

On the Cut Number of a 3 -manifold

Shelly L Harvey
Department of Mathematics University of California at San Diego
La Jolla, CA 92093-0112, USA
Email: sharvey@math.ucsd.edu
URL: http://math.ucsd.edu/~sharvey

Abstract

The question was raised as to whether the cut number of a 3 -manifold X is bounded from below by $\frac{1}{3} \beta_{1}(X)$. We show that the answer to this question is "no." For each $m \geq 1$, we construct explicit examples of closed 3 -manifolds X with $\beta_{1}(X)=m$ and cut number 1 . That is, $\pi_{1}(X)$ cannot map onto any non-abelian free group. Moreover, we show that these examples can be assumed to be hyperbolic.

AMS Classification numbers Primary: 57M27, 57N10
Secondary: 57M05, 57M50, 20F34, 20F67

Keywords: 3-manifold, fundamental group, corank, Alexander module, virtual betti number, free group

Proposed: Cameron Gordon
Seconded: Joan Birman, Walter Neumann

Received: 27 February 2002
Accepted: 22 August 2002

1 Introduction

Let X be a closed, orientable n-manifold. The cut number of $X, c(X)$, is defined to be the maximal number of components of a closed, 2 -sided, orientable hypersurface $F \subset X$ such that $X-F$ is connected. Hence, for any $n \leq$ $c(X)$, we can construct a map $f: X \rightarrow \bigvee_{i=1}^{n} S^{1}$ such that the induced map on π_{1} is surjective. That is, there exists a surjective map $f_{*}: \pi_{1}(X) \rightarrow F(c)$, where $F(c)$ is the free group with $c=c(X)$ generators. Conversely, if we have any epimorphism $\phi: \pi_{1}(X) \rightarrow F(n)$, then we can find a map $f: X \rightarrow$ $\bigvee_{i=1}^{n} S^{1}$ such that $f_{*}=\phi$. After making the f transverse to a non-wedge point x_{i} on each $S^{1}, f^{-1}(X)$ will give n disjoint surfaces $F=\cup F_{i}$ with $X-F$ connected. Hence one has the following elementary group-theoretic characterization of $c(X)$.

Proposition $1.1 c(X)$ is the maximal n such that there is an epimorphism $\phi: \pi_{1}(X) \rightarrow F(n)$ onto the free group with n generators.

Example 1.2 Let $X=S^{1} \times S^{1} \times S^{1}$ be the 3 -torus. Since $\pi_{1}(X)=\mathbb{Z}^{3}$ is abelian, $c(X)=1$.

Using Proposition 1.1, we show that the cut number is additive under connected sum.

Proposition 1.3 If $X=X_{1} \# X_{2}$ is the connected sum of X_{1} and X_{2} then

$$
c(X)=c\left(X_{1}\right)+c\left(X_{2}\right)
$$

Proof Let $G_{i}=\pi_{1}\left(X_{i}\right)$ for $i=1,2$ and $G=\pi_{1}(X) \cong G_{1} * G_{2}$. It is clear that G maps surjectively onto $F\left(c\left(X_{1}\right)\right) * F\left(c\left(X_{2}\right)\right) \cong F\left(c\left(X_{1}+X_{2}\right)\right)$. Therefore $c(X) \geq c\left(X_{1}\right)+c\left(X_{2}\right)$.

Now suppose that there exists a map $\phi: G \rightarrow F(n)$. Let $\phi_{i}: G_{i} \rightarrow F(n)$ be the composition $G_{i} \rightarrow G_{1} * G_{2} \xrightarrow{\cong} G \stackrel{\phi}{\rightarrow} F(n)$. Since ϕ is surjective and $G \cong G_{1} * G_{2}, \operatorname{Im}\left(\phi_{1}\right)$ and $\operatorname{Im}\left(\phi_{2}\right)$ generate $F(n)$. Morever, $\operatorname{Im}\left(\phi_{i}\right)$ is a subgroup of a free group, hence is free of rank less than or equal to $c\left(X_{i}\right)$. It follows that $n \leq c\left(X_{1}\right)+c\left(X_{2}\right)$. In particular, when n is maximal we have $c(X)=n \leq c\left(X_{1}\right)+c\left(X_{2}\right)$.

In this paper, we will only consider $3-$ manifolds with $\beta_{1}(X) \geq 1$. Consider the surjective map $\pi_{1}(X) \rightarrow H_{1}(X) /\{\mathbb{Z}$-torsion $\} \cong \mathbb{Z}^{\beta_{1}(X)}$. Since $\beta_{1}(X) \geq 1$,
we can find a surjective map from $\mathbb{Z}^{\beta_{1}(X)}$ onto \mathbb{Z}. It follows from Proposition 1.1 that $c(X) \geq 1$. Moreover, every $\operatorname{map} \phi: \pi_{1}(X) \rightarrow F(n)$ gives rise to an epimorphism $\bar{\phi}: H_{1}(X) \rightarrow H_{1}\left(\bigvee_{i=1}^{n} S^{1}\right) \cong \mathbb{Z}^{n}$ It follows that $\beta_{1}(X) \geq n$ which gives us the well known result:

$$
\begin{equation*}
1 \leq c(X) \leq \beta_{1}(X) \tag{1}
\end{equation*}
$$

It has recently been asked whether a (non-trivial) lower bound exists for the cut number. We make the following observations.

Remark 1.4 If S is a closed, orientable surface then $c(S)=\frac{1}{2} \beta_{1}(S)$.
Remark 1.5 If X has solvable fundamental group then $c(X)=1$ and $\beta_{1}(X)$ ≤ 3.

Remark 1.6 Both c and β_{1} are additive under connected sum (Proposition 1.3).

Therefore it is natural to ask the following question first asked by A Sikora and T Kerler. This question was motivated by certain results and conjectures on the divisibility of quantum 3-manifold invariants by P Gilmer-T Kerler [2] and T Cochran-P Melvin [1].

Question 1.7 Is $c(X) \geq \frac{1}{3} \beta_{1}(X)$ for all closed, orientable 3 -manifolds X ?
We show that the answer to this question is "as far from yes as possible." In fact, we show that for each $m \geq 1$ there exists a closed, hyperbolic 3 -manifold with $\beta_{1}(X)=m$ and $c(X)=1$. We actually prove a stronger statement.

Theorem 3.1 For each $m \geq 1$ there exist closed 3 -manifolds X with $\beta_{1}(X)$ $=m$ such that for any infinite cyclic cover $X_{\phi} \rightarrow X, \operatorname{rank}_{\mathbb{Z}[t \pm 1]} H_{1}\left(X_{\phi}\right)=0$.

