε respectively, where Θε , Θi,ε are compatible on
the overlaps. Finally, let x1, x2, · · · , xl be the set {pi | i = 1, 2, · · · , k}. For
each xj , j = 1, 2, · · · , l , let (V̂xj , Gxj ) be a local uniformizing system at xj .
Without loss of generality, we assume Vi = Vxj = V̂xj/Gxj whenever pi = xj .

With the preceding understood, the 2–form ηC is defined as follows. On X \⋃l
j=1 Vxj , ηC = Θε , and on each V̂xj , j = 1, 2, · · · , l ,

ηC =
∑

{i|pi=xj}

1
mi

∑
g∈Gxj

g∗Θi,ε .
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Now for any 2–form α on X , we have∫
X
ηC ∧ α =

∫
X\
⋃l
j=1 Vxj

ηC ∧ α+
l∑

j=1

1
|Gxj |

∫
V̂xj

ηC ∧ α

=
∫
X\
⋃l
j=1 Vxj

Θε ∧ α+
l∑

j=1

1
|Gxj |

∫
V̂xj

(
∑

{i|pi=xj}

1
mi

∑
g∈Gxj

g∗Θi,ε) ∧ α

=
∫

Σ0

f∗ε α+
l∑

j=1

∑
{i|pi=xj}

1
mi

(
1
|Gxj |

∫
V̂xj

∑
g∈Gxj

g∗(Θi,ε ∧ α))

=
∫

Σ0

f∗ε α+
l∑

j=1

∑
{i|pi=xj}

1
mi

∫
V̂xj

Θi,ε ∧ α

=
∫

Σ0

f∗ε α+
k∑
i=1

1
mi

∫
D̂i

f∗i,εα =
∫

Σ
f∗α.

Hence ηC represents the Poincaré dual of the differentiable cycle f(Σ). By way
of construction, ηC may be chosen to be supported in any given neighborhood
of C in X .

Next we consider the case where C is of type II.

By Lemma 3.4, ν = f∗TX/TΣ is an orbifold complex line bundle over Σ. Let
Θ be a Thom form of ν . Then notice that ν is sort of a quasi-normal bundle of
C in X in the sense that one can push-forward Θ to X . The resulting form,
which is defined to be ηC , is a closed 2–form on X , supported in any given
neighborhood of C , and for any x ∈ C , there exists a local uniformizing system
(V̂ , G) at x such that on V̂ ,

ηC =
l∑
i=1

1
mi

∑
g∈G

g∗Θi,

where f−1(x) = {z1, z2, · · · , zl}, mi is the order of zi in Σ, and Θi is the push-
forward of Θ to V̂ associated to some arbitrarily fixed choice of representatives
of the parametrization f : Σ → X of C . As in the case where C is of type I,
we have for any 2–form α on X∫

X
ηC ∧ α =

∫
Σ
f∗α,

so that ηC represents the Poincaré dual of the differentiable cycle f(Σ).
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Note that by the above lemma, we have

C · C ′ =
∫
X
ηC ∧ ηC′

for the algebraic intersection number of two J –holomorphic curves C,C ′ .

The next lemma is concerned with a formula which expresses the first Chern
class of an orbifold complex vector bundle over a reduced orbifold Riemann
surface in terms of the first Chern class over the complement of the orbifold
points with respect to a certain canonical trivialization and the “first Chern
class” at each orbifold point. To be more precise, let E → Σ be a rank n
orbifold complex vector bundle over a reduced orbifold Riemann surface. Let
z1, z2, · · · , zk ∈ Σ be any given set of points which contains the set of orbifold
points, and let m1,m2, · · · ,mk be the orders of the corresponding isotropy
groups. Suppose over a local uniformizing system (D̂i,Zmi) at each zi , the
orbifold bundle E has a trivialization (D̂i × Cn,Zmi), such that Zmi acts on
D̂i × Cn by

µmi · (z, v1, v2, · · · , vn) = (µmiz, µ
mi,1
mi v1, µ

mi,2
mi v2, · · · , µmi,nmi vn),

where µmi = exp(
√
−1 2π

mi
) is the generator of Zmi , and 0 ≤ mi,j < mi , j =

1, 2, · · · , n. Set Di = D̂i/Zmi , Σ0 = Σ \
⋃k
i=1Di , and E0 = E|Σ0 . We consider

the trivialization τ of E0 over ∂Σ0 =
⋃k
i=1 ∂Di where along each ∂Di , τ is

given by pushing down a set of equivariant sections {sj(z) | j = 1, 2, · · · , n} of
∂D̂i × Cn over ∂D̂i , where sj(z) = (0, · · · , zmi,j , · · · , 0), j = 1, 2, · · · , n. Let
∂Di × Cn be the trivialization τ of E0 over ∂Di . Then the canonical map
ψi : ∂D̂i × Cn → ∂Di × Cn is given by

ψi(z, v1, v2, · · · , vn) = (zmi , z−mi,1v1, z
−mi,2v2, · · · , z−mi,nvn).

With the preceding understood, the said formula is the following:

Lemma 3.6 c1(E)(Σ) = c1(E0, τ)(Σ0, ∂Σ0) +
∑k

i=1(
∑n

j=1
mi,j
mi

).

Proof Let ∇0 be a unitary connection of E0 which is trivial with respect to the
trivialization τ along the boundary ∂Σ0 . Over each (D̂i ×Cn,Zmi), we define
an equivariant connection ∇ = βψ∗i∇0 +(1−β)d where β is an equivariant cut-
off function equaling one near ∂D̂i and d is the trivial connection with respect
to the natural trivialization of D̂i × Cn . Clearly ∇0,∇ are compatible on the
overlaps so that they define a connection of the orbifold bundle E , which is
still denoted by ∇ for simplicity. We observe that over Σ0 , ∇ = ∇0 , and with
respect to each local trivialization (D̂i×Cn,Zmi), the curvature form F (∇) is
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given by the diagonal matrix whose entries are −d(βmi,1
dz
z ), · · · ,−d(βmi,n

dz
z ).

Hence

c1(E)(Σ) =
∫

Σ

√
−1

2π
trF (∇)

=
∫

Σ0

√
−1

2π
trF (∇0) +

k∑
i=1

1
mi

∫
D̂i

√
−1

2π
trF (∇)

= c1(E0, τ)(Σ0, ∂Σ0) +
k∑
i=1

(
n∑
j=1

mi,j

mi
).

As an example which is also relevant in the later discussion, we consider the case
where E = TΣ → Σ. On each local uniformizing system (D̂i,Zmi), TΣ has a
natural trivialization (D̂i ×C,Zmi) defined by the section ∂

∂z , where Zmi acts
by complex multiplication (ie mi,1 = 1). On the other hand, the trivialization
τ is defined by dφi(z ∂

∂z ) = miw
∂
∂w along each ∂Di , where φi : D̂i → Di is the

map w = zmi . It is easily seen that c1(TΣ0, τ)(Σ0, ∂Σ0) = 2− 2g|Σ| − k where
g|Σ| is the genus of the underlying Riemann surface of Σ, and k is the number
of components in ∂Σ0 . Hence Lemma 3.6 recovers the formula

c1(TΣ)(Σ) = 2− 2g|Σ| −
k∑
i=1

(1− 1
mi

).

