Geometry \& Topology
Volume 5 (2001) 369\{398
Published: 20 A pril 2001

The size of triangulations supporting a given link

Simon A King
Institut de Recherche Mathematique Avancee
Strasbourg, France
Email: ki ng@rat h. u-strasbg. fr

Abstract

Let T bea triangulation of S^{3} containing a link L in its $1\{$ skeleton. We give an explicit lower bound for the number of tetrahedra of T in terms of the bridge number of L. Our proof is based on the theory of almost normal surfaces.

AMS Classi cation numbers Primary: 57M25,57Q15
Secondary: 68Q25

Keywords: Link, triangulation, bridge number, Rubinstein\{T hompson algorithm, normal surfaces

Proposed: Walter Neumann
Seconded: Cameron Gordon, David Gabai

1 Introduction

In this paper, we prove the following result.
Theorem 1 Let $L \quad S^{3}$ be a tame link with bridge number $b(L)$. Let T be a triangulation of S^{3} with n tetrahedra such that L is contained in the 1 \{sketeon of T. Then

$$
\mathrm{n}>\frac{1}{14} \mathrm{p} \overline{\log _{2} \mathrm{~b}(\mathrm{~L})}
$$

or equivalently

$$
b(L)<2^{196 n^{2}}:
$$

The de nition of the bridge number can befound, for instance, in [2]. So far as is known to the author, Theorem 1 gives the rst estimate for n in terms of L that does not rely on additional geometric or combinatorial assumptions on T. We show in [13] that the bound for $\mathrm{b}(\mathrm{L})$ in Theorem 1 can not be replaced by a sub-exponential bound in n . More precisely, there is a constant c $2 \mathbb{R}$ such that for any i $2 \mathbb{N}$ there is a triangulation T_{i} of S^{3} with \quad c i tetrahedra, containing a two-component link L_{i} in its 1 \{skeleton with $b\left(L_{i}\right)>2^{i-2}$.
The relationship of geometric and combinatorial properties of a triangulation of S^{3} with the knots in its 1 \{sketeton has been studied earlier, see [6], [15], [1], [3], [7]. For any knot $K \quad S^{3}$ there is a triangulation of S^{3} such that K is formed by three edges, see [4]. Let T be a triangulation of S^{3} with n tetrahedra and let $K \quad S^{3}$ be a knot formed by a path of k edges. If T is shellable (see [3]) or the dual cellular decomposition is shellable (see [1]), then $b(K) \quad \frac{1}{2} k$. If T is vertex decomposable then $b(K) \quad \frac{1}{3} k$, see [3].
We reduce Theorem 1 to Theorem 2 below, for which we need some de nitions. Denote $\mathrm{I}=[0 ; 1]$. Let M be a closed 3 \{manifold with a triangulation T . The $i\left\{\right.$ skeleton of T is denoted by T^{i}. Let S be a surface and let $H: S$ I! M be an embedding, so that $\mathrm{T}^{1} \mathrm{H}\left(\begin{array}{ll}\mathrm{S}^{2} & \mathrm{I}\end{array}\right)$. A point $\times 2 \mathrm{~T}^{1}$ is a critical point of H if $H=H(S \quad)$ is not transversal to T^{1} in x, for some 21 . We call H a T^{1} \{Morse embedding, if H is in general position with respect to T^{1}; we give a more precise de nition in Section 5 . Denote by $\mathrm{c}\left(\mathrm{H} ; \mathrm{T}^{1}\right)$ the number of critical points of H .

Theorem 2 Let T be a triangulation of S^{3} with n tetrahedra. There is a $T^{1}\left\{\right.$ Morse embedding $H: S^{2} \quad \mathrm{I}!\mathrm{S}^{3}$ such that $\mathrm{T}^{1} \mathrm{H}\left(\begin{array}{ll}\mathrm{S}^{2} & \mathrm{I}) \text { and }\end{array}\right.$ $\mathrm{c}\left(\mathrm{H} ; \mathrm{T}^{1}\right)<2^{196 \mathrm{n}^{2}}$.

For a link $L \quad T^{1}$, it is easy to see that $b(L) \quad \frac{1}{2} \min _{H} f c\left(H ; T^{1}\right) g$, where the minimum is taken over all $T^{1}\left\{\right.$ Morse embeddings $\mathrm{H}: \mathrm{S}^{2} \quad \mathrm{I}!\mathrm{S}^{3}$ with $\mathrm{L} \quad \mathrm{H}\left(\begin{array}{ll}\mathrm{S}^{2} & \mathrm{I}\end{array}\right)$. Thus Theorem 1 is a corollary of Theorem 2.
Our proof of Theorem 2 is based on the theory of almost 2 \{normal surfaces. K neser [14] introduced 1 \{normal surfaces in his study of connected sums of 3 \{manifolds. The theory of 1 \{normal surfaces was further developed by Haken (see [8], [9]). It led to a classi cation algorithm for knots and for su ciently large 3\{manifolds, see for instance [11], [17]. The more general notion of almost 2 \{normal surfaces is due to Rubinstein [19]. With this concept, Rubinstein and Thompson found a recognition algorithm for S^{3}, see [19], [22], [16]. Based on the results discussed in a preliminary version of this paper [12], the author [13] and Mijatovic [18] independently obtained a recognition algorithm for S^{3} using local transformations of triangulations.
We outline here the proof of Theorem 2. Let T be a triangulation of S^{3} with n tetrahedra. If $S \quad S^{3}$ is an embedded surface and $S \backslash T^{1}$ is nite, then set $k S k=\operatorname{card}\left(S \backslash T^{1}\right)$. Let $S_{1} ;::: ; S_{k} \quad S^{3}$ be surfaces. A surface that is obtained by joining $\mathrm{S}_{1} ;::: ; \mathrm{S}_{\mathrm{k}}$ with some small tubes in $\mathrm{M} \mathrm{nT}^{1}$ is called a tube sum of $S_{1} ;::: ; S_{k}$.
Based on the Rubinstein\{Thompson algorithm, we construct a system $\sim S^{3}$ of pairwise disjoint 2 \{normal 2 \{spheres such that $k \sim k$ is bounded in terms of n and any 1 \{normal sphere in $\mathrm{S}^{3} \mathrm{n} \sim$ is paralled to a connected component of ~. The bound for $\mathrm{k} \sim \mathrm{k}$ can be sen as part of a complexity analysis for the Rubinstein\{Thompson algorithm and relies on results on integer programming.
A $\mathrm{T}^{1}\{$ Morse embedding H then is constructed \backslash piecewise" in the connected components of $\mathrm{S}^{3} \mathrm{n}^{\sim}$, which means the following. There are numbers $0<1<$ $<\mathrm{m}<1$ such that:
(1) $\mathrm{kH}_{0} \mathrm{k}=\mathrm{kH}_{1} \mathrm{k}=0$.
(2) There is one critical value of $\mathrm{Hj}[0 ; 1]$, corresponding to a vertex $\mathrm{x}_{0} 2 \mathrm{~T}^{0}$. The set of critical points of $\mathrm{Hj}[\mathrm{m} ; 1]$ is $T^{0} \mathrm{nfx}_{0} \mathrm{~g}$.
(3) For any $\mathrm{i}=1 ;::: ; \mathrm{m}$, the sphere H_{i} is a tube sum of components of \sim.
(4) The critical points of $\mathrm{Hj}[\mathrm{i}$; $i+1]$ are contained in a single connected component N_{i} of $S^{3} n \sim$.
(5) The function 7 kH k is monotone in any interval $[\mathrm{i} ; \mathrm{i}+1$], for $\mathrm{i}=$ $1 ;::: ; m-1$.