We note the condition stated in the Theorem 3.1 is especially interesting because of the following theorem of J Howie [3]. Recall that a group G is large if some subgroup of finite index has a non-abelian free homomorphic image. Howie shows that if G has an infinite cyclic cover whose rank is at least 1 then G is large.

Theorem 1.8 (Howie [3]) Suppose that \widetilde{K} is a connected regular covering complex of a finite 2 -complex K, with nontrivial free abelian covering transformation group A. Suppose also that $H_{1}(\widetilde{K} ; \mathbb{Q})$ has a free $\mathbb{Q}[A]$-submodule of rank at least 1. Then $G=\pi_{1}(K)$ is large.

Using the proof of Theorem 3.1 we show that the fundamental group of the aforementioned 3 -manifolds cannot map onto F / F_{4} where F is the free group with 2 generators and F_{4} is the $4^{\text {th }}$ term of the lower central series of F.

Proposition 3.3 Let X be as in Theorem 3.1, $G=\pi_{1}(X)$ and F be the free group on 2 generators. There is no epimorphism from G onto F / F_{4}.

Independently, A Sikora has recently shown that the cut number of a "generic" 3 -manifold is at most 2 [8]. Also, C Leininger and A Reid have constructed specific examples of genus 2 surface bundles X satisfying (i) $\beta_{1}(X)=5$ and $c(X)=1$ and (ii) $\beta_{1}(X)=7$ and $c(X)=2[6]$.

Acknowledgements I became interested in the question as to whether the cut number of a 3 -manifold was bounded below by one-third the first betti number after hearing it asked by A Sikora at a problem session of the 2001 Georgia Topology Conference. The question was also posed in a talk by T Kerler at the 2001 Lehigh Geometry and Topology Conference. The author was supported by NSF DMS-0104275 as well as by the Bob E and Lore Merten Watt Fellowship.

2 Relative Cut Number

Let ϕ be a primitive class in $H^{1}(X ; \mathbb{Z})$. Since $H^{1}(X ; \mathbb{Z}) \cong \operatorname{Hom}\left(\pi_{1}(X), \mathbb{Z}\right)$, we can assume ϕ is a surjective homomorphism, $\phi: \pi_{1}(X) \rightarrow \mathbb{Z}$. Since X is an orientable 3 -manifold, every element in $H_{2}(X ; \mathbb{Z})$ can be represented by an embedded, oriented, 2 -sided surface [10, Lemma 1]. Therefore, if $\phi \in$ $H^{1}(X ; \mathbb{Z}) \cong H_{2}(X ; \mathbb{Z})$ there exists a surface (not unique) dual to ϕ. The cut number of X relative to $\phi, c(X, \phi)$, is defined as the maximal number of components of a closed, 2 -sided, oriented surface $F \subset X$ such that $X-F$ is connected and one of the components of F is dual to ϕ. In the above definition, we could have required that "any number" of components of F be dual to ϕ as opposed to just "one." We remark that since $X-F$ is connected, these two conditions are equivalent. Similar to $c(X)$, we can describe $c(X, \phi)$ group theoretically.

Proposition $2.1 c(X, \phi)$ is the maximal n such that there is an epimorphism $\psi: \pi_{1}(X) \rightarrow F(n)$ onto the free group with n generators that factors through ϕ (see diagram on next page).

It follows immediately from the definitions that $c(X, \phi) \leq c(X)$ for all primitive ϕ. Now let F be any surface with $c(X)$ components and let ϕ be dual to one of the components, then $c(X, \phi)=c(X)$. Hence

$$
\begin{equation*}
c(X)=\max \left\{c(X, \phi) \mid \phi \text { is a primitive element of } H^{1}(X ; \mathbb{Z})\right\} \tag{2}
\end{equation*}
$$

In particular, if $c(X, \phi)=1$ for all ϕ then $c(X)=1$.
We wish to find sufficient conditions for $c(X, \phi)=1$. In [5, page 44], T Kerler develops a skein theoretic algorithm to compute the one-variable Alexander polynomial $\Delta_{X, \phi}$ from a surgery presentation of X. As a result, he shows that if $c(X, \phi) \geq 2$ then the Frohman-Nicas TQFT evaluated on the cut cobordism is zero, implying that $\Delta_{X, \phi}=0$. Using the fact that $\mathbb{Q}\left[t^{ \pm 1}\right]$ is a principal ideal domain one can prove that $\Delta_{X, \phi}=0$ is equivalent to $\operatorname{rank}_{\mathbb{Z}\left[t^{ \pm 1]}\right.} H_{1}\left(X_{\phi}\right) \geq 1$. We give an elementary proof of the equivalent statement of Kerler's.

Proposition 2.2 If $c(X, \phi) \geq 2$ then $\operatorname{rank}_{\mathbb{Z}\left[t^{ \pm 1}\right]} H_{1}\left(X_{\phi}\right) \geq 1$.
Proof Suppose $c(X, \phi) \geq 2$ then there is a surjective map $\psi: \pi_{1}(X) \rightarrow F(n)$ that factors through ϕ with $n \geq 2$. Let $\bar{\phi}: F(n) \rightarrow \mathbb{Z}$ be the homomorphism such that $\phi=\bar{\phi} \circ \psi$. ϕ surjective implies that $\psi_{\mid \operatorname{ker} \phi}: \operatorname{ker} \phi \rightarrow \operatorname{ker} \bar{\phi}$ is surjective. Writing \mathbb{Z} as the multiplicative group generated by t, we can consider $\frac{\operatorname{ker} \phi}{[\operatorname{ker} \phi, \operatorname{ker} \phi]}$ and $\frac{\operatorname{ker} \bar{\phi}}{[\operatorname{ker} \bar{\phi}, \operatorname{ker} \bar{\phi}]}$ as modules over $\mathbb{Z}\left[t^{ \pm 1}\right]$. Here, the t acts by conjugating by an element that maps to t by ϕ or $\bar{\phi}$. Moreover, $\psi_{\mid \operatorname{ker} \phi}: \frac{\operatorname{ker} \phi}{[\operatorname{ker} \phi, \operatorname{ker} \phi]} \rightarrow$ $\frac{\operatorname{ker} \bar{\phi}}{[\operatorname{ker} \bar{\phi}, \operatorname{ker} \bar{\phi}]}$ is surjective hence

$$
\operatorname{rank}_{\mathbb{Z}\left[t^{ \pm 1}\right]}\left(\frac{\operatorname{ker} \phi}{[\operatorname{ker} \phi, \operatorname{ker} \phi]}\right) \geq \operatorname{rank}_{\mathbb{Z}\left[t^{ \pm 1}\right]}\left(\frac{\operatorname{ker} \bar{\phi}}{[\operatorname{ker} \bar{\phi}, \operatorname{ker} \bar{\phi}]}\right)=n-1
$$