Note that the right hand side of the above equation equals 2 − 2gΣ by the
definition of the orbifold genus gΣ .

Proof of Theorem 3.1

We consider first the case where C is a type I J –holomorphic curve. We shall
continue to use the notations introduced in the proof of Lemma 3.5.

Let E → Σ be the pullback of TX by f , which is a rank 2 orbifold complex
vector bundle. Over each local uniformizing system (D̂i,Zmi), E has a trivi-
alization (D̂i × C2,Zmi), where {z} × C2,∀z ∈ D̂i , is identified with T V̂i|fi(z) ,
and Zmi acts by µmi · (z,w) = (µmiz, ρi(µmi)(w)), µmi = exp(

√
−1 2π

mi
). More

concretely, we may identify V̂i with C2 such that the almost complex struc-
ture J equals the standard one at the origin 0, and there are coordinates u, v
such that ρi(µmi) acts linearly as a diagonal matrix, say with entries µ

mi,1
mi ,

µ
mi,2
mi where 0 ≤ mi,1,mi,2 < mi , and that fi(z) = (zli , aizli) + O(|z|li+1)
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for some integer li ≥ 1 and ai ∈ C. Observe that if ai 6= 0, then fi be-
ing ρi–equivariant implies that mi,1 = mi,2 , so that we may modify with
a linear coordinate change (u, v) 7→ (u, v − aiu) such that ρi(µmi) is still
diagonalized and fi(z) = (zli , 0) + O(|z|li+1). Thus in any event, we have
fi(z) = (zli , 0) +O(|z|li+1). Let E0 = E|Σ0 , and τ be the canonical trivializa-
tion of E0 along ∂Σ0 which is determined by the equivariant sections (zmi,1 , 0)
and (0, zmi,2) of D̂i × C2 → D̂i along each ∂Di . Recall that c = −c1(TX).
Hence by Lemma 3.6,

c(C) = −c1(E0, τ)(Σ0, ∂Σ0)−
k∑
i=1

mi,1 +mi,2

mi
.

Observe that f∗ε TX0 = E0 along ∂Σ0 ⊂ Σ′0 . Hence the canonical trivialization
τ of E0 along ∂Σ0 gives rise to a trivialization of f∗ε TX0 along ∂Σ′0 , which is
also denoted by τ for simplicity. Furthermore, note that c1(E0, τ)(Σ0, ∂Σ0) =
c1(f∗ε TX0, τ)(Σ′0, ∂Σ′0). On the other hand, let τh be the trivialization of TΣ′0
along the boundary ∂Σ′0 given by the section w ∂

∂w (here w is the holomorphic
coordinate of each Di ). Then τ, τh determine a unique trivialization τv of νε
along ∂Σ′0 such that

c1(f∗ε TX
0, τ) = c1(TΣ′0, τh) + c1(νε, τv).

There are canonical bundle morphisms νi,ε|∂D̂i → νε|∂Di induced by φi : D̂i →
Di where φi(z) = zmi . Through these bundle morphisms, the trivialization τv
gives rise to a trivialization τi,v of νi,ε along ∂D̂i . In order to determine τi,v ,
we recall that fi(z) = (zli , 0) + O(|z|li+1) and fi,ε = fi in D̂i \ D̂′i . If we let
τi,h be the trivialization of TD̂i along ∂D̂i (as a sub-bundle of f∗i,εT V̂i ) which
is induced by the trivialization τh of TΣ′0 along ∂Σ′0 through φi , then τi,h is
given by the section (lizli , 0) up to homotopy. Hence τi,v is given by the section
(0, z−li+mi,1+mi,2) up to homotopy, since τ is given by the sections (zmi,1 , 0)
and (0, zmi,2).

We push fε off near ∂Σ′0 along the direction given by the trivialization τv of
the normal bundle νε (note that fε is embedded near ∂Σ′0 ). Call the resulting
map f ′ε . Correspondingly, each fi,ε is pushed off near ∂D̂i to a f ′i,ε along the
direction given by the trivialization τi,v of the normal bundle νi,ε . As in the
proof of Lemma 3.5, we can similarly construct a closed 2–form η′C using f ′ε, f ′i,ε
instead of fε, fi,ε , which is also Poincaré dual to the differentiable cycle f(Σ).
Furthermore,

C · C =
∫
X
η′C ∧ ηC =

∫
Σ0

(f ′ε)
∗ηC +

k∑
i=1

1
mi

∫
D̂i

(f ′i,ε)
∗ηC .
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By way of construction,∫
Σ0

(f ′ε)
∗ηC = c1(νε, τv)(Σ0, ∂Σ0) +

∑
{[z,z′]|z 6=z′,fε(z)=fε(z′)}

2t[z,z′],

where [z, z′] denotes the unordered pair of z, z′ , and t[z,z′] is the order of tan-
gency of the intersection fε(z) = fε(z′). It is easily seen that the second term
in the above equation is equal to∑

{[z,z′]|z 6=z′,f(z)=f(z′)}
2k[z,z′] +

∑
{z|df(z)=0}

2kz , where z, z′ ∈ Σ0.

To evaluate
∫
D̂i

(f ′i,ε)
∗ηC , i = 1, 2, · · · , k , let Ii be the set labeling Λ(C)zi , ie

Λ(C)zi = {Ci,α | α ∈ Ii}, and let Ci ∈ Λ(C)zi be the element defined by fi .
Then∫
D̂i

(f ′i,ε)
∗ηC =

∫
D̂i

(f ′i,ε)
∗(

∑
{j|f(zi)=f(zj )}

1
mj

∑
g∈Gi

g∗Θj,ε)

=
1
mi

∑
g∈Gi

∫
D̂i

(f ′i,ε)
∗(g∗Θi,ε)

+
∑

{j 6=i|f(zj)=f(zi)}

1
mj

∑
g∈Gi

∫
D̂i

(f ′i,ε)
∗(g∗Θj,ε)

= c1(νi,ε, τi,v)(D̂i, ∂D̂i) + Ci · Ci +
∑
α∈Ii

Ci · Ci,α

+
∑

{j 6=i|f(zi)=f(zj)}

∑
β∈Ij

Ci · Cj,β

= c1(νi,ε, τi,v)(D̂i, ∂D̂i) +
mi

|Gi|
(
∑
α∈Ii

Ci,α · Ci,α +
∑
α,β∈Ii

Ci,α · Ci,β)

+
mi

|Gi|
∑

{j 6=i|f(zi)=f(zj)}

∑
α∈Ii,β∈Ij

Ci,α · Cj,β.

