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Abstract

Let G be a countable discrete group and let M be a smooth proper cocompact G-
manifold without boundary. The Euler operator defines via Kasparov theory an ele-
ment, called the equivariant Euler class, in the equivariant KO -homology of M. The
universal equivariant Euler characteristic of M, which lives in a group UG(M), counts
the equivariant cells of M , taking the component structure of the various fixed point
sets into account. We construct a natural homomorphism from UG(M) to the equiv-
ariant KO -homology of M. The main result of this paper says that this map sends the
universal equivariant Euler characteristic to the equivariant Euler class. In particular
this shows that there are no “higher” equivariant Euler characteristics. We show that,
rationally, the equivariant Euler class carries the same information as the collection
of the orbifold Euler characteristics of the components of the L-fixed point sets ML,
where L runs through the finite cyclic subgroups of G. However, we give an example
of an action of the symmetric group S3 on the 3-sphere for which the equivariant Euler
class has order 2, so there is also some torsion information.
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0 Background and statements of results

Given a countable discrete group G and a cocompact proper smooth G-manifold
M without boundary and with G-invariant Riemannian metric, the Euler char-
acteristic operator defines via Kasparov theory an element, the equivariant Eu-
ler class, in the equivariant real K -homology group of M

EulG(M) ∈ KOG0 (M). (0.1)

The Euler characteristic operator is the minimal closure, or equivalently, the
maximal closure, of the densely defined operator

(d+ d∗) : Ω∗(M) ⊆ L2Ω∗(M)→ L2Ω∗(M),

with the Z/2-grading coming from the degree of a differential p-form. The
equivariant signature operator, defined when the manifold is equipped with a
G-invariant orientation, is the same underlying operator, but with a different
grading coming from the Hodge star operator. The signature operator also
defines an element

SignG(M) ∈ KG
0 (M),

which carries a lot of geometric information about the action of G on M .
(Rationally, when G = {1}, Sign(M) is the Poincaré dual of the total L-
class, the Atiyah-Singer L-class, which differs from the Hirzebruch L-class only
by certain well-understood powers of 2, but in addition, it also carries quite
interesting integral information [11], [22], [27]. A partial analysis of the class
SignG(M) for G finite may be found in [26] and [24].)

We want to study how much information EulG(M) carries. This has already
been done by the second author [23] in the non-equivariant case. Namely, given
a closed Riemannian manifold M , not necessarily connected, let

e :
⊕
π0(M)

Z =
⊕
π0(M)

KO0({∗}) → KO0(M)

be the map induced by the various inclusions {∗} → M . This map is split
injective; a splitting is given by the various projections C → {∗} for C ∈ π0(M),
and sends {χ(C) | C ∈ π0(M)} to Eul(M). Hence Eul(M) carries precisely the
same information as the Euler characteristics of the various components of M,
and there are no “higher” Euler classes. Thus the situation is totally different
from what happens with the signature operator.

We will see that in the equivariant case there are again no “higher” Euler
characteristics and that EulG(M) is determined by the universal equivariant
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Equivariant Euler characteristics and K -homology 571

Euler characteristic (see Definition 2.5)

χG(M) ∈ UG(M) =
⊕

(H)∈consub(G)

⊕
WH\π0(MH)

Z.

Here and elsewhere consub(G) is the set of conjugacy classes of subgroups of
G and NH = {g ∈ G | g−1Hg = H} is the normalizer of the subgroup H ⊆ G
and WH := NH/H is its Weyl group. The component of χG(M) associated
to (H) ∈ consub(G) and WH · C ∈ WH\π0(MH) is the (ordinary) Euler
characteristic χ(WHC\(C,C ∩M>H)), where WHC is the isotropy group of
C ∈ π0(MH) under the WH -action. There is a natural homomorphism

eG(M) : UG(M) → KOG0 (M). (0.2)

It sends the basis element associated to (H) ⊆ consub(G) and WH · C ∈
WH\π0(MH) to the image of the class of the trivial H -representation R under
the composition

RR(H) = KOH0 ({∗}) (α)∗−−→ KOG0 (G/H)
KOG0 (x)−−−−−→ KOG0 (M),

where (α)∗ is the isomorphism coming from induction via the inclusion α : H
→ G and x : G/H → M is any G-map with x(1H) ∈ C . The main result of
this paper is

Theorem 0.3 (Equivariant Euler class and Euler characteristic) Let G be a
countable discrete group and let M be a cocompact proper smooth G-manifold
without boundary. Then

eG(M)(χG(M)) = EulG(M).

The proof of Theorem 0.3 involves two independent steps. Let Ξ be an equiv-
ariant vector field on M which is transverse to the zero-section. Let Zero(Ξ)
be the set of points x ∈ M with Ξ(x) = 0. Then G\Zero(Ξ) is finite. The
zero-section i : M → TM and the inclusion jx : TxM → TM induce an iso-
morphism of Gx -representations

Txi⊕ T0jx : TxM ⊕ TxM
∼=−→ Ti(x)(TM)

if we identify T0(TxM) = TxM in the obvious way. If pri denotes the projection
onto the i-th factor for i = 1, 2 we obtain a linear Gx -equivariant isomorphism

dxΞ: TxM
TxΞ−−→ Ti(x)(TM)

(Txi⊕Txjx)−1

−−−−−−−−−→ TxM ⊕ TxM
pr2−−→ TxM. (0.4)

Notice that we obtain the identity if we replace pr2 by pr1 in the expression
(0.4) above. One can even achieve that Ξ is canonically transverse to the zero-
section, i.e., it is transverse to the zero-section and dxΞ induces the identity
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on TxM/(TxM)Gx for Gx the isotropy group of x under the G-action. This is
proved in [29, Theorem 1A on page 133] in the case of a finite group and the
argument directly carries over to the proper cocompact case. Define the index
of Ξ at a zero x by

s(Ξ, x) =
det
(
(dxΞ)Gx : (TxM)Gx → (TxM)Gx

)
|det ((dxΞ)Gx : (TxM)Gx → (TxM)Gx)| ∈ {±1}.

For x ∈M let αx : Gx → G be the inclusion, (αx)∗ : RR(Gx) = KOGx0 ({∗})→
KOG0 (G/Gx) be the map induced by induction via αx and let x : G/Gx →M
be the G-map sending g to g ·x. By perturbing the equivariant Euler operator
using the vector field Ξ we will show :

Theorem 0.5 (Equivariant Euler class and vector fields) Let G be a count-
able discrete group and let M be a cocompact proper smooth G-manifold
without boundary. Let Ξ be an equivariant vector field which is canonically
transverse to the zero-section. Then

EulG(M) =
∑

Gx∈G\Zero(Ξ)

s(Ξ, x) ·KOG0 (x) ◦ (αx)∗([R]),

where [R] ∈ RR(Gx) = KGx
0 ({∗}) is the class of the trivial Gx -representation

R, we consider x as a G-map G/Gx →M and αx : Gx → G is the inclusion.

In the second step one has to prove

eG(M)(χG(M)) =
∑

Gx∈G\Zero(Ξ)

s(Ξ, x) ·KOG0 (x) ◦ (αx)∗([R]). (0.6)

This is a direct conclusion of the equivariant Poincaré-Hopf theorem proved
in [20, Theorem 6.6] (in turn a consequence of the equivariant Lefschetz fixed
point theorem proved in [20, Theorem 0.2]), which says

χG(M) = iG(Ξ). (0.7)

where iG(Ξ) is the equivariant index of the vector field Ξ defined in [20, (6.5)].
Since we get directly from the definitions

eG(M)(iG(Ξ)) =
∑

Gx∈G\Zero(Ξ)

s(Ξ, x) ·KOG0 (x) ◦ (αx)∗([R]), (0.8)

equation (0.6) follows from (0.7) and (0.8). Hence Theorem 0.3 is true if we
can prove Theorem 0.5, which will be done in Section 1.
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We will factorize eG(M) as

eG(M) : UG(M)
eG1 (M)−−−−→ H

Or(G)
0 (M ;RQ)

eG2 (M)−−−−→ H
Or(G)
0 (M ;RR)

eG3 (M)−−−−→ KOG0 (M),

where H
Or(G)
0 (M ;RF ) is the Bredon homology of M with coefficients in the

coefficient system which sends G/H to the representation ring RF (H) for the
field F = Q,R. We will show that eG2 (M) and eG3 (M) are rationally injective
(see Theorem 3.6). We will analyze the map eG1 (M), which is not rationally
injective in general, in Theorem 3.21.

The rational information carried by EulG(M) can be expressed in terms of
orbifold Euler characteristics of the various components of the L-fixed point
sets for all finite cyclic subgroups L ⊆ G. For a component C ∈ π0(MH)
denote by WHC its isotropy group under the WH -action on π0(MH). For
H ⊆ G finite WHC acts properly and cocompactly on C and its orbifold Euler
characteristic (see Definition 2.5), which agrees with the more general notion
of L2 -Euler characteristic,

χQWHC (C) ∈ Q,
is defined. Notice that for finite WHC the orbifold Euler characteristic is given
in terms of the ordinary Euler characteristic by

χQWHC (C) =
χ(C)
|WHC |

.

There is a character map (see (2.6))

chG(M) : UG(M)→
⊕

(H)∈consub(G)

⊕
WH\π0(MH)

Q

which sends χG(M) to the various L2 -Euler characteristics χQWHC (C) for
(H) ∈ consub(G) and WH ·C ∈WH\π0(ML). Recall that rationally EulG(M)
carries the same information as eG1 (M)(χG(M)) since the rationally injec-
tive map eG3 (M) ◦ eG2 (M) sends eG1 (M)(χG(M)) to EulG(M). Rationally
eG1 (M)(χG(M)) is the same as the collection of all these orbifold Euler charac-
teristics χQWHC (C) if one restricts to finite cyclic subgroups H . Namely, we
will prove (see Theorem 3.21):

Theorem 0.9 There is a bijective natural map

γGQ :
⊕

(L)∈consub(G)
L finite cyclic

⊕
WL\π0(ML)

Q
∼=−→ Q⊗Z HOr(G)

0 (X;RQ)
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which maps

{χQWLC)(C) | (L) ∈ consub(G), L finite cyclic,WL · C ∈WL\π0(ML)}

to 1⊗Z eG1 (M)(χG(M)).

However, we will show that EulG(M) does carry some torsion information.
Namely, we will prove:

Theorem 0.10 There exists an action of the symmetric group S3 of order 3!
on the 3-sphere S3 such that EulS3(S3) ∈ KOS3

0 (S3) has order 2.

The relationship between EulG(M) and the various notions of equivariant Euler
characteristic is clarified in sections 2 and 4.3.

The paper is organized as follows:

1 Perturbing the equivariant Euler operator by a vector field
2 Review of notions of equivariant Euler characteristic
3 The transformation eG(M)
4 Examples

4.1 Finite groups and connected non-empty fixed point sets
4.2 The equivariant Euler class carries torsion information
4.3 Independence of EulG(M) and χGs (M)
4.4 The image of the equivariant Euler class under assembly
References
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1 Perturbing the equivariant Euler operator by a
vector field

Let Mn be a complete Riemannian manifold without boundary, equipped with
an isometric action of a discrete group G. Recall that the de Rham operator
D = d + d∗ , acting on differential forms on M (of all possible degrees) is
a formally self-adjoint elliptic operator, and that on the Hilbert space of L2
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forms, it is essentially self-adjoint [8]. With a certain grading on the form bundle
(coming from the Hodge ∗-operator), D becomes the signature operator ; with
the more obvious grading of forms by parity of the degree, D becomes the Euler
characteristic operator or simply the Euler operator. When M is compact and
G is finite, the kernel of D , the space of harmonic forms, is naturally identified
with the real or complex1 cohomology of M by the Hodge Theorem, and in
this way one observes that the (equivariant) index of D (with respect to the
parity grading) in the real representation ring of G is simply the (equivariant
homological) Euler characteristic of M , whereas the index with respect to the
other grading is the G-signature [2].

Now by Kasparov theory (good general references are [4] and [9]; for the de-
tailed original papers, see [12] and [13]), an elliptic operator such as D gives
rise to an equivariant K -homology class. In the case of a compact manifold,
the equivariant index of the operator is recovered by looking at the image of
this class under the map collapsing M to a point. However, the K -homology
class usually carries far more information than the index alone; for example,
it determines the G-index of the operator with coefficients in any G-vector
bundle, and even determines the families index in K∗G(Y ) of a family of twists
of the operator, as determined by a G-vector bundle on M × Y . (Y here is
an auxiliary parameter space.) When M is non-compact, things are similar,
except that usually there is no index, and the class lives in an appropriate
Kasparov group K−∗G (C0(M)), which is locally finite KG -homology, i.e., the
relative group KG

∗ (M, {∞}), where M is the one-point compactification of
M .2 We will be restricting attention to the case where the action of G is
proper and cocompact, in which case K−∗G (C0(M)) may be viewed as a kind of
orbifold K -homology for the compact orbifold G\M (see [4, Theorem 20.2.7].)