Since $n \geq 2, \operatorname{rank}_{\mathbb{Z}\left[t^{ \pm 1]}\right]} H_{1}\left(X_{\phi}\right)=\operatorname{rank}_{\mathbb{Z}\left[t^{ \pm 1}\right]}\left(\frac{\operatorname{ker} \phi}{[\operatorname{ker} \phi, \operatorname{ker} \phi]}\right) \geq 1$.
Corollary 2.3 If $\pi_{1}(X) \rightarrow F / F^{\prime \prime}$ where F is a free group of rank 2 then there exists a $\phi: \pi_{1}(X) \rightarrow \mathbb{Z}$ such that $\operatorname{rank}_{\mathbb{Z}\left[t^{ \pm 1}\right]} H_{1}\left(X_{\phi}\right) \geq 1$.

Proof This follows immediately from the proof of Proposition 2.2 after noticing that $F^{\prime \prime} \subset[\operatorname{ker}(\bar{\phi}), \operatorname{ker}(\bar{\phi})]$ and $\operatorname{Hom}\left(F / F^{\prime \prime}, \mathbb{Z}\right) \cong \operatorname{Hom}(F, \mathbb{Z})$.

3 The Examples

We construct closed 3-manifolds all of whose infinite cyclic covers have first homology that is $\mathbb{Z}\left[t^{ \pm 1}\right]$-torsion. The 3 -manifolds we consider are 0 -surgery on an m-component link that is obtained from the trivial link by tying a Whitehead link interaction between each two components.

Theorem 3.1 For each $m \geq 1$ there exist closed 3 -manifolds X with $\beta_{1}(X)$ $=m$ such that for any infinite cyclic cover $X_{\phi} \rightarrow X, \operatorname{rank}_{\mathbb{Z}\left[t^{ \pm 1]}\right.} H_{1}\left(X_{\phi}\right)=0$.

It follows from Propostion 2.2 that the cut number of the manifolds in Theorem 3.1 is 1 . In fact, Corollary 2.3 implies that $\pi_{1}(X)$ does not map onto $F / F^{\prime \prime}$ where F is a free group of rank 2 . Moreover, the proof of this theorem shows that $\pi_{1}(X)$ does not even map onto F / F_{4} where F_{n} is the $n^{\text {th }}$ term of the lower central series of F (see Proposition 3.3).
By a theorem of Ruberman [7], we can assume that the manifolds with cut number 1 are hyperbolic.

Corollary 3.2 For each $m \geq 1$ there exist closed, orientable, hyperbolic 3manifolds Y with $\beta_{1}(Y)=m$ such that for any infinite cyclic cover $Y_{\phi} \rightarrow Y$, $\operatorname{rank}_{\mathbb{Z}\left[t^{ \pm 1]}\right.} H_{1}\left(Y_{\phi}\right)=0$.

Proof Let X be one of the 3 -manifolds in Theorem 3.1. By [7, Theorem 2.6], there exists a degree one map $f: Y \rightarrow X$ where Y is hyperbolic and f_{*} is an isomorphism on H_{*}. Denote by $G=\pi_{1}(X)$ and $P=\pi_{1}(Y)$. It is then well-known that f is surjective on π_{1}. It follows from Stalling's theorem [9, page 170] that the kernel of f_{*} is $P_{\omega} \equiv \cap P_{n}$. Now, suppose $\phi: P \xrightarrow{f_{*}} G \xrightarrow{\bar{\phi}} \mathbb{Z}$ defines an infinite cyclic cover of Y. Then $H_{1}\left(Y_{\phi}\right) \rightarrow H_{1}\left(X_{\bar{\phi}}\right)$ has kernel $P_{\omega} /[\operatorname{ker} \phi, \operatorname{ker} \phi]$. To show that $\operatorname{rank}_{\mathbb{Z}\left[t^{ \pm 1]}\right.} H_{1}\left(Y_{\phi}\right)=0$ it suffices to show that P_{ω} vanishes under the map $H_{1}\left(Y_{\phi}\right) \rightarrow H_{1}\left(Y_{\phi}\right) \otimes_{\mathbb{Z}\left[t^{ \pm 1}\right]} \mathbb{Q}\left[t^{ \pm 1}\right] \rightarrow H_{1}\left(Y_{\phi}\right) \otimes_{\mathbb{Z}\left[t^{ \pm 1}\right]}$ $\mathbb{Q}(t)$ since then $\operatorname{rank}_{\mathbb{Z}\left[t^{ \pm 1]}\right.} H_{1}\left(Y_{\phi}\right)=\operatorname{rank}_{\mathbb{Z}\left[t^{ \pm 1]}\right.} H_{1}\left(X_{\bar{\phi}}\right)=0$.
Note that $H_{1}\left(Y_{\phi}\right) \otimes_{\mathbb{Z}\left[t^{ \pm 1}\right]} \mathbb{Q}\left[t^{ \pm 1}\right] \cong \bigoplus_{i=1}^{n} \mathbb{Q}\left[t^{ \pm 1}\right] \oplus T$ where T is a $\mathbb{Q}\left[t^{ \pm 1}\right]$ torsion module. Moreover, P_{n} is generated by elements of the form $\gamma=$
$\left[p_{1}\left[p_{2}\left[p_{3}, \ldots\left[p_{n-2}, \alpha\right]\right]\right]\right]$ where $\alpha \in P_{2} \subseteq \operatorname{ker} \phi$. Therefore

$$
[\gamma]=\left(\phi\left(p_{i}\right)-1\right) \cdots\left(\phi\left(p_{n-2}\right)-1\right)[\alpha]
$$

in $H_{1}\left(Y_{\phi}\right)$ which implies that $P_{n} \subseteq J^{n-2}\left(H_{1}\left(Y_{\phi}\right)\right)$ for $n \geq 2$ where J is the augmentation ideal of $\mathbb{Z}\left[t^{ \pm 1}\right]$. It follows that any element of P_{ω} considered as an element of $H_{1}\left(Y_{\phi}\right) \otimes_{\mathbb{Z}\left[t^{ \pm 1}\right]} \mathbb{Q}\left[t^{ \pm 1}\right]$ is infinitely divisible by $t-1$ and hence is torsion.