In order to evaluate c1(νi,ε, τi,v)(D̂i, ∂D̂i), we observe that fi,ε is an immer-
sion and equals (zli , 0) + O(|z|li+1) near ∂D̂i . Let τ ′i,v be the trivialization of
νi,ε along ∂D̂i which can be extended over the entire D̂i . Then τ ′i,v is given
by the section (0, z−li+1) up to homotopy. But τi,v is given by the section
(0, z−li+mi,1+mi,2) up to homotopy. Hence

c1(νi,ε, τi,v)(D̂i, ∂D̂i) = mi,1 +mi,2 − 1.
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Putting things altogether, we have

C · C + c(C) = c(C) + c1(νε, τv)(Σ0, ∂Σ0) +
k∑
i=1

mi,1 +mi,2 − 1
mi

+
∑

{[z,z′]|z 6=z′,f(z)=f(z′)}
2k[z,z′] +

∑
z∈Σ

2kz

= −c1(TΣ0, τh)(Σ0, ∂Σ0)−
k∑
i=1

1
mi

+
∑

{[z,z′]|z 6=z′,f(z)=f(z′)}
2k[z,z′] +

∑
z∈Σ

2kz

= 2g|Σ| − 2 + k −
k∑
i=1

1
mi

+
∑

{[z,z′]|z 6=z′,f(z)=f(z′)}
2k[z,z′] +

∑
z∈Σ

2kz ,

from which the adjunction formula for the case where C is of type I follows
easily.

The case where C is of type II is actually much simpler. It follows by directly
evaluating the last integral in

C · C =
∫
X
ηC ∧ ηC =

∫
Σ
f∗ηC ,

and then appealing to c1(TX)(Σ) = c1(ν)(Σ) + c1(TΣ)(Σ) and mC = mΣ .

Proof of Theorem 3.2

For simplicity, we shall only consider the case where C,C ′ are of type I. The
discussion for the rest of the cases is similar, and we shall leave the details to
the reader.

Let ηC , ηC′ be the closed 2–forms in Lemma 3.5 which are Poicaré dual to the
differentiable cycles f(Σ), f ′(Σ′) respectively. Then

C · C ′ =
∫
X
ηC ∧ ηC′

=
∫

Σ0

f∗ε ηC′ +
k∑
i=1

1
mi

∫
D̂i

f∗i,εηC′ .
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Now observe that the subset {(z, z′) | f(z) = f ′(z′)} ⊂ Σ × Σ′ is finite. Hence
we may arrange in the construction of ηC and ηC′ such that for sufficiently
small ε > 0,

∫
Σ0
f∗ε ηC′ equals

∑
k(z,z′) where (z, z′) is running over the set of

pairs with f(z) = f ′(z′) being a regular point of X , and
∑k

i=1
1
mi

∫
D̂i
f∗i,εηC′

equals
∑
k(z,z′) where (z, z′) is running over the set of pairs with f(z) = f ′(z′)

being an orbifold point of X . Hence the theorem.

4 Proof of main results

We begin by setting the stage. Let p, q be relatively prime integers with 0 <
q < p. We denote by C(p,q) the symplectic cone over L(p, q), which is the

symplectic orbifold (C2, ω0)/Zp where ω0 =
√
−1
2

∑2
i=1 dzi∧dz̄i and Zp acts by

µp · (z1, z2) = (µpz1, µ
q
pz2). Let d be the descendant of the function 1

2(|z1|2 +
|z2|2) on C2 to C(p,q) . Then for any r > 0, C(p,q)(r) ≡ d−1([0, r]) ⊂ C(p,q) is a
suborbifold of contact boundary (L(p, q), ξ0).

Next we follow the discussion in [12] to embed each C(p,q)(r) into an appropriate
closed symplectic 4–orbifold. To this end, consider the Hamiltonian circle action
on (C2, ω0)

s · (z1, z2) = (sz1, s
p+qz2),∀s ∈ S1 ≡ {z ∈ C | |z| = 1},

with the Hamiltonian function given by µ(z1, z2) = 1
2(|z1|2 + (p + q)|z2|2). It

is easily seen that the Zp–action on C2 is the action induced from the circle
action by Zp ⊂ S1 , thus there is a corresponding Hamiltonian circle action on
C2/Zp = C(p,q) with the Hamiltonian function given by µ′ ≡ 1

pµ. According
to [12], for any R > 0, there is a symplectic 4–orbifold, denoted by X(p,q)(R),
which is obtained from (µ′)−1([0, R]) by collapsing each orbit of the circle action
on (µ′)−1(R) to a point. It is clear that for any R > 1

p(p + q)r , C(p,q)(r) is a
suborbifold of X(p,q)(R) of contact boundary (L(p, q), ξ0). Furthermore, there
is a distinguished 2–dimensional symplectic suborbifold C0 ≡ (µ′)−1(R)/S1 ⊂
X(p,q)(R), whose normal bundle has Euler number p

p+q , and whose orbifold
genus is 1

2 −
1

2(p+q) , cf Section 3.

Now let (W,ω) be a symplectic cobordism from (L(p′, q′), ξ′0) to (L(p, q), ξ0).
By adding appropriate “symplectic collars” to the two ends of W , which does
not change the diffeomorphism class of W , we may assume without loss of gen-
erality that a neighborhood of L(p′, q′) in W is identified with a neighborhood
of ∂C(p′,q′)(r′) in C(p′,q′)\int(C(p′,q′)(r′)) for some r′ > 0, and a neighborhood of
L(p, q) in W is identified with a neighborhood of ∂C(p,q)(r) in C(p,q)(r) for some
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r > 0. Consequently, we can close up W by gluing X(p,q)(R) \ C(p,q)(r) and
C(p′,q′)(r′) onto the corresponding ends of W for some fixed R > 1

p(p + q)r .
We denote by (X,ω) the resulting symplectic 4–orbifold. Note that there is
a distinguished 2–dimensional symplectic suborbifold C0 ⊂ X inherited from
C0 ⊂ X(p,q)(R).

With the preceding understood, the strategy for proving Theorem 1.1 is to
construct a diffeomorphism of orbifold pairs from (X,C0) to (X(p,q)(R), C0).

