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890 Ciprian Manolescu

1 Introduction

Given a metric and a spin® structure ¢ on a closed, oriented three-manifold Y
with by (Y) = 0; it is part of the mathematical folklore that the Seiberg{Witten
equationson R Y should produce a version of Floer homology. Unfortunately,
a large amount of work is necessary to take care of all the technical obstacles and
to this day there are few accounts of this construction available in the literature.
One di culty isto nd appropriate perturbations in order to guarantee Morse{
Smale transversality. Another obstacle is the existence of a reducible solution.
There are two ways of taking care of the latter problem: one could either ignore
the reducible and obtain a metric dependent Floer homology, or one could do
a more involved construction, taking into account the S*{equivariance of the
equations, and get a metric independent equivariant Floer homology (see [18],

[20]).

In this paper we construct a pointed S*{space SWF(Y;¢) well-de ned up to sta-
ble S*{homotopy equivalence whose reduced equivariant homology agrees with
the equivariant Seiberg{Witten{Floer homology. For example, SWF(S3;¢) =
SO This provides a construction of a \Floer homotopy type" (as imagined by
Cohen, Jones, and Segal in [6]) in the context of Seiberg{Witten theory. It
turns out that this new invariant is metric independent and its de nition does
not require taking particular care of the reducible solution. Moreover, many
of the other complications associated with de ning Floer homology, such as
nding appropriate generic perturbations, are avoided.

To be more precise, SWF(Y;¢) will be an object of a category ¢; the S'{
equivariant analogue of the Spanier{Whitehead graded suspension category.
We denote an object of € by (X; m;n); where X is a pointed topological space
with an S'{action, m 2 Z and n 2 Q: The interpretation is that X has
index (m;n) in terms of suspensions by the representations R and C of S?:
For example, (X;m;n);(R*™ ~X;m + 1;n); and (C* ~ X;m;n + 1) are all
isomorphic in €: We extend the notation (X;m;n) to denote the shift of any
X 2 Ob ¢: We need to allow n to be a rational number rather than an integer
because the natural choice of n in the de nition of our invariant will not always
turn out to be an integer. This small twist causes no problems in the theory.
We also use the notation ~EX to denote the formal desuspension of X by a
vector space E with semifree S action.

The main ingredient in the construction is the idea of nite dimensional ap-
proximation, as developed by M Furuta and S Bauer in [13], [4], [5]. The
Seiberg{Witten map can be written as a sum I +c : V ¥ V: where V =
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Seiberg{Witten{Floer stable homotopy types 891

ikerd T (Wp) QYY) I(Wp); I= d @ isa linear Fredholm, self-adjoint
operator, and c is compact as a map between suitable Sobolev completions of
V: Here V is an in nite-dimensional space, but we can restrict to V ; the span
of all eigenspaces of | with eigenvalues in the interval ( ; ]: Note that is
usually taken to be negative and  positive. If p denotes the projection to
the nite dimensional space V ; the map |+ p c generates an S!{equivariant
flow on V ; with trajectories

X:R B V; %x(t) =—({+p c)x(b):

If we restrict to a su ciently large ball, we can use a well-known invariant
associated with such flows, the Conley index I : In our case this is an element
in S1{equivariant pointed homotopy type, but we will often identify it with the
S!{space that is used to de ne it.

In section 6 we will introduce an invariant n(Y;c;g) 2 Q which encodes the
spectral flow of the Dirac operator. For now it su ces to know that n(Y;c;g)
depends on the Riemannian metric g on Y; but not on and : Our main
result is the following:

Theorem 1 For — and su ciently large, the object ( Vo o; n(Y;c;9))
depends only on Y and ¢; up to canonical isomorphism in the category ¢:

We call the isomorphism class of SWF(Y;¢) = ( V0 n(Y;c;g)) the equiv-
ariant Seiberg{Witten{Floer stable homotopy type of (Y;¢):

It will follow from the construction that the equivariant homology of SWF
equals the Morse{Bott homology computed from the (suitably perturbed) gra-
dient flow of the Chern{Simons{Dirac functional on a ball in V : We call this
the Seiberg{Witten Floer homology of (Y;¢):

Note that one can think of this nite dimensional flow as a perturbation of
the Seiberg{Witten flow on V: In [20], Marcolli and Wang used more standard
perturbations to de ne equivariant Seiberg{Witten Floer homology of rational
homology 3{spheres. A similar construction for all 3{manifolds is the object
of forthcoming work of Kronheimer and Mrowka [18]. It might be possible to
prove that our de nition is equivalent to these by using a homotopy argument
as — ; ¥ 7. However, such an argument would have to deal with both types
of perturbations at the same time. In particular, it would have to involve the
whole technical machinery of [20] or [18] in order to achieve a version of Morse{
Smale transversality, and this is not the goal of the present paper. We prefer
to work with SWF as it is de ned here.
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892 Ciprian Manolescu

In section 9 we construct a relative Seiberg{Witten invariant of four-manifolds
with boundary. Suppose that the boundary Y of a compact, oriented four-
manifold X is a (possibly empty) disjoint union of rational homology 3{spheres,
and that X has a spin® structure ¢ which restricts to ¢ on Y: For any version
of Floer homology, one expects that the solutions of the Seiberg{Witten (or
instanton) equations on X induce by restriction to the boundary an element in
the Floer homology of Y: In our case, let Ind be the virtual index bundle over
the Picard torus HX(X;R)=H(X;Z) corresponding to the Dirac operators on
X: If we write Ind as the di erence between a vector bundle E with Thom space
T(E) and a trivial bundle R C ; then let us denote T(Ind) = (T(E); ; +
n(Y;c;g)) 2 Ob &: The correction term n(Y;c;g) is included to make T (Ind)
metric independent. We will prove the following:

Theorem 2 Finite dimensional approximation of the Seiberg{Witten equa-
tions on X gives an equivariant stable homotopy class of maps:

W(X;®) 2 £(T (Ind); by (X); 0); SWF(Y; c)gs1:

The invariant ¥ depends only on X and ¢; up to canonical isomorphism.

In particular, when X is closed we recover the Bauer{Furuta invariant ¥ from
[4]. Also, in the general case by composing W with the Hurewicz map we obtain
a relative invariant of X with values in the Seiberg{Witten{Floer homology of
Y:

When X is a cobordism between two 3{manifolds Y; and Y, with b; = 0; we
will see that the invariant W can be interpreted as a morphism Dx between
SWF(Y1) and SWF(Y;); with a possible shift in degree. (We omit the spin®
structures from notation for simplicity.)

We expect the following gluing result to be true:
Conjecture 1 If Xy is a cobordism between Y; and Y, and X5 is a cobordism
between Y, and Y3; then

D)(1 [X: = sz Dxll
A particular case of this conjecture (for connected sums of closed four-manifolds)
was proved in [5]. Note that if Conjecture 1 were true, this would give a con-

struction of a \spectrum-valued topological quantum eld theory" in 3+1 di-
mensions, at least for manifolds with boundary rational homology 3{spheres.

In section 10 we present an application of Theorem 2. We specialize to the case
of four-manifolds with boundary that have negative de nite intersection form.
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For every integer r 0 we construct an element y, 2 H2 1 (swf' (Y; ¢;9; );Z);
where swf'™" is a metric dependent invariant to be de ned in section 8 (roughly,
it equals half of the irreducible part of SWF.) We show the following bound,
which parallels the one obtained by Fr yshov in [12]:

Theorem 3 Let X be a smooth, compact, oriented 4{manifold such that
b5 (X) = 0 and @X =Y has bi(Y) = 0: Then every characteristic element
¢ 2 Hy(X; @X)=Torsion satis es:

2
% max igr]f I:I—n(Y; ¢;g) + minfrjy, =0g :
Acknowledgements This paper was part of the author’s senior thesis. | am
extremely grateful to my advisor, Peter Kronheimer, for entrusting this project
to me, and for all his invaluable support. | would also like to thank Lars Hes-
selholt, Michael Hopkins, and Michael Mandell for having taken the time to
answer my questions on equivariant stable homotopy theory. | am grateful to
Tom Mrowka, Octavian Cornea, Dragos Oprea and Jake Rasmussen for helpful
conversations, and to Ming Xu for pointing out a mistake in a previous ver-
sion. Finally, I would like to thank the Harvard College Research Program for
partially funding this work.

2 Seiberg{Witten trajectories

We start by reviewing a few basic facts about the Seiberg{Witten equations on
three-manifolds and cylinders. Part of our exposition is inspired from [16], [17],
and [18].

Let Y be an oriented 3{manifold endowed with a metric g and a spin® structure
¢ with spinor bundle Wq: Our orientation convention for the Cli ord multipli-
cation :TY ¥ End (Wp) isthat (e1) (e2) (e3) =1 for an oriented frame e;:
Let L = det(Wy); and assume that b;(Y ) = 0: The fact that b,(Y ) = 0 implies
the existence of a flat spin® connection Ag: This allows us to identify the a ne
space of spin® connections A on Wq with iQ!(Y ) by the correspondence which
sends a 2 iQ(Y) to Ag + a:

Let us denote by @, = (a) + @ : '(Wp) ¥ I'(Wp) the Dirac operator associ-
ated to the connection Ag + a: In particular, @ = @, corresponds to the flat
connection.
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894 Ciprian Manolescu

The gauge group G = Map(Y;S?) acts on the space iQX(Y) I'(Wp) by
u@ )=(@—utdu;u ):

It is convenient to work with the completions of iQ'(Y) (W) and G in the
L2,, and LZ,, norms, respectively, where k 4 isa xed integer. In general,
we denote the L2 completion of a space E by LZ(E):

The Chern{Simons{Dirac functional is de ned on LZ,,(iQ'(Y) T (Wo)) by
Z Z

101 .
CSD(a; )=- — a”da+ h ;@, idvol :
2y - v
We have CSD(u (a; ))—CSD(a; ) =3 , u"'du~da = 0 because H(Y ;Z) =

0; so the CSD functional is gauge invariant. A simple computation shows that
its gradient (for the L? metric) is the vector eld

rcSD(@; )=(da+ (; )8, )

where is the bilinear formde nedby ( ; )= % )o and the subscript
0 denotes the trace-free part.

The Seiberg{Witten equations on Y are given by
da+ (; )=0 6, =0
so their solutions are the critical points of the Chern{Simons{Dirac functional.

A solution is called reducible if =0 and irreducible otherwise.