Proof of Theorem 3.1 Let $L=\sqcup L_{i}$ be the oriented trivial link with m components in S^{3} and $\sqcup D_{i}$ be oriented disjoint disks with $\partial D_{i}=L_{i}$. The fundamental group of $S^{3}-L$ is freely generated by $\left\{x_{i}\right\}$ where x_{i} is a meridian curve of L_{i} which intersects D_{i} exactly once and $D_{i} \cdot x_{i}=1$. For all i, j with $1 \leq i<j \leq m$ let $\alpha_{i j}: I \rightarrow S^{3}$ be oriented disjointly embedded arcs such that $\alpha_{i j}(0) \in L_{i}$ and $\alpha_{i j}(1) \in L_{j}$ and $\alpha_{i j}(I)$ does not intersect $\sqcup D_{i}$. For each arc $\alpha_{i j}$, let $\gamma_{i j}$ be the curve embedded in a small neighborhood of $\alpha_{i j}$ representing the class $\left[x_{i}, x_{j}\right]$ as in Figure 1. Let X be the 3 -manifold obtained performing

Figure 1

0 -framed Dehn surgery on L and -1-framed Dehn surgery on each $\gamma=\sqcup \gamma_{i j}$. See Figure 2 for an example of X when $m=5$.

Denote by X_{0}, the manifold obtained by performing 0 -framed Dehn surgery on L. Let W be the 4 -manifold obtained by adding a 2 -handle to $X_{0} \times I$ along each curve $\gamma_{i j} \times\{1\}$ with framing coefficient -1 . The boundary of W is $\partial W=X_{0} \sqcup-X$. We note that

$$
\left.\pi_{1}(W)=\left\langle x_{1}, \ldots, x_{m}\right|\left[x_{i}, x_{j}\right]=1 \text { for all } 1 \leq i<j \leq m\right\rangle \cong \mathbb{Z}^{m} .
$$

Figure 2: The surgered manifold X when $m=5$

Let $\left\{x_{i k}, \mu_{i j l}\right\}$ be the generators of $\pi_{1}\left(S^{3}-(L \sqcup \gamma)\right)$ that are obtained from a Wirtinger presentation where $x_{i k}$ are meridians of the $i^{t h}$ component of L and $\mu_{i j l}$ are meridians of the $(i, j)^{t h}$ component of γ. Note that $\left\{x_{i k}, \mu_{i j l}\right\}$ generate $G \equiv \pi_{1}(X)$. For each $1 \leq i \leq m$ let $\bar{x}_{i}=x_{i 1}$ and $\bar{\mu}_{i j}$ be the specific $\mu_{i j l}$ that is denoted in Figure 3. We will use the convention that

$$
[a, b]=a b a^{-1} b^{-1}
$$

and

$$
a^{b}=b a b^{-1}
$$

We can choose a projection of the trivial link so that the arcs $\alpha_{i j}$ do not pass under a component of L. Since $\bar{\mu}_{i j}$ is equal to a longitude of the curve $\gamma_{i j}$ in X, we have $\bar{\mu}_{i j}=\left[x_{i n_{i j}}, \lambda x_{j n_{j i}} \lambda^{-1}\right]$ for some $n_{i j}$ and $n_{j i}$ and λ where λ is a product of conjugates of meridian curves $\bar{\mu}_{l k}$ and $\bar{\mu}_{l k}^{-1}$. Moreover, we can find

Figure 3
a projection of $L \sqcup \gamma$ so that the individual components of L do not pass under or over one another. Hence $x_{i j}=\omega \bar{x}_{i} \omega^{-1}$ where ω is a product of conjugates of the meridian curves $\bar{\mu}_{l k}$ and $\bar{\mu}_{l k}^{-1}$. As a result, we have

$$
\begin{align*}
\bar{\mu}_{i j} & =\left[x_{i n_{i j}}, \lambda x_{j n_{j i}} \lambda^{-1}\right] \tag{3}\\
& =\left[\omega_{1} \bar{x}_{i} \omega_{1}^{-1}, \lambda \omega_{2} \bar{x}_{j} \omega_{2}^{-1} \lambda^{-1}\right] \\
& =\left[\bar{x}_{i}, \omega_{1}^{-1} \lambda \omega_{2} \bar{x}_{j} \omega_{2}^{-1} \lambda^{-1} \omega_{1}^{-1}\right]^{\omega_{1}}
\end{align*}
$$

for some λ, ω_{1}, and ω_{2}.
We note that $\bar{\mu}_{i j}=\left[x_{i n_{i j}}, \lambda x_{j n_{j i}} \lambda^{-1}\right]$ hence $\bar{\mu}_{i j} \in G^{\prime}$ for all $i<j$. Setting $v=\omega_{1}^{-1} \lambda \omega_{2}$ and using the equality

$$
\begin{equation*}
[a, b c]=[a, b][a, c]^{b} \tag{4}
\end{equation*}
$$

we see that

$$
\begin{align*}
\bar{\mu}_{i j} & =\left[\bar{x}_{i}, v \bar{x}_{j} v^{-1}\right]^{\omega_{1}} \tag{5}\\
& =\left[\bar{x}_{i}, v \bar{x}_{j} v^{-1}\right] \bmod G^{\prime \prime} \\
& =\left[\bar{x}_{i},\left[v, \bar{x}_{j}\right] \bar{x}_{j}\right] \\
& =\left[\bar{x}_{i},\left[v, \bar{x}_{j}\right]\right]\left[\bar{x}_{i}, \bar{x}_{j}\right]\left[v, \bar{x}_{j}\right] \\
& =\left[\bar{x}_{i},\left[v, \bar{x}_{j}\right]\right]\left[\bar{x}_{i}, \bar{x}_{j}\right] \bmod G^{\prime \prime}
\end{align*}
$$

since $\omega_{1}, v \in G^{\prime}$.
Consider the dual relative handlebody decomposition (W, X). W can be obtained from X by adding a 0 -framed 2 -handle to $X \times I$ along each of the
meridian curves $\bar{\mu}_{i j} \times\{1\}$. (3) implies that $\bar{\mu}_{i j}$ is trivial in $H_{1}(X)$ hence the inclusion map $j: X \rightarrow W$ induces an isomorphism $j_{*}: H_{1}(X) \xlongequal{\cong} H_{1}(W)$. Therefore if $\phi: G \rightarrow \Lambda$ where Λ is abelian then there exists a $\psi: \pi_{1}(W) \rightarrow \Lambda$ such that $\psi \circ j_{*}=\phi$.
Suppose $\phi: G \rightarrow\langle t\rangle \cong \mathbb{Z}$ and $\psi: \pi_{1}(W) \rightarrow\langle t\rangle$ is an extension of ϕ to $\pi_{1}(W)$. Let X_{ϕ} and W_{ψ} be the infinite cyclic covers of W and X corresponding to ψ and ϕ respectively. Consider the long exact sequence of pairs,

$$
\begin{equation*}
\rightarrow H_{2}\left(W_{\psi}, X_{\phi}\right) \xrightarrow{\partial_{*}} H_{1}\left(X_{\phi}\right) \rightarrow H_{1}\left(W_{\psi}\right) \rightarrow \tag{6}
\end{equation*}
$$