This is depicted in Figure 1, where the components of \sim are dotted. The components N_{i} run over all components of $\mathrm{S}^{3} \mathrm{n} \sim$ that are not regular neighbourhoods of vertices of T. Thus an estimate for m is obtained by an estimate

Figure 1: About the construction of H
for the number of components of ~. By monotonicity of kH k, the number of critical points in N_{i} is bounded by $\frac{1}{2}{\mathrm{k} @ \mathrm{~N}_{\mathrm{i}} \mathrm{k} \quad \frac{1}{2} \mathrm{k} \sim \mathrm{k} \text {. This together with the }{ }^{2} \text {. }}^{2}$ bound for m yiedds the claimed estimate for $c\left(H ; T^{1}\right)$.

The main di culty in constructing H is to assure property (5). For this, we introduce the notions of upper and lower reductions. If S^{0} is an upper (resp. lower) reduction of a surfaces $S \quad S^{3}$, then S is isotopic to S^{0} such that $k \mathrm{k}$ is monotonely non-increasing under the isotopy. Let N be a connected component of $\mathrm{S}^{3} \mathrm{n} \sim$ with $@ \mathbb{N}=\mathrm{S}_{0}\left[\mathrm{~S}_{1}\left[\quad\left[\mathrm{~S}_{\mathrm{k}}\right.\right.\right.$. We show that there is a tube sum S of $S_{1} ;::: ; S_{k}$ such that either S is a lower reduction of S_{0}, or S_{0} is an upper reduction of S . Finally, if H_{i} is a tube sum of S_{0} with some surface $\mathrm{S}^{0} \mathrm{~S}^{3} \mathrm{nN}$, then $\mathrm{Hj}\left[{ }_{i} ;{ }_{i+1}\right]$ is induced by the lower reductions (resp. the inverse of the upper reductions) relating S_{0} with S . Then $\mathrm{H}_{\mathrm{i}+1}$ is a tube sum of S with S^{0}, assuring properties (3) \{(5).

The paper is organized as follows. In Section 2, we recall basic properties of k \{normal surfaces. It is well known that the set of 1 \{normal surfaces in a triangulated 3 \{manifold is additively generated by so-called fundamental surfaces. In Section 3, we generalize this to 2 \{normal surfaces contained in sub-manifolds of triangulated 3 \{manifolds. The system ~ of 2 \{normal spheres is constructed in Section 4, in the more general setting of closed orientable 3\{manifolds. In Section 5, we recall thenotions of almost k \{normal surfaces (see[16]) and of impermeable surfaces (ser [22]), and introduce the new notion of split equivalence. We discuss the close relationship of almost 2 \{normal surfaces and impermeable surfaces. This relationship is well known (see [22], [16]), but the proofs are only partly available. For completeness we give a proof in the last Section 9. In Section 6 we exhibit some useful properties of almost 1 \{normal surfaces. The notions of upper and lower reductions are introduced in Section 7. The proof of Theorem 2 is nished in Section 8.

In this paper, we denote by $\#(X)$ the number of connected components of a topological space X. If X is a tame subset of a 3 \{manifold M, then $U(X) \quad M$
denotes a regular neighbourhood of X in M. For a triangulation T of M, the number of its tetrahedra is denoted by $t(T)$.

Acknowledgements I would like to thank Professor Sergei V Matveev and my scienti c supervisor Professor Vladimir G Turaev for many interesting discussions and for helpful comments on this paper.

2 A survey of k \{normal surfaces

Let M be a closed 3 \{manifold with a triangulation T. The number of its tetrahedra is denoted by $t(T)$. An isotopy mod T^{n} is an ambient isotopy of M that xes any simplex of T^{n} set-wise. Some authors call an isotopy $\bmod T^{2} a$ normal isotopy.

De nition 1 Let be a 2\{simplex and let γ be a closed embedded arc with $\gamma \backslash @=@$, disjoint to the vertices of . If γ connects two di erent edges of then γ is called a normal arc. Otherwise, γ is called a return.

We denote the number of connected components of a topological space X by $\#(X)$. Let be a $2\left\{\right.$ simplex with edges $e_{1} ; e_{2} ; e_{3}$. If Γ is a system of normal arcs, then Γ is determined by $\Gamma \backslash$ @, up to isotopy constant on @ , and e_{1} is connected with e_{2} by $\frac{1}{2}\left(\#\left(\Gamma \backslash e_{1}\right)+\#\left(\Gamma \backslash e_{2}\right)-\#\left(\Gamma \backslash e_{3}\right)\right)$ arcs in Γ.

De nition 2 Let $S M$ be a closed embedded surface transversal to T^{2}. We call S prenormal, if $\mathrm{SnT}{ }^{2}$ is a disjoint union of discs and $\mathrm{S} \backslash \mathrm{T}^{2}$ is a union of normal arcs in the 2 \{simplices of T .

The set $S \backslash T^{1}$ determines the normal arcs of $S \backslash T^{2}$. For any tetrahedron t of T, the components of $S \backslash t$, being discs, are determined by $S \backslash$ @ , up to isotopy xed on @t. Thus we obtain the following lemma.

Lemma 1 A prenormal surface $S \quad M$ is determined by $S \backslash T^{1}$, up to isotopy mod T^{2}.

De nition 3 Let $S M$ be a prenormal surface and let k be a natural number. If for any connected component C of $\mathrm{S} \mathrm{nT}^{2}$ and any edge e of T holds \#(@ $@$ e) k, then S is k \{normal.