First of all, some preliminary information about (X,C0, ω). The orbifold X
has two singular points, one of them, denoted by x′ , is inherited from C(p′,q′)(r′)
and has type (p′, q′), and the other, denoted by x, is inherited from X(p,q)(R)\
C(p,q)(r) and has type (p + q, p). Here a singular point has type (a, b) if the
isotropy group is Za with action on a local uniformizing system given by µa ·
(z1, z2) = (µaz1, µ

b
az2). The suborbifold C0 has only one orbifold point, the

point x with order p+q , and is given locally by z2 = 0 on the local uniformizing
system. We fix an ω–compatible almost complex structure J on X , such that
the suborbifold C0 is J –holomorphic. For convenience, we assume that J
is integrable near x, x′ . (This is possible because of the equivariant Darboux’
theorem.) By the discussion in Section 3, we see that C0 ·C0 = e(ν)(C0) = p

p+q ,
where e(ν) is the Euler class of the normal bundle ν of C0 in X . On the other
hand, by the adjunction formula in Theorem 3.1, we have

c1(KX)(C0) = 2(
1
2
− 1

2(p + q)
)− 2− C0 · C0 = −2p+ q + 1

p+ q

for the canonical bundle KX of the almost complex 4–orbifold (X,J).

Next we digress on the Fredholm theory for pseudoholomorphic curves in a
symplectic 4–orbifold (X,ω). To this end, for any given orbifold Riemann
surface Σ, we fix a sufficiently large positive integer k , and consider [Σ;X],
the space of Ck maps from Σ into X . It is shown in [3] (Part I, Theorem
1.4) that [Σ;X] is a smooth Banach orbifold (Hausdorff and second countable).
Moreover, a map f ∈ [Σ;X] is a smooth point in the Banach orbifold if Im f
contains a regular point of X . Thus for the purpose here we may assume for
simplicity that Σ is reduced and [Σ;X] is a Banach manifold. The tangent
space Tf at f ∈ [Σ;X] is the space of Ck sections of f∗(TX), the pullback
bundle of TX via f .

For any f ∈ [Σ;X], let Ef be the subspace of the space of Ck−1 sections of
the orbifold vector bundle Hom(TΣ, f∗(TX)) → Σ, which consists of sections
s satisfying s ◦ j = −J ◦ s for a fixed choice of ω–compatible almost complex
structure J on X and the complex structure j on Σ. Then there is a Banach

Geometry & Topology, Volume 8 (2004)



722 Weimin Chen

bundle E over [Σ;X] whose fiber at f is Ef . Consider the smooth section
L : [Σ;X]→ E defined by

L(f) ≡ df + J ◦ df ◦ j.

The zero loci L−1(0) is the space of J –holomorphic maps from Σ into X . By
elliptic regularity, each map in L−1(0) is a C∞ map. Moreover, L is a Fredholm
section, and its linearization DL at each f ∈ L−1(0) is given by a formula

DLf (u) = Lf (u), u ∈ Tf ,

where Lf : Tf → Ef is an elliptic linear differential operator of Cauchy–Riemann
type, whose coefficients are smooth functions on Σ which depend on f smoothly.
The following facts are crucial for the consideration of surjectivity of DL.

• When J is integrable in a neighborhood of Im f and f is J –holomorphic,
DLf = Lf is the usual ∂̄–operator for the orbifold holomorphic vector
bundle f∗(TX) over Σ.

• When f is a multiplicity-one parametrization of a J –holomorphic sub-
orbifold C , the linearization DLf = Lf is surjective when c1(TC)(C) > 0
and c1(KX)(C) < 0. This is the orbifold analog of the regularity criterion
discussed in Lemma 3.3.3 of [16].

The index of DLf = Lf can be computed using the index formula of Kawasaki
[10] for elliptic operators on orbifolds, cf Lemma 3.2.4 in [4].

To state the formula, let z1, z2, · · · , zl be the set of orbifold points of Σ with
orders m1,m2, · · · ,ml respectively. Moreover, suppose at each zi , a local rep-
resentative of f is given by (fi, ρi) : (D̂i,Zmi) → (V̂i, Gi) where ρi(µmi) acts
on V̂i by ρi(µmi) · (w1, w2) = (µmi,1mi w1, µ

mi,2
mi w2), 0 ≤ mi,1,mi,2 < mi . With

this understood, Index DLf = 2d where d ∈ Z is given by

d = c1(TX) · [f(Σ)] + 2− 2g|Σ| −
l∑
i=1

mi,1 +mi,2

mi
.

(Here g|Σ| is the genus of the underlying Riemann surface.) End of digression.

Now let Σ be the orbifold Riemann sphere with one orbifold point z∞ ≡ ∞ of
order p + q . Observe that as a complex analytic space, Σ is biholomorphic to
the underlying Riemann sphere |Σ|, hence it has a unique complex structure.
Moreover, the group of automorphisms G can be naturally identified with the
subgroup of the automorphism group of |Σ| which fixes the point ∞. Note that
|Σ| \ {∞} = C, so that G can be identified with the group {(a, b) ∈ C∗ × C |
z 7→ az + b} of linear translations on C.

Geometry & Topology, Volume 8 (2004)



Orbifold adjunction formula and symplectic cobordisms 723

We shall consider the moduli space M̃ of J –holomorphic maps f : Σ → X
which obey

• [f(Σ)] = [C0] in H2(X;Q),

• f(z∞) = x, and in a local representative (f∞, ρ∞) of f at z∞ , ρ∞(µ(p+q))
= µ(p+q) , which acts by (z1, z2) 7→ (µ(p+q)z1, µ

p
(p+q)z2). (Here z1, z2 are

holomorphic coordinates on a local uniformizing system at x in which C0

is locally given by z2 = 0.)

We set M = M̃/G for the corresponding moduli space of unparametrized
J –holomorphic maps, where G acts on M̃ by reparametrization.

With the preceding understood, consider the following:

Lemma 4.1 Suppose W is a (symplectic) homology cobordism. (Note that
in particular, p = p′ and H2(X;Q) = Q · [C0].) Then

(1) Each member of M̃ is either an orbifold embedding onto a suborbifold
in X , or is a multiply covered map with multiplicity p onto a suborbifold
containing both x, x′ . Moreover, in the latter case, either q′ = q or q′q ≡ 1
(mod p) must be satisfied, and there is at most one such a member of M̃ up
to reparametrization by elements of G.

(2) One may alter J appropriately such that C0 is still J –holomorphic, and M̃
is a smooth manifold of dimension 6. Furthermore, M is a compact, closed, 2–
dimensional smooth orbifold (possibly disconnected) with at most one orbifold

point of order p, and the action of G on M̃ defines a smooth orbifold principal
G–bundle M̃ →M.

Before proving Lemma 4.1, let us observe the following:

Lemma 4.2 Let C be any J –holomorphic curve in X such that

• C contains both singular points,

• [C] = r[C0] for some r ∈ (0, 1] ∩Q.

Then C is a suborbifold and [C] = 1
p [C0]. Moreover, there is at most one such

J –holomorphic curves in X .

Proof First of all, we claim r ≥ 1
p . To see this, note that C 6= C0 because C

contains both singular points. By the intersection formula (cf Theorem 3.2),

r · p

p+ q
= C · C0 ≥

1
p+ q

,
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which verifies the claim.