The following result is well-known (see [17] for the analogue in four dimensions,
or see [16]):

Lemma 1 Let (a; ) be a C? solution to the Seiberg{Witten equations on
Y: Then there exists a gauge transformation u such that u(a; ) is smooth.
Moreover, there are upper bounds on all the C™ norms of u(a; ) which depend
only on the metric on Y:

Let us look at trajectories of the downward gradient flow of the CSD functional:
x=(a; ):R ¥ L2, ,(iQYY) T[(Wo)); %x(t) = —rCsSD(x(t)): (1)

Seiberg{Witten trajectories x(t) as above can be interpreted in a standard way
as solutions of the four-dimensional monopole equations on the cylinder R Y:
A spin® structure on Y induces one on R Y with spinor bundles W ; and
a path of spinors (t) on Y can be viewed as a positive spinor 2 [(W™):
Similarly, a path of connections Ag + a(t) on Y produces a spin® connection
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A on R Y by adding a d=dt component to the covariant derivative. There
is a corresponding Dirac operator D : F(W™) ¥ (W™): Let us denote by
FA the self-dual part of half the curvature of the connection induced by A on
det(W ) and let us extend Cli ord multiplication ~ to 2{forms in the usual
way. Set ( ; ) =" )o: The fact that x(t) = (a(t); (t)) satis es (1)
can be written as

Dr =0, Fx = ()

These are exactly the four-dimensional Seiberg{Witten equations.

De nition 1 A Seiberg{Witten trajectory x(t) is said to be of nite type if
both CSD(x(t)) and k (t)kco are bounded functions of t:

Before proving a compactness result for trajectories of nite type analogous to
Lemma 1, we need to de ne a useful concept. If (A; ) are a spin® connection
and a positive spinor on a comapct 4{manifold X; we say that the energy of
(A; ) is the quantity:

1 1 S
E A’ — .F .2+.r .2+_. .4+_. .2 ;
( )ZXJAJJAJ g g
where s denotes the scalar curvature. It is easy to see that E is gauge invariant.

In the case when X =[ ; ] Y and (A; ) is a Seiberg{Witten trajectory
x(t) = (a(t); (©);t 2 ; ], the energy can be written as the change in the
CSD functional. Indeed,

i
CSD(x( ))—CSD(X( )=  k(@=0t)a(t)k?, + k(@=0t) (K%, dt (2)
Z 0 o
= Jda+ (;)i’+j8, j?
ZX

L1 ., . o 1. .4 s. .
= Jdafjra jPgj ity
X
It is now easy to see that the last expression equals E(A; ): In the last step
of the derivation we have used the Weitzenbock formula.

We have the following important result for nite type trajectories:

Proposition 1 There exist Cyy > 0 such that for any (a; ) 2 L2,,({iQ(Y)
M(Wop)) which is equal to x(tp) for some tg 2 R and some Seiberg{Witten
trajectory of nite type x : R ¥ L2, (iQY(Y) T(Wp)), there exists (a% ")
smooth and gauge equivalent to (a; ) such that k@@'; “)kem  Cn, for all
m > 0:
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First we must prove:

Lemma 2 Let X be a four-dimensional Riemannian manifold with boundary
such that H1(X;R) = 0: Denote by  the unit normal vector to @X: Then there
is a constant K > 0 such that for any A 2 Q'(X) continuously di erentiable,
with A( ) =0 on @X; %Ne have: .

AP <K (jdAj? +jd Aj):
X X

Proof Assume there is no such K. Then we can nd a sequence of normalized
An 2 Q1 with 7 7
jAnj2 =1 (J.dAnj2 +jd Anjz) L0
X X
The additional condition An( ) = 0 allows us to integrate by parts in the

Weitzenb'o'cszormula to obtain: 7

JrAnj© +hRic(An); Ani = jdAR© +jd Anj© -
X X

Since Ric is a bounded tensor of A, we obtain a uniform bound on krAnk, 2:
By replacing A, with a subsequence we can assume that A, converge weakly
in L% norm to some A such that dA = d A = 0: Furthermore, since the
restriction map from L2(X) to L2(@X) is compact, we can also assume that
Anjex ¥ Ajpx in L2(@X): Hence A( ) =0 on @X (Neumann boundary value
condition) and A is harmonic on X; so A = 0: This contradicts the strong L?
convergence An, ¥ A and the fact that kAnk, 2 = 1: ]

Proof of Proposition 1 We start by deriving a pointwise bound on the spin-
orial part. Consider a trajectory of nite type x =(a; ):R ¥ L2, (iQ(Y)
M(Wp)): Let S be the supremum of the pointwise norm of (t) over R Y:
If j ((y)j = S for some (y;t) 2 R Y; since (t) 2 L2 C? we have

j j> 0 at that point. Here s the four-dimensional Laplacian on R Y:
By the standard compactness argument for the Seiberg{Witten equations [17],
we obtain an upper bound for j j which depends only on the metric on Y:

If the supremum is not attained, we can nd a sequence (yn;tn) 2 R Y with
j (t)(yn)j ¥ S: Without loss of generality, by passing to a subsequence we
can assume that y, ® y 2 Y and tp+1 >t +2 (hence t, ¥ 1). Viaa
reparametrization, the restriction of x to each interval [t, — 1;t, + 1] can be
interpreted as a solution (An; n) of the Seiberg{Witten equations on X =
[-1;1] Y: The nite type hypothesis and formula (2) give uniform bounds on
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J nj and kdAnk2: Here we identify connections with 1{forms by comparing
them to the standard product flat connection.

We can modify (An; n) by a gauge transformation on X so that we obtain
d Apb =0 on X and A,(@=@t) = 0 on @X: Using Lemma 2 we get a uniform
bound on kApk, 2: After this point the Seiberg{Witten equations

DXH n=0; d"A, = (nn

provide bounds on all the Sobolev norms of Anjxo and njxo by elliptic boot-
strapping. Here X could be any compact subset in the interior of X; for
example [—1=2;1=2] :

Thus, after to passing to a subsequence we can assume that (An; n)jxe con-
verges in C1 to some (A; ); up to some gauge transformations. Note that
the energies on X’
[ 1 1 Z th+1=2
E'(An; n) = CSD(X(th—3))~CSD(X(tn+3)) = o k(@=0t)x (D) -dt
th—1=

are positive, while the series Pn E'(An; 1) is convergent because CSD is
bounded. It follows that E'(An; n) ® Oasn ¥ 1;s0 E'(A; )=0:1In
temporal gauge on X', (A; ) must be of the form (a(t); (t)); where a(t) and

(t) are constant in t; giving a solution of the Seiberg{Witten equations on Y:
By Lemma 1, there is an upper bound for j (0)(y)j which depends only on Y:
Now (tn)(yn) converges to (0)(y) up to some gauge transformation, hence
the upper bound also applies to limyj (th)(Yn)i = S:

Therefore, in all cases we have a uniform bound k (t)kco C for all t and for
all trajectories.

The next step is to deduce a similar bound for the absolute value of CSD(x(t)):
Observe that CSD(x(t)) > CSD(x(n)) for all n su ciently large. As before,
we interpret the restriction of x to each interval [n — 1;n + 1] as a solution
of the Seiberg{Witten equations on [—1;1] Y: Then we nd that a subse-
quence of these solutions restricted to X" converges to some (A; ) in C1:
Also, (A; ) must be constant in temporal gauge. We deduce that a subse-
quence of CSD(x(n)) converges to CSD(a; ), where (a; ) is a solution of
the Seiberg{Witten equations on Y: Using Lemma 1, we get a lower bound for
CSD(x(t)): An upper bound can be obtained similarly.

Now let us concentrate on a speci ¢ X(tg): By a linear reparametrization, we
can assume to = 0: Let X =[—1;1] VY: Then (A; ) = (a(t); (t)) satis es the
4{dimensional Seiberg{Witten equations. The formula (2) and the bounds on
j j and jCSDj imply a uniform bound on kdAk, 2: Via a gauge transformation
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on X we can assume that d A =0 on X and Ay( ) =0 on @X: By Lemma 2
we obtain a bound on kAk; > and then, by elliptic bootstrapping, on all Sobolev
norms of A and : The desired C™ bounds follow. ]

The same proof works in the setting of a half-trajectory of nite type glued to
a four-manifold with boundary. We state here the relevant result, which will
prove useful to us in section 9.

Proposition 2 Let X be a Riemannian four-manifold with a cylindrical end
U isometric to (0; 1) R; and such that X nU is compact. Let t > 0 and
Xe=Xn(t; 1) R): Then there exist Cy:¢ = 0 such that any monopole on
X which is gauge equivalent to a half-trajectory of nite type over U is in fact
gauge equivalent over X; to a smooth monopole (A; ) such that k(A; )kcm
Cm:t for all m > 0:

3 Projection to the Coulomb gauge slice

Let Go besthe group of \normalized™ gauge transformations, ie, u:Y ¥ Stiu=
e' with v = 0 for any connected component Y; of Y: It will be helpful to
work on the space

V =ikerd ['(Wp):
For (a; ) 2iQY(Y) TI'(Wp); there is a unique element of V which is equivalent
to (a; ) by atransformation in Go: We call this element the Coulomb projection
of (a; ):
Denote by  the orthogonal projection from Q(Y) to kerd : The space V in-
herits a metric g from the L? inner product on iQ(Y) (W) in the following
way: given (b; ) a tangent vector at (a; ) 2 V; we set

k(; kg =k(b; )+ (=id ;i k2
where 2 Gg issuch that (b—id ; +1i ) isin Coulomb gauge, ie,
d(b—id)+2iRehi ; +i i=0:
The trajectories of the CSD functional restricted to V in this metric are the
same as the Coulomb projections of the trajectories of the CSD functional on
iQL(Y) T(Wp):
For 2T (Wp); notethat (1— ) ( ; )Z(Jéerd )? = Imd: De ne ():
Y " Rbyd()=i1— ) (; ) and Y; () = 0 for all connected
components Yj Y:
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Then the gradient of CSDjy in the g metric can be written as | + c¢; where
l;c:V XV aregiven by
1@ )= (da8 )
ca )= (;)x @ —i()
Thus from now on we can concentrate on trajectories X : R ¥ V; (@=0t)x(t) =
—(lI+c)x(t): More generally, we can look at such trajectories with values in the
L2, , completion of V: Note that I+c: L2, (V) ¥ LZ(V) is a continuous map.
We construct all Sobolev norms on V using | as the di erentiation operator:
w Z
kka% Wy = jH (v)j2dvol:
i=o0 Y
Consider such trajectories x : R 1 L§+1(V);k 4: Assuming they are of
nite type, from Proposition 1 we know that they are locally the projections of
smooth trajectories living in the ball of of radius C,,, in the C™ norm, for each

m: We deduce that x(t) 2V for all t; x is smooth in t and there is a uniform
bound on kx(t)kcm for each m:

4 Finite dimensional approximation

In this section we use Furuta’s technique to prove an essential compactness
result for approximate Seiberg{Witten trajectories.

Note that the operator | de ned in the previous section is self-adjoint, so has
only real eigenvalues. In the standard L2 metric, let p be the orthogonal
projection from V to the nite dimensional subspace V spanned by the eigen-
vectors of | with eigenvalues in the interval ( ; ]

It is useful to consider a modi cation of the projections so that we have a
continuous family of maps, as in [14]. Thuslet : R ¥ [0; 1) be a smooth
function so that (X) >0 O x 2 (0;1) and the integral of is 1: For each
—; >1,; set zZ,
p = ()p,d:

0
Now p :V ¥ V varies continuously in and : Also V. = Im(p ); except
when is an eigenvalue. Let us modify the de nition of V slightly so that
it is always the image of p ): (However, we only do that for > 1; later on,

when we talk about V , for < 0; for technical reasons we still want it to
be the span of eigenspaces with eigenvalues in ( ”; ]:)
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Let kK 4 Then ¢ : L2,,(V) ¥ L2(V) is a compact map. This follows
from the following facts:  maps LZ,, to L2,,; the Sobolev multiplication
L2,, LZ,, ¥ L2, iscontinuous; and the inclusion LZ,, ¥ L2 is compact.