We will work throughout with real scalars and real K -theory, and use a variant
of the strategy found in [23] to prove Theorem 0.5.

Proof of Theorem 0.5 Recall that since Ξ is transverse to the zero-section,
its zero set Zero(Ξ) is discrete, and since M is assumed G-cocompact, Zero(Ξ)
consists of only finitely many G-orbits. Write Zero(Ξ) = Zero(Ξ)+qZero(Ξ)− ,

1depending on what scalars one is using
2Here C0(M) denotes continuous real- or complex-valued functions on M vanishing

at infinity, depending on whether one is using real or complex scalars. This algebra is
contravariant in M , so a contravariant functor of C0(M) is covariant in M . Excision in
Kasparov theory identifies K−∗G (C0(M)) with K−∗G (C(M), C(pt)), which is identified
with relative KG -homology. When M does not have finite G-homotopy type, KG -
homology here means Steenrod KG -homology, as explained in [10].
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576 Wolfgang Lück and Jonathan Rosenberg

according to the signs of the indices s(Ξ, x) of the zeros x ∈ Zero(Ξ). We
fix a G-invariant Riemannian metric on M and use it to identify the form
bundle of M with the Clifford algebra bundle Cliff(TM) of the tangent bundle,
with its standard grading in which vector fields are sections of Cliff(TM)− ,
and D with the Dirac operator on Cliff(TM).3 (This is legitimate by [15, II,
Theorem 5.12].) Let H = H+ ⊕ H− be the Z/2-graded Hilbert space of L2

sections of Cliff(TM). Let A be the operator on H defined by right Clifford
multiplication by Ξ on Cliff(TM)+ (the even part of Cliff(TM)) and by right
Clifford multiplication by −Ξ on Cliff(TM)− (the odd part). We use right
Clifford multiplication since it commutes with the symbol of D . Observe that A
is self-adjoint, with square equal to multiplication by the non-negative function
|Ξ(x)|2 . Furthermore, A is odd with respect to the grading and commutes with
multiplication by scalar-valued functions.

For λ ≥ 0, let Dλ = D + λA. As in [23], each Dλ defines an unbounded G-
equivariant Kasparov module in the same Kasparov class as D . In the “bounded
picture” of Kasparov theory, the corresponding operator is

Bλ = Dλ

(
1 +D2

λ

)− 1
2 =

1
λ
Dλ

(
1
λ2

+
1
λ2
D2
λ

)− 1
2

. (1.1)

The axioms satisfied by this operator that insure that it defines a Kasparov
KG -homology class (in the “bounded picture”) are the following:

(B1) It is self-adjoint, of norm ≤ 1, and commutes with the action of G.

(B2) It is odd with respect to the grading of Cliff(TM).

(B3) For f ∈ C0(M), fBλ ∼ Bλf and fB2
λ ∼ f , where ∼ denotes equality

modulo compact operators.

We should point out that (B1) is somewhat stronger than it needs to be when
G is infinite. In that case, we can replace invariance of Bλ under G by “G-
continuity,” the requirement (see [13] and [4, §20.2.1]) that

(B1 ′) f(g ·Bλ −Bλ) ∼ 0 for f ∈ C0(M), g ∈ G.

In order to simplify the calculations that are coming next, we may assume with-
out loss of generality that we’ve chosen the G-invariant Riemannian metric on
M so that for each z ∈ Zero(Ξ), in some small open Gz -invariant neighborhood
Uz of z , M is Gz -equivariantly isometric to a ball, say of radius 1, about the
origin in Euclidean space Rn with an orthogonal Gz -action, with z correspond-
ing to the origin. This can be arranged since the exponential map induces a

3Since sign conventions differ, we emphasize that for us, unit tangent vectors on M
have square −1 in the Clifford algebra.
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Gz -diffeomorphism of a small Gz -invariant neighborhood of 0 ∈ TzM onto a
Gz -invariant neighborhood of z such that 0 is mapped to z and its differential
at 0 is the identity on TzM under the standard identification T0(TzM) = TzM .
Thus the usual coordinates x1, x2, . . . , xn in Euclidean space give local coor-
dinates in M for |x| < 1, and ∂

∂x1
, ∂
∂x2

, . . . , ∂
∂xn

define a local orthonormal
frame in TM near z . We can arrange that (Rn)Gz contains the points with
x2 = . . . = xn = 0 if (Rn)Gz is different from {0}. In these exponential local
coordinates, the point x1 = x2 = · · · = xn = 0 corresponds to z . We may
assume we have chosen the vector field Ξ so that in these local coordinates, Ξ
is given by the radial vector field

x1
∂

∂x1
+ x2

∂

∂x2
+ · · ·+ xn

∂

∂xn
(1.2)

if z ∈ Zero(Ξ)+ , or by the vector field

−x1
∂

∂x1
+ x2

∂

∂x2
+ · · ·+ xn

∂

∂xn
(1.3)

if z ∈ Zero(Ξ)− . Thus |Ξ(x)| = 1 on ∂Uz for each z , and we can assume
(rescaling Ξ if necessary) that |Ξ| ≥ 1 on the complement of

⋃
z∈Zero(Ξ) Uz .

Recall that Dλ = D + λA.

Lemma 1.4 Fix a small number ε > 0, and let Pλ denote the spectral pro-
jection of D2

λ corresponding to [0, ε]. Then for λ sufficiently large, rangePλ
is G-isomorphic to L2(Zero(Ξ)) (a Hilbert space with Zero(Ξ) as orthonormal
basis, with the obvious unitary action of G coming from the action of G on
Zero(Ξ)), and there is a constant C > 0 such that (1 − Pλ)D2

λ ≥ Cλ. (In
other words, (ε, Cλ) ∩ (specD2

λ) = ∅.) Furthermore, the functions in rangePλ
become increasingly concentrated near Zero(Ξ) as λ→∞.

Proof First observe that in Euclidean space Rn , if Ξ is defined by (1.2) or
(1.3) and A and Dλ are defined from Ξ as on M , then Sλ = D2

λ is basically a
Schrödinger operator for a harmonic oscillator, so one can compute its spectral
decomposition explicitly. (For example, if n = 1, then Sλ = − d2

dx2 + λ2x2 ± λ,
the sign depending on whether z ∈ Zero(Ξ)+ or z ∈ Zero(Ξ)− and whether one
considers the action on H+ or H− .) When z ∈ Zero(Ξ)+ , the kernel of Sλ in
L2 sections of Cliff(TRn) is spanned by the Gaussian function

(x1, x2, . . . , xn) 7→ e−λ|x|
2/2,

and if z ∈ Zero(Ξ)− , the L2 kernel is spanned by a similar section of Cliff(TM)−,
e−λ|x|

2/2 ∂
∂x1

. Also, in both cases, Sλ has discrete spectrum lying on an arith-
metic progression, with one-dimensional kernel (in L2 ) and first non-zero eigen-
value given by 2nλ.
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Now let’s go back to the operator on M . Just as in [23, Lemma 2], we have
the estimate

−Kλ ≤ D2
λ − (D2 + λ2A2) ≤ Kλ, (1.5)

where K > 0 is some constant (depending on the size of the covariant deriva-
tives of Ξ).4 But D2

λ ≥ 0, and also, from (1.5),

1
λ2
D2
λ ≥ A2 +

1
λ2
D2 − K

λ
, (1.6)

which implies that

1
λ2
D2
λ ≥ multiplication by |Ξ(x)|2 − K

λ
. (1.7)

So if ξλ is a unit vector in rangePλ , we have

ε

λ2
≥
〈

1
λ2
D2
λξλ, ξλ

〉
≥
∫
M
|Ξ(x)|2 |ξλ(x)|2 dvol − K

λ

∥∥ξλ∥∥2
. (1.8)

Now ‖ξλ‖ = 1, and if we fix η > 0, we only make the integral smaller by
replacing |Ξ(x)|2 by η on the set Eη = {x : |Ξ(x)|2 ≥ η} and by 0 elsewhere.
So

ε

λ2
≥ −K

λ
+ η

∫
Eη

|ξλ(x)|2 dvol

or ∥∥ξλχEη∥∥2 ≤ K

ηλ
+

ε

ηλ2
. (1.9)

This being true for any η , we have verified that as λ → ∞, ξλ becomes in-
creasingly concentrated near the zeros of Ξ, in the sense that the L2 norm of
its restriction to the complement of any neighborhood of Zero(Ξ) goes to 0.

It remains to compute rangePλ (as a unitary representation space of G) and to
prove that D2

λ has the desired spectral gap. Define a C2 cut-off function ϕ(t),
0 ≤ t <∞, so that 0 ≤ ϕ(t) ≤ 1, ϕ(t) = 1 for 0 ≤ t ≤ 1

2 , ϕ(t) = 0 for t ≥ 1,
and ϕ is decreasing on the interval

[
1
2 , 1

]
. In other words, ϕ is supposed to

have a graph like this:

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

4We are using the cocompactness of the G-action to obtain a uniform estimate.
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We can arrange that |ϕ′(t)| ≤ 3 and that |ϕ′′(t)| ≤ 20. For each element z
of Zero(Ξ), recall that we have a Gz -invariant neighborhood Uz that can be
identified with the unit ball in Rn equipped with an orthogonal Gz -action. So
the function ψz,λ(x) = ϕ(r)e−λr

2/2 , where r = |x| is the radial coordinate in
Rn , makes sense as a function in C2(M), with support in Uz . For simplicity
suppose z ∈ Zero(Ξ)+ ; the other case is exactly analogous except that we need
a 1-form instead of a function. Then D2

λ , acting on radial functions, becomes

−∆ + λ2|x|2 − nλ = − ∂2

∂r2
− (n− 1)

1
r

∂

∂r
+ λ2r2 − nλ.

As we mentioned before, this operator on Rn annihilates x 7→ e−λr
2/2 , so we

have

‖Dλψz,λ‖2
‖ψz,λ‖2

=

〈
D2
λψz,λ, ψz,λ

〉
〈ψz,λ, ψz,λ〉

=

∫ 1
0 ϕ(r)

(
−rϕ′′(r) + (1− n+ 2r2λ)ϕ′(r)

)
e−λr

2
rn−2 dr∫ 1

0 ϕ(r)2e−λr2
rn−1 dr

≤
∫ 1

1/2(20r + 6λ)e−λr
2
rn−2 dr∫ 1/2

0 e−λr2rn−1 dr
. (1.10)

The expression (1.10) goes to 0 faster than λ−k for any k ≥ 1, since the
numerator dies rapidly and the denominator behaves like a constant times λ−n/2

for large λ, so Pλψz,λ is non-zero and very close to ψz,λ . Rescaling constructs
a unit vector in rangePλ concentrated near z , regardless of the value of ε,
provided λ is sufficiently large (depending on ε). And the action of g ∈ G
sends this unit vector to the corresponding unit vector concentrated near g · z .
In particular, rangePλ contains a Hilbert space G-isomorphic to L2(Zero(Ξ)).

To complete the proof of the Lemma, it will suffice to show that if ξ is a unit
vector in the domain of D which is orthogonal to each ψz,λ , then ‖Dλξ‖2 ≥ Cλ
for some constant C > 0, provided λ is sufficiently large Let E =

⋃
z∈Zero(Ξ) Vz ,

where Vz corresponds to the ball about the origin of radius 1
2 when we identify

Uz with the ball about the origin in Rn of radius 1. Let χE be the characteristic
function of E . Then

1 = ‖ξ‖2 = ‖χEξ‖2 + ‖(1 − χE)ξ‖2.

Hence we must be in one of the following two cases:

(a) ‖(1 − χE)ξ‖2 ≥ 1
2 .

(b) ‖χEξ‖2 ≥ 1
2 .
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In case (1), we can argue just as in the inequalities (1.8) and (1.9) with η = 1
4 ,

since E is precisely the set where |Ξ(x)|2 < 1
4 . So we obtain

1
λ2
‖Dλξ‖2 =

〈
1
λ2
D2
λξ, ξ

〉
≥ −K

λ
+

1
4
‖(1− χE)ξ‖2 ≥ 1

8
− K

λ
,

which gives ‖Dλξ‖2 � const · λ2 once λ is sufficiently large. So now consider
case (2). Then for some z , we must have ‖χG·Vzξ‖2 ≥ 1

2|G\Zero(Ξ)| . But by
assumption, ξ ⊥ ψg·z,λ (for this same z and all g ∈ G). Assume for simplicity
that ξ ∈ H+ and z ∈ Zero(Ξ)+ . If ξ ∈ H+ and z ∈ Zero(Ξ)− , there is no
essential difference, and if ξ ∈ H− , the calculations are similar, but we need
1-forms in place of functions. Anyway, if we let ξg denote ξ|Ug ·z transported
to Rn , we have

0 =
∫
Rn
ϕ(|x|)ξg(x)e−λ|x|

2/2 dx (∀g),

1 ≥
∑
g

∫
|x|≤ 1

2

ϕ(|x|)2
∣∣ξg(x)

∣∣2 dx ≥ 1
2|G\Zero(Ξ)| .