Now let f : Σ→ X be a multiplicity-one parametrization of C , and z0, z
′
0 ∈ Σ

be any points such that f(z0) = x, f(z′0) = x′ . Let m0,m
′
0 be the order of

z0, z
′
0 respectively. Then observe that if m0 < p + q (resp. m′0 < p), the

contribution kz0 (resp. kz′0 ) on the right hand side of the adjunction formula
for C (cf Theorem 3.1) is no less than 1

2m0
(resp. 1

2m′0
). (Here is the calculation

for the case of m0 : kz0 ≥ 1
2(p+q) · [

p+q
m0

(p+qm0
−1)] ≥ 1

2m0
if m0 < p+q .) It follows

easily that the right hand side of the adjunction formula for C is no less than

1
2

(1− 1
p+ q

) +
1
2

(1− 1
p

),

which has an equality only if m0 = p+ q and m′0 = p.

On the other hand, the left hand side of the adjunction formula for C , the
virtual genus g(C), equals

1
2

(
p

p+ q
· r2 − 2p+ q + 1

p+ q
· r) + 1.

As a function of r , it is decreasing over (0, 1], hence the maximum of g(C) is
attained at r = 1

p , and it equals

1
2

(
p

p+ q
· (1
p

)2 − 2p + q + 1
p+ q

· 1
p

) + 1 =
1
2

(1− 1
p+ q

) +
1
2

(1− 1
p

).

By the adjunction formula, C is a suborbifold and [C] = 1
p [C0].

To see that there is at most one such J –holomorphic curves, note that if
there were two distinct such curves, the algebraic intersection number, which is

p
p2(p+q) , would be at least 1

p+q + 1
p by the intersection formula. A contradiction.

Proof of Lemma 4.1

(1) By the adjunction formula, each multiplicity-one member f ∈ M̃ must be
an orbifold embedding onto a suborbifold. Now suppose f ∈ M̃ is multiply
covered with multiplicity m > 1. Let C be the corresponding J –holomorphic
curve. Then [C] = 1

m [C0] < [C0], which implies that C also contains the
other singular point x′ . This is because by the assumption, W is a homology
cobordism, so that H2(X \ {x′};Z) is generated by the class of C0 , and hence
C can not be contained entirely in X \{x′}. By Lemma 4.2, f has multiplicity
p, and C is a suborbifold, which is unique in such kind.
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To complete the proof of (1), it remains to show that either q′ = q or q′q ≡ 1
(mod p) if there is indeed such a curve C .

To this end, let f : Σ→ X be any multiplicity-one parametrization of C , and
z0, z

′
0 ∈ Σ be the points such that f(z0) = x, f(z′0) = x′ . Since C 6= C0 and

C · C0 = 1
p ·

p
p+q = 1

p+q , it follows easily that the local representative of f at
z0 must be in the form ((u(z), z), ρ0) for some holomorphic function u and the
isomorphism ρ0 where ρ0(µ(p+q)) = µl(p+q) with pl ≡ 1 (mod p + q). On the
other hand, the local representative of f at z′0 could either be ((w(z), z), ρ′0),
where ρ′0(µp) = µl

′
p with l′q′ ≡ 1 (mod p), or ((z,w(z)), ρ′0) with ρ′0(µp) = µp .

Assuming the former case, we have, by the index formula for DLf ,

2p+ q + 1
p(p+ q)

+ 2− l + 1
p+ q

− l′ + 1
p
∈ Z,

which implies that r(p + q) − ql′ ≡ 0 (mod p) with r given by the equation
1 − lp = r(p + q). It is easily seen that in this case, ql′ ≡ qr ≡ 1 (mod p),
and hence q′ = q because l′q′ ≡ 1 (mod p). Similarly, the latter case implies
q′q ≡ 1 (mod p).

(2) For the smoothness of M̃, we need to show that for any f ∈ M̃, the
linearization DLf is surjective. The dimension of M̃ is the index of DLf ,
f ∈ M̃, which is easily seen to be 6 by the index formula for DLf .

By the regularity criterion we mentioned earlier, M̃ is smooth at each f which
is not multiply covered, because for any such an f , C ≡ Imf is a suborbifold
satisfing c1(TC)(C) = 2 − (1 − 1

p+q ) > 0 and c1(KX)(C) = −2p+q+1
p+q < 0.

Suppose there is a multiply covered member (which is the only one up to
reparametrization by (1)), and let C ′0 be the corresponding J –holomorphic
curve. We consider the weighted projective space P(1, p, p + q), which is the
quotient of S5 under the S1–action

s · (z1, z2, z3) = (sz1, s
pz2, s

p+qz3),∀s ∈ S1.

It is easily seen that a regular neighborhood of C ′0 in X is diffeomorphic to a
regular neighborhood of P(p, p+ q) in P(1, p, p+ q), where P(p, p+ q) is defined
by z1 = 0. According to [2], P(1, p, p + q) has an orbifold Kähler metric of
positive Ricci curvature. By the orbifold version of symplectic neighborhood
theorem, we can alter the almost complex structure J in a regular neighborhood
of C ′0 such that ω(·, J(·)) is Kähler of positive Ricci curvature. (Note that we
can arrange so that C0 is still J –holomorphic, and J is integrable near singular
points x, x′ .) With this understood, for any f ∈ M̃ parametrizing C ′0 , DLf is
the usual ∂̄–operator for the orbifold holomorphic vector bundle f∗(TX) over

Geometry & Topology, Volume 8 (2004)



726 Weimin Chen

Σ. In this case, the surjectivity of DLf follows from the orbifold version of
a Bochner type vanishing theorem for negative holomorphic vector bundles (cf
[11]). Thus in any event, by altering J if necessary, we can arrange so that M̃
is a smooth manifold.

The action of G on M̃ is smooth (see the general discussion at the end of §3.3
of Part I of [3]), and is free at each f ∈ M̃ which is not multiply covered.
At a multiply covered f ∈ M̃, the isotropy subgroup is the cyclic subgroup
{(µlp, 0) | l = 0, · · · , p − 1} ⊂ G of order p up to conjugation. (Note that p
equals the multiplicity of the covering.) Thus M̃ → M̃/G = M is a smooth
orbifold principal G–bundle over a smooth 2–dimensional orbifold with at most
one orbifold point of order p.

It remains to show that M is compact. First of all, by the orbifold version
of the Gromov’s compactness theorem (cf [7, 18, 21]) which was proved in [4],
any sequence of maps fn ∈ M̃ has a subsequence which converges to a cusp-
curve after suitable reparametrization. More concretely, after reparametrization
if necessary, there is a subsequence of fn , which is still denoted by fn for
simplicity, and there are at most finitely many simple closed loops γ1, · · · , γl ⊂
Σ containing no orbifold points, and a nodal orbifold Riemann surface Σ′ =
∪ωΣω obtained by collapsing γ1, · · · , γl , and a J –holomorphic map f : Σ′ → X ,
such that (1) fn converges in C∞ to f on any given compact subset in the
complement of γ1, · · · , γl , (2) [fn(Σ)] = [f(Σ′)] ∈ H2(X;Q), and (3) f ∈ M̃
and fn converges to f in C∞ if there is only one component of Σ′ = ∪ωΣω

over which f is nonconstant.

