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1 Introduction

Let X be a closed, orientable n–manifold. The cut number of X , c (X), is
defined to be the maximal number of components of a closed, 2–sided, orientable
hypersurface F ⊂ X such that X − F is connected. Hence, for any n ≤
c (X), we can construct a map f : X →

∨n
i=1 S

1 such that the induced map
on π1 is surjective. That is, there exists a surjective map f∗ : π1 (X)� F (c),
where F (c) is the free group with c = c (X) generators. Conversely, if we
have any epimorphism φ : π1 (X) � F (n), then we can find a map f : X →∨n
i=1 S

1 such that f∗ = φ. After making the f transverse to a non-wedge
point xi on each S1 , f−1 (X) will give n disjoint surfaces F = ∪Fi with
X − F connected. Hence one has the following elementary group-theoretic
characterization of c (X).

Proposition 1.1 c (X) is the maximal n such that there is an epimorphism
φ : π1 (X)� F (n) onto the free group with n generators.

Example 1.2 Let X = S1 × S1 × S1 be the 3–torus. Since π1 (X) = Z3 is
abelian, c (X) = 1.

Using Proposition 1.1, we show that the cut number is additive under connected
sum.

Proposition 1.3 If X = X1#X2 is the connected sum of X1 and X2 then

c (X) = c (X1) + c (X2) .

Proof Let Gi = π1 (Xi) for i = 1, 2 and G = π1 (X) ∼= G1∗G2 . It is clear that
G maps surjectively onto F (c (X1)) ∗ F (c (X2)) ∼= F (c (X1 +X2)). Therefore
c (X) ≥ c (X1) + c (X2).

Now suppose that there exists a map φ : G � F (n). Let φi : Gi → F (n)

be the composition Gi → G1 ∗ G2
∼=→ G

φ
� F (n). Since φ is surjective and

G ∼= G1 ∗ G2 , Im (φ1) and Im (φ2) generate F (n). Morever, Im (φi) is a
subgroup of a free group, hence is free of rank less than or equal to c (Xi). It
follows that n ≤ c (X1) + c (X2). In particular, when n is maximal we have
c (X) = n ≤ c (X1) + c (X2).

In this paper, we will only consider 3–manifolds with β1 (X) ≥ 1. Consider the
surjective map π1 (X) � H1 (X) / {Z–torsion} ∼= Zβ1(X) . Since β1 (X) ≥ 1,
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On the Cut Number of a 3–manifold 411

we can find a surjective map from Zβ1(X) onto Z. It follows from Proposition
1.1 that c (X) ≥ 1. Moreover, every map φ : π1 (X) � F (n) gives rise to
an epimorphism φ : H1 (X) � H1

(∨n
i=1 S

1
) ∼= Zn It follows that β1 (X) ≥ n

which gives us the well known result:

1 ≤ c (X) ≤ β1 (X) . (1)

It has recently been asked whether a (non-trivial) lower bound exists for the
cut number. We make the following observations.

Remark 1.4 If S is a closed, orientable surface then c (S) = 1
2β1 (S).

Remark 1.5 If X has solvable fundamental group then c (X) = 1 and β1(X)
≤ 3.

Remark 1.6 Both c and β1 are additive under connected sum (Proposition
1.3).

Therefore it is natural to ask the following question first asked by A Sikora and
T Kerler. This question was motivated by certain results and conjectures on
the divisibility of quantum 3–manifold invariants by P Gilmer–T Kerler [2] and
T Cochran–P Melvin [1].

Question 1.7 Is c (X) ≥ 1
3β1 (X) for all closed, orientable 3–manifolds X ?

We show that the answer to this question is “as far from yes as possible.” In
fact, we show that for each m ≥ 1 there exists a closed, hyperbolic 3–manifold
with β1 (X) = m and c (X) = 1. We actually prove a stronger statement.