Now we use the fact that the Schrödinger operator Sλ on Rn has one-dimen-
sional kernel in L2 spanned by x 7→ e−λ|x|

2/2 (if z ∈ Zero(Ξ)+ ), and spectrum
bounded below by 2nλ on the orthogonal complement of this kernel. (If z ∈
Zero(Ξ)− , the entire spectrum of Sλ on H+ is bounded below by 2nλ.) So
compute as follows:∥∥Dλ

(
ϕ(|x|)ξg

)∥∥2 =
〈
D2
λ

(
ϕ(|x|)ξg

)
, ϕ(|x|)ξg

〉
≥ 2nλ 〈ϕ(|x|)ξg , ϕ(|x|)ξg〉 . (1.11)

Let ω be the function on M which is 0 on the complement of
⋃
g Ug·z and given

by ϕ(|x|) on Ug·z (when we use the local coordinate system there centered at
g · z ). Then:

‖Dλξ‖2 =
∥∥Dλ

(
ωξ
)∥∥2 +

∥∥Dλ

((
1− ω

)
ξ
)∥∥2

+ 2
〈
D2
λ

((
1− ω

)
ξ
)
, ωξ

〉
. (1.12)

Since Dλ is local and ω is supported on the Ug·z , g ∈ G, the first term on the
right is simply∥∥Dλ

(
ωξ
)∥∥2 =

∑
g

∥∥Dλ

(
ϕ(|x|)ξg

)∥∥2 ≥ 2nλ
2|G\Zero(Ξ)| (1.13)

by (1.11). In the inner product term in (1.12), since ωξ is a sum of pieces with
disjoint supports Ug·z , we can split this as a sum over terms we can transfer to
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Rn , getting

2
∑
g

〈
Sλ
((

1− ϕ(|x|)
)
ξg
)
, ϕ(|x|)ξg

〉
= 2

∑
g

〈
D2
((

1− ϕ(|x|)
)
ξg
)
, ϕ(|x|)ξg

〉
+ 2

∑
g

∫
1
2
≤|x|≤1

(λ2|x|2 + Tλ)ϕ(|x|)
(
1− ϕ(|x|)

)
|ξg(x)|2 dx,

where −K ≤ T ≤ K . Since λ2|x|2 +Tλ > 0 on 1
2 ≤ |x| ≤ 1 for large enough λ,

the integral here is nonnegative, and the only possible negative contributions
to ‖Dλξ‖2 are the terms 2

〈
D2
((

1− ϕ(|x|)
)
ξg
)
, ϕ(|x|)ξg

〉
, which do not grow

with λ. So from (1.12), (1.13), and (1.11), ‖Dλξ‖2 ≥ const ·λ for large enough
λ, which completes the proof.

Proof of Theorem 0.5, continued We begin by defining a continuous field
E of Z/2-graded Hilbert spaces over the closed interval [0, +∞]. Over the open
interval [0, +∞), the field is just the trivial one, with fiber Eλ = H , the L2

sections of Cliff(TM). But the fiber E∞ over +∞ will be the direct sum of
H⊕ V , where V = L2(Zero(Ξ)) is a Hilbert space with orthonormal basis vz ,
z ∈ Zero(Ξ). We put a Z/2-grading on V by letting V + = L2(Zero(Ξ)+),
V − = L2(Zero(Ξ)−). To define the continuous field structure, it is enough by
[7, Proposition 10.2.3] to define a suitable total set of continuous sections near
the exceptional point λ = ∞. We will declare ordinary continuous functions
[0,∞] → H to be continuous, but will also allow additional continuous fields
that become increasingly concentrated near the points of Zero(Ξ). Namely,
suppose z ∈ Zero(Ξ). By Lemma 1.4, for λ large, Dλ has an element ψz,λ
in its “approximate kernel” increasingly supported close to z , and we have a
formula for it. So we declare (ξ(λ))λ<∞ to define a continuous field converging
to cvz at λ =∞ if for any neighborhood U of z ,∫

MrU
|ξ(λ)(m)|2 dvol(m)→ 0 as λ→∞,

and if (assuming z ∈ Zero(Ξ)+ ) ξ(λ) ∈ H+ and∥∥∥∥∥ξ(λ)− c
(
λ

π

)n
4

ψz,λ

∥∥∥∥∥→ 0 as λ→∞. (1.14)

The constant reflects the fact that the L2 -norm of e−λ|x|
2/2 is

(
π
λ

)n
4 . If z ∈

Zero(Ξ)− , we use the same definition, but require ξ(λ) ∈ H− .

This concludes the definition of the continuous field of Hilbert spaces E , which
we can think of as a Hilbert C∗ -module over C(I), I the interval [0, +∞]. We
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will use this to define a Kasparov (C0(M), C(I))-bimodule, or in other words,
a homotopy of Kasparov (C0(M), R)-modules. The action of C0(M) on E is
the obvious one: C0(M) acts on H the usual way, and it acts on V (the other
summand of E∞) by evaluation of functions at the points of Zero(Ξ):

f · vz = f(z)vz, z ∈ Zero(Ξ), f ∈ C0(M).

We define a field T of operators on E as follows. For λ < ∞, Tλ ∈ L(Eλ) =
L(H) is simply Bλ as defined in (1.1), where recall that Dλ = D + λA. For
λ =∞, E∞ = H⊕V and T∞ is 0 on V and is given on H by the operator B∞ =
A/|A| which is right Clifford multiplication by Ξ(x)

|Ξ(x)| (an L∞ , but possibly

discontinuous, vector field) on H+ and by −Ξ(x)
|Ξ(x)| on H− . Note that T 2

∞ is 0 on
V and the identity on H . While 1V is not compact on V if Zero(Ξ) is infinite,
this is not a problem since for f ∈ Cc(M), the action of f on V has finite rank
(since f annihilates vz for z 6∈ supp f ).

Now we check the axioms for (E , T ) to define a homotopy of Kasparov modules
from [D] to the class of(

C0(M), E∞, T∞
)

=
(
C0(M), H, B∞

)
⊕
(
C0(M), V, 0

)
.

But
(
C0(M), H, B∞

)
is a degenerate Kasparov module, since B∞ commutes

with multiplication by functions and has square 1. So the class of
(
C0(M), E∞ ,

T∞
)

is just the class of
(
C0(M), V, 0

)
, which (essentially by definition) is the

image under the inclusion Zero(Ξ) ↪→ M of the sum (over G\Zero(Ξ)) of +1
times the canonical class KOG0 (z) ◦ (αz)∗([R]) for G · z ⊆ Zero(Ξ)+ and of −1
times this class if G · z ⊆ Zero(Ξ)− . This will establish Theorem 0.5, assuming
we can verify that we have a homotopy of Kasparov modules.

The first thing to check is that the action of C0(M) on E is continuous, i.e.,
given by a ∗-homomorphism C0(M) → L(E). The only issue is continuity at
λ =∞. In other words, since the action on H is constant, we just need to know
that if ξ is a continuous field converging as λ → ∞ to a vector v in V , then
for f ∈ C0(M), f · ξ(λ) → f · v . But it’s enough to consider the special kinds
of continuous fields discussed above, since they generate the structure, and if
ξ(λ)→ cvz , then ξ(λ) becomes increasingly concentrated at z (in the sense of
L2 norm), and hence f · ξ(λ)→ cf(z)vz , as required.

Next, we need to check that T ∈ L(E). Again, the only issue is (strong operator)
continuity at λ = ∞. Because of the way continuous fields are defined at
λ =∞, there are basically two cases to check. First, if ξ ∈ H , we need to check
that Bλξ → B∞ξ as λ →∞. Since the Bλ ’s all have norm ≤ 1, we also only
need to check this on a dense set of ξ ’s. First, fix ε > 0 small and suppose ξ
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is smooth and supported on the open set where |Ξ(x)|2 > ε. Then for λ large,
Lemma 1.4 implies that there is a constant C > 0 (depending on ε but not on
λ) such that 〈D2

λξ, ξ〉 > Cλ‖ξ‖2 . In fact, if Pλ is the spectral projection of D2
λ

for the interval [0, Cλ], Lemma 1.4 implies that ‖Pλξ‖ ≤ ε‖ξ‖ for λ sufficiently
large. (This is because the condition on the support of ξ forces ξ to be almost
orthogonal to the spectral subspace where D2

λ ≤ ε.) Now let E+
λ and E−λ

be the spectral projections for Dλ corresponding to the intervals (0, ∞) and
(−∞, 0), and let F+ and F− be the spectral projections for A corresponding
to the same intervals. Since the vector field Ξ vanishes only on a discrete set,
the operator A has no kernel, and hence F+ +F− = 1. Now we appeal to two
results in Chapter VIII of [14]: Corollary 1.6 in §1, and Theorem 1.15 in §2.
The former shows that the operators A+ 1

λD , all defined on domD , “converge
strongly in the generalized sense” to A. Since the positive and negative spectral
subspaces for A+ 1

λD are the same as for Dλ (since the operators only differ by
a homothety), [14, Chapter VIII, §2, Theorem 1.15] then shows that E+

λ → F+

and E−λ → F+ in the strong operator topology. Note that the fact that A has
no kernel is needed in these results.

Now since ‖Pλξ‖ ≤ ε‖ξ‖ for λ sufficiently large, we also have

B∞ξ = F+ξ − F−ξ, and ‖Bλξ − (E+
λ ξ − E

−
λ ξ)‖ ≤ 2ε

for λ sufficiently large. Hence

‖Bλξ −B∞ξ‖ ≤ 2ε+ ‖(E+
λ ξ − F

+ξ)− (E−λ ξ − F
−ξ)‖ → 2ε.

Now let ε → 0. Since, with ε tending to zero, ξ ’s satisfying our support
condition are dense, we have the required strong convergence.

There is one other case to check, that where ξ(λ) → cvz in the sense of the
continuous field structure of E . In this case, we need to show that Bλξ(λ)→ 0.
This case is much easier: ξ(λ)→ cvz means∥∥∥∥∥ξ(λ)− c

(
λ

π

)n
4

ψz,λ

∥∥∥∥∥→ 0 by (1.14),

while ‖Bλ‖ ≤ 1 and∥∥∥∥∥Dλ

((
λ

π

)n
4

ψz,λ

)∥∥∥∥∥→ 0 by (1.10),

so Bλξ(λ)→ 0 in norm.

Thus T ∈ L(E). Obviously, T satisfies (B1) and (B2) of page 576, so we need
to check the analogues of (B3), which are that f(1−T 2) and [T, f ] lie in K(E)
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for f ∈ C0(M). First consider 1−T 2 . 1−T 2
λ is locally compact (i.e., compact

after multiplying by f ∈ Cc(M)) for each λ, since

1− T 2
λ = 1−B2

λ = (1 +D2
λ)−1 =

(
1 + (D + λA)2

)−1

is locally compact for λ < ∞, and 1 − T 2
∞ is just projection onto V , where

functions f of compact support act by finite-rank operators. So we just need
to check that 1− T 2

λ is a norm-continuous field of operators on E . Continuity
for λ < ∞ is routine, and implicit in [3, Remarques 2.5]. To check continuity
at λ =∞, we use Lemma 1.4, which shows that (1 +D2

λ)−1 = Pλ +O
(

1
λ

)
, and

also that Pλ is increasingly concentrated near Zero(Ξ). So near λ = ∞, we
can write the field of operators (1 + D2

λ)−1 as a sum of rank-one projections
onto vector fields converging to the various vz ’s (in the sense of our continuous
field structure) and another locally compact operator converging in norm to 0.

This leaves just one more thing to check, that for f ∈ C0(M), [f, Tλ] lies in
K(E). We already know that [f, Bλ] ∈ K(H) for fixed λ and is norm-continuous
in λ for λ <∞, so since T∞ commutes with multiplication operators, it suffices
to show that [f, Bλ] converges to 0 in norm as λ→ 0. We follow the method
of proof in [23, p. 3473], pointing out the changes needed because of the zeros
of the vector field Ξ.

We can take f ∈ C∞c (M) with critical points at all of the points of the set
Zero(Ξ), since such functions are dense in C0(M). Then estimate as follows:

[f, Bλ] =
[
f, Dλ(1 +D2

λ)−1/2
]

= [f, Dλ](1 +D2
λ)−1/2 +Dλ

[
f, (1 +D2

λ)−1/2
]
. (1.15)

We have [f, Dλ] = [f, D], which is a 0’th order operator determined by the
derivatives of f , of compact support since f has compact support, and we’ve
seen that (1 + D2

λ)−1/2 converges as λ → ∞ (in the norm of our continuous
field) to projection onto the space V = L2(Zero(Ξ)). Since the derivatives of
f vanish on Zero(Ξ), the product [f, Dλ](1 +D2

λ)−1/2 , which is the first term
in (1.15), goes to 0 in norm. As for the second term, we have (following [4, p.
199])

Dλ

[
f, (1 +D2

λ)−1/2
]

=
1
π

∫ ∞
0

µ−
1
2Dλ

[
f, (1 +D2

λ + µ)−1
]
dµ, (1.16)

and

Dλ

[
f, (1 +D2

λ + µ)−1
]

= Dλ(1 +D2
λ + µ)−1

[
1 +D2

λ + µ, f
]

(1 +D2
λ + µ)−1.