Hence the space M is compact if there is only one component of Σ′ = ∪ωΣω

over which f is nonconstant. Suppose this is not true. Then there is a non-
constant component fω ≡ f |Σω : Σω → X , where Σω is obtained by collapsing
a simple closed loop γ ∈ {γ1, · · · , γl} which bounds a disc D ⊂ Σ, such that
z∞ ∈ Σ \ D and fn converges to fω in C∞ on any compact subset of the
interior of D . Set Cω ≡ Im fω . Since we assume that there are more than
one nonconstant components, [Cω] ≤ [fω(Σω)] < [C0] must hold. (Note that
H2(X;Q) = Q · [C0].) By the assumption that W is a homology cobordism,
Cω must contain the singular point x′ as we argued earlier. We claim that
Cω must also contain the other singular point. Suppose not, then Cω 6= C0 ,
and Cω must intersect with C0 at a smooth point, because Cω · C 6= 0. Then
by the intersection formula, Cω · C0 ≥ 1, which implies that [Cω] = r[C0] for
some r ≥ 1 + q

p . A contradiction to [Cω] < [C0]. Now by Lemma 4.2, Cω is a
suborbifold and [Cω] = 1

p [C0].
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On the other hand, observe that there is a regular point z0 ∈ Σω such that
either fω(z0) = x or fω(z0) = x′ . Let mω ≥ 1 be the multiplicity of fω , and let
D0 be a sufficiently small disc neighborhood of z0 in Σω . Then it is easily seen
that mω is no less than the degree of the covering map fω|∂D0 onto the link of
fω(z0) in Cω , which is no less than p+q or p, depending on whether fω(z0) = x
or fω(z0) = x′ . In any event, mω ≥ p. But this contradicts [Cω] = 1

p [C0] as
[Cω] = 1

mω
[fω(Σω)] < 1

p [C0], because [fω(Σω)] < [C0].

Hence there is only one nonconstant component, and therefore M is compact.

Let H = C∗ be the subgroup of G = {(a, b) ∈ C∗ × C} which consists of
{(a, 0) | a ∈ C∗}. We shall next find an appropriate reduction of M̃ → M to
an orbifold principal H –bundle. We begin by giving a more detailed description
of the orbifold structure on M and the orbifold principal G–bundle M̃ →M.

First of all, we adopt the convention that G, as the automorphism group of Σ,
acts on Σ from the left. Second, for the orbifold structure on M, we let G
act on M̃ from the left by defining s · f ≡ f ◦ s−1,∀s ∈ G, f ∈ M̃. (This is
because the convention is that the group actions on a local uniformizing system
are always from the left.) To describe the orbifold structure, recall that for any
f ∈ M̃, there is a slice Sf through f which has the following properties (cf
[1]):

• Sf ⊂ M̃ is a 2–dimensional disc containing f , which is invariant under
the isotropy subgroup Gf at f .

• For any s ∈ G, s · Sf ∩ Sf 6= ∅ iff s ∈ Gf .
• There exists an open neighborhood O of 1 ∈ G such that the map
φf : O × Sf → M̃, defined by (s, h) 7→ s · h, is an open embedding.

Let U ≡
⊔
f∈M̃ Sf be the disjoint union of all slices. For any h, h′ ∈ U which

have the same orbit in M, and for any s ∈ G such that s · h = h′ , let ψsh′,h be
the local self-diffeomorphism on U defined as follows. Suppose h ∈ Sf , h′ ∈ Sf ′ .
Then there is an open neighborhood Oh ⊂ Sf of h, invariant under the isotropy
subgroup Gh at h, such that s ·Oh ⊂ φf ′(O×Sf ′). Note that for any g ∈ Oh ,
there is a unique s′ ∈ O and a unique g′ ∈ Sf ′ such that s·g = φf ′(s′, g′) = s′·g′ .
We define ψsh′,h(g) = g′ , which is clearly a local self-diffeomorphism on U
sending h to h′ . The orbifold structure on M is given by the pseudogroup
acting on U , which is generated by {ψsh′,h}.

To obtain the orbifold principal G–bundle M̃ →M, we let G act on M̃ from
the right by defining f · s ≡ f ◦ s,∀s ∈ G, f ∈ M̃. A local trivialization of
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M̃ →M over a slice Sf is given by (Sf ×G,Gf , πf ), where Gf acts on Sf ×G
by t · (h, s) = (t · h, ts), ∀t ∈ Gf , and where πf : Sf ×G→ M̃ sends (h, s) to
h · s = h ◦ s, which is invariant under the Gf –action (note that t · h = h ◦ t−1 ).
The transition function associated to each ψsh′,h is given by g 7→ ψ̄sh′,h(g),
∀g ∈ Domain (ψsh′,h), with ψ̄sh′,h(g) : G→ G being the multiplication by (s′)−1s

from left, where s′ ∈ O is uniquely determined by g ◦ s−1 = ψsh′,h(g) ◦ (s′)−1 .

In the same vein, by letting H act on M̃ from the right, M̃ becomes an
orbifold principal H –bundle over M̃ ×G (G/H). A reduction of M̃ → M
to an orbifold principal H –bundle is obtained by taking a smooth section of
M̃ ×G (G/H) → M. Note that G/H is naturally identified with C, under
which the coset (a, b)H goes to b ∈ C. Now at any possible multiply covered
f ∈ M̃, Gf ⊂ H iff Gf is the cyclic subgroup generated by µp . Its action on
G/H is given by µp ·(a, b)H = (µp, 0)(a, b)H , which is simply the multiplication
by µp after identifying G/H to C. Hence for any such f , a local uniformizing
system of M̃ ×G (G/H) at (f, 0) is given by (Sf × C, Gf ), where Gf acts by
µp ·(h, b) = (µp ·h, µpb). To obtain a smooth section u : M→ M̃×G (G/H), we
first pick a Gf –equivariant smooth section uf : Sf → Sf×C for some arbitrary
choice of a multiply covered f with Gf ⊂ H (note that if there is such an f ,
its orbit in M is unique, cf Lemma 4.1 (1)), then extend it to the rest of M,
where M̃×G (G/H)→M is an ordinary fiber bundle with a contractible fiber
C. We denote by M̂ → M the corresponding reduction to orbifold principal
H –bundle. Note that M̂ is naturally a 4–dimensional submanifold of M̃.

Fixing a choice of the reduction M̂ →M, we let Z ≡ M̂×HC be the associated
orbifold complex line bundle. Here C is canonically identified with Σ \ {z∞},
and hence the action of H on C is given by complex multiplication.