A useful consequence of the compactness of ¢ is that we have
k(1—p )c(x)k,_ﬁ 10
when — ; ¥ 1; uniformly in x when x is bounded in L2, ,(V):

Let us now denote by B(R) the open ball of radius R in L§+1(V): We know
that there exists R > 0 such that all the nite type trajectories of | + ¢ are
inside B(R).

Proposition 3 For any — and su ciently large, if a trajectory x : R
L§+1(V );

(1+p M) = —%x(t)

satis es x(t) 2 B(2R) for all t; then in fact x(t) 2 B(R) for all t:

We organize the proof in three steps.

Step 1 Assume that the conclusion is false, so there exist sequences — ; n I
1 and corresponding trajectories X, : R ¥ B(2R) satisfying
n @
(I+p no)(xn(t) = _@Xn(t);
and (after a linear reparametrization) x,(0)  B(R): Let us denote for simplic-
ity n=p"and "=1— p:Since | and c are bounded maps from L2,.(V)

to L2(V); there is a uniform bound

k%xn(t)k,_ﬁ KIGn (D)) z + K nC(xn(D)ky 2
It ()i z + ke(n()kiz
Ckxn(t)kz . 2CR

for some constant C; independent of n and t: Therefore x, are equicontinuous
in L2 norm. They also sit inside a compact subset B! of L2(V); the closure
of B(2R) in this norm. After extracting a subsequence we can assume by the
Arzela{Ascoli theorem that x, converge to some X : R ¥ BY; uniformly in L2
norm over compact sets of t 2 R: Letting n go to in nity we obtain

—%xn(t) = (1 + Oxn(®) = "c(xn(®) ¥ (I +OX(t)
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in L2_,(V); uniformly on compact sets of t: From here we get that
z t z t
@
Xn(t) = —Xn(s)ds ¥ — (I +c)(x(s))ds:
o @t 0

On the other hand, we also know that x,(t) converges to Xx(t); so

(I +c)x() = —%x(t):

The Chern{Simons{Dirac functional and the pointwise norm of the spinorial
part are bounded on the compact set B!. We conclude that x(t) is the Coulomb
projection of a nite type trajectory for the usual Seiberg{Witten equations on
Y: In particular, x(t) is smooth, both on Y and in the t direction. Also
Xx(0) 2 B(R): Thus

kx(O)kLﬁ+1 <R: (©))

We seek to obtain a contradiction between (3) and the fact that x,(0)  B(R)
for any n:

Step 2 Let W be the vector space of trajectories x : [—1;1] ¥ V;x(t) =
(a(t); (t)): We can introduce Sobolev norms L3, on this space by looking at
a(t); (t) as sections of bundles over [—1;1] Y:

We will prove that xn(t) ¥ x(t) in L2(W):

To do this, it su ces to prove that for every j(O J k) we have

@ ! e !
= || il
in Lﬁ_j (V); uniformly in t; for t 2 [—1; 1]: We already know this statement to

be true for j = 0; so we proceed by induction on j:

Assume that

ot Xn(t) ¥ % x(t) in L2_o(V);
uniformly in t; for all s j: Then
@ I+t @ IC]
T oAt (Xn(t) —x() = at I+ o)X (D) — (I + ) (x(D))
@ ! @ ! n 07 _
=1 at Xn(@M—x(1) + n at (c(xn(D)—c(x(D)) — at c(x(®) :

Here we have used the linearity of I; , and ": We discuss each of the three
terms in the sum above separately and prove that each of them converges to 0
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in L_;_; uniformly in t: For the rst term this is clear, because | is a bounded
linear map from L§_. to Lg_;_;:

For the third term, y(t) = (@=0t)'c(x(t)) is smooth over [—1;1] Y by what
we showed in Step 1, and k "y(t)k ¥ 0 for each t 2 [—1;1] by the spectral
theorem. Here the norm can be any Sobolev norm, in particular Lﬁ_j_l: The
convergence is uniform in t because of smoothness in the t direction. Indeed,
assume that we can nd >0 and t, 2 [—1;1] so that k "y(ty)k for all
n: By going to a subsequence we can assume t, ¥ t2[—1;1]: Then

k Ty(tn)k Kk "(y(ta) —y(D)k +k "y(tk

This is a contradiction. The last expression converges to zero because the rst
term is less or equal to ky(t,) — y(t)k:

All that remains is to deal with the second term. Since k vk kyk for every
Sobolev norm, it su ces to show that
@ @

J J
gt Con®) T o cx(®) in Lia(V)

uniformly in t: In fact we will prove a stronger L2_j convergence. Note that
¢(Xn) is quadratic in X, = (an; n) except for the term —i ( n) n: Expanding
(@=@t) c(xn(t)) by the Leibniz rule, we get expressions of the form

@ e 1

ot ot
where zn; Wy are either () or local coordinates of x,: Assume they are both
local coordinates of x,: By the inductive hypothesis, we have (@=01)%z(t) ¥
(@=01)°z(t) in Li_¢ and (@=0t)' wn(t) ¥ (@=0t)' *w(t) in L§_;,s both
uniformly in t. Note that max (k —s;k—j+s) (k—s+k—j+s)=2 =
k—((=2) k=2 2: Therefore there is a Sobolev multiplication

2 WD)

2 2 2
Lk—s I—k—j +s ! I—min(k—s;k—j +s)
and the last space is contained in Lﬁ_j: It follows that

%Szn(t) 0 o £ & we

ot ot ot
in Lﬁ_j; uniformly in t:
The same is true when one or both of z,;w, are ( p): Clearly it is enough to
show that (@=0t)° ( n(t)) ¥ (@=0t)° ( (¥)) in L2_; uniformly in t; for s j:

But from the discussion above we know that this is true if instead of we had
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d ; because this is quadratic in ,: Hence the convergence is also true for
This concludes the inductive step.

Step 3 The argument in this part is based on elliptic bootstrapping for the
equations on X =[—1;1] Y: Namely, the operator D = —@=@t — | acting on
W is Fredholm (being the restriction of an elliptic operator). We know that

Dxn(t) = nc(Xn(1));

where Xp(t) ¥ x(t) in Lﬁ(W): We prove by induction on m  k that x,(t) ¥
x(t) in L2,(Wm); where Wy, is the restriction of W to Xm = Iy, Y and

m = [—1=2 — 1=m; 1=2 + 1=m]: Assume this is true for m and we prove it for
m + 1. The elliptic estimate gives

L1
kXn(©) =XKLz  wmey) © KDXn(®)=X(0))KLz, (wim) +kXn(O) =X(OKL2 (W)
c I%I nC(Xn (1) — nc(X()k +k "c(x(t))k + kxn(t) — x(D)kK : 4)

In the last expression all norms are taken in the L2 (W) norm. We prove that
each of the three terms converges to zero when n ¥ 1A.: This is clear for the
third term from the inductive hypothesis.

For the rst term, note that nc is quadratic in Xn(t); apart from the term
involving  ( n(t)): Looking at xn(t) as L2, sections of a bundle over Xp,; the
Sobolev multiplication L2, L2, ¥ L2 tells us that the quadratic terms are con-
tinuous maps from L2 (Wp,) to itself. From here we also deduce that d ( n(t));
which is quadratic in its argument, converges to d ( (t)): By integrating over
Im we get:

Z Z

| k (n(®)— ( Okez_ (v | C kd (n()—d ( D)kezv)

The right hand side of this inequality converges to zeroas n ¥ 1; hence so does
the left hand side. Furthermore, the same is true if we replace by (@=@t)°
and m by m—s: Therefore, n( n(t)) ¥ ( (t)) in L% (Wm); so by the Sobolev
multiplication the rst term in (4) converges to zero.

Finally, for the second term in (4), recall from Step 1 that c(x(t)) is smooth.
Hence "(@=@t)°c(x(t)) converges to zeroin L3 (V); for each t and forall s  0:
The convergence is uniform in t because of smoothness in the t direction, by
an argument similar to the one in Step 2. We deduce that

K "(8=01)°cOX()KLz, W) ¥ O

as well.
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Now we can conclude that the inductive step works, so Xn(t) ¥ x(t) in L2,(W")
for all m if we take W' to be the restriction of W to [—1=2;1=2] Y: Con-
vergence in all Sobolev norms means C1 convergence, so in particular x,(0) 2
C1(V) and x,(0) ¥ x(0) in CL: Hence

an(O)kLﬁ+1(V) ! kX(O)kLﬁ_‘_l(V):

We obtain a contradiction with the fact that x,(0)  B(R); so kxn (O)k,_ﬁﬂ(v)
R; while kx(0)k_z () <R: D

5 The Conley index

The Conley index is a well-known invariant in dynamics, developed by C. Con-
ley in the 70’s. Here we summarize its construction and basic properties, as
presented in [7] and [24].

Let M be a nite dimensional manifold and > a flow on M; ie, a continuous
map >: M R ¥ M;(x;t) ¥ *¢(X); satisfying o = idand s ¢ = “s+t:
For a subset A M we de ne

AT = fX2A:8t>0;7¢«(X) 2 Ag;

AT = ™X2A:8t<0;7¢«(X) 2Ag;

InvA = A"\A":

It is easy to see that all of these are compact subsets of A; provided that A
itself is compact.

A compact subset S M s called an isolated invariant set if there exists a
compact neighborhood A such that S = Inv A int(A): Such an A is called
an isolating neighborhood of S: It follows from here that Inv S = S:

A pair (N;L) of compact subsets L N M is said to be an index pair for
S if the following conditions are satis ed:
1) Inv (NnL)=S int(NnL);

(2) L is an exit set for N; ie, forany x 2 N and t > 0 such that "{(x) & N;
there exists 2 [0;t) with ~ (X) 2 L:

(3) L is positively invariant in N; ie, if for x 2 L and t > 0 we have
“o:g(X)  N; thenin fact ”jpq(x) L:
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Consider an isolated invariant set S M with an isolating neighborhood A:
The fundamental result in Conley index theory is that there exists an index pair
(N;L) for S such that N A: We prove this theorem in a slightly stronger
form which will be useful to us in section 9; the proof is relegated to Appendix
A:

Theorem 4 Let S M be an isolated invariant set with a compact isolat-
ing neighborhood A; and let K;; K, A be compact sets which satisfy the
following conditions:

(i) fx2K;\A"; then *¢(x) 2 @A forany t O0;
(i) Ko\NAT=;:

Then there exists an index pair (N;L) for S such that K; N A and
K> L:

Given an isolated invariant set S with index pair (N;L); one de nes the Conley
index of S to be the pointed homotopy type

1(7;S) = (N=L;[L]):
The Conley index has the following properties:

(1) It dependsonly on S: In fact, there are natural pointed homotopy equiv-
alences between the spaces N=L for di erent choices of the index pair.