Now use the fact that[
1 +D2

λ + µ, f
]

=
[
D2
λ, f

]
= Dλ[Dλ, f ] + [Dλ, f ]Dλ = Dλ[D, f ] + [D, f ]Dλ.
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We obtain that

Dλ

[
f, (1 +D2

λ + µ)−1
]

=
D2
λ

1 +D2
λ + µ

[D, f ]
1

1 +D2
λ + µ

+
Dλ

1 +D2
λ + µ

[D, f ]
Dλ

1 +D2
λ + µ

. (1.17)

Again a slight modification of the argument in [23, p. 3473] is needed, since Dλ

has an “approximate kernel” concentrated near the points of Zero(Ξ). So we
estimate the norm of the right side of (1.17) as follows:

∥∥Dλ

[
f, (1 +D2

λ + µ)−1
]∥∥ ≤ ∥∥∥∥ D2

λ

1 +D2
λ + µ

[D, f ]
1

1 +D2
λ + µ

∥∥∥∥ (1.18)

+
∥∥∥∥ Dλ

1 +D2
λ + µ

[D, f ]
Dλ

1 +D2
λ + µ

∥∥∥∥ . (1.19)

The first term, (1.18), is bounded by the second, (1.19), plus an additional
commutator term: ∥∥∥∥ Dλ

1 +D2
λ + µ

[D, [D, f ]]
1

1 +D2
λ + µ

∥∥∥∥ . (1.20)

Now the contribution of the term (1.19) is estimated by observing that the
function

x

1 + x2 + µ
, −∞ < x <∞

has maximum value 1
2
√

1+µ
at x =

√
1 + µ, is increasing for 0 < x <

√
1 + µ,

and is decreasing to 0 for x >
√

1 + µ. Fix ε > 0 small. Since, by Lemma 1.4,
|Dλ| has spectrum contained in [0,

√
ε] ∪ [

√
Cλ, ∞), we find that

∥∥∥∥ Dλ

1 +D2
λ + µ

∥∥∥∥ ≤


1
2
√

1+µ
,
√
Cλ ≤

√
1 + µ, or µ ≥ Cλ− 1,

max
( √

ε
1+ε+µ ,

√
Cλ

1+µ+Cλ

)
,

√
Cλ ≥

√
1 + µ, or 0 ≤ µ ≤ Cλ− 1.

(1.21)
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Thus the contribution of the term (1.19) to the integral in (1.16) is bounded by

‖[D, f ]‖
π

∫ ∞
0

∥∥∥∥ Dλ

1 +D2
λ + µ

∥∥∥∥2 1
√
µ
dµ

≤ ‖[D, f ]‖
π

(∫ ∞
Cλ−1

1
√
µ

1
4(1 + µ)

dµ (1.22)

+
∫ Cλ−1

0

1
√
µ

max
(

Cλ

(1 + µ+ Cλ)2
,

ε

(1 + ε+ µ)2

)
dµ

)
≤ ‖[D, f ]‖

π

(
1
4

∫ ∞
Cλ−1

µ−
3
2 dµ+

∫ Cλ

0

1
√
µ

Cλ

(Cλ)2
dµ+

∫ ∞
0

ε
√
µ(1 + µ)2

dµ

)
=
‖[D, f ]‖

π

(
1

2
√
Cλ− 1

+
2√
Cλ

+
πε

2

)
→ ‖[D, f ]‖

2
ε. (1.23)

We can make this as small as we like by taking ε small enough. Similarly, the
contribution of term (1.20) to the integral in (1.16) is bounded by

‖[D, [D, f ]]‖
π

∫ ∞
0

∥∥∥∥ Dλ

1 +D2
λ + µ

∥∥∥∥ 1
1 + µ

1
√
µ
dµ

≤ ‖[D, [D, f ]]‖
π

(∫ ∞
Cλ−1

1
2
√

1 + µ

1
1 + µ

1
√
µ
dµ

+
∫ Cλ−1

0

√
Cλ

(1 + µ+ Cλ)
1

1 + µ

1
√
µ
dµ +

∫ ∞
0

ε
√
µ(1 + µ)2

dµ
)

≤ ‖[D, [D, f ]]‖
π

(∫ ∞
Cλ−1

1
2µ2

dµ+
∫ ∞

0

1√
Cλ

1
√
µ(1 + µ)

dµ

+
∫ ∞

0

ε
√
µ(1 + µ)2

dµ

)
≤ ‖[D, [D, f ]]‖

π

(
1

2(Cλ− 1)
+

π√
Cλ

+
πε

2

)
→ ‖[D, [D, f ]]‖

2
ε, (1.24)

which again can be taken as small as we like. This completes the proof.

2 Review of notions of equivariant Euler character-
istic

Next we briefly review the universal equivariant Euler characteristic, as well as
some other notions of equivariant Euler characteristic, so we can see exactly how
they are related to the KOG -Euler class EulG(M). We will use the following
notation in the sequel.
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Notation 2.1 Let G be a discrete group and H ⊆ G be a subgroup. Let
NH = {g ∈ G | gHg−1 = H} be its normalizer and let WH := NH/H be its
Weyl group.

Denote by consub(G) the set of conjugacy classes (H) of subgroups H ⊆ G.

Let X be a G-CW -complex. Put

XH := {x ∈ X | H ⊆ Gx};
X>H := {x ∈ X | H ( Gx},

where Gx is the isotropy group of x under the G-action.

Let x : G/H → X be a G-map. Let XH(x) be the component of XH contain-
ing x(1H). Put

X>H(x) = XH(x) ∩X>H .

Let WHx be the isotropy group of XH(x) ∈ π0(XH) under the WH -action.

Next we define the group UG(X), in which the universal equivariant Euler
characteristic takes its values. Let Π0(G,X) be the component category of
the G-space X in the sense of tom Dieck [6, I.10.3]. Objects are G-maps
x : G/H → X . A morphism σ from x : G/H → X to y : G/K → X is a
G-map σ : G/H → G/K such that y ◦ σ and x are G-homotopic. A G-map
f : X → Y induces a functor Π0(G, f) : Π0(G,X)→ Π0(G,Y ) by composition
with f . Denote by Is Π0(G,X) the set of isomorphism classes [x] of objects
x : G/H → X in Π0(G,X). Define

UG(X) := Z[Is Π0(G,X)], (2.2)

where for a set S we denote by Z[S] the free abelian group with basis S . Thus
we obtain a covariant functor from the category of G-spaces to the category of
abelian groups. Obviously UG(f) = UG(g) if f, g : X → Y are G-homotopic.

There is a natural bijection

Is Π0(G,X)
∼=−→

∐
(H)∈consub(G)

WH\π0(XH), (2.3)

which sends x : G/H → X to the orbit under the WH -action on π0(XH) of
the component XH(x) of XH which contains the point x(1H). It induces a
natural isomorphism

UG(X)
∼=−→

⊕
(H)∈consub(G)

⊕
WH\π0(XH )

Z. (2.4)
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Definition 2.5 Let X be a finite G-CW -complex X . We define the universal
equivariant Euler characteristic of X

χG(X) ∈ UG(X)

by assigning to [x : G/H → X] ∈ Is Π0(G,X) the (ordinary) Euler character-
istic of the pair of finite CW -complexes (WHx\XH(x),WHx\X>H(x)).

If the action of G on X is proper (so that the isotropy group of any open cell
in X is finite), we define the orbifold Euler characteristic of X by:

χQG(X) :=
∑
p≥0

∑
G·e∈G\Ip(X)

|Ge|−1 ∈ Q,

where Ip(X) is the set of open cells of X (after forgetting the group action).

The orbifold Euler characteristic χQG(X) can be identified with the more gen-
eral notion of the L2 -Euler characteristic χ(2)(X;N (G)), where N (G) is the
group von Neumann algebra of G. One can compute χ(2)(X;N (G)) in terms
of L2 -homology

χ(2)(X;N (G)) =
∑
p≥0

(−1)p · dimN (G)

(
H(2)
p (X;N (G)

)
,

where dimN (G) denotes the von Neumann dimension (see for instance [17, Sec-
tion 6.6]).

Next we define for a proper G-CW -complex X the character map

chG(X) : UG(X) →
⊕

Is Π0(G,X)

Q =
⊕

(H)∈consub(G)

⊕
WH\π0(XH)

Q. (2.6)

We have to define for an isomorphism class [x] of objects x : G/H → X in
Π0(G,X) the component chG(X)([x])[y] of chG(X)([x]) which belongs to an
isomorphism class [y] of objects y : G/K → X in Π0(G,X), and check that
χG(X)([x])[y] is different from zero for at most finitely many [y]. Denote by
mor(y, x) the set of morphisms from y to x in Π0(G,X). We have the left
operation

aut(y, y)×mor(y, x)→ mor(y, x), (σ, τ) 7→ τ ◦ σ−1.

There is an isomorphism of groups

WKy
∼=−→ aut(y, y)

which sends gK ∈WKy to the automorphism of y given by the G-map

Rg−1 : G/K → G/K, g′K 7→ g′g−1K.
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Thus mor(y, x) becomes a left WKy -set.

The WKy -set mor(y, x) can be rewritten as

mor(y, x) = {g ∈ G/HK | g · x(1H) ∈ XK(y)},

where the left operation of WKy on {g ∈ G/HK | g · x(1H) ∈ Y K(y)} comes
from the canonical left action of G on G/H . Since H is finite and hence
contains only finitely many subgroups, the set WK\(G/HK) is finite for each
K ⊆ G and is non-empty for only finitely many conjugacy classes (K) of sub-
groups K ⊆ G. This shows that mor(y, x) 6= ∅ for at most finitely many iso-
morphism classes [y] of objects y ∈ Π0(G,X) and that the WKy -set mor(y, x)
decomposes into finitely many WKy orbits with finite isotropy groups for each
object y ∈ Π0(G,X). We define

chG(X)([x])[y] :=
∑

WKy·σ∈
WKy\mor(y,x)

|(WKy)σ |−1, (2.7)

where (WKy)σ is the isotropy group of σ ∈ mor(y, x) under the WKy -action.

Lemma 2.8 Let X be a finite proper G-CW -complex. Then the map chG(X)
of (2.6) is injective and satisfies

chG(X)(χG(X))[y] = χQWKy(XK(y)).

The induced map

idQ⊗Z chG(X) : Q⊗Z UG(X)
∼=−→

⊕
(H)∈consub(G)

⊕
WH\π0(XH )

Q

is bijective.

Proof Injectivity of χG(X) and chG(X)(χG(X))[y] = χQWKy(XK(y)). is
proved in [20, Lemma 5.3]. The bijectivity of idQ⊗Z chG(X) follows since its
source and its target are Q-vector spaces of the same finite Q-dimension.

Now let us briefly summarize the various notions of equivariant Euler charac-
teristic and the relations among them. Since some of these are only defined
when M is compact and G is finite, we temporarily make these assumptions
for the rest of this section only.

Definition 2.9 If G is a finite group, the Burnside ring A(G) of G is the
Grothendieck group of the (additive) monoid of finite G-sets, where the addition
comes from disjoint union. This becomes a ring under the obvious multiplication
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coming from the Cartesian product of G sets. There is a natural map of rings
j1 : A(G) → RR(G) = KOG0 (pt) that comes from sending a finite G-set X to
the orthogonal representation of G on the finite-dimensional real Hilbert space
L2
R(X). This map can fail to be injective or fail to be surjective, even rationally.

The rank of A(G) is the number of conjugacy classes of subgroups of G, while
the rank of RR(G) is the number of R-conjugacy classes in G, where x and y
are called R-conjugate if they are conjugate or if x−1 and y are conjugate [28,
§13.2]. Thus rankA

(
(Z/2)3

)
= 16 > rankRR

(
(Z/2)3

)
= 8; on the other hand,

rankA(Z/5) = 2 < rankRR(Z/5) = 3.

Definition 2.10 Now let G be a finite group, M a compact G-manifold
(without boundary). We define three more equivariant Euler characteristics for
G:

(a) the analytic equivariant Euler characteristic χGa (M) ∈ KOG0 , the equiv-
ariant index of the Euler operator on M . Since the index of an operator
is computed by pushing its K -homology class forward to K -homology of
a point, χGa (M) = c∗(EulG(M)), where c : M → pt and c∗ is the induced
map on KOG0 .

(b) the stable homotopy-theoretic equivariant Euler characteristic χGs (M) ∈
A(G). This is discussed, say, in [6], Chapter IV, §2.