Figure 2: A triangle, a square and an octagon

We are mostly interested in 1 \{ and 2 \{normal surfaces. Let S be a 2 \{normal surface and let t be a tetrahedron of T. Then the components of $S \backslash t$ are copies of triangles, squares and octagons, as in Figure 2. For any tetrahedron t, there are 10 possible types of components of $\mathrm{S} \backslash \mathrm{t}$: four triangles (one for each vertex of t), three squares (one for each pair of opposite edges of t), and three octagons. Thus there are $10 \mathrm{t}(\mathrm{T})$ possible types of components of SnT^{2}. Up to isotopy mod T^{2}, the set $S n T^{2}$ is described by the vector $\mathfrak{x}(S)$ of $\operatorname{l0t}(T)$ non-negative integers that indicates the number of copies of the di erent types of discs occuring in $\mathrm{S}_{\mathrm{nT}}{ }^{2}$. Note that the 1 \{normal surfaces are formed by triangles and squares only.

We will describe the non-negative integer vectors that represent 2 \{normal surfaces. Let $\mathrm{S} M$ bea 2 normal surfaceand let $\mathrm{x}_{\mathrm{t} ; 1} ;::: ; \mathrm{x}_{\mathrm{t} ; 6}$ bethe components of $\mathfrak{x}(S)$ that correspond to the squares and octagons in some tetrahedron t. It is impossible that in $\mathrm{S} \backslash \mathrm{t}$ occur two di erent types of squares or octagons, since two di erent squares or octagons would yield a self-intersection of S. Thus all but at most one of $x_{t ; 1} ;::: ; x_{t ; 6}$ vanish for any t. This property of $\mathfrak{x}(\mathrm{S})$ is called compatibility condition.

Let γ be a normal arc in a 2 \{simplex of T and $t_{1} ; t_{2}$ be the two tetrahedra that meet at . In both t_{1} and t_{2} there are one triangle, one square and two octagons that contain a copy of γ in its boundary. Moreover, each of them contains exactly one copy of γ. Let $x_{t_{i} ; 1 ;: 1: ; ~} x_{\mathrm{t}_{i} ; 4}$ be the components of $\mathfrak{x}(\mathrm{S})$ that correspond to these types of discs in t_{i}, where $i=1 ; 2$. Since @ $=$; , the number of components of $S \backslash t_{1}$ containing a copy of γ equals the number of components of $S \backslash t_{2}$ containing a copy of γ. That is to say $x_{t_{1} ; 1}+\quad+$ $x_{\mathrm{t}_{1} ; 4}=\mathrm{x}_{\mathrm{t}_{2} ; 1}+\quad+\mathrm{x}_{\mathrm{t}_{2} ; 4}$. Thus $\mathfrak{x}(\mathrm{S})$ satis es a system of linear Diophantine equations, with one equation for each type of normal arcs. This property of $\mathfrak{x}(\mathrm{S})$ is called matching condition. The next claim states that the compatibility and the matching conditions characterize the vectors that represent 2 \{normal surfaces. A proof can be found in [11], Chapter 9.

Proposition 1 Let \mathfrak{x} bea vector of $10 t(T)$ non-negative integers that satis es both the compatibility and the matching conditions. Then there is a 2 \{normal surface $S \quad M$ with $\mathfrak{x}(S)=\mathfrak{x}$.

Two 2 \{normal surfaces $S_{1} ; S_{2}$ are called compatible if the vector $\mathfrak{x}\left(S_{1}\right)+\mathfrak{x}\left(S_{2}\right)$ satis es the compatibility condition. It al ways satis es the matching condition. Thus if S_{1} and S_{2} are compatible, then there is a 2 \{normal surface S with $\mathfrak{x}(\mathrm{S})=\mathfrak{x}\left(\mathrm{S}_{1}\right)+\mathfrak{x}\left(\mathrm{S}_{2}\right)$, and we denote $\mathrm{S}=\mathrm{S}_{1}+\mathrm{S}_{2}$. Conversely, let S be a 2 \{normal surface, and assume that there are non-negative integer vectors $\mathfrak{x}_{1} ; \mathfrak{x}_{2}$ that both satisfy the matching condition, with $\mathfrak{x}(\mathrm{S})=\mathfrak{x}_{1}+\mathfrak{x}_{2}$. Then both \mathfrak{x}_{1} and \mathfrak{x}_{2} satisfy the compatibility condition. Thus there are 2 \{normal surfaces $\mathrm{S}_{1} ; \mathrm{S}_{2}$ with $\mathrm{S}=\mathrm{S}_{1}+\mathrm{S}_{2}$. The Euler characteristic is additive, i.e., $\left(S_{1}+S_{2}\right)=\left(S_{1}\right)+\left(S_{2}\right)$, see [11].

Remark 1 The addition of 2 \{normal surfaces extends to an addition on the set of prenormal surfaces as follows. If $\mathrm{S}_{1} ; \mathrm{S}_{2} \mathrm{M}$ are prenormal surfaces, then $\mathrm{S}_{1}+\mathrm{S}_{2}$ is the prenormal surface that is determined by $\mathrm{T}^{1} \backslash\left(\mathrm{~S}_{1}\left[\mathrm{~S}_{2}\right)\right.$. The addition yields a semi-group structure on the set of prenormal surfaces. This semi-group is isomorphic to the semi-group of integer points in a certain rational convex cone that is associated to T . The Euler characteristic is not additive with respect to the addition of prenormal surfaces.

3 Fundamental surfaces

We use the notations of the previous section. The power of the theory of $2\{$ normal surfaces is based on the following two niteness results.

Proposition 2 Let $S M$ be a 2\{normal surface comprising more than 10t(T) two-sided connected components. Then two connected components of S are isotopic $\bmod T^{2}$.

This is proven in [9], Lemma 4, for 1 \{normal surfaces. The proof easily extends to 2 \{normal surfaces.

Theorem 3 Let $\mathrm{N} \quad \mathrm{MnU}\left(\mathrm{T}^{0}\right)$ be a sub\{3\{manifold whose boundary is a 1 \{normal surface. There is a system $\mathrm{F}_{1} ;::: ; \mathrm{F}_{\mathrm{q}} \mathrm{N}$ of 2 \{normal surfaces such that

$$
\mathrm{kF}_{\mathrm{i}} \mathrm{k}<\mathrm{k} @ \mathrm{~N} k 2^{18 \mathrm{t}(\mathrm{~T})}
$$

for $i_{P_{1}}=1 ;::: ; q$, and any 2 nnormal surface $F \quad N$ can be written as a sum $F={ }_{i=1}^{q} k_{i} F_{i}$ with non-negative integers $k_{1} ;::: ; k_{q}$.