Theorem 3.1 For each m ≥ 1 there exist closed 3–manifolds X with β1 (X)
= m such that for any infinite cyclic cover Xφ → X , rankZ[t±1]H1 (Xφ) = 0.

We note the condition stated in the Theorem 3.1 is especially interesting because
of the following theorem of J Howie [3]. Recall that a group G is large if some
subgroup of finite index has a non-abelian free homomorphic image. Howie
shows that if G has an infinite cyclic cover whose rank is at least 1 then G is
large.

Theorem 1.8 (Howie [3]) Suppose that K̃ is a connected regular covering
complex of a finite 2–complex K , with nontrivial free abelian covering trans-

formation group A. Suppose also that H1

(
K̃;Q

)
has a free Q [A]–submodule

of rank at least 1. Then G = π1 (K) is large.
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Using the proof of Theorem 3.1 we show that the fundamental group of the
aforementioned 3–manifolds cannot map onto F/F4 where F is the free group
with 2 generators and F4 is the 4th term of the lower central series of F .

Proposition 3.3 Let X be as in Theorem 3.1, G = π1 (X) and F be the free
group on 2 generators. There is no epimorphism from G onto F/F4 .

Independently, A Sikora has recently shown that the cut number of a “generic”
3–manifold is at most 2 [8]. Also, C Leininger and A Reid have constructed
specific examples of genus 2 surface bundles X satisfying (i) β1 (X) = 5 and
c (X) = 1 and (ii) β1 (X) = 7 and c (X) = 2 [6].

Acknowledgements I became interested in the question as to whether the
cut number of a 3–manifold was bounded below by one-third the first betti
number after hearing it asked by A Sikora at a problem session of the 2001
Georgia Topology Conference. The question was also posed in a talk by T
Kerler at the 2001 Lehigh Geometry and Topology Conference. The author
was supported by NSF DMS-0104275 as well as by the Bob E and Lore Merten
Watt Fellowship.

2 Relative Cut Number

Let φ be a primitive class in H1 (X;Z). Since H1 (X;Z) ∼= Hom (π1 (X) ,Z),
we can assume φ is a surjective homomorphism, φ : π1 (X) � Z. Since X
is an orientable 3–manifold, every element in H2 (X;Z) can be represented
by an embedded, oriented, 2–sided surface [10, Lemma 1]. Therefore, if φ ∈
H1 (X;Z) ∼= H2 (X;Z) there exists a surface (not unique) dual to φ. The
cut number of X relative to φ, c (X,φ), is defined as the maximal number of
components of a closed, 2–sided, oriented surface F ⊂ X such that X − F is
connected and one of the components of F is dual to φ. In the above definition,
we could have required that “any number” of components of F be dual to φ
as opposed to just “one.” We remark that since X − F is connected, these
two conditions are equivalent. Similar to c (X), we can describe c (X,φ) group
theoretically.

Proposition 2.1 c (X,φ) is the maximal n such that there is an epimorphism
ψ : π1 (X)� F (n) onto the free group with n generators that factors through
φ (see diagram on next page).
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π1 (X)
φ - Z

�
�
�
�
��

F (n)

ψ

?

It follows immediately from the definitions that c (X,φ) ≤ c (X) for all primitive
φ. Now let F be any surface with c (X) components and let φ be dual to one
of the components, then c (X,φ) = c (X). Hence

c (X) = max
{
c (X,φ) | φ is a primitive element of H1 (X;Z)

}
. (2)

In particular, if c (X,φ) = 1 for all φ then c (X) = 1.

We wish to find sufficient conditions for c (X,φ) = 1. In [5, page 44], T Kerler
develops a skein theoretic algorithm to compute the one-variable Alexander
polynomial ∆X,φ from a surgery presentation of X . As a result, he shows that
if c (X,φ) ≥ 2 then the Frohman–Nicas TQFT evaluated on the cut cobordism
is zero, implying that ∆X,φ = 0. Using the fact that Q

[
t±1
]

is a principal ideal
domain one can prove that ∆X,φ = 0 is equivalent to rankZ[t±1]H1 (Xφ) ≥ 1.
We give an elementary proof of the equivalent statement of Kerler’s.