(c) a certain unstable homotopy-theoretic equivariant Euler characteristic,
which we will denote here χGu (M) to distinguish it from χGs (M). This in-
variant is defined in [30], and shown to be the obstruction to existence of
an everywhere non-vanishing G-invariant vector field on M . The invari-
ant χGu (M) lives in a group AGu (M) (Waner and Wu call it AM (G), but
the notation AGu (M) is more consistent with our notation for UG(M))
defined as follows: AGu (M) is the free abelian group on finite G-sets
embedded in M , modulo isotopy (if st is a 1-parameter family of finite
G-sets embedded in M , all isomorphic to one another as G-sets, then
s0 ∼ s1) and the relation [sq t] = [s] + [t]. Waner and Wu define a map
d : AGu (M)→ A(G) (defined by forgetting that a G-set s is embedded in
M , and just viewing it abstractly) which maps χGu (M) to χGs (M). Both
χGu (M) and χGs (M) may be computed from the virtual finite G-set given
by the singularities of a G-invariant canonically transverse vector field,
where the signs are given by the indices at the singularities.
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Proposition 2.11 Let G be a finite group, and let M be a compact G-
manifold (without boundary). The following diagram commutes:

AGu (M) //

d
''
O
O
O
O
O
O
O
O
O
O
O

UG(M)
eG(M)

//

c∗
��

KOG0 (M)

c∗
��

A(G) = UG(pt)
j1

// RR(G) = KOG0 (pt).

(2.12)

The map AGu (M) → UG(M) in the upper left is an isomorphism if (M, G)
satisfies the weak gap hypothesis, that is, if whenever H ( K are subgroups
of G, each component of GK has codimension at least 2 in the component of
GH that contains it [30]. Furthermore, under the maps of this diagram,

χGu (M) 7→ χG(M),

c∗ : χG(M) 7→ χGs (M),

d : χGu (M) 7→ χGs (M),

eG(M) : χG(M) 7→ EulG(M),

j1 : χGs (M) 7→ χGa (M),

c∗ : EulG(M) 7→ χGa (M).

Proof This is just a matter of assembling known information. The facts about
the map AGu (M) → UG(M) are in [30, §2] and in [20]. That eG(M) sends
χG(M) to EulG(M) is Theorem 0.3. Commutativity of the square follows
immediately from the definition of eG(M), since c∗ ◦ eG(M) sends the basis
element associated to (H) ⊆ consub(G) and WH · C ∈ WH\π0(MH) to the
class of the orthogonal representation of G on L2(G/H). But under c∗ , this
same basis element maps to the G-set G/H in A(G), which also maps to the
orthogonal representation of G on L2(G/H) under j1 .

3 The transformation eG(X)

Next we factorize the transformation eG(M) defined in (0.2) as

eG(M) : UG(M)
eG1 (M)−−−−→ H

Or(G)
0 (M ;RQ)

eG2 (M)−−−−→ H
Or(G)
0 (M ;RR)

eG3 (M)−−−−→ KOG0 (M),

where eG2 (X) and eG3 (X) are rationally injective. Rationally we will identify
H
Or(G)
0 (M ;RQ) and the element eG1 (M)(χG(M)) in terms of the orbifold Euler

characteristics χWLC (C), where (L) runs through the conjugacy classes of finite
cyclic subgroups L of G and WL · C runs through the orbits in WL\π0(XL).
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Here WLC is the isotropy group of C ∈ π0(XL) under the WL = NL/L-
action. Notice that eG1 (M)(χG(M)) carries rationally the same information as
EulG(M) ∈ KOG0 (M).

Here and elsewhere HOr(G)
0 (M ;RF ) is the Bredon homology of M with coeffi-

cients the covariant functor

RF : Or(G;Fin)→ Z-Mod.

The orbit category Or(G;Fin) has as objects homogeneous spaces G/H with
finite H and as morphisms G-maps (Since M is proper, it suffices to consider
coefficient systems over Or(G;Fin) instead over the full orbit category Or(G).)
The functor RF into the category Z-Mod of Z-modules sends G/H to the
representation ring RF (H) of the group H over the field F = Q, R or C. It
sends a morphism G/H → G/K given by g′H 7→ g′gK for some g ∈ G with
g−1Hg ⊆ K to the induction homomorphism RF (H) → RF (K) associated
with the group homomorphism H → K,h 7→ g−1hg . This is independent of the
choice of g since an inner automorphism of K induces the identity on RR(K).
Given a covariant functor V : Or(G) → Z-Mod, the Bredon homology of a
G-CW -complex X with coefficients in V is defined as follows. Consider the
cellular (contravariant) ZOr(G)-chain complex C∗(X−) : Or(G) → Z-Chain
which assigns to G/H the cellular chain complex of the CW -complex XH =
mapG(G/H,X). One can form the tensor product over the orbit category (see
for instance [16, 9.12 on page 166]) C∗(X−)⊗ZOr(G;Fin) V which is a Z-chain

complex and whose homology groups are defined to be HOr(G)
p (X;V ).

The zero-th Bredon homology can be made more explicit. Let

Q : Π0(G;X)→ Or(G;Fin) (3.1)

be the forgetful functor sending an object x : G/H → X to G/H . Any covari-
ant functor V : Or(G;Fin) → Z-Mod induces a functor Q∗V : Π0(G;X) →
Z-Mod by composition with Q. The colimit (= direct limit) of the functor
Q∗RF is naturally isomorphic to the Bredon homology

βGF (X) : lim−→Π0(G,X)
Q∗RF (H)

∼=−→ H
Or(G)
0 (X;RF ). (3.2)

The isomorphism βGF (X) above is induced by the various maps

RF (H) = H
Or(G)
0 (G/H;RF )

H
Or(G)
0 (x;RF )
−−−−−−−−−→ H

Or(G)
0 (X;RF ),
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where x runs through all G-maps x : G/H → X . We define natural maps

eG1 (X) : UG(X) → H
Or(G)
0 (X;RQ); (3.3)

eG2 (X) : HOr(G)
0 (X;RQ) → H

Or(G)
0 (X;RR); (3.4)

eG3 (X) : HOr(G)
0 (X;RR) → KOG0 (X) (3.5)

as follows. The map βGQ (X)−1 ◦ eG1 (X) sends the basis element [x : G/H → X]
to the image of the trivial representation [Q] ∈ RQ(H) under the canonical
map associated to x

RQ(H) → lim−→Π0(G,X)
Q∗RQ(H).

The map eG2 (X) is induced by the change of fields homomorphisms RQ(H)→
RR(H) for H ⊆ G finite. The map eG3 (X) ◦ βG(X) is the colimit over the
system of maps

RR(H) = KOH0 ({∗}) (αH)∗−−−−→ KOG0 (G/H)
KOG0 (x)−−−−−→ KOG0 (X)

for the various G-maps x : G/H → X , where αH : H → G is the inclusion.

Theorem 3.6 Let X be a proper G-CW -complex. Then

(a) The map eG(X) defined in (0.2) factorizes as

eG(X) : UG(X)
eG1 (X)−−−−→ H

Or(G)
0 (X;RQ)

eG2 (X)−−−−→ H
Or(G)
0 (X;RR)

eG3 (X)−−−−→ KOG0 (X);

(b) The map

Q⊗Z eG2 (X) : Q⊗Z HOr(G)
0 (X;RQ)→ Q⊗Z HOr(G)

0 (X;RR)

is injective;

(c) For each n ∈ Z there is an isomorphism, natural in X ,

chernGn (X) :
⊕
p,q∈Z,

p≥0,p+q=n

Q⊗Z HOr(G)
p (X;KOG

q )
∼=−→ Q⊗Z KOGn (X),

where KOGq is the covariant functor from Or(G;Fin) to Z-Mod sending

G/H to KOGq (G/H). The map

idQ⊗ZeG3 (X) : Q⊗Z HOr(G)
0 (M ;RR)→ Q⊗Z KOG0 (M)

is the restriction of chernGn (X) to the summand for p = q = 0 and is
hence injective;
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(d) Suppose dim(X) ≤ 4 and one of the following conditions is satisfied:

(a) either dim(XH) ≤ 2 for H ⊆ G, H 6= {1}, or

(b) no subgroup H of G has irreducible representations of complex or
quaternionic type.

Then

eG3 (X) : HOr(G)
0 (M ;RR)→ KOG0 (M)

is injective.

Proof (a) follows directly from the definitions.

(b) will be proved later.

(c) An equivariant Chern character chernG∗ for equivariant homology theories
such as equivariant K-homology is constructed in [18, Theorem 0.1] (see also
[19, Theorem 0.7]). The restriction of chernG0 (M) to H

Or(G)
0 (X;RR) is just

eG3 (X) under the identification RR = KOG0 .

(d) Consider the equivariant Atiyah-Hirzebruch spectral sequence which con-
verges to KOGp+q(X) (see for instance [5, Theorem 4.7 (1)]). Its E2 -term is

E2
p,q = H

Or(G)
p (X;KOGq ). The abelian group KOGq (G/H) is isomorphic to the

real topological K -theory KOq(RH) of the real C∗ -algebra RH . The real
C∗ -algebra RH splits as a product of matrix algebras over R, C and H, with
as many summands of a given type as there are irreducible real representa-
tions of H of that type (see [28, §13.2]). By Morita invariance of topological
real K -theory, we conclude that KOGq (G/H) is a direct sum of copies of the
non-equivariant K-homologies KOq(∗) = KOq(R), KUq(∗) = KOq(C), and
KSpq(∗) = KOq(H). In particular, we conclude that KOGq (G/H) = 0 for q ≡
−1 (mod 8). As a consequence, KOG−1 = 0 and E2

p,−1 = H
Or(G)
p (X;KOG−1) =

0. If no subgroup H of G has irreducible representations of complex or quater-
nionic type, then similarly KOGq (G/H) = 0 for all subgroups H of G and
q = −2, −3, and E2

p,−2 = 0, E2
p,−3 = 0, as well.

Let X>1 ⊆ X be the subset {x ∈ X | Gx 6= 1}. There is a short exact sequence

HOr(G)
p (X>1;KOGq )→ HOr(G)

p (X;KOGq )→ HOr(G)
p (X,X>1;KOGq ).

Since the isotropy group of any point in X −X>1 is trivial, we get an isomor-
phism

HOr(G)
p (X,X>1;KOGq ) = Hp(C∗(X,X>1)⊗ZG KOGq (G/1))
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Since KOGq (G/1)) = KOq(R) vanishes for q ∈ {−2,−3}, we get for p ∈ Z and
q ∈ {−2,−3}

HOr(G)
p (X,X>1;KOGq ) = 0.

So if dim(XH) ≤ 2 for H ⊆ G, H 6= {1}, we have dim(X>1) ≤ 2. This implies
for p ≥ 3 and q ∈ Z

HOr(G)
p (X>1;KOGq ) = 0.

We conclude that for p ≥ 3 and q ∈ {−2,−3}
E2
p,q = HOr(G)

p (X;KOGq ) = 0,

just as in the previous case.

Now there are no non-trivial differentials out of Er0,0 , and since dimX ≤ 4,
drr,1−r : Err,1−r → Er0,0 must be zero for r > 4. But we have just seen that
E2

2,−1 = 0, E2
3,−2 = 0, and E2

4,−3 = 0. Hence each differential drp,q which has
Er0,0 as source or target is trivial. Hence the edge homomorphism restricted to
E2

0,0 is injective. But this map is eG3 (X).

Remark 3.7 We conclude from Theorem 0.3 and Theorem 3.6 that EulG(M)
carries rationally the same information as the image of the equivariant Eu-
ler characteristic χG(X) under the map eG1 (X) : UG(X) → H

Or(G)
0 (M ;RR).

Moreover, in contrast to the class of the signature operator, the class EulG(M) ∈
KOG0 (M) of the Euler operator does not carry “higher” information because
its preimage under the equivariant Chern character is concentrated in the sum-
mand corresponding to p = q = 0.

Next we recall the definition of the Hattori-Stallings rank of a finitely generated
projective RG-module P , for some commutative ring R and a group G. Let
R[con(G)] be the R-module with the set of conjugacy classes con(G) of elements
in G as basis. Define the universal RG-trace

truRG : RG→ R[con(G)],
∑
g∈G

rg · g 7→
∑
g∈G

rg · (g).

Choose a matrix A = (ai,j) ∈Mn(RG) such that A2 = A and the image of the
map rA : RGn → RGn sending x to xA is RG-isomorphic to P . Define the
Hattori-Stallings rank

HSRG(P ) :=
∑n

i=1 truRG(ai,i) ∈ R[con(G)]. (3.8)

Let α : H1 → H2 be a group homomorphism. It induces a map

con(H1)→ con(H2), (h) 7→ (α(h))
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and thus an R-linear map α∗ : R[con(H1)]→ R[con(H2)]. If α∗P is the R[H2]-
module obtained by induction from the finitely generated projective R[H1]-
module P , then

HSRH2(α∗P ) = α∗(HSRH1(P )). (3.9)

Next we compute F ⊗Z
(

lim−→Π0(G,X)
Q∗RF (H)

)
for F = Q,R,C. Two elements

g1 and g2 of a group G are called Q-conjugate if and only if the cyclic subgroup
〈g1〉 generated by g1 and the cyclic subgroup 〈g2〉 generated by g2 are conjugate
in G. Two elements g1 and g2 of a group G are called R-conjugate if and only
if g1 and g2 or g−1

1 and g2 are conjugate in G. Two elements g1 and g2 of a
group G are called C-conjugate if and only if they are conjugate in G (in the
usual sense). We denote by (g)F the set of elements of G which are F -conjugate
to g . Denote by conF (G) the set of F -conjugacy classes (g)F of elements of
finite order g ∈ G. Let classF (G) be the F -vector space generated by the set
conF (G). This is the same as the F -vector space of functions conF (G) → R
whose support is finite.