Since $\pi_{1}(W) \cong \mathbb{Z}^{m}, H_{1}\left(W_{\psi}\right) \cong \mathbb{Z}^{m-1}$ where t acts trivially so that $H_{1}\left(W_{\psi}\right)$ has rank 0 as a $\mathbb{Z}\left[t^{ \pm 1}\right]$-module. $H_{2}\left(W_{\psi}, X_{\phi}\right) \cong\left(\mathbb{Z}\left[t^{ \pm 1}\right]\right)^{\binom{m}{2}}$ generated by the core of each $2-$ handle (extended by $\bar{\mu}_{i j} \times I$) attached to X. Therefore, $\operatorname{Im} \partial_{*}$ is generated by a lift of $\bar{\mu}_{i j}$ in $H_{1}\left(X_{\phi}\right)$ for all $1 \leq i<j \leq m$. To show that $H_{1}\left(X_{\phi}\right)$ has rank 0 it suffices to show that each of the $\bar{\mu}_{i j}$ are $\mathbb{Z}\left[t^{ \pm 1}\right]$-torsion in $H_{1}\left(X_{\phi}\right)$.
Let $F=\left\langle\bar{x}_{1}, \ldots, \bar{x}_{m}\right\rangle$ be the free group of rank m and $f: F \rightarrow G$ be defined by $f\left(\bar{x}_{i}\right)=\bar{x}_{i}$. We have the following $\binom{m}{3}$ Jacobi relations in $F / F^{\prime \prime}[4$, Proposition 7.3.6]. For all $1 \leq i<j<k \leq m$,

$$
\left[\bar{x}_{i},\left[\bar{x}_{j}, \bar{x}_{k}\right]\right]\left[\bar{x}_{j},\left[\bar{x}_{k}, \bar{x}_{i}\right]\right]\left[\bar{x}_{k},\left[\bar{x}_{i}, \bar{x}_{j}\right]\right]=1 \bmod F^{\prime \prime}
$$

Using f, we see that these relations hold in $G / G^{\prime \prime}$ as well. From (5), we can write

$$
\left[\bar{x}_{i}, \bar{x}_{j}\right]=\left[\left[v_{i j}, \bar{x}_{j}\right], \bar{x}_{i}\right] \bar{\mu}_{i j} \bmod G^{\prime \prime}
$$

Hence for each $1 \leq i<j<k \leq m$ we have the Jacobi relation $J(i, j, k)$ in $G / G^{\prime \prime}$,

$$
\begin{align*}
1= & {\left[\bar{x}_{i},\left[\bar{x}_{j}, \bar{x}_{k}\right]\right]\left[\bar{x}_{j},\left[\bar{x}_{i}, \bar{x}_{k}\right]^{-1}\right]\left[\bar{x}_{k},\left[\bar{x}_{i}, \bar{x}_{j}\right]\right] \bmod G^{\prime \prime} } \\
= & {\left[\bar{x}_{i},\left[\left[v_{j k}, \bar{x}_{k}\right], \bar{x}_{j}\right] \bar{\mu}_{j k}\right]\left[\bar{x}_{j}, \bar{\mu}_{i k}^{-1}\left[\bar{x}_{i},\left[v_{i k}, \bar{x}_{k}\right]\right]\right] } \\
& {\left[\bar{x}_{k},\left[\left[v_{i j}, \bar{x}_{j}\right], \bar{x}_{i}\right] \bar{\mu}_{i j}\right] \bmod G^{\prime \prime} } \\
= & {\left[\bar{x}_{i},\left[\left[v_{j k}, \bar{x}_{k}\right], \bar{x}_{j}\right]\right]\left[\bar{x}_{i}, \bar{\mu}_{j k}\right]\left[\bar{x}_{j}, \bar{\mu}_{i k}^{-1}\right]\left[\bar{x}_{j},\left[\bar{x}_{i},\left[v_{i k}, \bar{x}_{k}\right]\right]\right] } \\
& {\left[\bar{x}_{k},\left[\left[v_{i j}, \bar{x}_{j}\right], \bar{x}_{i}\right]\right]\left[\bar{x}_{k}, \bar{\mu}_{i j}\right] \bmod G^{\prime \prime} } \\
= & {\left[\bar{x}_{i}, \bar{\mu}_{j k}\right]\left[\bar{x}_{j}, \bar{\mu}_{i k}^{-1}\right]\left[\bar{x}_{k}, \bar{\mu}_{i j}\right]\left[\bar{x}_{i},\left[\left[v_{j k}, \bar{x}_{k}\right], \bar{x}_{j}\right]\right]\left[\bar{x}_{j},\left[\bar{x}_{i},\left[v_{i k}, \bar{x}_{k}\right]\right]\right] } \\
& {\left[\bar{x}_{k},\left[\left[v_{i j}, \bar{x}_{j}\right], \bar{x}_{i}\right]\right] \bmod G^{\prime \prime} . } \tag{7}
\end{align*}
$$