(2) If 7jis aflowon Mj;i =1;2; then 1(°1  72;S1 Sp) = 1(71;S1) N
|(’2;82)Z
(3) If Aisan isolating neighborhood for S¢ = Inv A for a continuous family of

flows ”¢;t 2 [0;1]; then 1(7o;So) = 1(71;S1): Again, there are canonical
homotopy equivalences between the respective spaces.

By abuse of notation, we will often use |1 to denote the pointed space N=L;
and say that N=L \is" the Conley index.

To give a few examples of Conley indices, for any flow 1(”; ;) is the homotopy
type of a point. If p is a nondegenerate critical point of a gradient flow ” on M;
then 1(”;fpg) = SK; where k is the Morse index of p: More generally, when
is a gradient flow and S is an isolated invariant set composed of critical points
and trajectories between them satisfying the Morse-Smale condition, then one
can compute a Morse homology in the usual way (as in [25]), and it turns out
that it equals H (1(7;S)):
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Another useful property of the Conley index is its behavior in the presence of
attractor-repeller pairs. Given a subset A M; we de ne its {limit set and

its ! {limit set as:
AN

N\
A= T1q@A); YA = A

t<0 t=0
If S is an isolated invariant set, a subset T S is called a repeller (resp.
attractor) relative to S is there exists a neighborhood U of T in S such that

(U)=T (resp. '(U)=T). If T S is an attractor, then the set T of

X 2 S such that ¥(X) \T = ; is a repeller in S; and (T;T ) is called an
attractor-repeller pair in S: To give an example, let S be a set of critical points
and the trajectories between them in a gradient flow ” generated by a Morse
function £ on M: Then, for some a 2 R; we could let T S be the set of
critical points x for which f(x) a; together with the trajectories connecting
them. In this case T is the set of critical points x 2 S for which f(x) > a;
together with the trajectories between them.

In general, for an attractor-repeller pair (T;T ) in S; we have the following:

Proposition 4 Let A be an isolating neighborhood for S: Then there exist
compact sets N3 N N1 A such that (N1; N2); (N1;N3); and (N2; N3)
are index pairs for T ;S; and T; respectively. Hence there is a coexact sequence:

cC;Hrie;s)rI1¢c;tH)» 1(;7)r 1(°;8) ¥

Finally, we must note that an equivariant version of the Conley index was
constructed by A. Floer in [11] and extended by A. M. Pruszko in [23]. Let G
be a compact Lie group; in this paper we will be concerned only with G = S*:
If the flow ~ preserves a G{symmetry on M and S is an isolated invariant set
which is also invariant under the action of G; then one can generalize Theorem 4
to prove the existence of an G{invariant index pair with the required properties.
The resulting Conley index Ig(”;S) is an element of G{equivariant pointed
homotopy type. It has the same three basic properties described above, as well
as a similar behavior in the presence of attractor-repeller pairs.

6 Construction of the invariant

Let us start by de ning the equivariant graded suspension category ¢&: Our
construction is inspired from [1], [9], and [19]. However, for the sake of simplicity
we do not work with a universe, but we follow a more classical approach. There
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are several potential dangers in doing this in an equivariant setting (see [1],
[19]). However, in our case the Burnside ring A(S!) = Z is particularly simple,
and it turns out that our construction does not involve additional complications
compared to its non-equivariant analogue in [27] and [21].

We are only interested in suspensions by the representations R and C of S*:
Thus, the objects of € are triplets (X; m; n); where X is a pointed topological
space with an S'{action, m 2 Z and n 2 Q: We require that X has the S*{
homotopy type of a S'{CW complex (this is always true for Conley indices
on manifolds). The set f(X; m;n); (X’; m’%; n%)gs: of morphisms between two
objects is nonempty only for n —n’ 2 Z and in this case it equals

£0OX; m; n); (X' m% nYgs: = colim [(RX - C'y*Ax; RE+M—™ clH+n=n'y+rAx O,
The colimit is taken over k;1 2 Z: The maps that de ne the colimit are given
by suspensions, ie, smashing on the left at each step with either idg+~ ~ y or
|d( ACHA ):

Inside of € we have a subcategory €y consisting of the objects (X;0;0): We

usually denote such an object by X: Also, in general, if X' = (X;m;n) is any
object of &; we write (X'; m%;n’) for (X;m + m% n + n’):

Given a nite dimensional vector space E with trivial S! action, we can de ne
the desuspension of X 2 Ob ¢y by E to be ~EX = (E* ~ X;2dimE;0):
Alternatively, we can set ~EX = QFX; the set of pointed maps from E*
to X: It is easy to check that these two de nitions give the same object in
¢; up to canonical isomorphism. Similarly, when E has free S! action apart
from the origin, one can de ne ~EX = QEX: This is naturally isomorphic to
(XX; 0;dim¢ E); because E has a canonical orientation coming from its complex
structure.

Now recall the notations from section 4. We would like to consider the down-
ward gradient flow of the Chern{Simons{Dirac functional on V in the metric
g: However, there could be trajectories that go to in nity in nite time, so this
is not well-de ned. We need to take a compactly supported, smooth cut-o

function u on V which is identically 1 on B(3R); where R is the constant

. . . 0.
from Proposition 3. For consistency purposes we require u = u j, for °

and ° : Now for each and the vector eld u (I +p c) is compactly
supported, so it generates a well-de ned flow > on V :

From Proposition 3 we know that there exist — ; > 1 such that for all

; ; all trajecEfies of > inside B(2R) are in fact contained in
B(R): It follows that Inv V \B(2R) =S ; the compact union of all such
trajectories, and S is an isolated invariant set.
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There is an S symmetry in our case as a result of the division by Gy rather than
the full gauge group. We have the following S* action on V : e' 2 S* sends
(a; ) to (a;e' ): The maps | and c are equivariant, and there is an induced
S!{action on the spaces V : Since both > and S are invariant under the S?!
action, using the notion of equivariant Conley index from the previous section
we can set

I =1s:(” ;S ):

It is now the time to explain why we desuspended by V° in the de nition of
SWEFE(Y;¢) from the introduction. We also have to gure out what the value of
n(Y;c;g) should be.

One solution of the Seiberg{Witten equations on Y is the reducible = (0;0):
Let X be a simply-connected oriented Riemannian four-manifold with bound-
ary Y: Suppose that a neighborhood of the boundary is isometric to [0;1] Y
such that @X = flg Y: Choose a spin® structure on X which extends the one
on Y and let [ be its determinant line bundle. Let A be a smooth connection
on L such that on the end it equals the pullback of the flat connection Ag on Y:
Then we can de ne cl(ﬁ)2 2 Q in the following way. Let N be the cardinality
of H1(Y ;Z): Then the exact sequence

H2(X) —1 H2(X) — H2(Y) = Hy(Y)

tells us that Ncy(() =j () for some 2 H2(X): Using the intersection form
induced by Poincare duality

H2(X) H?*X) 1 Z

we set 1
ca()?=( cu(f))=N 2 gz

Denote by DA the Dirac operators on X coupled with the connection A; with
spectral boundary conditions as in [2]. One can look at solutions of the Seiberg{
Witten equations on X which restrict to on the boundary. The space M(X; )

of such solutions has a \virtual dimension"

vdim M(X; ) = 2indc(D}) - ) +2(X) +1, )

Here (X) and (X) are the Euler characteristic and the signature of X;
respectively.

In Seiberg{Witten theory, when one tries to de ne a version of Floer homology
it is customary to assign to the reducible a real index equal to
ca(0)> =@ (X)+3 (X) +2)
4

—v.dim M(X; )
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On the other hand, if one were to compute the homology of the Conley index
I by a Morse homology recipe (counting moduli spaces of gradient flow lines),
the Morse index of (0;0) would be di erent. In fact we can approximate I+p ¢
near (0;0) by its linear part I: The Morse index is then the number of negative
eigenvalues of 1 on V ; which is the dimension of V°: (Our convention is to
also count the zero eigenvalues.) To account for this discrepancy in what the
index of  should be, we need to desuspend by VO C"(¥:<9) where it is natural
to set

a@?—@2 X)+3 (X)+2)
i ;

n(Y;cg) = % v.dim M(X; ) —
We can simplify this expression using (5):
a(C)? - (X).

3 :
We have n(Y;c;g) 2 ﬁz; where N is the cardinality of Hy(Y ;Z):

n(Y;c;g) = indc(Dy) — (6

Moreover, if Y is an integral homology sphere the intersection form on Hy(X)
is unimodular and this implies that cy ()2 (X) mod 8 (see for example
[15]). Therefore in this case n(Y;c;g) is an integer.

In general, we need to see that n(Y;c;g) does not depend on X: We follow [22]
and express it in terms of two eta invariants of Y: First, the index theorem of
Atiyah, Patodi and Singer for four-manifolds with boundary [2] gives

1 2 dir — K(@)

= — —_ + + = =/
Here p; and ci(A) = ZLFA are the Pontryagin and Chern forms on X; while
k(@) = dimker® = dimkerl as Hi(Y;R) = 0: The eta invariant of a self-
adjoint elliptic operator D on Y is de ned to be the value at 0 of the analytic
continuation of the function

<
p(s) = sign( )j j~;
60

™

where  runs over the eigenvalues of D: In our case g4ir = (0):

Let us also introduce the odd signature operator on Q*(Y) Q%) by

sign = d —d
M= 4 o0
Then the signature theorem for manifglds with boundary [2] gives
1
X) = 3 P1 — sign: 8)
X
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Putting (6), (7), and (8) together we obtain

Z o 2 _
n(Y;eg) = % X—%p1+cl(/31)2 + - zk(@)—cl(ﬁ) 3 &)
_ 1|:|_ _ __ sign
- 5 dir k(@) 4 :

Warning Our sign conventions are somewhat di erent from those in [2]. In
our setting the manifold X has its boundary \on the right,” so that @=@t on
[0;1] Y is the outward normal. Atiyah, Patodi, and Singer formulated their
theorem using the inward normal, so in order to be consistent we have applied
their theorem with —@ as the operator on the 3{manifold.

7 Proof of the main theorem

It is now the time to use the tools that we have developed so far to prove
Theorem 1 announced in the introduction. Recall that we are interested in
comparing the spectra ( Vo1 0 n(Y;c;9)): We will denote by m the di-
mension of the real part of V© (coming from eigenspaces of d), and by n the
complex dimension of the spinorial part of V©:

Proof of Theorem 1 First let us keep the metric on Y xed and prove that

( Vo o; n(Y;c; g)) are naturally isomorphic for di erent ; :1In

fact we just need to do this for ~V°| : pecause n(Y;c;g) does not depend on
and

It is not hard to see that for any and ; the nite energy trajectories oof

I+p cp arecontained inV : Let ! ;0 : Then B(2R)\V ,

is an isolating neighborhood for all S2;a2[ % J:b2[ : Y: By Property 3 of
0

the Conley index, for * the flow of u § (I+pc)onV,;
o =1ci(*:S )

Let V 00 =V V so that V is the orthogonal complement of V in the L2
metric, a span of eigenspaces of I: Another isolating neighborhood of S is then
(B(BR=2)\V ) D; where D is asmall closed ball in V centered at the origin.
The flow > is then homotopic to the product of > and a flow on V which
is generated by a vector eld that is identical to | on D: From the de nition of
the Conley index it is easy to see that Ig:i( ;f0g) = Isi( o;f0g): Here ¢ is
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the linear flow generated by | on V; and the corresponding equivariant Conley
index can be computed using Property 2 of the Conley index: it equals (V ,)*:

By the same Property 2 we obtain
l, =1gi(% ;S )=(V )" I :
This implies that VO and V9 5 are canonically isomorphic.