Let prF : con(H)→ conF (H) be the canonical epimorphism for a finite group
H . It extends to an F -linear epimorphism F [prF ] : F [con(H)] → classF (H).
Define for a finite-dimensional H -representation V over F for a finite group
H

HSF,H(V ) := F [prF ](HSFH(V )) ∈ classF (H). (3.10)

Let α : H1 → H2 be a homomorphism of finite groups. It induces a map
conF (H1)→ conF (H2), (h)F 7→ (α(h))F and thus an F -linear map

α∗ : classF (H1)→ classF (H2).

If V is a finite-dimensional H1 -representation over F , we conclude from (3.9):

HSF,H2(α∗V ) = α∗(HSF,H1(V )). (3.11)

Lemma 3.12 Let H be a finite group and F = Q,R or C. Then the Hattori-
Stallings rank defines an isomorphism

HSF,H : F ⊗Z RF (H)
∼=−→ classF (H)

which is natural with respect to induction with respect to group homomorphism
α : H1 → H2 of finite groups.

Proof One easily checks for a finite-dimensional H -representation over F of
a finite group H

HSFH(V ) =
∑

(h)∈con(H)

|(h)|
|H| · trF (lh).
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This explains the relation between the Hattori-Stallings rank and the character
of a representation — they contain equivalent information. (We prefer the
Hattori-Stallings rank because it behaves better under induction.) We conclude
from [28, page 96] that HSFH(V ) as a function con(H)→ F is constant on the
F -conjugacy classes of elements in H and that HSF,H is bijective. Naturality
follows from (3.11).

Let classF be the covariant functor Or(G;Fin)→ F -Mod which sends an ob-

ject G/H to classF (H). The isomorphisms HSF,H : F⊗ZRF (H)
∼=−→ classF (H)

yield a natural equivalence of covariant functors from π0(G,X) to F -Mod.
Thus we obtain an isomorphism

HSGF (X) : F ⊗Z lim−→Π0(G,X)
Q∗RF

∼=−→ lim−→Π0(G,X)
Q∗F ⊗Z RF

∼=−→ lim−→Π0(G,X)
Q∗classF . (3.13)

Let f : S0 → S1 be a map of sets. It extends to an F -linear map F [f ] : F [S0]→
F [S1]. Suppose that the preimage of any element in S1 is finite. Then we obtain
an F -linear map

f∗ : F [S1] → F [S0], s1 7→
∑

s0∈f−1(s1)

s0. (3.14)

If we view elements in F [Si] as functions Si → F , then f∗ is given by composing
with f . One easily checks that F [f ] ◦ f∗ is bijective and that for a second map
g : S1 → S2 , for which the preimages of any element in S2 is finite, we have
f∗ ◦ g∗ = (g ◦ f)∗ .

Now we can finish the proof of Theorem 3.6 by explaining how assertion (b) is
proved.

Proof Let H be a finite group. Let pH : conR(H) → conQ(H) be the pro-
jection. If V is a finite-dimensional H -representation over Q, then R⊗Q V is
a finite-dimensional H -representation over R and HSRH(R ⊗Q V ) is the im-
age of HSQH(V ) under the obvious map Q[con(H)]→ R[con(H)]. Recall that
HSF,H(V ) is the image of HSFH(V ) under F [prF ] for prF : con(H)→ conF (H)
the canonical projection; HSFH(V ) is constant on the F -conjugacy classes of
elements in H . This implies that the following diagram commutes

R⊗Z RQ(H)
idR⊗ZHSQ,H−−−−−−−−→∼=

R⊗Q classQ(H)

ind(H)

y ind(H)

y
R⊗Z RR(H)

HSR,H−−−−→∼= classR(H),
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where the left vertical arrow comes from inducing a Q-representation to a R-
representation and the right vertical arrow is

R⊗Q classQ(H) = R⊗QQ[conQ(H)]
idR⊗Q(pH)∗−−−−−−−−→ R⊗QQ[conR(H)] = classR(H).

Let
q(H) : classR(H)→ R⊗Q classQ(H)

be the map

R[pH ] : R[conR(H)]→ R[conQ(H)] = R⊗Q Q[conQ(H)]

The q(H) ◦ ind(H) is bijective.

We get natural transformations of functors from Or(G;Fin) to R-Mod:

ind : R⊗Z RQ → R⊗Z RR,
ind: R⊗Q classQ → classR,

q : classR → R⊗Q classQ.

Also q ◦ ind is a natural equivalence. This implies that ind induces a split
injection on the colimits

lim−→Π0(G;X)
Q∗ ind: lim−→Π0(G;X)

Q∗R⊗Q classQ → lim−→Π0(G;X)
Q∗classR.

Since the following diagram commutes and has isomorphisms as vertical arrows

R⊗Z HOr(G)
0 (X;RQ)

R⊗ZeG2 (X)−−−−−−−→ R⊗Z HOr(G)
0 (X;RR)

R⊗ZβGQ (X)

x∼= R⊗ZβGR (X)

x∼=
lim−→Π0(G;X)

Q∗R⊗Z RQ
lim−→Π0(G;X)

Q∗ ind

−−−−−−−−−−−→ lim−→Π0(G;X)
Q∗R⊗Z RR

R⊗QHSGQ (X)

y∼= R⊗ZHSGR (X)

y∼=
lim−→Π0(G;X)

Q∗R⊗Q classQ
lim−→Π0(G;X)

Q∗ ind

−−−−−−−−−−−→ lim−→Π0(G;X)
Q∗classR ,

the top horizontal arrow is split injective. Hence eG2 (X) is rationally split
injective. This finishes the proof of Theorem 3.6 (b).

Notation 3.15 Consider g ∈ G of finite order. Denote by 〈g〉 the finite cyclic
subgroup generated by g . Let y : G/〈g〉 → X be a G-map. Let F be one of
the fields Q, R and C. Define

CQ(g) = {g′ ∈ G, (g′)−1gg′ ∈ 〈g〉}};
CR(g) = {g′ ∈ G, (g′)−1gg′ ∈ {g, g−1}};
CC(g) = {g′ ∈ G, (g′)−1gg′ = g}.
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Since CF (g) is a subgroup of the normalizer N〈g〉 of 〈g〉 in G and contains 〈g〉,
we can define a subgroup ZF (g) ⊆W〈g〉 by

ZF (g) := CF (g)/〈g〉.

Let ZF (g)y be the intersection of W〈g〉y (see Notation 2.1) with ZF (g), or,
equivalently, the subgroup of ZF (g) represented by elements g ∈ CF (g) for
which g · y(1〈g〉) and y(1〈g〉) lie in the same component of X〈g〉 .

It is useful to interpret the group CF (g) as follows. Let G act on the set
Gf := {g | g ∈ G, |g| <∞} by conjugation. Then the projection Gf → conC(G)

induces a bijection G\Gf
∼=−→ conC(G) and the isotropy group of g ∈ Gf is

CC(g). Let Gf/{±1} be the quotient of Gf under the {±1}-action given by
g 7→ g−1 . The conjugation action of G on Gf induces an action on Gf/{±1}.
The projection G → conR(G) induces a bijection G\(G/{±1})

∼=−→ conR(G)
and the isotropy group of g · {±1} ∈ Gf/{±1} is CR(g). The set conQ(G)
is the same as the set {(L) ∈ consub(G) | L finite cyclic}. For g ∈ Gf the
group CQ(g) agrees with N〈g〉 and is the isotropy group of 〈g〉 in {L ⊆ G |
L finite cyclic} under the conjugation action of G. The quotient of {L ⊆ G |
L finite cyclic} under the conjugation action of G is by definition conQ(G) =
{(L) ∈ consub(G) | L finite cyclic}.

Consider (g)F ∈ conF (G). For the sequel we fix a representative g ∈ (g)F .
Consider an object of Π0(G,X) of the special form y : G/〈g〉 → X . Let
x : G/H → X be any object of Π0(G,X). Recall that W〈g〉y and thus the
subgroup ZF (g)y act on mor(y, x). Define

αF (y, x) : ZF (g)y\mor(y, x)→ conF (H)

by sending sending ZF (g)y · σ for a morphism σ : y → x, which given by a
G-map σ : G/〈g〉 → G/H , to (σ(1〈g〉)−1gσ(1〈g〉))F . We obtain a map of sets

αF (x) =
∐

(g)F∈con(G)R

∐
ZF (g)·C∈

ZF (g)\π0(X〈g〉)

a(y(C), x) :

∐
(g)F∈con(G)F

∐
ZF (g)·C∈

ZF (g)\π0(X〈g〉)

ZF (g)y(C)\mor(y(C), x)
∼=−→ conF (H), (3.16)

where we fix for each ZF (g)·C ∈ ZF (g)\π0(X〈g〉) a representative C ∈ π0(X〈g〉)
and y(C) is a fixed morphism y(C) : G/〈g〉 → X such that X〈g〉(y) = C in
π0(X〈g〉). The map αF (x) is bijective by the following argument.
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Consider (h)F ∈ conF (H). Let g ∈ G be the representative of the class (g)F
for which (g)F = (h)F holds in conF (G). Choose g0 ∈ G with g−1

0 gg0 ∈ H
and (g−1

0 gg0)F = (h)F in conF (H). We get a G-map Rg0 : G/〈g〉 → G/H
by mapping g′〈g〉 to g′g0H . Let y = y(C) : G/〈g〉 → X be the object chosen
above for the fixed representative C of ZF (g)·X〈g〉(x◦Rg0) ∈ ZF (g)F \π0(X〈g〉).
Choose g1 ∈ ZF (g) such that the G-map Rg1 : G/〈g〉 → G/〈g〉 sending g′〈g〉
to g′g1〈g〉 defines a morphism Rg1 : y → x ◦ Rg0 in Π0(G,X). Then σ :=
Rg0 ◦Rg1 : y → x is a morphism such that

(σ(1〈g〉)−1gσ(1〈g〉)F = (h)F

holds in conF (H). This shows that α(x) is surjective.

Consider for i = 0, 1 elements (gi) ∈ conF (G), ZF (gi) · Ci ∈ ZF (gi)\π0(X〈gi〉)
and ZF (gi)yi · σi ∈ ZF (gi)yi\mor(yi, x) for yi = y(Ci) such that

(σ0(1〈g0〉)−1g0σ0(1〈g0〉))F = (σ1(1〈g1〉)−1g1σ1(1〈g1〉))F

holds in conF (H). So we get two elements in the source of αF (x) which are
mapped to the same element under αF (x). We have to show that these elements
in the source agree. Choose g′i ∈ G such that σi is given by sending g′′〈gi〉
to g′′g′iH . Then ((g′0)−1g0g

′
0)F and ((g′1)−1g1g

′
1)F agree in conF (H). This

implies (g0)F = (g1)F in con(G)F and hence g0 = g1 . In the sequel we write
g = g0 = g1 . Since ((g′0)−1gg′0)F and ((g′1)−1gg′1)F agree in conF (H), there
exists h ∈ H with

h−1(g′0)−1gg′0h


∈ 〈(g′1)−1gg′1〉 if F = Q;
∈ {(g′1)−1gg′1, (g

′
1)−1g−1g′1} if F = R;

= (g′1)−1gg′1 if F = C.

We can assume without loss of generality that h = 1, otherwise replace g′0 by
g′0h. Put g2 := g′0(g′1)−1 . Then g2 is an element in ZF (g). Let σ2 : G/〈g〉 →
G/〈g〉 be the G-map which sends g′′〈g〉 to g′′g2〈g〉. We get the equality of
G-maps σ0 = σ1 ◦ σ2 . Since σi is a morphism yi → x for i = 0, 1, we conclude
g′i · x(1H) ∈ X〈g〉(yi) for i = 0, 1. This implies that g2 ·X〈g〉(y1) = X〈g〉(y0) in
π0(X〈g〉). This shows ZF (g) · X〈g〉(y0) = ZF (g) · X〈g〉(y1) in ZF (g)\π0(X〈g〉)
and hence y0 = y1 . Write in the sequel y = y0 = y1 . The G-map σ2 defines a
morphism σ2 : y → y . We obtain an equality σ0 = σ1◦σ2 of morphisms y → x.
We conclude ZF (g)y · σ0 = ZF (g)y · σ1 in ZF (g)y\π0(X〈g〉). This finishes the
proof that α(x) is bijective.

Let conF be the covariant functor from Or(G;Fin) to the category of finite
sets which sends an object G/H to conF (H). The map αF (x) is natural in
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x : G/H → X , in other words, we get a natural equivalence of functors from
Π0(G,X) to the category of finite sets. We obtain a bijection of sets

αF : lim−→x : G/H→X∈Π0(G,X)

∐
(g)F∈conF (G)

∐
ZF 〈g〉C∈

ZF 〈g〉\π0(X〈g〉)

ZF 〈g〉y\mor(y, x)

∼=−→ lim−→Π0(G,X)
Q∗conF .