Moreover, for each component of the trivial link L_{i} the longitude, l_{i}, of L_{i} is trivial in G and is a product of commutators of $\bar{\mu}_{i j}$ with a conjugate of \bar{x}_{j}. We
can write each of the longitudes (see Figure 4) as

$$
\begin{align*}
l_{i}= & \prod_{j<i} \alpha_{j} \lambda_{j}^{-1} \bar{\mu}_{j i}^{-1} \lambda_{j} \cdot \prod_{k>i} \bar{\mu}_{i k} \beta_{k} \bmod G^{\prime \prime} \\
= & \prod_{j<i}\left(\lambda_{j}^{-1} x_{j n_{j i}}^{-1} \bar{\mu}_{j i} x_{j n_{j i}} \lambda_{j}\right) \lambda_{j}^{-1} \bar{\mu}_{j i}^{-1} \lambda_{j} . \\
& \prod_{k>i} \bar{\mu}_{i k}\left(\lambda_{k} x_{k n_{k i}}^{-1} \lambda_{k}^{-1} \bar{\mu}_{i k}^{-1} \lambda_{k} x_{k n_{k i}} \lambda_{k}^{-1}\right) \\
= & \prod_{j<i}\left[x_{j n_{j i}}^{-1}, \bar{\mu}_{j i}\right]^{\lambda_{j}^{-1}} \cdot \prod_{k>i}\left[\bar{\mu}_{i k}, \lambda_{k} x_{k n_{k i}}^{-1} \lambda_{k}^{-1}\right] \\
= & \prod_{j<i}\left[\bar{x}_{j}^{-1}, \bar{\mu}_{j i}\right] \cdot \prod_{k>i}\left[\bar{\mu}_{i k}, \bar{x}_{k}^{-1}\right] \bmod G^{\prime \prime} . \tag{8}
\end{align*}
$$

:

:

Figure 4

It follows that

$$
\prod_{j<i}\left[\bar{x}_{j}^{-1}, \bar{\mu}_{j i}\right] \cdot \prod_{k>i}\left[\bar{\mu}_{i k}, \bar{x}_{k}^{-1}\right]=1 \bmod G^{\prime \prime}
$$

Since $G^{\prime \prime} \subset[\operatorname{ker} \phi, \operatorname{ker} \phi]$, the relations in (7) and (8) hold in $H_{1}\left(X_{\phi}\right)$ $(=\operatorname{ker} \phi /[\operatorname{ker} \phi, \operatorname{ker} \phi])$ as well. Suppose $\phi: G \rightarrow \mathbb{Z}$ is defined by sending $\bar{x}_{i} \longmapsto$ $t^{n_{i}}$. Since ϕ is surjective, $n_{N} \neq 0$ for some N. We consider a subset of $\binom{m}{2}$ relations in $H_{1}\left(X_{\phi}\right)$ that we index by (i, j) for $1 \leq i<j \leq m$. When $i=N$ or $j=N$ we consider the $m-1$ relations

$$
\text { (i) } \quad R_{i N}=l_{i} \quad \text { and } \quad \text { (ii) } \quad R_{N j}=l_{j}^{-1}
$$

Rewriting l_{i} as an element of the $\mathbb{Z}\left[t^{ \pm 1}\right]$-module $H_{1}\left(X_{\phi}\right)$ generated by $\left\{\bar{\mu}_{i j} \mid 1 \leq i<j \leq m\right\}$ from (8) we have

$$
\begin{align*}
R_{i N}= & \sum_{j<i}\left(t^{-n_{j}}-1\right) \bar{\mu}_{j i}+\sum_{k>i}\left(1-t^{-n_{k}}\right) \bar{\mu}_{i k} \\
= & \sum_{j<i} t^{-n_{j}}\left(1-t^{n_{j}}\right) \bar{\mu}_{j i}+\sum_{k>i} t^{-n_{k}}\left(t^{n_{k}}-1\right) \bar{\mu}_{i k} \\
= & \sum_{j<i}\left[\left(1-t^{n_{j}}\right)+\left(t^{-n_{j}}-1\right)\left(1-t^{n_{j}}\right)\right] \bar{\mu}_{j i}+ \\
& \sum_{k>i}\left[\left(t^{n_{k}}-1\right)+\left(t^{-n_{k}}-1\right)\left(t^{n_{k}}-1\right)\right] \bar{\mu}_{i k} . \tag{9}
\end{align*}
$$

Similarily, we have

$$
\begin{align*}
R_{N j}= & \sum_{i<j}\left[\left(t^{n_{i}}-1\right)+\left(t^{-n_{i}}-1\right)\left(t^{n_{i}}-1\right)\right] \bar{\mu}_{i j}+ \\
& \sum_{k>j}\left[\left(1-t^{n_{k}}\right)+\left(t^{-n_{k}}-1\right)\left(1-t^{n_{k}}\right)\right] \bar{\mu}_{j k} \tag{10}
\end{align*}
$$

For the other $\binom{m-1}{3}$ relations, we use the Jacobi relations from (7). Define $R_{i j}$ to be

$$
R_{i j}=\left\{\begin{array}{l}
J(N, i, j) \text { for } N<i<j \\
J(i, N, j)^{-1} \text { for } i<N<j \\
J(i, j, N) \text { for } i<j<N
\end{array}\right.
$$

We can write these relations as

$$
R_{i j}=\left\{\begin{array}{l}
\left(t^{n_{j}}-1\right) \bar{\mu}_{N i}+\left(1-t^{n_{i}}\right) \bar{\mu}_{N j}+\left(t^{n_{N}}-1\right) \bar{\mu}_{i j}+ \tag{11}\\
\left(t^{n_{N}}-1\right)\left(t^{n_{i}}-1\right)\left(t^{n_{j}}-1\right)\left(\widetilde{v}_{i j}+\widetilde{v}_{N j}-\widetilde{v}_{N j}\right) \text { for } N<i<j \\
\left(1-t^{n_{j}}\right) \bar{\mu}_{i N}+\left(t^{n_{N}}-1\right) \bar{\mu}_{i j}+\left(1-t^{n_{i}}\right) \bar{\mu}_{N j}+ \\
\left(t^{n_{N}}-1\right)\left(t^{n_{i}}-1\right)\left(t^{n_{j}}-1\right)\left(-\widetilde{v}_{i N}-\widetilde{v}_{N j}+\widetilde{v}_{i j}\right) \text { for } i<N<j \\
\left(t^{n_{N}}-1\right) \bar{\mu}_{i j}+\left(1-t^{n_{j}}\right) \bar{\mu}_{i N}+\left(t^{n_{i}}-1\right) \bar{\mu}_{j N}+ \\
\left(t^{n_{N}}-1\right)\left(t^{n_{i}}-1\right)\left(t^{n_{j}}-1\right)\left(\widetilde{v}_{i j}+\widetilde{v}_{j N}-\widetilde{v}_{i N}\right) \text { for } i<j<N
\end{array}\right.
$$