There is a canonically defined smooth map of orbifolds ψ : M̂×Σ→ X , which
induces the evaluation map (f, z) 7→ f(z) between the underlying spaces, cf
Proposition 3.3.5 in Part I of [3]. Note that each trivialization Sf × C of
Z → M over a slice Sf is a submanifold of M̂ × Σ, so that by restricting ψ
to Z , we obtain a smooth map of orbifolds Ev: Z → X , which induces the
evaluation map [(f, z)] 7→ f(z) between the underlying spaces.

Lemma 4.3 The map Ev : Z → X is a diffeomorphism of orbifolds onto
X \ {x}.

Proof First of all, the map Ev induces an injective map on the underlying
space. This is because each J –holomorphic curve parametrized by an f ∈
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M̂ is a suborbifold, and any two distinct such J –holomorphic curves C,C ′

intersect only at the singular point x. The latter follows from the facts that
(1) C ·C ′ ≤ C0 ·C0 = p

p+q < 1, so that by the intersection formula in Theorem
3.2, C,C ′ do not intersect at any smooth point of X , (2) there is at most one
such J –holomorphic curve containing the other singular point x′ of X .

Next we prove that the differential of Ev is invertible at each point of Z .
Clearly the differential of Ev is injective along each fiber of Z →M, because
each f ∈ M̂ is locally embedded on Σ \ {z∞}. Hence it suffices to show that
for any f ∈ M̂ and any u in the tangent space of M̂ at f which is not tangent
to the H –orbit through f , u(z) ∈ (TX)f(z) is not tangent to Im f for any
z ∈ Σ \ {z∞}. Note that u, being in the tangent space of M̂ at f , satisfies
DLf (u) = 0.

Now suppose to the contrary that u is tangent to Im f at some z ∈ Σ \ {z∞}.
We can choose complex coordinates w1, w2 on a local uniformizing system at
f(z) such that Im f is locally given by w2 = 0, and J equals the standard
complex structure J0 on w2 = 0 (cf Lemma 1.2.2 in [15], or the corrected
version of Lemma 2.5 in [14]). Let w = s +

√
−1t be a local holomorphic

coordinate on Σ centered at z , and set ∂ = ∂
∂w , ∂̄ = ∂

∂w̄ . Then

L(f) ≡ df + J ◦ df ◦ j = 0, ∀f ∈ [Σ;X]

can be written locally as

∂̄f i + aik̄(f)∂̄f̄k = 0,

where f = (f1, f2), and ai
k̄

is a 2×2 matrix of smooth complex valued functions
of w1, w2 which vanishes on w2 = 0, cf [14]. Let u1, u2 be the components of
u in the ∂

∂w1
, ∂
∂w2

directions, then DLf (u) = 0 implies that

∂̄u2 +Au2 +Bū2 = 0

for some smooth complex valued functions A,B of s, t. It follows easily that
u2 satisfies

|∆u2| ≤ c(|u2|+ |∂su2|+ |∂tu2|)

pointwise for some constant c > 0, where ∆ = ∂2
s + ∂2

t . Note that u2 is not
constantly zero but u2(z) = 0 by the assumption, hence by Hartman–Wintner’s
theorem [9],

u2(w) = awm +O(|w|m+1)

for some nonzero a ∈ C and integer m > 0.
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Let fλ , λ ≥ 0, be a local smooth path in M̂ starting at f which is tangent
to u at λ = 0. Then in the local coordinate system {w1, w2}, fλ is given by a
pair of functions w1 = f1

λ(w), w2 = f2
λ(w) which satisfy

(f1
λ(w), f2

λ(w)) = λ(u1(w), u2(w)) +O(λ2).

We introduce Fλ(w) = λ−1(f2
λ(w) − λawm). Then for any fixed, sufficiently

small λ 6= 0, there is an r = r(λ) > 0 such that |Fλ(w)| ≤ |a|rm for all w
satisfying |w| ≤ r . For any such fixed λ 6= 0, we define a sequence {w = wn |
|wn| ≤ r = r(λ), n = 1, 2, · · · } inductively by solving

Fλ(wn) + awmn+1 = 0,

then {wn} has a limit w0 in the disc |w| ≤ r = r(λ) satisfying

Fλ(w0) + awm0 = 0.

But this exactly means that f2
λ(w0) = 0, which in turn implies that Im fλ in-

tersects with Im f near f(z), for any sufficiently small λ 6= 0. A contradiction.

Hence u is nowhere tangent to Im f , and the differential of Ev: Z → X is
injective, hence invertible by dimension counting, at each point in Z .

To see that Ev maps the underlying space of Z onto that of X \{x}, note first
that the image of Ev is contained in X\{x} and is an open subset. The latter is
because the differential of Ev is invertible at each point of Z so that Ev induces
an open map between the underlying spaces. On the other hand, the image of
Ev is also closed in X \ {x}. To see this, suppose Ev([(fn, zn)]) = fn(zn) is
a sequence of points in X \ {x} which converges to p ∈ X \ {x}. Since M is
compact, a subsequence of fn (still denoted by fn for simplicity) converges in
C∞ to a f0 ∈ M̂ after reparametrization. If we let z0 be a limiting point of
zn in Σ, then z0 6= z∞ , because otherwise p = limn→∞ fn(zn) = f0(z∞) = x, a
contradiction. This implies that the image of Ev contains p = f0(z0), therefore
it is closed in X \ {x}. Hence Ev maps Z onto X \ {x}, and thus it is a
diffeomorphism from Z onto X \ {x}.

Proof of Theorem 1.1

First of all, note that by Lemma 4.3, M is connected, and has an orbifold point
of order p. The latter assertion is because there exists an f ∈ M̂ such that Im f
contains the singular point x′ ∈ X , so that f must be a multiply covered map.
Moreover, M is orientable, and we shall orient M such that with the canonical
orientation of orbifold complex line bundle on Z , the map Ev: Z → X is
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orientation-preserving. In order to determine the diffeomorphism type of M
and the isomorphism class of the orbifold complex line bundle Z → M, we
consider the family of regular neighborhoods of x:

Nε ≡ {(z1, z2) | |z1|2 + |z2|2 ≤ ε2}/Z(p+q)

where z1, z2 are holomorphic coordinates on a local uniformizing system at x in
which C0 is locally given by z2 = 0 and C ′0 , the unique J –holomorphic curve
containing both x, x′ , is locally given by z1 = 0.

Claim There exists an ε0 > 0 such that for any 0 < ε ≤ ε0 , ∂Nε intersects
transversely with each J –holomorphic curve in the family parametrized by M
at a simple closed loop.