One easily checks that lim−→ x : G/H→X∈Π0(G,X)
ZF 〈g〉y\mor(y, x) consists of one

element, namely, the one represented by ZF 〈g〉y ·idy ∈ ZF 〈g〉y\mor(y, y). Thus
we obtain a bijection

αGF (X) :
∐

(g)F∈conF (G)

ZF 〈g〉\π0(X〈g〉)
∼=−→ lim−→Π0(G,X)

Q∗conF ,

which sends an element ZF 〈g〉 ·C in ZF 〈g〉\π0(X〈g〉) to the class in the colimit
represented by ZF 〈g〉y · idy in ZF 〈g〉y\mor(y, y) for any object y : G/〈g〉 → X
for which ZF (g) · X〈g〉(y) = ZF (g) · C holds in ZF (g)\π0(X〈g〉). It yields an
isomorphism of F -vector spaces denoted in the same way

αGF (X) :
⊕

(g)F∈conF (G)

⊕
ZF (g)\π0(X〈g〉)

F
∼=−→ lim−→Π0(G,X)

Q∗classF . (3.17)

Let us consider in particular the case F = Q. Recall that consub(G) is the
set of conjugacy classes (H) of subgroups of G. Then conQ(G) is the same as
the set {(L) ∈ consub(G) | L finite cyclic} and ZQ(g) agrees with W〈g〉. Thus
(3.17) becomes an isomorphism of Q-vector spaces

αGQ(X) :
⊕

(L)∈consub(G)
L finite cyclic

⊕
WL\π0(XL)

Q
∼=−→ lim−→Π0(G,X)

Q∗classQ. (3.18)

Denote by

pr:
⊕

(H)∈consub(G)

⊕
WH\π0(XH )

Q →
⊕

(L)∈consub(G)
L finite cyclic

⊕
WL\π0(XL)

Q

the obvious projection. Let

DG(X) :
⊕

(L)∈consub(G)
L finite cyclic

⊕
WL\π0(XL)

Q →
⊕

(L)∈consub(G)
L finite cyclic

⊕
WL\π0(XL)

Q (3.19)

be the automorphism
⊕

(L)∈consub(G)
L finite cyclic

|Gen(L)|
|L| · id, where Gen(L) is the set of

generators of L.
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Recall the isomorphisms chG(X), βGQ (X), HSGQ(X)−1 , αGQ(X) and DG(X)
from (2.6), (3.2), (3.13) (3.18) and (3.19). We define

γGQ (X) :
⊕

(L)∈consub(G)
L finite cyclic

⊕
WL\π0(XL)

Q
∼=−→ Q ⊗Z H

Or(G)
0 (X;RQ) (3.20)

to be the composition γGQ (X) := βGQ (X) ◦HSGQ(X)−1 ◦ αGQ(X) ◦DG(X).

Theorem 3.21 The following diagram commutes

Q⊗Z UG(X)
idQ⊗ZeG1 (X)−−−−−−−−→ Q⊗Z HOr(G)

0 (X;RQ)

idQ⊗Z chG(X)

y∼= γGQ (X)

x∼=⊕
(H)∈consub(G)

⊕
WH\π0(XH)Q

pr−−−−→
⊕

(L)∈consub(G)
L finite cyclic

⊕
WL\π0(XL)Q

and has isomorphisms as vertical arrows.

The element idQ⊗ZeG1 (X)(χG(X)) agrees with the image under the isomor-
phism γGQ of the element

{χQWLC (C) | (L) ∈ consub(G), L finite cyclic,WL · C ∈WL\π0(XL)}

given by the various orbifold Euler characteristics of the WLC -CW -complexes
C , where WLC is the isotropy group of C ∈ π0(XL) under the WL-action.

Proof It suffices to prove the commutativity of the diagram above, then the
rest follows from Lemma 2.8.

Recall that UG(X) is the free abelian group generated by the set of isomorphism
classes [x] of objects x : G/H → X . Hence it suffices to prove for any G-map
x : G/H → X(

αGQ(X) ◦DG(X) ◦ pr ◦ chG(X)
)

([x])

= HSG(X) ◦ βG(X)−1 ◦ eG1 (X)([x]). (3.22)

Given a finite cyclic subgroup L ⊆ G and a component C ∈ π0(XL) the element(
DG(X) ◦ pr ◦ chG(X)

)
([x]) has as entry in the summand belonging to (L) and

WL · C ∈WL\π0(XC) the number∑
WLy(C)·σ∈

WLy(C)\mor(y(C),x)

|Gen(L)|
|L| · |(WCy(C))σ |

,
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where y(C) : G/L → X is some object in Π0(G,X) with XL(y) = C in
π0(XL).

Recall the bijection αF (x) from (3.16). In the case F = Q it becomes the map

αQ(x) :
∑

(L)∈consub(G)
L finite cyclic

∐
WL\π0(XL)

WLy(C)\mor(y(C), x)

∼=−→ conQ(H) = {(K) ∈ consub(H) | L cyclic}

which sends WL · σ ∈WL\π0(XL) to (σ(1L)−1Lσ(1L)). Let

u[x] ∈ classQ(H)

be the element which assigns to (K) ∈ conQ(H) the number |Gen(L)|
|L|·|(WCy(C))σ | if

σ ∈ mor(y(C), x) represents the preimage of (K) under the bijection αQ(x).
We conclude that

(
αGQ(X) ◦DG(X) ◦ pr ◦ chG(X)

)
([x]) is given by the image

under the structure map associated to the object x : G/H → X

classQ(H)→ lim−→Π0(G,X)
Q∗classQ

of the element u[x] ∈ classQ(H) above.

Consider (K) ∈ conQ(H). Let σ ∈ mor(y(C), x) represent the preimage of (K)
under the bijection αQ(x). Choose g′ such that σ : G/〈g〉 → G/H is given by
g′′〈g〉 7→ g′′g′H . Let NHK be the normalizer in H and WHK := NHK/K be
the Weyl group of K ⊆ H . Define a bijection

f : (WLy(C))σ
∼=−→WH((g′)−1Lg′), g′′L 7→ (g′)−1g′′g′ · (g′)−1Lg′.

The map is well-defined because of

(WLy(C))σ = {g′′L ∈WLy(C) | (g′)−1g′′g′ ∈ H}

and the following calculation(
(g′)−1g′′g′

)−1 (g′)−1Lg′(g′)−1g′′g′ = (g′)−1(g′′)−1g′(g′)−1Lg′(g′)−1g′′g′

= (g′)−1(g′′)−1Lg′′g′ = (g′)−1Lg′.

One easily checks that f is injective. Consider h · (g′)−1Lg′ in WH((g′)−1Lg′).
Define g0 = g′h(g′)−1 . We have g0 ∈ WL. Since h · x(1H) = x(1H), we get
g0L ∈ WLy . Hence g0L is a preimage of h · (g′)−1Lg′ under f . Hence f is
bijective. This shows

|(WLy(C))σ| = |WH((g′)−1Lg′)|.
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We conclude that u[x] is the element

conQ(H) = {(K) ∈ consub(H) | K finite cyclic} → Q, (K) 7→ |Gen(K)|
|K| · |WHK|

.

Since right multiplication with |H|−1 ·
∑

h∈H h induces an idempotent QH -
linear map QH → QH whose image is Q with the trivial H -action, the element
HSQ,H([Q]) ∈ classQ(H) is given by

conQ(H) → Q, (K) 7→ 1
|H| · |{h ∈ H | 〈h〉 ∈ (K)}|.

From

|{h ∈ H | 〈h〉 ∈ (K)}| =

∣∣∣∣∣∣
∐

K ′⊆H,K′∈(K)

Gen(K ′)

∣∣∣∣∣∣
=

∣∣{K ′ ⊆ H,K ′ ∈ (K)}
∣∣ · |Gen(K)|

=
|H|
|NHK|

· |Gen(K)|

=
|H| · |Gen(K)|
|K| · |WHK|

we conclude
u[x] = HSQ,H([Q]) ∈ classQ(H).

Now (3.22) and hence Theorem 3.21 follow.

4 Examples

In this section we discuss some examples. Recall that we have described the
non-equivariant case in the introduction.

4.1 Finite groups and connected non-empty fixed point sets

Next we consider the case where G is a finite group, M is a closed compact
G-manifold, and MH is connected and non-empty for all subgroups H ⊆ G.
Let i : {∗} → M be the G-map given by the inclusion of a point into MG .
Since we have assumed that MG is connected, i is unique up to G-homotopy.
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Let A(G) be the Burnside ring of formal differences of finite G-sets (Definition
2.9). We have the following commutative diagram:

UG(M)
UG(i)←−−−−∼= UG({∗}) f1←−−−−∼= A(G)

eG1 (M)

y eG1 ({∗})
y j1

y
H
Or(G)
0 (M ;RQ)

H
Or(G)
0 (i;RQ)
←−−−−−−−−−∼=

H
Or(G)
0 ({∗};RQ)

f2←−−−−∼= RQ(G)

eG2 (M)

y eG2 ({∗})
y j2

y
H
Or(G)
0 (M ;RR)

H
Or(G)
0 (i;RR)
←−−−−−−−−∼=

H
Or(G)
0 ({∗};RR)

f3←−−−−∼= RR(G)

eG3 (M)

y eG3 ({∗})
y∼= j3

y∼=
KOG0 (M)

KOG0 (i)←−−−−− KOG0 ({∗}) id←−−−−∼= KOG0 ({∗}),

where j1 sends the class of a G-set S in the Burnside ring A(G) to the class
of the rational G-representation Q[S] and j2 is the change-of-coefficients ho-
momorphism. The homomorphism KOG0 (i) : KOG0 ({∗}) → KOG0 (M) is split
injective, with a splitting given by the map KOG0 (pr) induced by pr: M → {∗}.
The map eG3 ({∗}) is bijective since the category Π0(G, {∗}) has G → {∗} as
terminal object. This implies that

eG3 (M) : HOr(G)
0 (M ;RR)→ KOG0 (M)

is split injective. We have already explained in the Section 3 that the map
j2 : RQ(G) → RR(G) is rationally injective. Since RQ(G) is a torsion-free
finitely generated abelian group, j2 is injective. Hence

eG2 (M) : HOr(G)
0 (M ;RQ)→ H

Or(G)
0 (M ;RR)

is injective. The upshot of this discussion is, that eG1 (χG(M)) carries (inte-
grally) the same information as EulG(M) because it is sent to EulG(M) by the
injective map eG3 (M) ◦ eG2 (M).

Analyzing the difference between eG1 (χG(M)) and χG(M) is equivalent to an-
alyzing the map j1 : A(G) → RepQ(G), which sends χG(M) to the element
given by

∑
p≥0(−1)p · [Hp(M ;Q)]. Recall that χG(M) ∈ A(G) is given by

χG(M) =
∑

(H)∈consub(G)

χ(WH\MH ,WH\M>H)·G/H] =
∑
p≥0

(−1)p·]p(G/H),

where χ(WH\MH ,WH\M>H )) is the non-equivariant Euler characteristic and
]p(G/H) is the number of equivariant cells of the type G/H ×Dp appearing in
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some G-CW -complex structure on M . The following diagram commutes (see
Theorem 3.21)

A(G)
j1−−−−→ RQ(G)

chG

y yHSQ,G∏
(H)∈consub(H)Q −−−−→pr

∏
(H) consub(G)

H cyclic

Q

where pr is the obvious projection, chG(S) has as entry for (H) ⊆ consub(G)
the number 1

|WH| · |S
H | and HSQ,G(V ) has as entry at (H) ∈ consub(G) for

cyclic H ⊆ G the number trQ(lh)
|WH| , where tr(lh) ∈ Q is the trace of the endo-

morphism of the rational vector space V given by multiplication with h for
some generator h ∈ H . The vertical arrows chG and HSQ,G are rationally bi-
jective and χG(M)(χG(M)) has as component belonging to (H) ∈ consub(G)
the number χQWH(MH) = χ(MH)

|WH| (see Lemma 2.8 and Lemma 3.12). This

implies that chG and HSQ,G are injective because their sources are torsion-free
finitely generated abelian groups. Moreover, χG(M) ∈ A(G) carries integrally
the same information as all the collection of Euler characteristics {χ(MH) |
(H) ∈ consub(H)}, whereas j1(χG(M)) =

∑
p≥0(−1)p · [Hp(M ;Q)] carries

integrally the same information as the collection of the Euler characteristics
{χ(MH) | (H) ∈ consub(H),H cyclic}. In particular j1 is injective if and only
if G is cyclic. But any element u in A(G) occurs as χG(M) for a closed smooth
G-manifold M for which MH is connected and non-empty for all H ⊆ G (see
[20, Section 7]). Hence, given a finite group G, the elements χG(M) and
j1(χG(M)) carry the same information for all such G-manifolds M if and only
if G is cyclic.