Proposition 2.2 If c (X,φ) ≥ 2 then rankZ[t±1]H1 (Xφ) ≥ 1.

Proof Suppose c (X,φ) ≥ 2 then there is a surjective map ψ : π1 (X)� F (n)
that factors through φ with n ≥ 2. Let φ : F (n) � Z be the homomorphism
such that φ = φ ◦ ψ . φ surjective implies that ψ| kerφ : ker φ � ker φ is sur-
jective. Writing Z as the multiplicative group generated by t, we can consider

kerφ
[kerφ,kerφ] and kerφ

[kerφ,kerφ] as modules over Z
[
t±1
]
. Here, the t acts by conjugat-

ing by an element that maps to t by φ or φ. Moreover, ψ| kerφ : kerφ
[kerφ,kerφ] �

kerφ

[kerφ,kerφ] is surjective hence

rankZ[t±1]

(
ker φ

[kerφ, ker φ]

)
≥ rankZ[t±1]

(
kerφ[

ker φ, ker φ
]) = n− 1.

Since n ≥ 2, rankZ[t±1]H1 (Xφ) = rankZ[t±1]

(
kerφ

[kerφ,kerφ]

)
≥ 1.

Corollary 2.3 If π1 (X)� F/F ′′ where F is a free group of rank 2 then there
exists a φ : π1 (X)� Z such that rankZ[t±1]H1 (Xφ) ≥ 1.

Geometry & Topology, Volume 6 (2002)



414 Shelly L Harvey

Proof This follows immediately from the proof of Proposition 2.2 after notic-
ing that F ′′ ⊂

[
ker
(
φ
)
, ker

(
φ
)]

and Hom (F/F ′′,Z) ∼= Hom (F,Z).

3 The Examples

We construct closed 3–manifolds all of whose infinite cyclic covers have first
homology that is Z

[
t±1
]
–torsion. The 3–manifolds we consider are 0–surgery

on an m–component link that is obtained from the trivial link by tying a
Whitehead link interaction between each two components.

Theorem 3.1 For each m ≥ 1 there exist closed 3–manifolds X with β1 (X)
= m such that for any infinite cyclic cover Xφ → X , rankZ[t±1]H1 (Xφ) = 0.

It follows from Propostion 2.2 that the cut number of the manifolds in Theorem
3.1 is 1. In fact, Corollary 2.3 implies that π1 (X) does not map onto F/F ′′

where F is a free group of rank 2. Moreover, the proof of this theorem shows
that π1 (X) does not even map onto F/F4 where Fn is the nth term of the
lower central series of F (see Proposition 3.3).

By a theorem of Ruberman [7], we can assume that the manifolds with cut
number 1 are hyperbolic.

Corollary 3.2 For each m ≥ 1 there exist closed, orientable, hyperbolic 3–
manifolds Y with β1 (Y ) = m such that for any infinite cyclic cover Yφ → Y ,
rankZ[t±1]H1 (Yφ) = 0.

Proof Let X be one of the 3–manifolds in Theorem 3.1. By [7, Theorem 2.6],
there exists a degree one map f : Y → X where Y is hyperbolic and f∗ is
an isomorphism on H∗ . Denote by G = π1 (X) and P = π1 (Y ). It is then
well-known that f is surjective on π1 . It follows from Stalling’s theorem [9,

page 170] that the kernel of f∗ is Pω ≡ ∩Pn . Now, suppose φ : P
f∗� G

φ
� Z

defines an infinite cyclic cover of Y . Then H1 (Yφ) � H1

(
Xφ

)
has kernel

Pω/ [ker φ, ker φ]. To show that rankZ[t±1]H1 (Yφ) = 0 it suffices to show that
Pω vanishes under the map H1 (Yφ)→ H1 (Yφ)⊗Z[t±1]Q

[
t±1
]
→ H1 (Yφ)⊗Z[t±1]

Q (t) since then rankZ[t±1]H1 (Yφ) = rankZ[t±1]H1

(
Xφ

)
= 0.

