Geometry & Topology Volume 7 (2003) 641–643 Published: 22 October 2003

Splitting the concordance group of algebraically slice knots

CHARLES LIVINGSTON

Department of Mathematics, Indiana University Bloomington, IN 47405, USA

Email: livingst@indiana.edu

Abstract

As a corollary of work of Ozsváth and Szabó [8], it is shown that the classical concordance group of algebraically slice knots has an infinite cyclic summand and in particular is not a divisible group.

AMS Classification numbers Primary: 57M25

Secondary: 57Q60

Keywords: Knot concordance, algebraically slice

Proposed: Robion Kirby Received: 1 June 2003 Seconded: Tomasz Mrowka, Cameron Gordon Accepted: 21 September 2003 642 Charles Livingston

Let \mathcal{A} denote the concordance group of algebraically slice knots, the kernel of Levine's homomorphism $\phi \colon \mathcal{C} \to \mathcal{G}$, where \mathcal{C} is the classical knot concordance group and \mathcal{G} is Levine's algebraic concordance group [6]. Little is known about the algebraic structure of \mathcal{A} : it is countable and abelian, Casson and Gordon [2] proved that \mathcal{A} is nontrivial, Jiang [5] showed it contains a subgroup isomorphic to \mathbf{Z}^{∞} , and the author [7] proved that it contains a subgroup isomorphic to \mathbf{Z}^{∞}_2 . We add the following theorem, a quick corollary of recent work of Ozsváth and Szabó [8].

Theorem 1 The group \mathcal{A} contains a summand isomorphic to \mathbf{Z} and in particular \mathcal{A} is not divisible.

Proof In [8] a homomorphism $\tau \colon \mathcal{C} \to \mathbf{Z}$ is constructed. We prove that τ is nontrivial on \mathcal{A} . The theorem follows since, because $\operatorname{Im}(\tau)$ is free, there is the induced splitting, $\mathcal{A} \cong \operatorname{Im}(\tau) \oplus \operatorname{Ker}(\tau)$. No element representing a generator of $\operatorname{Im}(\tau)$ is divisible.

According to [8], $|\tau(K)| \leq g_4(K)$, where g_4 is the 4-ball genus of a knot, and there is the example of the (4,5)-torus knot T for which $\tau(T) = 6$. We will show that there is a knot T^* algebraically concordant to T with $g_4(T^*) < 6$. Hence, $T \# - T^*$ is an algebraically slice knot with nontrivial τ , as desired.

Recall that T is a fibered knot with fiber F of genus (4-1)(5-1)/2=6. Let V be the 12×12 Seifert matrix for T with respect to some basis for $H_1(F)$. The quadratic form $q(x) = xVx^t$ on \mathbf{Z}^{12} is equal to the form given by $(V+V^t)/2$. Using [3] the signature of this symmetric bilinear form can be computed to be 8, so q is indefinite, and thus by Meyer's theorem [4] there is a nontrivial primitive element z with q(z) = 0. Since z is primitive, it is a member of a symplectic basis for $H_1(F)$. Let V^* be the Seifert matrix for T with respect to that basis. The canonical construction of a Seifert surface with Seifert matrix V^* ([9], or see [1]) yields a surface F^* such that z is represented by a simple closed curve on F^* that is unknotted in S^3 . Hence, F^* can be surgered in the 4-ball to show that its boundary T^* satisfies $g_4(T^*) < 6$. Since T^* and T have the same Seifert form, they are algebraically concordant.

Addendum An alternative proof of Theorem 1 follows from the construction of knots with trivial Alexander polynomial for which τ is nontrivial, to appear in a forthcoming paper.

References

- [1] **G Burde**, **H Zieschang**, *Knots*, de Gruyter Studies in Mathematics, 5, Walter de Gruyter & Co., Berlin (1985)
- [2] A Casson, C McA Gordon, Cobordism of classical knots, from: "A la recherche de la Topologie perdue", (Guillou and Marin, editors), Progress in Mathematics, Volume 62 (1986), originally published as an Orsay Preprint (1975)
- [3] C McA Gordon, R Litherland, K Murasugi, Signatures of covering links, Canad. J. Math. 33 (1981) 381–394
- [4] **D Husemoller**, **J Milnor**, *Symmetric Bilinear Forms*. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73, Springer-Verlag, New York-Heidelberg (1973)
- [5] B Jiang, A simple proof that the concordance group of algebraically slice knots is infinitely generated, Proc. Amer. Math. Soc. 83 (1981) 189–192
- [6] **J Levine** Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969) 229–244
- [7] C Livingston, Order 2 algebraically slice knots, from Proceedings of the Kirbyfest (Berkeley, CA, 1998) 335–342, Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry (1999)
- [8] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geometry and Topology 7 (2003) 615-639, arXiv:math.GT/0301149
- [9] H Seifert, Über das Geschlecht von Knoten, Math. Ann. 110 (1934) 571–592