From this discussion we conclude that EulG(M) does not carry torsion infor-
mation in the case where G is finite and MH is connected and non-empty for
all H ⊆ G, since RR(G) is a torsion-free finitely generated abelian group. This
is different from the case where one allows non-connected fixed point sets, as
the following example shows.

4.2 The equivariant Euler class carries torsion information

Let S3 be the symmetric group on 3 letters. It has the presentation

S3 = 〈s, t | s2 = 1, t3 = 1, sts = t−1〉.
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Let R be the trivial 1-dimensional real representation of S3 . Denote by R−
the one-dimensional real representation on which t acts trivially and s acts by
− id. Denote by V the 2-dimensional irreducible real representation of S3 ; we
can take R2 as the underlying real vector space of V , with s · (r1, r2) = (r2, r1)
and t · (r1, r2) = (−r2, r1 − r2). Then R, R− and V are the irreducible real
representations of S3 , and RS3 is as an RS3 -module isomorphic to R ⊕ R− ⊕
V ⊕ V . Let L2 be the cyclic group of order two generated by s and let L3

be the cyclic group of order three generated by t. Any finite subgroup of S3

is conjugate to precisely one of the subgroups L1 = {1}, L2 , L3 or S3 . One
easily checks that V L2 ∼= R, V L3 ∼= 0, (R−)L2 = 0 and (R−)L3 ∼= R as real
vector spaces. Put W = R⊕R− ⊕ V . Then W S3 ∼= R, WL2 ∼= WL3 ∼= R2 and
W ∼= R4 as real vector spaces. Let M be the closed 3-dimensional S3 -manifold
SW . Then

M ∼= S3;
ML2 ∼= S1;
ML3 ∼= S1;
MS3 ∼= S0.

Since χ(MS3) 6= 0, χG(M) ∈ UG(M) cannot vanish. But since the fixed sets
for all cyclic subgroups have vanishing Euler characteristic, Theorem 0.9 implies
that EulG(M) is a torsion element in KOG0 (M). We want to show that it has
order precisely two.

Let xi : S3/Li → X for i = 1, 2, 3 be a G-map. Let x− : S3/S3 → X and
x+ : S3/S3 → X be the two different G-maps for which MS3 is the union of
the images of x− and x+ . Then x1 , x2 , x3 , x− and x+ form a complete set of
representatives for the isomorphism classes of objects in Π0(S3,M). Notice for
i = 1, 2, 3 that mor(xi, x−) and mor(xi, x+) consist of precisely one element.
Therefore we get an exact sequence

RR(Z/2)⊕RR(Z/3)

 i2 i3
−i2 −i3


−−−−−−−−−−−→ RR(G)⊕RR(G)

s−+s+−−−−→ lim−→Π0(S3,M)
Q∗RR → 0, (4.1)

where i2 : RR(Z/2) → RR(S3) and i3 : RR(Z/3) → RR(S3) are the induction
homomorphisms associated to any injective group homomorphism from Z/2
and Z/3 into S3 and s− and s+ are the structure maps of the colimit belonging
to the objects x− and x+ . Define a map

δ : RR(G)→ Z/2, λR · [R] + λR− · [R−] + λV · [V ] 7→ λR + λR− + λV .
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If R denotes the trivial and R− denotes the non-trivial one-dimensional real
Z/2-representation, then

i2 : RR(Z/2)→ RR(S3),
µR · [R] + µR− · [R−] 7→ µR · [R] + µR− · [R−] + (µR + µR−) · [V ].

If R denotes the trivial one-dimensional and W the 2-dimensional irreducible
real Z/3-representation, then

i3 : RR(Z/3)→ RR(S3) µR · [R] +µW · [W ] 7→ µR · [R] +µR · [R−] + 2µW · [V ].

This implies that the following sequence is exact

RR(Z/2) ⊕RR(Z/3) i2+i3−−−→ RR(G) δ−→ Z/2→ 0. (4.2)

We conclude from the exact sequences (4.1) and (4.2) above that the epimor-
phism

s− + s+ : RR(G)⊕RR(G)→ lim−→Π0(S3,M)
Q∗RR

factorizes through the map

u :=
(

1 1
0 δ

)
: RR(G)⊕RR(G)→ RR(G) ⊕ Z/2

to an isomorphism

v : RR(G)⊕ Z/2
∼=−→ lim−→Π0(S3,M)

Q∗RR. (4.3)

Define a map
f : US3(M)→ RR(G) ⊕ Z/2

by

f([x1]) := = ([R[S3]], 0);
f([x2]) := = ([R[S3/L2]], 0);
f([x3]) := = ([R[S3/L3]], 0);
f([x−]) := = ([R], 0);
f([x+]) := = ([R], 1).

The reader may wonder why f does not look symmetric in x− and x+ . This
comes from the choice of u which affects the isomorphism v . The composition

UG(M)
eG1 (M)−−−−→ H

Or(G)
0 (M ;RQ)

eG2 (M)−−−−→ H
Or(G)
0 (M ;RR)

agrees with the composition

UG(M)
f−→ RR(G) ⊕ Z/2 v−→ lim−→Π0(S3,M)

Q∗RR
βGR (M)
−−−−→ H

Or(G)
0 (M ;RR).
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We get

χG(M) = [x+] + [x−]− 2 · [x2]− [x3] + [x1] ∈ UG(M) (4.4)

since the image of the element on the right side and the image of χG(M) under
the injective character map chG(M) (see (2.6) and Lemma 2.8) agree by the
following calculation

chG(χG(M)) =
χ(MS3(x−))
|(WS3)x− |

· [x−] +
χ(MS3(x+))
|(WS3)x+ |

· [x+] +
χ(ML2)
|WL2|

· [x2]

+
χ(ML3)
WL3

· [x3] +
χ(M)
WL1

· [x1]

= [x−] + [x+]
= chG(M)([x+] + [x−]− 2 · [x2]− [x3] + [x1]).

Now one easily checks

f(χG(M)) = (0, 1) ∈ RR(S3)⊕ Z/2. (4.5)

Since RR(G) ⊕ Z/2 v−→ lim−→Π0(S3,M)
Q∗RR

βGR (M)
−−−−→ H

Or(G)
0 (M ;RR) is a composi-

tion of isomorphisms, we conclude that eG2 (M) ◦ eG1 (M)(χG(M)) is an element
of order two in H

Or(G)
0 (M ;RR). Since dim(M) ≤ 4 and dim(M>1) ≤ 2, we

conclude from Theorem 3.6 (d) that eG3 (M) : HOr(G)
0 (M ;RR) → KOG0 (M) is

injective. We conclude from Theorem 0.3 and Theorem 3.6 (a) that EulG(M) ∈
KOG0 (M) is an element of order two as promised in Theorem 0.10.

4.3 The equivariant Euler class is independent of the stable
equivariant Euler characteristic

In this subsection we will give examples to show that EulG(M) is independent
of the stable equivariant Euler characteristic with values in the Burnside ring
A(G), in the sense that it is possible for either one of these invariants to vanish
while the other does not vanish.

For the first example, take G = Z/p cyclic of prime order, so that G has only
two subgroups (the trivial subgroup and G itself) and A(G) has rank 2. We
will see that it is possible for EulG(M) to be non-zero, even rationally, while
χGs (M) = 0 in A(G) (see Definition 2.10). To see this, we will construct a
closed 4-dimensional G-manifold M with χ(M) = 0 and such that MG has
two components of dimension 2, one of which is S2 and the other of which is
a surface N2 of genus 2, so that χ(N) = −2. Then

χ(MG) = χ(S2 qN2) = χ(S2) + χ(N2) = 2− 2 = 0,
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while also χ(M{1}) = χ(M) = 0, so that χGs (M) = 0 in A(G) and hence also
χGa (M) = 0.

For the construction, simply choose any bordism W 3 between S2 and N2 , and
let

M4 =
(
S2 ×D2

)
∪S2×S1

(
W 3 × S1

)
∪N2×S1

(
N2 ×D2

)
.

We give this the G-action which is trivial on the S2 , W 3 , and N2 factors, and
which is rotation by 2π/p on the D2 and S1 factors. Then the action of G is
free except for MG , which consists of S2×{0} and of N2×{0}. Furthermore,
we have

χ(M) = χ
(
S2 ×D2

)
− χ

(
S2 × S1

)
+ χ

(
W 3 × S1

)
−χ
(
N2 × S1

)
+ χ

(
N2 ×D2

)
= 2− 0 + 0− 0− 2 = 2− 2 = 0.

Thus χ(M) = χ(MG) = 0 and χGs (M) = 0 in A(G). On the other hand,
EulG(M) is non-zero, even rationally, since from it (by Theorem 0.9) we can
recover the two (non-zero) Euler characteristics of the two components of MG .

For the second example, take G = S3 and retain the notation of Subsection 4.2.
By [20, Theorem 7.6], there is a closed G-manifold M with MH connected for
each subgroup H of G, with χ(MH) = 0 for H cyclic, and with χ(MG) 6= 0.
(Note that G is the only noncyclic subgroup of G.) In fact, we can write down
such an example explicitly; simply let Q = W ′ ⊕R⊕R, the S3 -representation
R ⊕ R ⊕ R ⊕ R− ⊕ V , and let M = SW ′ be the unit ball in W ′ . Then each
fixed set in M is a sphere of dimension bigger by 2 than in the example of
4.2, so M ∼= S5 , ML2 ∼= S3 , ML3 ∼= S3 , and MG ∼= S2 . Since the fixed sets
are all connected and each fixed set of a cyclic subgroup has vanishing Euler
characteristic, it follows by Subsection 4.1 that EulG(M) = 0. On the other
hand, since χ(MG) = 2, χGs (M) 6= 0 in A(G).

4.4 The image of the equivariant Euler class under the assembly
maps

Now let us consider an infinite (discrete) group G. Let EG be a model for
the classifying space for proper G-actions, i.e., a G-CW -complex EG such
that EGH is contractible (and in particular non-empty) for finite H ⊆ G and
EGH is empty for infinite H ⊆ G. It has the universal property that for any
proper G-CW -complex X there is up to G-homotopy precisely one G-map
X → EG. This implies that all models for EG are G-homotopy equivalent. If
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G is a word-hyperbolic group, its Rips complex is a model for EG [21]. If G
is a discrete subgroup of the Lie group L with finitely many path components,
then L/K for a maximal compact subgroup K with the (left) G-action is a
model for EG (see [1, Corollary 4.14]). If G is finite, {∗} is a model for EG.

Consider a proper smooth G-manifold M . Let f : M → EG be a G-map. We
obtain a commutative diagram

UG(M)
UG(f)−−−−→ UG(EG) id−−−−→ UG(EG)

eG1 (M)

y eG1 (EG)

y j1

y
H
Or(G)
0 (M ;RQ)

H
Or(G)
0 (f ;RQ)
−−−−−−−−−→ H

Or(G)
0 (EG;RQ) asmb1−−−−→ K0(QG)

eG2 (M)

y eG2 (EG)

y j2

y
H
Or(G)
0 (M ;RR)

H
Or(G)
0 (f ;RR)
−−−−−−−−−→ H

Or(G)
0 (EG;RR) asmb2−−−−→ K0(RG)

eG3 (M)

y eG3 (EG)

y j3

y
KOG0 (M)

KOG0 (f)−−−−−→ KOG0 (EG) asmb3−−−−→ KO0(C∗r (G;R))

Here asmbi for i = 1, 2, 3 are the assembly maps appearing in the Farrell-Jones
Isomorphism Conjecture and the Baum-Connes Conjecture. The maps asmbi
for i = 1, 2 are the obvious maps lim−→Or(G;Fin)

RF → K0(FG) for F = Q,R
under the identifications RF (H) = K0(FH) for finite H ⊆ G and βGF (M) of
(3.2). The Baum-Connes assembly map is given by the index with values in
the reduced real group C∗ -algebra C∗r (G;R). The Farrell-Jones Isomorphism
Conjecture and the Baum-Connes Conjecture predict that asmbi for i = 1, 2, 3
are bijective. The abelian group UG(EG) is the free abelian group with {(H) ∈
consub(G) | |H| <∞} as basis and the map j1 sends the basis element (H) to
the class of the finitely generated projective QG-module Q[G/H]. The maps
j2 and j3 are change-of-rings homomorphisms. The maps eG2 (M) and eG3 (M)
are rationally injective (see Theorem 3.6 (b) and (c)). If MH is connected and
non-empty for all finite subgroups H ⊆ G, then the horizontal arrows UG(f),
H
Or(G)
0 (f ;RQ) and H

Or(G)
0 (f ;RR) are bijective.

In contrast to the case where G is finite, the groups K0(QG), K0(RG) and
KO0(C∗r (G;R)) may not be torsion free. The problem whether asmbi is bijec-
tive for i = 1, 2 or 3 is a difficult and in general unsolved problem. Moreover,
EG is a complicated G-CW -complex for infinite G, whereas for a finite group
G we can take {∗} as a model for EG.
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