where $\widetilde{v}_{i j}$ is a lift of $v_{i j}$.
For $1 \leq i<j \leq m$ order the pairs $i j$ by the dictionary ordering. That is, $i j<l k$ provided either $i<l$ or $j<k$ when $i=l$. The relations above give us an $\binom{m}{2} \times\binom{ m}{2}$ matrix M with coefficients in $\mathbb{Z}\left[t^{ \pm 1}\right]$. The $(i j, k l)^{t h}$ component of M is the coefficient of $\bar{\mu}_{k l}$ in $R_{i j}$. We claim for now that

$$
\begin{equation*}
M=\left(t^{n_{N}}-1\right) I+(t-1) S+(t-1)^{2} E \tag{12}
\end{equation*}
$$

for some "error" matrix E where I is the identity matrix and S is a skewsymmetric matrix. For an example, when $m=4$ and $N=1, M$ is the matrix

$$
\left[\begin{array}{cccccc}
t^{n_{1}}-1 & 0 & 0 & 1-t^{n_{3}} & 1-t^{n_{4}} & 0 \\
0 & t^{n_{1}}-1 & 0 & t^{n_{2}}-1 & 0 & 1-t^{n_{4}} \\
0 & 0 & t^{n_{1}}-1 & 0 & t^{n_{2}}-1 & t^{n_{3}}-1 \\
t^{n_{3}}-1 & 1-t^{n_{2}} & 0 & t^{n_{1}}-1 & 0 & 0 \\
t^{n_{4}}-1 & 0 & 1-t^{n_{2}} & 0 & t^{n_{1}}-1 & 0 \\
0 & t^{n_{4}}-1 & 1-t^{n_{3}} & 0 & 0 & t^{n_{1}}-1
\end{array}\right]+(t-1)^{2} E
$$

The proof of (12) is left until the end.
We will show that M is non-singular as a matrix over the quotient field $\mathbb{Q}(t)$. Consider the matrix $A=\frac{1}{t-1} M$. We note that A is a matrix with entries in $\mathbb{Z}\left[t^{ \pm 1}\right]$ and $A(1)$ evaluated at $t=1$ is

$$
A(1)=N I+S(1)
$$

To show that M is non-singular, it suffices to show that $A(1)$ is non-singular.
Consider the quadratic form $q: \mathbb{Q}^{\binom{m}{2}} \rightarrow \mathbb{Q}^{\binom{m}{2}}$ defined by $q(z) \equiv z^{T} A(1) z$ where z^{T} is the transpose of z. Since $A(1)=N I+S(1)$ where $S(1)$ is skew-symmetric we have,

$$
q(z)=N \sum z_{i}^{2}
$$

Moreover, $N \neq 0$ so $q(z)=0$ if and only if $z=0$. Let z be a vector satisfying $A(1) z=0$. We have $q(z)=z^{T} A(1) z=z^{T} 0=0$ which implies that $z=0$. Therefore M is a non-singular matrix. This implies that each element $\bar{\mu}_{i j}$ is $\mathbb{Z}\left[t^{ \pm 1}\right]$-torsion which will complete the the proof once we have established the above claim.

We ignore entries in M that lie in J^{2} where J is the augmentation ideal of $\mathbb{Z}\left[t^{ \pm 1}\right]$ since they only contribute to the error matrix E. Using (9), (10), and (11) above we can explicitely write the entries in $M\left(\bmod J^{2}\right)$. Let $m_{i j, l k}$ denote the $(i j, l k)$ entry of $M\left(\bmod J^{2}\right)$.

Case $1(j=N)$: From (9) we have

$$
m_{i N, l i}=1-t^{n_{l}}, m_{i N, i k}=t^{n_{k}}-1,
$$

and $m_{i N, l k}=0$ when neither l nor k is equal to N.
Case $2(i=N)$: From (10) we have

$$
m_{N j, l j}=t^{n_{l}}-1, m_{N j, j k}=1-t^{n_{k}}
$$

and $m_{N j, l k}=0$ when neither l nor k is equal to N.
Case 3 ($N<i<j$): From (11) we have

$$
m_{i j, N i}=t^{n_{j}}-1, m_{i j, N j}=1-t^{n_{i}}, m_{i j, i j}=t^{n_{N}}-1,
$$

and $m_{i j, l k}=0$ otherwise.
Case $4(i<N<j)$: From (11) we have

$$
m_{i j, i N}=1-t^{n_{j}}, m_{i j, i j}=t^{n_{N}}-1, m_{i j, N j}=1-t^{n_{i}}
$$

and $m_{i j, l k}=0$ otherwise.
Case $5(i<j<N)$: From (11) we have

$$
m_{i j, i j}=t^{n_{N}}-1, m_{i j, i N}=1-t^{n_{j}}, m_{i j, j N}=t^{n_{i}}-1,
$$

and $m_{i j, l k}=0$ otherwise.
We first note that in each of the cases, the diagonal entries $m_{i j, i j}$ are all $t^{n_{N}}-1$. Next, we will show that the off diagonal entries have the property that $m_{i j, l k}=$ $-m_{l k, i j}$ for $i j<l k$. This will complete the proof of the claim since we see that each entry is divisible by $t-1$.

We verify the skew symmetry in Cases 1 and 3 . The other cases are similar and we leave the verifications to the reader.

Case $1(j=N)$:

$$
m_{i N, l i}=1-t^{n_{l}}=-m_{l i, i N}(\text { case } 5)
$$

and

$$
m_{i N, i k}=t^{n_{k}}-1=-m_{i k, i N}(\text { case } 4) .
$$

Case $3(N<i<j)$:

$$
m_{i j, N i}=t^{n_{j}}-1=-m_{N i, i j}(\text { case } 2)
$$

and

$$
m_{i j, N j}=1-t^{n_{i}}=-m_{N j, i j} \text { (case 2). }
$$

Proposition 3.3 Let X be as in Theorem 3.1, $G=\pi_{1}(X)$ and F be the free group on 2 generators. There is no epimorphism from G onto F / F_{4}.