The surfaces $\mathrm{F}_{1} ;::: ; \mathrm{F}_{\mathrm{q}}$ are called fundamental. Theorem 3 is a generalization of a result of [10] that concerns the case $N=M n U\left(T^{0}\right)$.

The rest of this section is devoted to the proof of Theorem 3. The idea is to de ne a system of linear Diophantine equations (matching equations) whose non-negative solutions correspond to 2 \{normal surfaces in N . The fundamental surfaces $\mathrm{F}_{1} ;::: ; \mathrm{F}_{\mathrm{q}}$ correspond to the Hilbert base vectors of the equation system, and the bound for $\mathrm{KF}_{\mathrm{i}} \mathrm{k}$ is a consequence of estimates for the norm of Hilbert base vectors. Note that in an earlier version of this paper [12], we proved Theorem 3 in essentially the same way, but using handle decompositions of 3 \{manifolds rather than triangulations.

De nition 4 A region of N is a component R of $N \backslash t$, for a closed tetrahedron t of T. If © $\backslash \mathbb{Q}$ consists of two copies of one normal triangle or normal square then R is a parallelity region.

De nition 5 The class of a normal triangle, square or octagon in N is its equivalence class with respect to isotopies mod T^{2} with support in $U(N)$.

Let t be a closed tetrahedron of T, and let $R \quad t$ be a region of N. One veri es that if R is not a parallelity region then @ $\backslash \mathbb{C N}$ either consists of four normal triangles (\backslash type I") or of two normal triangles and one normal square (\backslash type II"). If R is of type I, then R is isotopic $\bmod T^{2}$ to $\operatorname{tnU}\left(T^{0}\right)$, and any other region of N in t is a parallelity region. As in the previous section, R contains four classes of normal triangles, three classes of normal squares and three classes of normal octagons. If R is of typell, then t contains at most one other region of N that is not a parallelity region, that is then also of typell. A normal square or octagon in t that is not isotopic mod T^{2} to a component of @ \backslash @ V intersects @R. Thus R contains two classes of normal triangles and one class of normal squares.

Let $m(N)$ be the number of classes of normal triangles, squares and octagons in regions of N of types I and II. If N has k regions of type I, then N has
$2(t(T)-k)$ regions of type II, thus $m(N) \quad 10 k+6(t(T)-k) \quad 10 t(T)$. Let $m(N)$ be the number of parallelity regions of N. It is easy to see that $m(N) \quad \frac{1}{2} \#\left(\mathbb{N} n^{2}\right) \quad \frac{1}{6} k @ N k t(T)$.
Any 2 \{normal surface $F \quad N$ is determined up to isotopy mod T^{2} with support in $U(N)$ by the vector $\bar{x}_{N}(F)$ of $m(N)+m(N)$ non-negative integers that count the number of components of $\mathrm{F} \mathrm{nT}^{2}$ in each class of normal triangles, squares and octagons. Let $\gamma_{1} ; \gamma_{2} \quad T^{2}$ be normal arcs, and let $R_{1} ; R_{2}$ be two regions of N with $\gamma_{1} \quad @_{1}$ and $\gamma_{2} \quad @_{2}$. For $i=1 ; 2$, let $x_{i ; 1} ;::: ; x_{i ;} m_{i}$ be the
components of $\overline{\mathfrak{x}}_{N}(F)$ that correspond to classes of normal triangles, squares and octagons in R_{i} that contain γ_{i} in its boundary. If $\mathrm{x}_{1 ; 1}+\quad+\mathrm{x}_{1 ; \mathrm{m}_{1}}=\mathrm{x}_{2 ; 1}+$
$+x_{2 ; m_{2}}$ then we say that $\overline{\mathfrak{x}}_{N}(F)$ satis es the matching equation associated to ($\gamma_{1} ; \mathrm{R}_{1} ; \gamma_{2} ; \mathrm{R}_{2}$).
For $i=1 ; 2, R_{i}$ contains one class of normal triangles that contain a copy of γ_{i} in its boundary. If R_{i} is not a parallelity region, then R_{i} contains one class of normal squares that contain a copy of γ_{i} in its boundary. If K_{i} is of type I, then K_{i} additionally contains two classes of normal octagons containing a copy of γ_{i} in its boundary. Thus if R_{i} is a parallelity region then $m_{i}=1$, if it is of type I then $m_{i}=4$, and if it is of type II then $m_{i}=2$.
For any 2 \{normal surface $F \quad N$, let $\mathfrak{x}_{N}(F) 2 \mathbb{Z}_{0}^{m(N)}$ be the vector that collects the components of $\overline{\mathfrak{x}}_{N}(F)$ corresponding to the classes of normal triangles, squares and octagons in regions of N of types I and II. As in the previous section, the vector $\mathfrak{x}_{N}(F)$ (resp. $\left.\overline{\mathfrak{x}}_{N}(F)\right)$ satis es a compatibility condition, i.e., for any region R of N vanish all but at most one components of $\mathfrak{x}_{N}(F)$ (resp. $\overline{\mathfrak{x}}_{\mathrm{N}}(\mathrm{F})$) corresponding to classes of squares and octagons in R .

Lemma 2 Suppose that any component of N contains a region that is not a parallelity region. There is a system of matching equations concerning only regions of N of types I and II, such that a vector $\mathfrak{x} 2 \mathbb{Z}_{0}^{m(N)}$ satis es these equations and the compatibility condition if and only if there is a 2 \{normal surface $F \quad N$ with $\mathfrak{x}_{N}(F)=\mathfrak{x}$. The surface F is determined by $\mathfrak{x}_{N}(F)$, up to isotopy in $\mathrm{N} \bmod \mathrm{T}^{2}$.