Next we study what happens when we vary the metric on Y: We start by ex-
hibiting an isomorphism between the objects ( Vo o; n(Y;c; g)) constructed
for two metrics go; g1 on Y su ciently close to each other. Consider a smooth
homotopy (gi)o ¢+ 1 between the two metrics, which is constant near t = O:
We will use the subscript t to describe that the metric in which each object
is constructed is g Assuming all the g; are very close to each other, we can
arrange so that:

- there exist R;— ;  large enough and independent of t so that Proposition 3
is true for all metrics g¢ and for all values ; ;

- there exist some < and >  such that neither nor is an eigen-
value for any l¢: Hence the spaces (V )¢ have the same dimension for all t; so
they make up a vector bundle over [0;1]: Via a linear isomorphism that varies
continuously in t we can identify all (V )¢ as being the same space V ;

- for any tg;t; 2 [0;1] we have B(R)t, B(2R)t,: Here we already think of the
balls as subsets of the same space V :
Then N
B(2R),
t2[0;1]

is a compact isolating neighborhood for S in any metric g; with the flow (* )¢
on V : Note that (* ) varies continuously in t: By Property 3 of the Conley
index,

(o= )
The di erence n .o —n .1 is the number of eigenvalue lines of —@;;t 2 [0;1]
that cross the — line, counted with sign, ie, the spectral flow SF(—@,) as

de ned in [3]. Atiyah, Patodi and Singer prove that it equals the index of the
operator @=0t+ @; on ¥ = [0;1] Y with the metric g; on theslicet Y and
with the vector @=@t always of unit length.

Choose a 4{manifold Xy as in the previous section, with a neighborhood of the
boundary isometric to Ry Y: We can glue ¥ to the end of X to obtain a
manifold X; di eomorphic to Xp: Then

indc(Dy,) = indc(Dg, ) + SF(=8y)
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by excision. From the formula (6) and using the fact that c;(L); and do
not depend on the metric we get

n(Y;¢;91) —Nn(Y;e;go) = SF(=B) =n o—n
It follows that (V%) C"(Visgo) = (v0);, CN(:s91) pecause the d operator
has no spectral flow (for any metric its kernel is zero since Hi(Y ;R) = 0).

The orientation class of this isomorphism is canonical, because complex vector
spaces carry canonical orientations.

Thus we have constructed an isomorphism between the objects ( Vo o0 n(yY;
¢;g)) for two di erent metrics close to each other. Since the space of metrics
Met is path connected (in fact contractible), we can compose such isomorphisms
and reach any metric from any other one.

In order to have an object in € well-de ned up to canonical isomorphism, we
need to make sure that the isomorphisms obtained by going from one metric to
another along di erent paths are identical. Because Met is contractible, this
reduces to proving that when we go around a small loop in Met the construction
above induces the identity morphism on ( Vo o; n(Y;c;g)). Such a small
loop bounds a disc D in Met; and we can nd and so that they are not in
the spectrum of d @ for any metric in D: Then the vector spaces V form
a vector bundle over D; which implies that they can all be identi ed with one
vector space, on which the Conley indices for di erent metrics are the same up
to canonical isomorphism. The vector spaces V¢ CN(Y:<9) are also related to
each other by canonical isomorphisms in the homotopy category. Hence going
around the loop must give back the identity morphism in ¢:

A similar homotopy argument proves independence of the choice of R in Propo-
sition 3. Thus SWF(Y;¢) must depend only on Y and on its spin® structure,
up to canonical isomorphism in the category ¢: ]

8 The irreducible Seiberg{Witten{Floer invariants

In this section we construct a decomposition of the Seiberg{Witten{Floer in-
variant into its reducible and irreducible parts. This decomposition only exists
provided that the reducible is an isolated critical point of the Chern{Simons{
Dirac functional. To make sure that this condition is satis ed, we need to
depart here from our nonperturbative approach to Seiberg{Witten theory. We
introduce the perturbed Seiberg{Witten equations on Y :

(da—d)+ (;)=0;, 8, =0; ©)
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where isa xed LZ,, imaginary 1-form on Y such thatd =0:

In general, the solutions to (9) are the critical points of the perturbed Chern{

Simons{Dirac functional: .

CSD (a; )=CSD(a; )+% and :
Y

Our compactness results (Proposition 1 and Proposition 3) are still true for the
perturbed Seiberg{Witten trajectories and their approximations in the nite
dimensional subspaces. The only di erence consists in replacing the compact
map ¢ with ¢ = c— d : There is still a unique reducible solution to the
equation (I +c )(a; ) =0; namely = ( ;0): Homotopy arguments similar
to those in the proof of Theorem 1 show that the SWF invariant obtained
from the perturbed Seiberg{Witten trajectories (in the same way as before) is
isomorphic to SWF(Y; ¢):

The advantage of working with the perturbed equations is that we can assume
any nice properties which are satis ed for generic : The conditions that are
needed for our discussion are pretty mild:

De nition 2 A perturbation 2 L2,,(iQ%(Y)) is called good if ker@ =0
and there exists > 0 such that there are no critical points x of CSD with
CSD (x) 2 (0; ):

Lemma 3 There is a Baire set of perturbations which are good.

Proof Proposition 3 in [12] states that there is a Baire set of forms  for which
all the critical points of CSD are nondegenerate. Nondegenerate critical points
are isolated. Since their moduli space is compact, we deduce that it is nite, so
there exists as required in De nition 2. Furthermore, the condition ker@ =0
is equivalent to the fact that the reducible  is nondegenerate. O

Let us choose a good perturbation ; and let us look at the nite dimensional
approximation in the space V : For large and — ; it is easy to see that
we must have ker(@, ) = 0: This implies that |, ; the reducible solution to
I+p ¢ =0; isan isolated critical point of CSD j,, : Note that CSD (, )=
0; and there are no critical points x of CSD j, with CSD (x) 2 (0; =2):
Thus, in addition to S = S ; we can construct four other interesting isolated
invariant sets for the flow
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SI" =the set of critical points x of CSD j, with CSD (x) > 0; to-
gether with all the trajectories between them; when it becomes necessary
to indicate the dependence on cuto s, we will write (S!) ;

SI"" = same as above, but with CSD (x) 0 and requiring x to be
irreducible;

S , = same as above, with CSD (X) 0 but allowing x to be the
reducible;

nally, =f, g

Since every trajectory contained in S must end up in a critical point and CSD
is decreasing along trajectories, S , must be an attractor in S: Its dual repeller
is SI'T- so by Proposition 4 we have a coexact sequence (omitting the flow ~
and the group S?! from the notation):

ISo) T I(S) T ISy ¥ I(S,) ¥ (10)

Similarly, (S'f; ) is an attractor-repeller pair in S o; so there is another co-
exact sequence:

IS™ LIS ) TI()Y I1(ST) ¥ (11)

These two sequences give a decomposition of 1(S) into several pieces which
are easier to understand. Indeed, 1( ) = (V9*: Also, the intersection of S
with the xed point set of V is simply : This implies that S’ and S''!
have neighborhoods in which the action of S? is free, so 1(S!'Y) and 1(S') are

Sl{_free as well (apart from the basepoint). Denote by (1!'") the quotient of
1(S'ynf g by the action of S*:

=0

Let us now rewrite these constructions to get something independent of the
cuto s. Just like we did in the construction of SWF; we can consider the
following object of ¢ :

SWRI(Y; e )= VU I(SH
and prove that it is independent of and  (but not on the metric!) up to
canonical isomorphism. Similarly we get invariants SWF'"] and SWF ,: The

coexact sequences (10) and (11) give rise to exact triangles in the category €
(in the terminology of [21]):

SWF , ¥ (SWF;0;n(Y;c;g)) SWFE{, I (SWF ) ¢
SWF'™ ¥ SWF , ¥ S% 1 (SWF'™) 1
Furthermore, we could also consider the object
swflp(Yieigs )= V(L

>0
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which lives in the nonequivariant graded suspension category (see [21]). This
is basically the \quotient" of SWF' under the S! action. It is indepen-
dent of and ; but not of the metric and perturbation. We could call it
the (nonequivariant) positive irreducible Seiberg{Witten{Floer stable homotopy
type of (Y;¢c;g; ): Similarly we can de ne another metric-dependent invariant
swfirr:

Remark If the flows ” satisfy the Morse-Smale condition, then the homology
of swf (resp. swFf'"") coincides with the Morse homology computed from
the irreducible critical points with CSD > 0 (resp. CSD 0) and the
trajectories between them. But we could also consider all the irreducible critical
points and compute a Morse homology SWHF(Y;¢c;g; ), which is the usual
irreducible Seiberg{Witten{Floer homology (see [16], [20]). We expect a long
exact sequence:

" H (swf") 8 SWHF & H (swf) ¥ H _;(swf'") ¥ (12)

However, it is important to note that (12) does not come from an exact triangle
and, in fact, there is no natural stable homotopy invariant whose homology is
SWHF: The reason is that the interaction of the reducible with the trajectories
between irreducibles can be ignored in homology (it is a substratum of higher
codimension than the relevant one), but it cannot be ignored in homotopy.