Note that H1 (Yφ) ⊗Z[t±1] Q
[
t±1
] ∼= ⊕n

i=1Q
[
t±1
]
⊕ T where T is a Q

[
t±1
]

torsion module. Moreover, Pn is generated by elements of the form γ =
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[p1 [p2 [p3, . . . [pn−2, α]]]] where α ∈ P2 ⊆ ker φ. Therefore

[γ] = (φ (pi)− 1) · · · (φ (pn−2)− 1) [α]

in H1 (Yφ) which implies that Pn ⊆ Jn−2 (H1 (Yφ)) for n ≥ 2 where J is the
augmentation ideal of Z

[
t±1
]
. It follows that any element of Pω considered as

an element of H1 (Yφ) ⊗Z[t±1] Q
[
t±1
]

is infinitely divisible by t − 1 and hence
is torsion.

Proof of Theorem 3.1 Let L = tLi be the oriented trivial link with m
components in S3 and tDi be oriented disjoint disks with ∂Di = Li . The
fundamental group of S3−L is freely generated by {xi} where xi is a meridian
curve of Li which intersects Di exactly once and Di · xi = 1. For all i, j with
1 ≤ i < j ≤ m let αij : I → S3 be oriented disjointly embedded arcs such that
αij (0) ∈ Li and αij (1) ∈ Lj and αij (I) does not intersect tDi . For each arc
αij , let γij be the curve embedded in a small neighborhood of αij representing
the class [xi, xj ] as in Figure 1. Let X be the 3–manifold obtained performing

αij

Li

Lj

xi

xj

Li

Lj

αij

γij

Figure 1

0–framed Dehn surgery on L and −1–framed Dehn surgery on each γ = tγij .
See Figure 2 for an example of X when m = 5.

Denote by X0 , the manifold obtained by performing 0–framed Dehn surgery
on L. Let W be the 4–manifold obtained by adding a 2–handle to X0 × I
along each curve γij × {1} with framing coefficient -1. The boundary of W is
∂W = X0 t −X . We note that

π1 (W ) = 〈x1, . . . , xm| [xi, xj ] = 1 for all 1 ≤ i < j ≤ m〉 ∼= Zm.
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L30

L5 0L40

L10 L2

0

γ25

-1

γ15-1

γ13

-1
γ23

-1

γ35

-1

γ24-1

γ34

-1

γ12-1

γ14

-1

γ45-1

Figure 2: The surgered manifold X when m = 5

Let {xik, µijl} be the generators of π1

(
S3 − (L t γ)

)
that are obtained from a

Wirtinger presentation where xik are meridians of the ith component of L and
µijl are meridians of the (i, j)th component of γ . Note that {xik, µijl} generate
G ≡ π1 (X). For each 1 ≤ i ≤ m let xi = xi1 and µij be the specific µijl that
is denoted in Figure 3. We will use the convention that

[a, b] = aba−1b−1

and
ab = bab−1.

We can choose a projection of the trivial link so that the arcs αij do not pass
under a component of L. Since µij is equal to a longitude of the curve γij in
X , we have µij =

[
xinij , λxjnjiλ

−1
]

for some nij and nji and λ where λ is a
product of conjugates of meridian curves µlk and µ−1

lk . Moreover, we can find
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Li

Lj

xinij

xjnji

µij

Figure 3

a projection of Ltγ so that the individual components of L do not pass under
or over one another. Hence xij = ωxiω

−1 where ω is a product of conjugates
of the meridian curves µlk and µ−1

lk . As a result, we have

µij =
[
xinij , λxjnjiλ

−1
]

(3)

=
[
ω1xiω

−1
1 , λω2xjω

−1
2 λ−1

]
=

[
xi, ω

−1
1 λω2xjω

−1
2 λ−1ω−1

1

]ω1

for some λ, ω1 , and ω2 .