Proof Let $\mathrm{Y} \mathrm{N} \backslash \mathrm{T}^{2}$ be a normal arc. Let $\mathrm{R}_{1} ; \mathrm{R}_{2}$ be the two regions of N that contain γ. Let $F N$ bea 2 \{normal surface. Since $\Subset=$; , the number of components of $F \backslash R_{1}$ containing γ and the number of components of $F \backslash R_{2}$ containing γ coincide. Thus $\mathfrak{x}_{N}(F)$ satis es the matching equation associated to ($\gamma ; \mathrm{R}_{1} ; \gamma ; \mathrm{R}_{2}$). We refer to theseequations as N \{matching equations. We will transform the system of N \{matching equations by eliminating the components of $\overline{\mathfrak{x}}_{\mathrm{N}}(\mathrm{F})$ that do not belong to $\mathfrak{x}_{\mathrm{N}}(\mathrm{F})$.
Let $\gamma_{1} ; \gamma_{2} \quad T^{2}$ be normal arcs, and let $R_{1} ; R_{2}$ be two di erent regions of N with $\gamma_{1} \quad \bigotimes_{1}$ and $\gamma_{2} \quad \mathbb{R}_{2}$. Assume that R_{1} is a parallelity region of N. Then $m_{1}=1$, thus the matching equation associated to $\left(\gamma_{1} ; R_{1} ; \gamma_{2} ; R_{2}\right)$ is of the form $x_{1 ; 1}=x_{2 ; 1}+\quad+x_{2 ; m_{2}}$. Hence we can diminate $x_{1 ; 1}$ in the $N\{$ matching equations. For any region R_{3} of N and any normal arc $\gamma_{3} \quad \mathbb{R}_{3}$, the elimination transforms the matching equation associated to $\left(\gamma_{1} ; R_{1} ; \gamma_{3} ; R_{3}\right)$ into the matching equation associated to $\left(\gamma_{2} ; R_{2} ; \gamma_{3} ; R_{3}\right)$. We iterate the elimination process. Since any component of N contains a region that is not a
parallelity region, we eventually transform the system of N \{matching equations to a system \mathfrak{A} of matching equations that concern only regions of N of types I and II.
Let $\mathfrak{x} 2 \mathbb{Z}_{0}^{m(N)}$ be a solution of $\mathfrak{A} \mathfrak{x}=0$. By the elimination process, there is a unique extension of \mathfrak{x} to a solution $\overline{\mathfrak{x}}$ of the N \{matching equations. If \mathfrak{x} satis es the compatibility condition then so does $\overline{\mathfrak{x}}$, since a parallelity region contains at most one class of normal squares. Now the lemma follows by Proposition 1, that is proven in [11].

Proof of Theorem 3 It is easy to verify that if R is a parallelity region then there is only one class of 2 \{normal pieces in R. If a component N_{1} of N is a union of parallelity regions, then N_{1} is a regular neighbourhood of a 1 \{normal surface $F_{1} \quad N_{1}$, that has a connected non-empty intersection with each region of N_{1}. Any prenormal surface in N_{1} is a multiple of F_{1} (thus, is 1 -normal), see [8]. We have $k F_{1} k=\frac{1}{2} k @ N_{1} k$. Thus by now we can suppose that any component of N contains a region that is not a parallelity region.

By Lemma 2, the \mathfrak{x} \{vectors of 2 \{normal surfaces in N satisfy a system of linear equations $\mathfrak{A x}=0$. By the following well known result on Integer Programming (ser [21]), the non-negative integer solutions of such a system are additively generated by a nite set of solutions.

Lemma 3 Let $\mathfrak{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ be an integer $\left(\begin{array}{ll}\mathrm{n} & \mathrm{m}) \text { \{matrix. Set }\end{array}\right.$

$$
K=@_{i=1 ;:: ; n_{j=1}}^{0} x^{m} a_{i j}^{2} A_{1=2}:
$$

There is a set $\mathfrak{f}_{1} ;::: \mathfrak{x}_{\mathrm{p}} \mathrm{g}$ of non-negative integer vectors such that $\mathfrak{A} \mathfrak{x}_{\mathrm{i}}=0$ for any $\mathrm{i}=1 ;::: ; \mathrm{p}$, the components of $\mathfrak{x}_{\mathrm{i}}$ are bounded from above by $\mathrm{mK}{ }^{m}$, and ${ }^{\text {anny }}$ non-negative integer solution \mathfrak{x} of $\mathfrak{A} \mathfrak{x}=0$ can be written as a sum $\mathfrak{x}=\mathrm{k}_{\mathrm{i}} \mathfrak{x}_{\mathrm{i}}$ with non-negative integers $\mathrm{k}_{1} ;::: ; \mathrm{k}_{\mathrm{p}}$.

The set $f \mathfrak{x}_{1} ;::: \mathfrak{x}_{\mathrm{p}} \mathrm{g}$ is called Hilbert base for \mathfrak{A}, if p is minimal.
As in the previous section, if $F \quad N$ is a 2 \{normal surface and $\mathfrak{x}_{N}(F)$ is a sum of two non-negative integer solutions of $\mathfrak{A} \mathfrak{x}=0$ then there are 2 \{normal surfaces $F^{0}, F^{\infty} \quad N$ with $F=F^{0}+F^{\oplus}$. Thus the surfaces $F_{1} ;::: ; F_{q} \quad N$ that correspond to Hilbert base vectors satisfying the compatibility condition additively generate the set of all 2 \{normal surfaces in N .

It remains to bound $k F_{i} k$, for $\mathrm{i}=1 ;::: ; \mathrm{q}$. Since F_{i} is 2 \{normal and any edge of T is of degree 3 , we have $\mathrm{kF}_{\mathrm{i}} \mathrm{k} \quad \frac{8}{3} \#\left(\mathrm{~F}_{\mathrm{i}} \mathrm{nT}^{2}\right)$. By the dimination process in the proof of Lemma 2, any component of $\overline{\mathfrak{q}}_{N}\left(\mathrm{~F}_{\mathrm{i}}\right)$ that corresponds to a parallelity region of N is a sum of at most four components of $\mathfrak{x}_{N}\left(F_{i}\right)$. By the bound for the components of $\mathfrak{x}_{\mathrm{N}}\left(\mathrm{F}_{\mathrm{i}}\right)$ in Lemma 3 (with $\mathrm{m}=\mathrm{m}(\mathrm{N})$ and $K^{2}=8$) and our bounds for $m(N)$ and $m(N)$, we obtain

$$
\begin{aligned}
k F_{i} k \quad & \frac{8}{3}(m(N)+4 m(N)) \quad m(N) \quad 2^{\frac{3}{2} m(N)} \\
& \frac{8}{3} 10 t(T)+\frac{2}{3} k @ N k t(T) \quad 10 t(T) \quad 2^{15 t(T)} \\
< & (300+20 k @ N k) t(T)^{2} \quad 2^{15 t(T)}:
\end{aligned}
$$

Using $\mathrm{t}(\mathrm{T}) \quad 5$ and $\mathrm{k} @ \mathrm{k} \gg 0$, we obtain $\mathrm{KF}_{\mathrm{i}} \mathrm{k}<\mathrm{k} @ \mathrm{Nk} 2^{18 \mathrm{t}(\mathrm{T})}$.