9 Four-manifolds with boundary

In this section we prove Theorem 2. Let X be a compact oriented 4{manifold
with boundary Y: As in section 6, we let X have a metric such that a neigh-
borhood of its boundary is isometric to [0;1] Y; with @X = flg Y: Assume
that X has a spin® structure ¢ which extends ¢: Let W*; W™ be the two
spinor bundles, W =W* W ~; and * the determinant line bundle. (We shall
often put a hat over the four-dimensional objects.) We also suppose that X
is homology oriented, which means that we are given orientations on H'(X;R)
and H2(X;R):

Our goal is to obtain a morphism W between the Thom space of a bundle over
the Picard torus Pic®(X) and the stable homotopy invariant SWF(Y;¢); with
a possible shift in degree. We construct a representative for this morphism as
the nite dimensional approximation of the Seiberg{Witten map for X:

Let Ay bea xed spin® connection on W: Then every other spin® connection on
W can be written Ao +4;& 2 iQ1(X): There is a corresponding Dirac operator

DA0+Q = DAO + A(a),
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where ”~ denotes Cli ord multiplication on the four-dimensional spinors. Let
C be the space of spin® connections of the form Aq + kerd* An appropriate
Coulomb gauge condition for the forms on X is & 2 Im(d\);aj@x( ) = 0;
where is the unit normal to the boundary and §' is the four-dimensional d

operator. Denote by Qé(X) the space of such forms. Then, for each 0 we
have a Seiberg{Witten map

¥ :C (IQ(X) TW™) ¥ C (>(Q3(X) FW7) V)
Aa 1 AFL,~ )Dga(Dip 1 @)
Here i is the restriction to Y, denotes Coulomb projection (the nonlinear

map de ned in section 3), and p is the orthogonal projection to V. =V_4:

Note that S is equivariant under the action of the based gauge group

G = Mapo(X; S1); this acts on connections in the usual way, on spinors by mul-

tiplication, and on forms trivially. The quotient & =Gy is an S!{equivariant,
ber preserving map over the Picard torus

Pic’(X) = HY(X;R)=H(X;Z) = C=Gy:

Let us study the restriction of this map to a ber (corresponding to a xed
A20):
SW :1iQy(X) T(W™) BiQi(X) FrWw?) V:

Note that SW dependson only through its V {valued direct summand i ;
we write SW =sw i : The reason for introducing the cut-o is that we
want the linearization of the Seiberg{Witten map to be Fredholm.

Let us decompose SW into its linear and nonlinear parts:
1]
L =d";Daip (Preerg i) ; C =SW —L:

Here prierq IS a shorthand for (pr.. 4 ;id) acting on the 1-forms and spinors
on Y; respectively.

As in [26], we need to introduce fractionary Sobolev norms. For the following
result we refer to [2] and [26]:
Proposition 5 The linear map
12 L1, + 2 L1, - 2
L oilgis= 1Q9(X) TW™) B L, iQ5(X) TW™) L (V)
is Fredholm and has index

2indc(D%) — b3 (X) — dimV :
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Here indC(Dg) is the index of the operator DX acting on the positive spinors
™ with spectral boundary condition p°i (") = 0:

Equivalently, there is a uniform bound for all % 2 iQé(X) r(wW):
1 .
kkk,_i+3:2 C() k@@* DA‘)kkLiﬂzz +Kkp Prierqg | (5&)k,_i+l + KRk 2 ;

for some constant C( ) > 0:

The nonlinear part is:

.12 L1, +

C iLlfigp 1Q5(X) TF(WT™) ¥
i IQ5(X) TWT) HYOGR)  LEa(V )

C@MN=Fi— (N0N®%0p (= (Priera ;id))i (&)
Just like in three dimensions, the rst three terms are either constant or quad-
ratic in the variables so they de ne compact maps between the respective
Sobolev spaces L2, .., and L, _,: The last term is not compact. However, as
will be seen in the proof, it does not pose problems to doing nite dimensional
approximation. The use of this technique will lead us to the de nition of W;
the invariant of 4{manifolds with boundary mentioned in the introduction.

Let U, be any sequence of nite dimensional subspaces of Lﬁﬂzz(iQi(X)
(W ™)) such that pry_ ¥ 1 pointwise. For each < 0; let U} = (L )"1(Un
V ) and consider the map

prg, v SW =L +pry y C UL B U, V:

It is easy to see that for all n su ciently large, L restricted to U} (with values
in U, V ) has the same index as L : Indeed, the kernel is the same, while
the cokernel has the same dimension provided that U, V is transversal to
the image of L : Since pry, ¥ 1 pointwise when n ¥ 71; it su ces to show
that V is transversal to the image of p (Preerg 1) INV : Butit is easy to see
that p (Prerg 1) is surjective.

We have obtained a map between nite dimensional spaces, and we seek to get
from it an element in a stable homotopy group of 1 in the form of a map
between (U})™ and (Up)* ™I

This can be done as follows. Choose a sequence ¥ 0; and denote by
B(Un; n) and S(Un; ) the closed ball and the sphere of radius  in U, (with
the Lﬁﬂ:z norm), respectively. Let K be the preimage of B(Un; n) V un-

der the map L ; and let K; and K, be the intersections of K with B(U!; Ro)
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and S(UY; Ro); respectively. Here Rq is a constant to be de ned later, and U},
has the Lﬁ+3:2 norm. Finally, let K;; K, be the images of K; and K, under
the composition of SW with projection to the factor V : Assume that there
exists an index pair (N;L) for S such that K; N and K, L: Then we
could de ne the pointed map we were looking for:

B(UpiR0)=S(Up;Ro) ¥ (B(Un; n) N)=(B(Un; n) LLS(Un; n) N);
by applying pry, v SW to the elements of K and sending everything else
to the basepoint. Equivalently, via a homotopy equivalence we would get a
map:

N (CEY M B (V%) e B

Of course, for this to be true we need to prove:

Proposition 6 For ;— su ciently large and n su ciently large compared
to and — ; there exists an index pair (N;L) for S such that K; N and
K> L:

Let us rst state an auxiliary result that will be needed. The proof follows from
the same argument as the proof of Proposition 3, so we omit it.

Lemma 4 Let tp 2 R: Suppose n;— n ¥ A; and we have approximate
Seiberg{Witten half-trajectories Xp : [to; 1) ¥ L2, ,(V ) such that xn(t) 2
B(2R) for all t 2 [to; 1): Then xn(t) 2 B(R) for any t > ty and for any n
su ciently large. Also, for any s > tp; a subsequence of xn(t) converges to
some X(t) in C™ norm, uniformly in t for t 2 [s; 1) and for any m > 0:

Proof of Proposition 6 We choose an isolating neighborhood for S to be
B(2R) \V : Here R; the constant in Proposition 3, is chosen to be large
enough so that B(R) contains the image under i of the ball of radius Rg in
L2, 3-,(I1Q5(X) F(W™)): By virtue of Theorem 4, all we need to show is that
K1 and K; satisfy conditions (i) and (ii) in its hypothesis.

Step 1 Assume that there exist sequences ;— n ¥ 1 and a subsequence
of Un (denoted still U, for simplicity) such that the corresponding K; do not
satisfy (i) for any n: Then we can nd (&,; "n) 2 B(U):Ro) and t, 0 such
that

Pry, v n SW "(&n; "n) = (Un; Xn)
with

Kunkiz i (O MDay®a)  BER); (7 Mia(xn) 2 8BER):
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We distinguish two cases: when t, ¥ 1 and when t, has a convergent subse-
quence. In the rst case, let

yn iR T LE,(V ")
be the trajectory of * " such that yn(—tn) = Xn: Then, because of our hy-
potheses, kyn(O)kLﬁ+l = 2R and yn(t) 2 B(2R) for all t 2 [—t,; A): Since

t, ¥ 1; by Lemma 4 we have that y,(0) 2 B(R) for n su ciently large. This
is a contradiction.

In the second case, by passing to a subsequence we can assume thatt, ¥ t  O:
We use a di erent normalization:

yn i [0; 1) ¥ LE (V")

is the trajectory of * " such that y,(0) = Xn: Then kyn(tn)kLﬁ+l = 2R and

yn(t) 2 B(2R) for all t 0: By the Arzela{Ascoli Theorem we know that yp,
converges to some y : [0;1) ¥ V in LZ norm, uniformly on compact sets
of t 2 [0; 1): This y must be the Coulomb projection of a Seiberg{Witten
trajectory.

Let z, =y, —y: From Lemma 4 we know that the convergence z, ¥ 0 can be

taken to be in C1; but only over compact subsets of t 2 (0; 1.): However, we

can get something stronger than L2 for t = 0 as well. Since | is self-adjoint,

there is a well-de ned compact operator e' : LZ, (V%) ¥ L2,,(V°): We have

the estimate:

kp°zn(0) —€'p’zn(Dkpz = k (e
k+1 7 0 @t

“p°za(®)dtk
! La
i ket'p° @zn(t)+lzn(t) kpz, dt
But since y, and y are trajectories of the respective flows, if we denote , =
p o N=1-— , we have
@
@Zn(t) +1zn(t) = c(y(1)) — nclyn(D));

so that
Z

1 ]
kp%zn(0) —e'plza(Dkiz, . ke'p® o C(y(D) — c(yn(®) kiz dt+ (13)
0
Z 1
+ kep( "e(y(®)k 2 dt:
O +
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Fix p> 0R1\IVe break each of the two integrals on the right hand side of (13)
into , + : Recall that yn(t) live in B(2R): This must also be true for y(t)
because of the weak convergence yn(t) ¥ y(t) in Lﬁﬂ: Since et'p® and ¢ are
continuous maps from LZ,, to L2,,; there is a bound:

Z Z

tl .0 L] tl.0/ n .
e Ty ()~ clym(®) ki, At ke ")k ot Co

(14)
where C; is a constant independent of

On the other hand, on the interval [ ;1] we have ket'p®k ke 'p%k and e 'p° is
a compact map from LZ,, to L2, ,: We get
zZ, z,
ke"'p%( “e(y(D))kyz, dt k "e IDOC(y(t))kLﬁﬂdt:

In addition, e 'pPc(y(t)) live inside a compact set of L2, (V) and we know that
N 1 0 uniformly on such sets. Therefore,
z 1
ket'p°( Me(y(t))k p, dt ¥ O: (15)

Similarly, using the fact that y,(t) ¥ y(t) in L§+1(V) uniformly in t for
t 2] ;1]; we get:
z

L]
2

1 ]
kep® o c(y(1) — c(yn(D)) k7 dt (16)

Putting (13), (14), (15), and (16) together and letting ¥ 0 we obtain:
kpozn(O)—e'pozn(l)k,_iﬂ Y0

Since zn(1) ¥ 0 in LZ,,; the same must be true for p°z,(0): Recall that
zn1(0) = X is the boundary value of an approximate Seiberg{Witten solution
on X :

Pry, v n SW "(n; ") = (Un;Xn);
with kunk,_i - n: Equivalently,
I:I N
L "+pry, v n C "™ (&n; n) = (Un;Xn):

Since X, = (&n; An) are uniformly bounded in Lﬁ+3:2 norm, after passing to
a subsequence we can assume that they converge to some % = (&; ") weakly
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in L2, ,.,: Changing everything by a gauge, we can assume without loss of

generality that i (&) 2 kerd : Now Proposition 5 says that:
L]
kRn — kk,_i+3:2 C(0) k(d™ Dg)Rn— 5é)k,_i+1:2

+ kp®prierq | (Rn — KKz + ki —Rk2 1 (17)

We already know that the last term on the right hand side goesto 0 asn ¥ 1.
Let us discuss the rst term. First, it is worth seeing that sw(X) = 0: Let sw =
f'+ @ be the decomposition of sw into its linear and compact parts; f and ¢ are
direct summands of L and C ; respectively. We have pry sw(®,) =un ¥ 0
in L2, ,., (because ,, ¥ 0 by construction), and

SW(R) — pry,SW(Rn) = fI& — &) + pry, (E(R) — 6(Rn)) + (1 — pry, )6R):

Using the fact that X, ¥ R weakly in Lﬁ+3:2 we get that each term on the

right hand side converges to 0 weakly in L, _,: Hence sw(®) = 0: Now the

rst term on the right hand side of (17) is

f(Rn — 2) = un + pry, (6(R) — 6(Rn)) + (1 — pry, )E(R):

It is easy to see that this converges to 0 in Lﬁﬂ:z norm. We are using here

the fact that pry ¥ 1 uniformly on compact sets.