We note that µij =
[
xinij , λxjnjiλ

−1
]

hence µij ∈ G′ for all i < j . Setting
v = ω−1

1 λω2 and using the equality

[a, bc] = [a, b] [a, c]b (4)

we see that

µij =
[
xi, vxjv

−1
]ω1 (5)

=
[
xi, vxjv

−1
]

mod G′′

= [xi, [v, xj ]xj ]

= [xi, [v, xj ]] [xi, xj ]
[v,xj ]

= [xi, [v, xj ]] [xi, xj ] mod G′′

since ω1, v ∈ G
′
.

Consider the dual relative handlebody decomposition (W,X). W can be ob-
tained from X by adding a 0–framed 2–handle to X × I along each of the
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meridian curves µij × {1}. (3) implies that µij is trivial in H1 (X) hence the

inclusion map j : X → W induces an isomorphism j∗ : H1 (X)
∼=→ H1 (W ).

Therefore if φ : G� Λ where Λ is abelian then there exists a ψ : π1 (W )� Λ
such that ψ ◦ j∗ = φ.

Suppose φ : G� 〈t〉 ∼= Z and ψ : π1 (W )� 〈t〉 is an extension of φ to π1 (W ).
Let Xφ and Wψ be the infinite cyclic covers of W and X corresponding to ψ
and φ respectively. Consider the long exact sequence of pairs,

→ H2 (Wψ,Xφ) ∂∗→ H1 (Xφ)→ H1 (Wψ)→ (6)

Since π1 (W ) ∼= Zm , H1 (Wψ) ∼= Zm−1 where t acts trivially so that H1 (Wψ)

has rank 0 as a Z
[
t±1
]
–module. H2 (Wψ,Xφ) ∼=

(
Z
[
t±1
])(m2 ) generated by the

core of each 2–handle (extended by µij × I ) attached to X . Therefore, Im∂∗
is generated by a lift of µij in H1 (Xφ) for all 1 ≤ i < j ≤ m. To show that
H1 (Xφ) has rank 0 it suffices to show that each of the µij are Z

[
t±1
]
–torsion

in H1 (Xφ).

Let F = 〈x1, . . . , xm〉 be the free group of rank m and f : F → G be defined by
f (xi) = xi . We have the following

(m
3

)
Jacobi relations in F/F

′′
[4, Proposition

7.3.6]. For all 1 ≤ i < j < k ≤ m,

[xi, [xj, xk]] [xj , [xk, xi]] [xk, [xi, xj ]] = 1 mod F ′′.

Using f , we see that these relations hold in G/G′′ as well. From (5), we can
write

[xi, xj] = [[vij , xj ] , xi]µij mod G′′.

Hence for each 1 ≤ i < j < k ≤ m we have the Jacobi relation J (i, j, k) in
G/G′′ ,

1 = [xi, [xj, xk]]
[
xj, [xi, xk]

−1
]

[xk, [xi, xj]] mod G′′

=
[
xi, [[vjk, xk] , xj ]µjk

] [
xj , µ

−1
ik [xi, [vik, xk]]

][
xk, [[vij , xj ] , xi]µij

]
mod G′′

= [xi, [[vjk, xk] , xj]]
[
xi, µjk

] [
xj , µ

−1
ik

]
[xj , [xi, [vik, xk]]]

[xk, [[vij , xj ] , xi]]
[
xk, µij

]
mod G′′

=
[
xi, µjk

] [
xj, µ

−1
ik

] [
xk, µij

]
[xi, [[vjk, xk] , xj ]] [xj, [xi, [vik, xk]]]