4 Maximal systems of 1 \{normal spheres

Let T bea triangulation of a closed orientable $3\{$ manifold M . By Proposition 2, there is a system $\quad \mathrm{M}$ of $10 \mathrm{t}(\mathrm{T})$ pairwise disjoint 1 \{normal spheres, such that any 1 \{normal sphere in M n is isotopic mod T^{2} to a component of . We call such a system maximal. It is not obvious how to construct , in particular how to estimate $\mathrm{k} k$ in terms of $\mathrm{t}(\mathrm{T})$. This section is devoted to a solution of this problem.

Construction 1 Set ${ }_{1}=@\left(T^{0}\right)$ and $N_{1}=\mathrm{M} \mathrm{nU}\left(\mathrm{T}^{0}\right)$. Let i 1. If there is a 1 \{normal fundamental projective plane $P_{i} \quad N_{i}$ then set $\quad i+1=\quad{ }_{i}\left[2 P_{i}\right.$ and $N_{i+1}=N_{i} n U\left(P_{i}\right)$. Otherwise, if there is a 1 \{normal fundamental sphere $\mathrm{S}_{\mathrm{i}} \quad \mathrm{N}_{\mathrm{i}}$ that is not isotopic mod T^{2} to a component of $\quad i$, then set $\quad i+1=$ ${ }_{i}\left[S_{i}\right.$ and $N_{i+1}=N_{i} n U\left(S_{i}\right)$. Otherwise, set $={ }_{i}$.

Since M is orientable, a projective plane P_{i} is onesided and $2 P_{i}$ is a sphere. By Proposition 2 and since embedded spheres are two-sided in M, the iteration stops for some $\mathrm{i}<10 \mathrm{t}(\mathrm{T})$.

Lemma $4 \mathrm{k} k<2^{185} \mathrm{t}(\mathrm{T})^{2}$.

Proof In Construction 1, we have

$$
\begin{aligned}
\mathrm{k}{ }_{\mathrm{i}+1} \mathrm{k} & <\mathrm{k}_{\mathrm{i}} \mathrm{k}+2 \mathrm{k}_{\mathrm{i}} \mathrm{k} 2^{18 \mathrm{t}(\mathrm{~T})} \\
& <\mathrm{k}_{\mathrm{i}} \mathrm{k} 2^{18 \mathrm{t}(\mathrm{~T})+2}
\end{aligned}
$$

by Theorem 3. The iteration stops after $<10 \mathrm{t}(\mathrm{T})$ steps, thus

$$
\mathrm{k} \mathrm{k}<\mathrm{k} \quad{ }_{1} \mathrm{k} \quad 2^{180 \mathrm{t}(\mathrm{~T})^{2}+20 \mathrm{t}(\mathrm{~T})} \quad \mathrm{k} \quad{ }_{1} \mathrm{k} \quad 2^{184 \mathrm{t}(\mathrm{~T})^{2}} ;
$$

using $t(T) \quad 5$. Since $k @\left(T^{0}\right) k$ equals twice the number of edges of T, we have $k{ }_{1} k \quad 4 t(T)$, and the lemma follows.

Lemma 5 is maximal.
Proof It is to show that any 1 \{normal sphere $\mathrm{S} \mathrm{MnU}(\mathrm{)}$ is isotopic mod T^{2} to a component of . Let N bethe component of $\mathrm{MnU}(\mathrm{)}$ that contains S . If N contains a 1 normal fundamental projective plane P, then $N=U(P)$ by Construction 1. Thus $S=2 P=@ N$, which is isotopic mod T^{2} to a component of . Hence we can assume that N does not contain a 1 \{normal fundamental projective plane
We express S as a sum ${ }^{P} \quad{ }_{i=1} k_{i} F_{i}$ of fundamental surfaces in N. Since $\quad(S)=2$ and the Euler characteristic is additive, one of the fundamental surfaces in the sum, say, F_{1} with $\mathrm{k}_{1}>0$, has positive Euler characteristic. It is not a projective plane by the preceding paragraph, thus it is a sphere By construction of , the sphere F_{1} is isotopic $\bmod T^{2}$ to a component of , thus it is paralle to a component of \mathbb{Q}. Hence F_{1} is disjoint to any 1 \{normal sprrface in N, up to isotopy mod T^{2}. Thus S is the disjoint union of $k_{1} F_{1}$ and $i_{i=2} k_{i} F_{i}$. Since S is connected, it follows $S=F_{1}$. Thus S is isotopic $\bmod T^{2}$ to a component of

We will extend to a system \sim of 2 \{normal spheres. To de ne \sim, we need a lemma about 2 \{normal spheres in the complement of

Lemma 6 Let N be a component of $\mathrm{M} \mathrm{n} \mathrm{(} \mathrm{)}$. 2 normal sphere in N with exactly one octagon. Then there is a 2 \{normal fundamental sphere $\mathrm{F} \quad \mathrm{N}$ with exactly one octagon and $\mathrm{kF} \mathrm{k}<2^{189 \mathrm{t}(\mathrm{T})^{2}}$.

Proof Let S N be a 2 nnormal sphere with exactly one octagon. If N contains a 1 \{normal fundamental projective plane P, then $N=U(P)$ by Construction 1 , and any prenormal surface in N is a multiple of P, i.e., is 1 \{normal. Thus since $S \mathrm{~N}$ is not 1 \{normal, there is no 1 \{normal fundamental projective plane in N .
We write S as a sum of 2 \{normal fundamental surfaces in N. Since S has exactly one octagon, exactly one summand is not 1 \{normal. Since any projective plane in the sum is not 1 \{normal by the preceding paragraph, at most one
summand is a projective plane Since $(S)=2$ and the Euler characteristic is additive, it follows that one of the fundamental surfaces in the sum is a sphere F.

Assume that F is 1 \{normal, i.e, $\mathrm{S} \in \mathrm{F}$. The construction of implies that F is isotopic mod T^{2} to a component of $\mathbb{\mathrm { NN }}$. Thus it is disjoint to any 2 \{normal surface in N. Therefore S is a disjoint union of a multiple of F and of a 2 \{normal surface with exactly one octagon, which is a contradiction since S is connected. Hence F contains the octagon of S. We have $k F k<k k 2^{18 t(T)}$ by Theorem 3. The daim follows with Lemma 4 and $\mathrm{t}(\mathrm{T}) 5$.