Similarly one can show that the second term in (17) converges to 0: We already
know that pp " i (Rn) = p°xn converges to p°x: This was proved starting
from the boundedness of the y, on the cylinder on the right. In the same way,
using the boundedness of the %, on the manifold X on the left (which has a
cylindrical end), it follows that poxn ¥ pox in L2, ,: Thus, X, ¥ xin L2, : Let
i (Rn) = (an +dby; n) With an 2 kerd : We know that x, = p "(an;e™ 1)
converges. Also, &, ¥ R weakly in LZ,,,; hence strongly in L2, _,: This
implies that db, ¥ 0 in L2 and b, ¥ 0 in LZ,,: Since p°pryerq i Rn =
P%(an; n) 2 VO ; they must converge in Lf,, just like the x,: We are using
the Sobolev multiplication LZ,, LZ,, ¥ LZ,,:

Putting all of these together, we conclude that the expression in (17) converges
to 0: Thus &, ¥ R in L2, . ,: We also know that sw(%) = 0: In addition, since
i (Rn) ¥ i (R) in LZ,, and using p n 1 (Rn) = Xn we get that xp =yn(0) ¥

y(0) in L2, ,: This implies that i (R) = y(0):

Now it is easy to reach a contradiction: by a gauge transformation @& of X
on X we can obtain a solution of the Seiberg{Witten equations on X with
i (0 R) =y(0): Recall that y(0) was the starting pointof y : [0; 1) ¥ B(2R);
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the Coulomb projection of a Seiberg{Witten half-trajectory of nite type. By
gluing this half-trajectory to & % we get a C° monopole on the complete
manifold X [ (R+ Y): From Proposition 2 we know that there are \universal
bounds on the C™ norms of the monopole (in some gauge) restricted to any
compact set, for any m: These bounds are \universal” in the sense that they
depend only on the metric on X: In particular, since Coulomb projection is
continuous, we obtain such a bound B on the Lﬁﬂ norm of y(t) for all t:
Recall that yn(ty) ¥ y(t) because t, ¥ t; and that kyn(tn)kLﬁ+l = 2R:
When we chose the constant R; we were free to choose it as large as we wanted.
Provided that 2R > B; we get the desired contradiction.

Step 2 The proof is somewhat similar to that in Step 1.

Assume that there exist sequences n;— 5 ¥ 1 and a subsequence of Up
(denoted still U, for simplicity) such that the corresponding K, do not satisfy
condition (ii) in Theorem 4 for any n: Then we can nd %R, 2 S(UY; Rg) such
that
Pru, v o SW "(Rn) = (Un;Xn);
with
kunki2  ni (O Doay(Xn)  B(2R):

Lety,:[0;1) ¥ Lﬁﬂ(v ) be the half-trajectory of * " starting at yn(0) =
Xn: Repeating the argument in Step 1, after passing to a subsequence we can
assume that y,(t) converges to some y(t) in Lﬁ(V ); uniformly over compact
sets of t: Also, this convergence can be taken to be in C1 for t > 0; while for
t = 0 we get that p°(yn(0)—y(0)) ¥ 0in L2, ,: Observe that y is the Coulomb
projection of a Seiberg{Witten half-trajectory of nite type, which we denote
by y': We can assume that y’(0) = y(0):

Then, just as in Step 1, we deduce that %X, converges in Lﬁ+3:2 to %; a solution
of the Seiberg{Witten equations on X with i (%) = y(0): By gluing % to y’ we
obtain a C° monopole on X [ (R+ Y): By Proposition 2, this monopole must
be smooth in some gauge, and when restricted to compact sets its C™ norms
must be bounded above by some constant which depend only on the metric on
X: Since the four-dimensional Coulomb projection from iQ'(X) TI(W™) to

iQj(X) (W) is continuous, we get a bound B' on the LZ .., norm of &
But R, T Rin Lﬁ+3:2 and k&n k'—ﬁ = Ro: Provided that we have chosen the
constant Ry to be larger than B’; we obtain a contradiction. O

Thus we have constructed some maps
WAt (UDT T (U AI
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for any ;— su ciently large and for all n su ciently large compared to
and — : In other words, we get such maps from (U)* to U* ~ 1 for
any and su ciently large and for any nite dimensional subspace U
Lﬁﬂzz(iQ;(X) (W ™)) which contains a xed subspace Uy (depending on
and ).
For 0; the linear map L is injective, because in the limit ¥ 1 there are
no nonzero solutions to an elliptic equation on X which vanish on the boundary.
For U V transversal to coker L and for U'= (L )™'(U V ); we get a
natural identi cation:
U V =U" cokerL :

It is not hard to see that there is another natural identi cation:
cokerL = cokerL® coker(py(Prierg i ) : kerL® ¥ Vy):

Using the fact that p, (Pryerq 1) : ker [ | V, s injective, we get:

kerL® cokerL = cokerL’ V,:
Consequently, the map

(UHY* 1 UrAL =UTANY)T A VO

is stably the same as a map:

(ker LO* ¥ (cokerLO)*~ ~V°p . (18)

The real part of L is the (d*;p°i ) operator restricted to Im(d ): This has zero
kernel, and cokernel isomorphic to H2 (X;R): Using our homology orientation,
we can identify the latter with R 9: The complex part of LO is D, which
may have nontrivial kernel and cokernel. Assuming that all our constructions
have been done S*{equivariantly, (18) produces a stable equivariant morphism:

(kerDX)* ¥ (cokerDx  CM(Vs®) R OO)™ A SW(Y; o): (19)

We can put these maps together for all classes [A] 2 Pic®(X) as follows. We
started our construction from a bundle map between two Hilbert bundles over
the Picard torus Pic®(X): Such bundles are trivial by Kuiper’s theorem, so
we can choose subbundles of the form U  Pic®(X) when doing the nite
dimensional approximation. The maps (U)* ¥ U* ~1 can be grouped into
an S'{map from the Thom space of the vector bundle over Pic®(X) with bers
U% In the process of stabilization, these U’{bundles di er from each other only
by taking direct sums with trivial bundles. In the end the collection of maps
(19) produces an S*{stable equivariant homotopy class:

Y 2 £(T (Ind); by (X); 0); SWF(Y; )gs1;
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where T (Ind) is the Thom space of the virtual index bundle over Pic®(X) of
the Dirac operator D™, with a shift in complex degree by n(Y;c;g):

The class W is independent of ; ;U and the other choices made in the con-
struction, such as  and Rp: This can be seen using standard homotopy ar-
guments analogous to those in the proof of Theorem 1. To interpolate between
di erent U;UY Up; itsu ces to consider the case U U and use a linear ho-
motopy tpry + (1 —t)pryo: Similar arguments show that W does not depend on
the metric on X either, up to composition with canonical isomorphisms. There-
fore we have constructed an invariant of X and its spin® structure, which we
denote W(X;%): This ends the proof of Theorem 2. O

Remark 1 If we restrict W to a single ber of Ind we get an element in an
equivariant stable homotopy group:

(X;2) 2 =S, 4(SWF(Y; 0));
where b = by (X) and

2 _
d = indc(D}) —n(Y;c;g) = a@?= ) - 9.
(This is in fact given by the morphism (19) above.)

Since ~S* is the universal equivariant homology theory, by composing with
the canonical map we obtain an invariant of X in A_,.q(SWF(Y;¢)) for every
reduced equivariant homology theory h:

Remark 2 We can reinterpret the invariant  in terms of cobordisms. If Y;
and Y, are 3{manifolds with b; = 0; a cobordism between Y; and Y, is a 4{
manifold X with @X = Y; [Y2: Let us omit the spin® structures from notation
for simplicity. We have an invariant

xX)2 ~§E;d SWF(Y1) ~ SWF(Y2) = (S b; —d); (SWF (Y1) * SWF(Y2)gs::
In [8], Cornea proves a duality theorem for the Conley indices of the forward
and reverse flows in a stably parallelizable manifold. This result (adapted to
the equivariant setting) shows that the spectra SWF(Y1) and SWF(Y;) are

equivariantly Spanier-Whitehead dual to each other. According to [19], this
implies the equivalence:

£(S%; b; —d); (SWF(Y1) ~ SWF(Y2)gs: = FSWF(Y1); (SWF(Y2); —b; d)gs::
Therefore, a cobordism between Y; and Y, induces an equivariant stable homo-
topy class of S'—maps between SWF (Y1) and SWF(Y5); with a possible shift

in degree:
Dx 2 FSWF(Y1); (SWF(Y2); —b; d)gs1:
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10 Four-manifolds with negative de nite intersec-
tion form

In [4], Bauer and Furuta give a proof of Donaldson’s theorem using the invariant
W(X;®) for closed 4{manifolds. Along the same lines we can use our invariant
to study 4{manifolds with boundary with negative de nite intersection form.
The bound that we get is parallel to that obtained by Fr yshov in [12].

If Y is our 3{manifold with by(Y) = 0 and spin® structure ¢; we denote by
s(Y; ¢) the largest s such that there exists an element

[f] 2 f(S°; 0; —s); SWF(Y; ¢)gs1

which is represented by a pointed S'{map f whose restriction to the xed
point set has degree 1. Then we set

s(Y) = max s(Y;c):

The rst step in making the invariant s(Y ) more explicit is the following lemma
(which also appears in [5]):

Lemma 5 Let f:(R™ C"9)* 1 (R™ C")* be an S!{equivariant map
such that the induced map on the xed point sets has degree 1: Thend O0:

Proof Let f. be the complexi cation of the map f: Note that C [ € =
V(1) V(-1); where V(j) is the representation S* C ¥ C;(q;2) ¥ ¢/z:
Using the equivariant K-theory mapping degree, tom Dieck proves in [9, 11.5.15]
the formula:

d(fe) = lim d(fS") r (V@) nV (=DI=[+dV Q) (n+dV (=D)])(@);

where q 2 S'; d is the usual mapping degree, and —1([nV (1) nV(-1)]—
[(n+d)V(Q) (n+d)V (1)) is the Kg:{theoretic Euler class of f; in our
case its character evaluated at q equals (1—q)~9(1—q~1)~9: Since d(fcsl) =1
the limit only exists in the case d 0: ]

Example Let us consider the case when Y is the Poincare homology sphere P;
oriented as the link of the Eg singularity. There is a unique spin® structure ¢ on
P; and P admits a metric g of positive scalar curvature. The only solution of
the Seiberg{Witten equations on P with the metric g is the reducible = (0;0):
In addition, the Weitzenbock formula tells us that the operator @ is injective,
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hence so is I: We can choose R as small as we want in Proposition 3. Taking
the L2,, norms, we get a bound

kp c(v)k ke(v)k  kvk?

forall v2V su ciently close to 0: Also, if ¢ is the eigenvalue of I of smallest
absolute value, then
KIV)k j of kvk:

Putting the two inequalities together, we get that for R > 0 su ciently small
and — ; su ciently Ili[ge, the only zero of the map 1 +p ¢ in B(2R) is 0: It
followsthat S = Inv B(2R)\V = f0g: Its Conley index is (R™ )*~(C"" )*:
In [12], K. Fr yshov computed n(P;¢;g) = —1; so that we can conclude:

SWF(P;¢) =C*
up to isomorphism. We get that s(P) = 1 as a simple consequence of Lemma 5.