[xk, [[vij , xj ] , xi]] mod G′′. (7)

Moreover, for each component of the trivial link Li the longitude, li , of Li is
trivial in G and is a product of commutators of µij with a conjugate of xj . We
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can write each of the longitudes (see Figure 4) as

li =
∏
j<i

αjλ
−1
j µ−1

ji λj ·
∏
k>i

µikβk mod G′′

=
∏
j<i

(
λ−1
j x−1

jnji
µjixjnjiλj

)
λ−1
j µ−1

ji λj ·∏
k>i

µik

(
λkx

−1
knki

λ−1
k µ−1

ik λkxknkiλ
−1
k

)
=

∏
j<i

[
x−1
jnji

, µji

]λ−1
j ·

∏
k>i

[
µik, λkx

−1
knki

λ−1
k

]
=

∏
j<i

[
x−1
j , µji

]
·
∏
k>i

[
µik, x

−1
k

]
mod G′′. (8)

µji

γj

xjnji

αj

Lj

Li

Lj
xjnji

µji

xinij

αj

j < i

µik

xinik
β

k > i

xknkiLk

Figure 4
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It follows that ∏
j<i

[
x−1
j , µji

]
·
∏
k>i

[
µik, x

−1
k

]
= 1 mod G′′.

Since G′′ ⊂ [ker φ, ker φ], the relations in (7) and (8) hold in H1 (Xφ)
(= ker φ/ [kerφ, ker φ]) as well. Suppose φ : G� Z is defined by sending xi 7−→
tni . Since φ is surjective, nN 6= 0 for some N . We consider a subset of

(
m
2

)
relations in H1 (Xφ) that we index by (i, j) for 1 ≤ i < j ≤ m. When i = N
or j = N we consider the m− 1 relations

(i) RiN = li and (ii) RNj = l−1
j .

Rewriting li as an element of the Z
[
t±1
]

-module H1 (Xφ) generated by{
µij|1 ≤ i < j ≤ m

}
from (8) we have

RiN =
∑
j<i

(
t−nj − 1

)
µji +

∑
k>i

(
1− t−nk

)
µik

=
∑
j<i

t−nj (1− tnj)µji +
∑
k>i

t−nk (tnk − 1)µik

=
∑
j<i

[
(1− tnj) +

(
t−nj − 1

)
(1− tnj )

]
µji +

∑
k>i

[
(tnk − 1) +

(
t−nk − 1

)
(tnk − 1)

]
µik. (9)

Similarily, we have

RNj =
∑
i<j

[
(tni − 1) +

(
t−ni − 1

)
(tni − 1)

]
µij +

∑
k>j

[
(1− tnk) +

(
t−nk − 1

)
(1− tnk)

]
µjk. (10)

For the other
(m−1

3

)
relations, we use the Jacobi relations from (7). Define Rij

to be

Rij =


J (N, i, j) for N < i < j

J (i,N, j)−1 for i < N < j
J (i, j,N) for i < j < N

.

We can write these relations as

Rij =



(tnj − 1)µNi + (1− tni)µNj + (tnN − 1)µij+
(tnN − 1) (tni − 1) (tnj − 1) (ṽij + ṽNj − ṽNj) for N < i < j
(1− tnj)µiN + (tnN − 1)µij + (1− tni)µNj+
(tnN − 1) (tni − 1) (tnj − 1) (−ṽiN − ṽNj + ṽij) for i < N < j
(tnN − 1)µij + (1− tnj )µiN + (tni − 1)µjN+
(tnN − 1) (tni − 1) (tnj − 1) (ṽij + ṽjN − ṽiN ) for i < j < N

(11)
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where ṽij is a lift of vij .