Proof For each λ ∈ M, pick a local representative (f̂λ, ρλ) of a member
fλ ∈ M̃ whose orbit in M is λ, and set Cλ ≡ Im fλ . Here ρλ(µ(p+q)) acts
by (z1, z2) 7→ (µ(p+q)z1, µ

p
(p+q)z2), and f̂λ = (Uλ, Vλ) for some holomorphic

functions Uλ, Vλ defined on D = {z ∈ C | |z| ≤ 1}. Observe (1) since M is
compact, we may assume that for any sequence λi ∈M converging to λ0 ∈M,
there is a subsequence of λi , still denoted by λi , such that f̂λi converges to
f̂λ0◦ξ for some holomorphic reparametrization ξ of D , (2) for any Cλ 6= C0, C

′
0 ,

Cλ ·C0 = p
p+q and Cλ ·C ′0 = 1

p+q , so that by the intersection formula in Theorem
3.2, for any such a λ, Uλ(z) = aλ,1z + · · · , Vλ(z) = bλ,pz

p + · · · near z = 0
for some aλ,1 6= 0, bλ,p 6= 0. (For C0 or C ′0 , f̂λ(z) equals (aλ,1z + · · · , 0) or
(0, bλ,pzp + · · · ) near z = 0.)

Now for each λ ∈M, we write Uλ(z) = aλ,1z · uλ(z), Vλ(z) = bλ,pz
p · vλ(z) on

D . Then there exist 0 < r0 ≤ 1, 0 < δ0 < 1, and c > 0, which are independent
of λ, such that

1− δ0 ≤ |uλ(z)|, |vλ(z)| ≤ 1 + δ0, and |duλ(z)| + |dvλ(z)| ≤ c

when |z| ≤ r0 . Write z = r exp(
√
−1θ), and set

µλ(r, θ) ≡ |Uλ(z)|2 + |Vλ(z)|2.

Then each µλ is subharmonic on D , and a simple calculation shows that

∂µλ(r, θ)
∂r

= |aλ,1|2r(2|uλ|2 + r
∂

∂r
|uλ|2) + |bλ,p|2r2p−1(2p|vλ|2 + r

∂

∂r
|vλ|2),

from which it follows that there exists 0 < r′0 ≤ r0 such that

∂µλ(r, θ)
∂r

> 0
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for all λ ∈M whenever 0 < r ≤ r′0 .

It remains to check that (1) there exists an ε0 > 0 such that µλ(r, θ) ≤ ε20
implies r ≤ r′0 , (2) assuming the validity of (1), for any 0 < ε ≤ ε0 , the
intersection of ∂Nε with each Cλ , which is transverse because ∂µλ

∂r > 0 on
µ−1
λ (ε) by the validity of (1), is a simple closed loop.

To see the former, note that µλ(r, θ) ≤ ε20 implies

r ≤ 2ε0
|aλ,1| · |uλ|+ (|bλ,p| · |vλ|)1/p

,

where on the other hand, it is easily seen that there exists a c1 > 0 such that
for any λ ∈M and |z| ≤ r0 ,

|aλ,1| · |uλ|+ (|bλ,p| · |vλ|)1/p ≥ c1.

To see the latter, suppose the intersection of ∂Nε with some Cλ consists of at
least two components. Then either one of them bounds a disc in D \ {0}, or
there is an annulus in D \ {0} bounded by them. In any event, µλ will attain
its minimum on the region at an interior point of the region (note that µλ is
subharmonic on D), contradicting the fact that ∂µλ(r,θ)

∂r > 0 there. Hence the
claim.

Back to the proof of Theorem 1.1. Let E → M be the orbifold bundle of
unit disc associated to Z . Then the claim above implies that X \ int(Nε) is
diffeomorphic to E for any 0 < ε ≤ ε0 . In particular, ∂E is diffeomorphic to
∂Nε = L(p + q, p). Note that ∂E → M defines a Seifert fibration of the lens
space L(p+q, p) with one singular fiber of order p. Moreover, the Euler number
of the Seifert fibration, which equals the self-intersection of the image of the
zero section of Z under the map Ev: Z → X , is 1+ q

p because it has a positive
and transverse intersection with C0 at a smooth point of X . This completely
determines the diffeomorphism type of M and the isomorphism class of Z .

Now observe that the same thing works for X(p,q)(R) as well. In particular, the
isomorphism class of Z is independent of X and X(p,q)(R). Fix an ε > 0 and
set N ≡ Nε . Then from the proceeding paragraph, there are decompositions
X = N ∪φ1 E and X(p,q)(R) = N ∪φ2 E , where if we let γ = {z2 = 0}∩∂N and
let γ′ = C0 ∩ ∂E , then φi(γ) = γ′ , i = 1, 2. Without loss of generality, we may
assume φ2 = Id and γ′ = γ by fixing an identification of ∂E with ∂N . With
this understood, we claim that φ1 is isotopic to the identity through a family
of diffeomorphisms φt : ∂N → ∂N such that φt(γ) = γ .
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First, assuming the validity of the claim, we obtain consequently a diffeomor-
phism of orbifold pairs ψ : (X,C0) → (X(p,q)(R), C0), which preserves the sin-
gular point of order p in X and X(p,q)(R). By restricting ψ to the complement
of a regular neighborhood of the union of the singular point of order p and the
suborbifold C0 , we obtain a diffeomorphism ψ′ : W → L(p, q)× [0, 1].

It remains to verify the claim that φ1 is isotopic to the identity through a
family of diffeomorphisms φt : ∂N → ∂N such that φt(γ) = γ . To this end, let
Y be the complement of a regular neighborhood of γ in ∂N . Then π1(Y ) is
generated by the image of π1(∂Y ) in π1(Y ) induced by the inclusion ∂Y ⊂ Y ,
ie, π1(Y ) is generated by the longitude and the meridian in ∂Y ≡ T 2 . The
diffeomorphism φ1|Y induces an automorphism of π1(Y ) which is unique up to
conjugation. In the present case, it is clear that the automorphism of π1(Y )
can be chosen to be the identity map. Hence by the theorem of Waldhausen in
[19], there exists an isotopy φ′t : Y → Y between φ1|Y and Id. Moreover, we
may assume that φ′t|∂Y : T 2 → T 2 is given by a family of linear translations,
cf [5]. The latter implies particularly that φ′t can be extended to an isotopy φt
from φ1 to Id which satisfies φt(γ) = γ . Hence the claim.

Proof of Corollary 1.2

By Smith’s theory (cf page 43 in [1]), and by the assumption that ρ is free
outside of a ball, we see easily that ρ is free in the complement of its fixed-point
set, which consists of a single point. Then by applying (the proof of) Theorem
1.1 to the quotient space of ρ, it follows easily that ρ is conjugate to a linear
action by a diffeomorphism of R4 . To see that the diffeomorphism can be made
identity outside of a ball, we note that in the diffeomorphism ψ : (X,C0) →
(X(p,q)(R), C0) constructed in the proof of Theorem 1.1, ψ|C0 : C0 → C0 is
isotopic to identity, from which it follows easily.
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