Let us come back to the general case and try to obtain a bound on s(Y ): Recall
the notations from section 8. Choose a metric g and a good perturbation
We seek to nd s so that there is no element in f(S°;0;—s — 1); SWF(Y; ¢)g
representable by a map which has degree 1 on the xed point sets. Equivalently,
for and — su ciently large, there should not be any S*{map f of that kind
between (R™  C"+"*1)* and 1(S); where r = s + n(Y;c;g): Assume that
r O

Suppose that there exists T as above and denote N = m? +2n": Consider S*{
equivariant cell decompositions of 1(S); 1(S"); 1(S™); 1(S o); 1( ) compatible
with the coexact sequences (10) and (11) from section 8 in the sense that all
maps are cellular. We can assume that all the S*{cells of I(S) of cellular
dimension N and all the S'{cells of 1(S') and I(S') are free. Also
note that (R™  C™ *r*1)* nas an S{cell structure with no equivariant
cells of cellular dimension greater than N + 2r + 1. Thus we can homotope
T equivariantly relative to the xed point set so that its image is contained in
the (N + 2r + 1){skeleton of 1(S): Assuming that there exists an S'{map

fi1(S)nsares ¥ (R™ NNyt

whose restriction to the xed point set has degree 1, by composing ¥ with f
we would get a contradiction with Lemma 5.

Therefore, our job is to construct the map f: Start with the inclusion:
1I()=@™ c™)yr 1™ c'y*

By composing with the second map in (11) and by restricting to the (N+2r+1){
skeleton we obtain a map fy de ned on I(S ()n+2r+1: Let us look at the
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sequence (10). Since 1(S!'f) is S™{free, we could obtain the desired ¥ once we

=0

are able to extend fy from I(S ¢)n+2r+1 tO 1(S)n+2r+1: This is an exercise
in equivariant obstruction theory. First, it is easy to see that we can always
extend fy up to the (N +2r){skeleton. Proposition 11.3.15 in [9] tells us that the
extension to the (N +2r+1){skeleton is possible if and only if the corresponding
obstruction

¥r 2 N2 1S)I(S o) naar (R CM M) = HNF2L iy 7)

S >0
vanishes. Here $ denotes the Bredon cohomology theory from [9, Section 11.3].
After stabilization, the obstruction y, becomes an element
yr 2 HZ L (swfl(Y; ¢ 05 )):
Thus, we have obtained the following bound:
s(Y) mcax igr?flz—ln(Y; ¢;g9) + minfr 2 Z+jy, =0g : (20)

We have now developed the tools necessary to study four-manifolds with neg-
ative de nite intersection forms.

Proof of Theorem 3 A characteristic element c is one that satis es ¢ X
x X mod 2 for all x 2 Hy(X)=Torsion. Given such a c; there is a spin®
structure 2 on X with c1(() =¢:

Let d = (c®2— (X))=8: In section 9 we constructed an element:
(X;®) 2 £(S?; 0; —d); SWF(Y; c)gsu:
The restriction to the xed point set of one of the maps Yo o A which repre-
sents  (X;%) is linear near 0 and has degree 1 because b, (X) = 0: Hence
d s(Y;¢) s(Y):
Together with the inequality (20), this completes the proof. O
Corollary 1 (Donaldson) Let X be a closed, oriented, smooth four-manifold

with negative de nite intersection form. Then its intersection form is diagonal-
izable.

Proof If we apply Theorem 3 for Y = ;; we get by(X) + c? 0 for all
characteristic vectors c: By a theorem of Elkies from [10], the only unimodular
forms with this property are the diagonal ones. ]
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Corollary 2 (Fr yshov) Let X be a smooth, compact, oriented 4{manifold
with boundary the Poincare sphere P: If the intersection form of X is of the
form mh—1i J with J even and negative de nite, then J =0 or J = —Eg:

Proof Since J is even, the vector ¢ whose rst m coordinates are 1 and the
rest are 0 is characteristic. We have ¢? = —m and we have shown that s(P) = 1:
Rather than applying Theorem 3, we use the bound d = by(X) +¢®  8s(P)
directly. This gives that rank(J) 8: But the only even, negative de nite form
of rank at most 8 is —Eg: O

A Existence of index pairs

This appendix contains the proof of Theorem 4, which is an adaptation of the
argument given in [7], pages 46-48.

The proof is rather technical, so let us rst provide the reader with some intu-
ition. Asa rst guess for the index pair, we could take N to be the complement
in A of a small open neighborhood of @A\ A* and L to be the complement
in N of a very small neighborhood of A*: (This choice explains condition (ii)
in the statement of Theorem 3.) At this stage (N;L) satis es conditions 1 and
2 in the de nition of the index pair, but it may not satisy the relative positive
invariance condition. We try to correct this by enlarging N and L with the
help of the positive flow. More precisely, if B A; we denote

P(B)=fx2A:9y2B;t O0suchthat [o.,q(y) Ax= "¢(y)g:

We could replace N and L by P(N) and P (L); respectively. (This explains

the condition (i) in the satement of Theorem 3, which can be rewritten P (K1)\

@A\ A* = ;) We have taken care of positive invariance, but a new problem

appears: P(N) and P (L) may no longer be compact. Therefore, we need to
nd conditions which guarantee their compactness:

Lemma 6 Let B be a compact subset of A which either contains A~ or is
disjoint from A*: Then P (B) is compact.

Proof Since P(B) A and A is compact, it su ces to show that for any
Xn 2 P(B) with x, ¥ x 2 A; we have x 2 P(B): Let x, be such a sequence,
Xn = "t (Yn)i¥n 2 B so that g,j(yn) A: Since B is compact, by passing
to a subsequence we can assume that y, ¥ y 2 B: If t, have a convergent
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subsequence as well, say tn, ¥ t 0; then by continuity ”¢, (Yn,) ¥ 7t(y) =X
and “oy(y) A: Thus x 2 P(B); as desired.

If t, has no convergent subsequences, then t, ¥ 1.: Given any m > 0; for n
su ciently large t, > m; s0 “[o.m(Yn) A Letting n ¥ 1 and using the
comapctness of A we obtain o.;j(y)  A: Since this is true for all m > 0;
we have y 2 A™*: This takes care of the case A™ \ B = ;; since we obtain a
contradiction. If A~  B; we reason di erently: “j(yn) A is equivalent
t0 7[—t,.00(Xn) A; lettingn ¥ 1; weget 7_q.q(X) A;s0oXx2A": Thus
x2 B P(B); as desired. ]

Proof of Theorem 4 Choose C a small compact neighborhood of A"\ @A
such that A~ \ C = ;: We claim that if we choose C su ciently small, we have
P (K1) \ C = ;: Indeed, if there were no such C; we could nd x, 2 P(Kj)
with x, ¥ x 2 A" \ @A: Let x, = 7¢,(yn) for some y, 2 K; such that
“0:ta](Yn) Al By passing to a subsequence we can assume yn ¥y 2 Ky: If
t, has a subsequence converging to some t 2 [0; 1); then by taking the limit
"o4q(y) A and “¢(y) = x; which contradicts P(K;) \ AT\ QA = ;: If ty,
has no such subsequence, then t, ¥ 1. Since *[—¢,.q(Xn) A; by taking the
limit we get ”(_1.0(X) A: Thus x 2 A™: On the other hand x 2 A™ \ QA
which contradicts the fact that A* N\ A~ = Inv A int(A):

Let C be as above and let V be an open neighborhood of A* such that cl(V n
C) int(A): Since Ky \ A" = ; and K; is compact, by making V su ciently
small we can assume that Ko \V = ;:

Let us show that there exists t 0 such that * ¢ .oj(y) 6 A foranyy 2 C: If
not, we could nd y, 2 C with *_n.q(yn) A: Since C is compact, there is
a subsequence of y, which converges to some y 2 C such that *(—_q,g(y) A
or, equivalently, y 2 A™: This contradicts the fact that A~ and C are disjoint.

Let t be as above. For each x 2 A™; either ” 1(X) A~ or there is
t(x) 2 [0;t ] so that ” .11 (X) N C = ; and 7,y (X)  A: In the rst case we
choose K(x) a compact neighborhood of x such that o (K(X)) \C = ;:
In the second case we choose K(x) to be a compact neighborhood of x with
10600 (K(X)) N\ C = ; and 7y, (K(X)) \ A = ;: Since A~ is compact, it
is covered by a nite collection of the sets K(x): Let B! be their union and
let B = B! [ Ky: Then B is compact, and we can assume that it contains a
neighborhood of A™:

We choose the index pair to be
L=P(AnV); N=P(B)[L:
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Clearly Kj B N and K, AnV L: It remains to show that (N;L) is
an index pair. First, since AnV is compact and disjoint from A™; by Lemma
6 above L is compact. Since A~ B;N =P(B [ (AnV)) is compact as well.

We need to check the three conditions in the de nition of an index pair. Condi-
tion lisequivalentto S int(NnL) =int(N)nL: We have S  int(N) because
S A and B N contains a neighborhood of A™: We have S\ L = ; be-
cause if x 2 S A* is of the form x = “¢(y) fory 2 AnV;t 0 such that
“oq() A, then y 2 A*; which contradicts A*  V:

Condition 3 can be easily checked from the de nitions: L is positively invariant
in A by construction, and this implies that it is positively invariant in N as
well.

Condition 2 requires more work. Let us rst prove that P(B)\C = ;: We
have P(B) = P(B") [ P(K1) and we already know that P(K;)\ C = ;: For
y! 2 P(B"); there exists y 2 B? such that "p.q(y) A and ~¢(y) = y": Recall
that we chose t 0 so that ”[— ,q(x) 6 A forany x 2 C:If t t; this
implies y' @ C: If t <t then, because y is in some K(x) for x 2 A~; the fact
that “o.q(y) A implies again y' = ~¢(y) & C: Therefore P(B’)\ C = ;; s0
P(B)\C =;:

To prove that L is an exit set for N; pick x 2 NnL and let = supftj”o.q(x)
N nLg: Itsu ces to show that * (x) 2 L: Assume this is false; then * (X)
N nL: Note that

NnL (AnP(Anv)) V:

Also NnL P(B) (AnC); so NnL is contained in V nC int(A):
It follows that for > 0 su ciently small, *;. 4+ (X) AnL: Since N is
positively invariant in A and 7 (X) 2 N; we get 7. +(X) N nL: This
contradicts the de nition of : Therefore, ” (X) 2 L:

We conclude that (N; L) is a genuine index pair, with Ky Nand K, L: O
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