The preceding lemma assures that the following construction works.
Construction 2 For any connected component N of $\mathrm{M} \mathrm{nU(} \mathrm{)} \mathrm{that} \mathrm{contains}$ a 2 \{normal sphere with exactly one octagon, choose a 2 \{normal sphere $\mathrm{F}_{\mathrm{N}} \mathrm{N}$ with exactly one octagon and $\mathrm{kFk}<2^{189 \mathrm{t}(\mathrm{T})^{2}}$. Set

$$
\sim=\left[{ }_{N}^{[} F_{N}:\right.
$$

Since \#(~) $10 \mathrm{t}(\mathrm{T})$ by Proposition 2, it follows $\mathrm{k} \sim \mathrm{k}<10 \mathrm{t}(\mathrm{T}) 2^{189 \mathrm{t}(\mathrm{T})^{2}}<$ $2^{190 t(T))^{2} \text {. }}$

5 Almost k \{normal surfaces and split equivalence

We shall need a generalization of the notion of k \{normal surfaces. Let M bea closed connected orientable 3 \{manifold with a triangulation T .

De nition 6 A closed embedded surface $S \quad M$ transversal to T^{2} is almost k \{normal, if
(1) $\mathrm{S} \backslash \mathrm{T}^{2}$ is a union of normal arcs and of circles in $\mathrm{T}^{2} n T^{1}$, and
(2) for any tetrahedron t of T , any edge e of t and any component of $\mathrm{S} \backslash$ @ holds \#(\e) k.

Our de nition is similar to Matveev's one in [16]. Note that there is a related but di erent de nition of \backslash almost normal" surfaces due to Rubinstein [19]. Any surface in M disjoint to T^{1} is almost 1 \{normal. Any almost k \{normal surface that meets T^{1} can be seen as a k \{normal surface with several disjoint small tubes attached in $\mathrm{M}_{\mathrm{n}} \mathrm{T}^{1}$, see [16]. The tubes can be nested. Of course there
are many ways to add tubes to a k \{normal surface. We shall develop tools to deal with this ambiguity.
Let $S \quad M$ be an almost k \{normal surface By de nition, the connected components of $\mathrm{S} \backslash \mathrm{T}^{2}$ that meet T^{1} are formed by normal arcs. Thus these components de ne a prenormal surface S, that is obviously k \{normal. It is determined by $\mathrm{S} \backslash \mathrm{T}^{1}$, according to Lemma 1. A disc $\mathrm{D} \mathrm{M} \mathrm{nT}^{1}$ with (a) S is called a splitting disc for S. One obtains S by splitting S along splitting discs for S that are disjoint to T^{2}, and isotopy mod T^{1}.
If two almost k normal surfaces $S_{1} ; S_{2}$ satisfy $S_{1}=S_{2}$, then S_{1} and S_{2} di er only by the choice of tubes. This gives rise to the following equivalence relation.

De nition 7 Two embedded surfaces $S_{1} ; S_{2} \quad M$ transversal to T^{2} are split equivalent if $S_{1} \backslash T^{1}=S_{2} \backslash T^{1}$ (up to isotopy $\bmod T^{2}$).

If two almost k nnormal surfaces $S_{1} ; S_{2} \quad M$ are split equivalent, then $S_{1}=$ S_{2}, up to isotopy mod T^{2}. In particular, two k \{normal surfaces are split equivalent if and only if they are isotopic mod T^{2}.

De nition 8 If $S M$ is an almost k \{normal surface and S is the disjoint union of k \{normal surfaces $S_{1} ;::: ; S_{n}$, then we call S a tube sum of $S_{1} ;::: ; S_{n}$. We denote the set of all tube sums of $S_{1} ;::: ; S_{n}$ by $S_{1} S_{n}$.

De nition 9 Let $S=S_{1}\left[\quad\left[S_{n} \quad M\right.\right.$ beasurface transversal to T^{2} with n connected components, and let $\Gamma \mathrm{M} \mathrm{nT}{ }^{1}$ be a system of disjoint simple arcs with $\Gamma \backslash S=@$. For any arc γ in Γ, one component of $@(\gamma) n S$ is an annulus A_{γ}. The surface

$$
S^{\ulcorner }=(S n U(\Gamma))\left[{ }_{y\ulcorner }^{[} A_{\curlyvee}\right.
$$

is called the tube sum of $S_{1} ;:: ; S_{n}$ along Γ.
If $S_{1} ;::: ; S_{n}$ are k nnormal, then $S^{\ulcorner } 2 S_{1} \quad S_{n}$.
We recall the concept of impermeable surfaces, that is central in the study of almost 2 \{normal surfaces (see [22],[16]). Fix a vertex $x_{0} 2 T^{0}$. Let $S M$ be a connected embedded surface transversal to T. If S splits M into two pieces, then le $\mathrm{B}^{+}(\mathrm{S})$ denote the closure of the component of M nS that contains x_{0}, and le $\mathrm{B}^{-}(\mathrm{S})$ denote the closure of the other component. We do not include x_{0} in the notation $\backslash B^{+}(S) "$, since in our applications the choice of x_{0} plays no essential role.

De nition 10 Let $S M$ be a connected embedded surface transversal to T^{2}. Let $\quad \mathrm{T}^{1} \mathrm{nT}^{0}$ and $\quad \mathrm{S}$ be embedded arcs with @ = @. A closed embedded disc $D \quad M$ is a compressing disc for S with string and base , if @D = [and $\mathrm{D} \backslash \mathrm{T}^{1}=$. If, moreover, $\mathrm{D} \backslash \mathrm{S}=$, then we call D a bond of S.

Let $S \quad M$ be a connected embedded surface that splits M and let D be a compressing disc for S with string . If the germ of in @ is contained in $B^{+}(S)$ (resp. $B^{-}(S)$), then D is upper (resp. lower). Let $D_{1} ; D_{2}$ be upper and lower compressing discs for S with strings 1 ; 2. If $D_{1} D_{2}$ or $D_{2} D_{1}$, then D_{1} and D_{2} are nested. If $D_{1} \backslash D_{2} @_{1} \backslash @_{2}$, then D_{1} and D_{2} are independent from each other.

Upper and lower compressing discs that are independent from each other meet in at most one point.

De nition 11 Let $S M$ bea connected embedded surface that is transversal to T^{2} and splits M. If S has both upper and lower bonds, but no pair of nested or independent upper and lower compressing discs, then S is impermeable.