For 1 ≤ i < j ≤ m order the pairs ij by the dictionary ordering. That is,
ij < lk provided either i < l or j < k when i = l . The relations above give us
an
(m

2

)
×
(m

2

)
matrix M with coefficients in Z

[
t±1
]
. The (ij, kl)th component

of M is the coefficient of µkl in Rij . We claim for now that

M = (tnN − 1) I + (t− 1)S + (t− 1)2E (12)

for some “error” matrix E where I is the identity matrix and S is a skew-
symmetric matrix. For an example, when m = 4 and N = 1, M is the matrix

tn1 − 1 0 0 1− tn3 1− tn4 0
0 tn1 − 1 0 tn2 − 1 0 1− tn4

0 0 tn1 − 1 0 tn2 − 1 tn3 − 1
tn3 − 1 1− tn2 0 tn1 − 1 0 0
tn4 − 1 0 1− tn2 0 tn1 − 1 0

0 tn4 − 1 1− tn3 0 0 tn1 − 1

+ (t− 1)2 E.

The proof of (12) is left until the end.

We will show that M is non-singular as a matrix over the quotient field Q (t).
Consider the matrix A = 1

t−1M . We note that A is a matrix with entries in
Z
[
t±1
]

and A (1) evaluated at t = 1 is

A (1) = NI + S (1) .

To show that M is non-singular, it suffices to show that A (1) is non-singular.

Consider the quadratic form q : Q(m2 ) → Q(m2 ) defined by q (z) ≡ zTA (1) z
where zT is the transpose of z . Since A (1) = NI + S (1) where S (1) is
skew-symmetric we have,

q (z) = N
∑

z2
i .

Moreover, N 6= 0 so q (z) = 0 if and only if z = 0. Let z be a vector satisfying
A (1) z = 0. We have q (z) = zTA (1) z = zT 0 = 0 which implies that z = 0.
Therefore M is a non-singular matrix. This implies that each element µij is
Z
[
t±1
]
–torsion which will complete the the proof once we have established the

above claim.

We ignore entries in M that lie in J2 where J is the augmentation ideal of
Z
[
t±1
]

since they only contribute to the error matrix E . Using (9), (10), and
(11) above we can explicitely write the entries in M

(
mod J2

)
. Let mij,lk

denote the (ij, lk) entry of M
(
mod J2

)
.
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Case 1 (j = N): From (9) we have

miN,li = 1− tnl , miN,ik = tnk − 1,

and miN,lk = 0 when neither l nor k is equal to N .

Case 2 (i = N): From (10) we have

mNj,lj = tnl − 1, mNj,jk = 1− tnk ,

and mNj,lk = 0 when neither l nor k is equal to N .

Case 3 (N < i < j): From (11) we have

mij,Ni = tnj − 1, mij,Nj = 1− tni , mij,ij = tnN − 1,

and mij,lk = 0 otherwise.

Case 4 (i < N < j): From (11) we have

mij,iN = 1− tnj , mij,ij = tnN − 1, mij,Nj = 1− tni ,
and mij,lk = 0 otherwise.

Case 5 (i < j < N): From (11) we have

mij,ij = tnN − 1, mij,iN = 1− tnj , mij,jN = tni − 1,

and mij,lk = 0 otherwise.

We first note that in each of the cases, the diagonal entries mij,ij are all tnN−1.
Next, we will show that the off diagonal entries have the property that mij,lk =
−mlk,ij for ij < lk . This will complete the proof of the claim since we see that
each entry is divisible by t− 1.

We verify the skew symmetry in Cases 1 and 3. The other cases are similar and
we leave the verifications to the reader.

Case 1 (j = N):

miN,li = 1− tnl = −mli,iN (case 5)

and

miN,ik = tnk − 1 = −mik,iN (case 4).

Case 3 (N < i < j):

mij,Ni = tnj − 1 = −mNi,ij (case 2)

and
mij,Nj = 1− tni = −mNj,ij (case 2).
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Proposition 3.3 Let X be as in Theorem 3.1, G = π1 (X) and F be the free
group on 2 generators. There is no epimorphism from G onto F/F4 .