Proof Let $F=\langle x, y\rangle$ be the free group and $\phi: F / F_{4} \rightarrow\langle t\rangle$ be defined by $x \longmapsto t$ and $y \longmapsto 1$. Suppose that there exists a surjective map $\eta: G \rightarrow F / F_{4}$. Let $N=\operatorname{ker} \phi$ and $H=\operatorname{ker}(\eta \circ \phi)$. Since η is surjective we get an epimorphism of $\mathbb{Z}\left[t^{ \pm 1}\right]$-modules $\widetilde{\eta}: H / H^{\prime} \rightarrow N / N^{\prime}$. From (6) we get the short exact sequence

$$
0 \rightarrow \operatorname{Im} \partial_{*} \xrightarrow{i} H_{1}\left(X_{\eta \circ \phi}\right) \rightarrow H_{1}\left(W_{\psi}\right) \rightarrow 0 .
$$

Let J be the augmentation ideal of $\mathbb{Z}\left[t^{ \pm 1}\right]$. We compute $N / N^{\prime} \cong \mathbb{Z}\left[t^{ \pm 1}\right] / J^{3}$ so that $\widetilde{\eta}: H_{1}\left(X_{\eta \circ \phi}\right) \rightarrow \mathbb{Z}\left[t^{ \pm 1}\right] / J^{3}$. Let $\sigma \in H_{1}\left(X_{\eta \circ \phi}\right)$ such that $\widetilde{\eta}(\sigma)=1$. Since every element in $H_{1}\left(W_{\psi}\right) \cong \bigoplus_{i=1}^{m-1} \frac{\mathbb{Z}\left[t^{ \pm 1}\right]}{J}$ is $(t-1)$-torsion, $(t-1) \sigma \in$ $\operatorname{Im} \partial_{*}$ hence $t-1 \in \operatorname{Im}(\widetilde{\eta} \circ i)$. Recall that in the proof of the Theorem 3.1, we showed that there exists a surjective $\mathbb{Z}\left[t^{ \pm 1}\right]$-module homomorphism $\rho: P \rightarrow$ $\operatorname{Im} \partial_{*}$ where P is finitely presented as

$$
0 \rightarrow \mathbb{Z}\left[t^{ \pm 1}\right]{\underset{(2}{m} 2)}_{(t-1) A}^{\rightarrow} \mathbb{Z}\left[t^{ \pm 1}\right] \xrightarrow{\binom{m}{2}} \xrightarrow{\pi} P \rightarrow 0 .
$$

Let $g: P \rightarrow \mathbb{Z}\left[t^{ \pm 1}\right] / J^{3}$ defined by $g \equiv \widetilde{\eta} \circ i \circ \rho$. Since ρ is surjective, $t-1 \in$ $\operatorname{Im} g$. After tensoring with $\mathbb{Q}\left[t^{ \pm 1}\right]$, we get a map $g: P \otimes_{\mathbb{Z}\left[t^{ \pm 1]}\right]} \mathbb{Q}\left[t^{ \pm 1}\right] \rightarrow$ $\mathbb{Q}\left[t^{ \pm 1}\right] / J^{3}$. It is easy to see that either g is surjective or the image of g is the submodule generated by $t-1$. Note that the submodule generated by $t-1$ is isomorphic $\mathbb{Q}\left[t^{ \pm 1}\right] / J^{2}$. Hence, in either case, we get a surjective map $h: P \otimes_{\mathbb{Z}\left[t^{ \pm 1}\right]} \mathbb{Q}\left[t^{ \pm 1}\right] \rightarrow \mathbb{Q}\left[t^{ \pm 1}\right] / J^{2}$.

Consider the $\mathbb{Q}\left[t^{ \pm 1}\right]$-module P^{\prime} presented by A. Let $h^{\prime}: \mathbb{Q}\left[t^{ \pm 1}\right]^{\binom{m}{2}} \rightarrow$ $\mathbb{Q}\left[t^{ \pm 1}\right] / J^{2}$ be defined by $h^{\prime}=(t-1) h \circ \pi$. Since

$$
h^{\prime}(A(\sigma))=(t-1) h(\pi(A(\sigma)))=h(\pi((t-1) A(\sigma)))=h(0)=0,
$$

this defines a map $h^{\prime}: P^{\prime} \rightarrow \mathbb{Q}\left[t^{ \pm 1}\right] / J^{2}$ whose image is the submodule generated by $t-1$. It follows that P^{\prime} maps onto $\mathbb{Q}\left[t^{ \pm 1}\right] / J$. Setting $t=1$, the vector space over \mathbb{Q} presented by $A(1)$ maps onto \mathbb{Q}. Therefore $\operatorname{det}(A(1))=0$. However, it was previously shown that $A(1)$ was non-singular which is a contradiction.

Corollary 3.4 For any closed, orientable 3-manifold Y with $P / P_{4} \cong G / G_{4}$ where $P=\pi_{1}(Y)$ and $G=\pi_{1}(X)$ is the fundamental group of the examples in Theorem 3.1, $c(Y)=1$.

Using Proposition 3.3, it is much easier to show that there exist hyperbolic 3 -manifolds with cut number 1 .

Corollary 3.5 For each $m \geq 1$ there exist closed, orientable, hyperbolic 3manifolds Y with $\beta_{1}(Y)=m$ such that $\pi_{1}(Y)$ cannot map onto F / F_{4} where F is the free group on 2 generators.

Proof Let X be one of the 3 -manifolds in Theorem 3.1. By [7, Theorem 2.6], there exists a degree one map $f: Y \rightarrow X$ where Y is hyperbolic and f_{*} is an isomorphism on H_{*}. Denote by $G=\pi_{1}(X)$ and $P=\pi_{1}(Y)$. It follows from Stalling's theorem [9] that f induces an isomorphism $f_{*}: P / P_{n} \rightarrow G / G_{n}$. In particular this is true for $n=4$ which completes the proof.

References

[1] T Cochran, P Melvin, Quantum cylotomic orders of 3-manifolds, Topology 40 (2001) 95-125
[2] P Gilmer, T Kerler, Cut numbers of 3-manifolds via quantum orders in $\mathbb{Z}\left[\zeta_{5}\right]$, preprint
[3] J Howie, Free subgroups in groups of small deficiency, J. Group Theory 1 (1998) 95-112
[4] A Kawauchi, A survey of knot theory, Birkhauser Verlag, Basel (1996)
[5] T Kerler, Homology TQFTs and the Alexander-Reidemeister invariant of 3manifolds via Hopf algebras and skein theory, preprint
[6] C Leininger, A Reid, The co-rank conjecture for 3-manifold groups, Algebr. Geom. Topol. 2 (2002) 37-50
[7] D Ruberman, Seifert surfaces of knots in S^{4}, Pacific J. Math. 145 (1990)
[8] A S Sikora, Cut numbers of 3-manifolds, preprint
[9] J Stallings, Homology and central series of groups, J. Algebra 2 (1965) 170-181
[10] W P Thurston, A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 59 (1986) i-vi, 99-130