Proof Let F = 〈x, y〉 be the free group and φ : F /F4 � 〈t〉 be defined by
x 7−→ t and y 7−→ 1. Suppose that there exists a surjective map η : G� F /F4 .
Let N = ker φ and H = ker (η ◦ φ). Since η is surjective we get an epimorphism
of Z

[
t±1
]
–modules η̃ : H /H ′ � N /N ′ . From (6) we get the short exact

sequence

0→ Im∂∗
i→ H1 (Xη◦φ)→ H1 (Wψ)→ 0.

Let J be the augmentation ideal of Z
[
t±1
]
. We compute N /N ′ ∼= Z

[
t±1
] /
J3

so that η̃ : H1 (Xη◦φ) � Z
[
t±1
] /
J3 . Let σ ∈ H1 (Xη◦φ) such that η̃ (σ) = 1.

Since every element in H1 (Wψ) ∼=
⊕m−1

i=1

Z[t±1]
J is (t− 1)–torsion, (t− 1) σ ∈

Im∂∗ hence t− 1 ∈ Im (η̃ ◦ i). Recall that in the proof of the Theorem 3.1, we
showed that there exists a surjective Z

[
t±1
]
–module homomorphism ρ : P �

Im∂∗ where P is finitely presented as

0→ Z
[
t±1
](m2 ) (t−1)A→ Z

[
t±1
](m2 ) π→ P → 0.

Let g : P → Z
[
t±1
] /
J3 defined by g ≡ η̃ ◦ i ◦ ρ. Since ρ is surjective, t− 1 ∈

Img . After tensoring with Q
[
t±1
]
, we get a map g : P ⊗Z[t±1] Q

[
t±1
]
→

Q
[
t±1
] /
J3 . It is easy to see that either g is surjective or the image of g is

the submodule generated by t − 1. Note that the submodule generated by
t− 1 is isomorphic Q

[
t±1
] /
J2 . Hence, in either case, we get a surjective map

h : P ⊗Z[t±1] Q
[
t±1
]
→ Q

[
t±1
] /
J2 .

Consider the Q
[
t±1
]
–module P ′ presented by A. Let h′ : Q

[
t±1
](m2 ) →

Q
[
t±1
] /
J2 be defined by h′ = (t− 1)h ◦ π . Since

h′ (A (σ)) = (t− 1)h (π (A (σ))) = h (π ((t− 1)A (σ))) = h (0) = 0,

this defines a map h′ : P ′ → Q
[
t±1
] /
J2 whose image is the submodule gen-

erated by t − 1. It follows that P ′ maps onto Q
[
t±1
]

/J . Setting t = 1, the
vector space over Q presented by A (1) maps onto Q. Therefore det(A(1)) = 0.
However, it was previously shown that A (1) was non-singular which is a con-
tradiction.

Corollary 3.4 For any closed, orientable 3–manifold Y with P/P4
∼= G/G4

where P = π1 (Y ) and G = π1 (X) is the fundamental group of the examples
in Theorem 3.1, c(Y ) = 1.
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Using Proposition 3.3, it is much easier to show that there exist hyperbolic
3–manifolds with cut number 1.

Corollary 3.5 For each m ≥ 1 there exist closed, orientable, hyperbolic 3–
manifolds Y with β1 (Y ) = m such that π1 (Y ) cannot map onto F/F4 where
F is the free group on 2 generators.

Proof Let X be one of the 3–manifolds in Theorem 3.1. By [7, Theorem 2.6],
there exists a degree one map f : Y → X where Y is hyperbolic and f∗ is an
isomorphism on H∗ . Denote by G = π1 (X) and P = π1 (Y ). It follows from
Stalling’s theorem [9] that f induces an isomorphism f∗ : P/Pn → G/Gn . In
particular this is true for n = 4 which completes the proof.
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