Note that the impermeability of S does not change under an isotopy of S $\bmod \mathrm{T}^{1}$. The next two claims state a close relationship between impermeable surfaces and (almost) 2 \{normal surfaces. By an octagon of an almost 2 \{normal surface $S \quad M$ in a terahedron t, we mean a circle in $S \backslash$ a formed by eight normal arcs. This corresponds to an octagon of S in the sense of Figure 2.

Proposition 3 Any impermeable surface in M is isotopic mod T^{1} to an almost 2 \{normal surface with exactly one octagon.

Proposition 4 A connected 2 \{normal surface that splits M and contains exactly one octagon is impermeable

We shall need these statements later. As the author found only parts of the proofs in the literature (see [22],[16]), he includes proofs in Section 9.
We end this section with the de nition of T^{1} \{Morse embeddings and with the notion of thin position. Let S be a closed 2 \{manifold and let H:S I! M be a tame embedding. For 21 , set $\mathrm{H}=\mathrm{H}(\mathrm{S})$.

De nition 12 An element 2 l is a critical parameter of H and a point x 2 H is a critical point of H with respect to T^{1}, if x is a vertex of T or x is a point of tangency of H to T^{1}.

De nition 13 We call H a T^{1} \{Morse embedding, if it has nitely many critical parameters, to any critical parameter belongs exactly one critical point, and for any critical point $\times 2 \mathrm{~T}^{1} \mathrm{nT}^{0}$ corresponding to a critical parameter , one component of $U(x) \mathrm{nH}$ is disjoint to T^{1}. The number of critical points with respect to T^{1} of a T^{1} \{Morse embedding H is denoted by $c\left(H ; T^{1}\right)$.

The last condition in the de nition of $T^{1}\{$ Morse embeddings means that any critical point of H is a vertex of T or a local maximum resp. minimum of an edge of T.

De nition 14 Let F be a closed surface, let J: $F \quad$ I! M bea T^{1} \{Morse embedding, and let $1 ;::: ;$ r 21 be the critical parameters of J with respect to T^{1}. The complexity (J) of J is de ned as

$$
(J)=\# T^{1} n \prod_{i=1}^{[r} J_{i}:
$$

If (J) is minimal among all $\mathrm{T}^{1}\left\{\right.$ Morse embeddings with the property T^{1}
 notion was introduced for foliations of 3-manifolds by Gabai [5], was applied by Thompson [22] for her recognition algorithm of S^{3}, and was also used in the study of Heegaard surfaces by Scharlemann and Thompson [20].
If J ($\mathrm{F} \quad$) splits M and has a pair of nested or independent upper and lower compressing discs $D_{1} ; D_{2}$, then an isotopy of J along $D_{1}\left[D_{2}\right.$ decreases (J), see [16], [22]. We obtain the following claim.

Lemma 7 Let J: F I ! M be a T^{1} \{Morse embedding in thin position and let 2 I bea non-critical parameter of J. If J (F) has both upper and lower bonds, then J ($F \quad$) is impermeable.

6 Compressing and splitting discs

Let M bea closed connected 3 \{manifold with a triangulation T . In the lemmas that we prove in this section, we state technical conditions for the existence of compressing and splitting discs for a surface.

Lemma 8 Let $S_{1} ;::: ; S_{n} \quad M$ be embedded surfaces transversal to T^{2} and let S bethe tube sum of $S_{1} ;::: ; S_{n}$ along a system $\Gamma \quad \mathrm{M} \mathrm{nT}^{1}$ of arcs. Assume that S splits M, and $\Gamma \quad B^{-}(S)$. If none of $S_{1} ;:: ; ; S_{n}$ has a lower compressing disc, then S has no lower compressing disc.

Proof Set $=S_{1}$ [S_{n}. Let $D M$ be a lower compressing disc for S. One can assumethat a collar of @DS in D is contained in $B^{-}(S)$. Then, since by hypothesis $U(\Gamma) \backslash \quad B^{-}(S)$, any point in $@ \backslash U(\Gamma) \backslash$ is endpoint of an arc in $\mathrm{D} \backslash$. Therefore there is a sub-disc $\mathrm{D}^{0} \quad \mathrm{D}$, bounded by parts of © and of arcs in $D \backslash$, that is a lower compressing disc for one of $S_{1} ;:: ; ; S_{n}$.

Lemma 9 Let $S M$ be a surface transversal to T^{2} with upper and lower compressing discs D_{1}, D_{2} such that $\left.@_{1} \backslash D_{2}\right) @_{2} \backslash S$. Assume either that $\left(@_{1}\right) \backslash D_{2} \quad T^{1}$ or that there is a splitting disc D_{m} for S such that $D_{1} \backslash D_{m}=@_{1} \backslash @_{m}=f x g$ is a single point and $D_{2} \backslash D_{m}=$; . Then S has a pair of independent or nested upper and lower compressing discs.

Proof If $D_{1} \backslash D_{2} \backslash T^{1}$ comprises more than a single point then the string of D_{2} is contained in the string of D_{1}. Thus $D_{1} \backslash S$ contains an arc di erent from the base of D_{1}, bounding in D_{1} a lower compressing disc, that forms with D_{1} a pair of nested upper and lower compressing discs for S.
Assume that a component γ of $D_{1} \backslash D_{2}$ is a circle. Then there are discs $D_{1}^{0} \quad D_{1}$ and $D_{2}^{0} \quad D_{2}$ with $@_{1}^{0}=@_{2}^{0}=\gamma$. Since $\left.@ D_{1} \backslash D_{2}\right) @_{2}$, D_{2}^{0} does not contain arcs of $D_{1} \backslash D_{2}$. Thus if we choose γ innermost in D_{2}, then $D_{1} \backslash D_{2}^{0}=\gamma$. By cut-and-paste of D_{1} along D_{2}^{0}, one reduces the number of circle components in $D_{1} \backslash D_{2}$. Therefore we assume by now that $D_{1} \backslash D_{2}$ consists of isolated points in $\varliminf_{1} \backslash @_{2}$ and of arcs that do not meet $@_{1}$.
Assume that there is a point y $2\left(@_{1} \backslash\left(D_{2}\right) \mathrm{nT}^{1}\right.$. Then there is an arc γ @ D_{1} with @ $=f x ; y g$. Without assumption, let $\gamma \backslash D_{2}=f y g$. Let A be the closure of the component of $U(\gamma) n\left(D_{1}\left[D_{2}\left[D_{m}\right)\right.\right.$ whose boundary contains arcs in both D_{2} and D_{m}. De ne $D_{2}=\left(\left(D_{2}\left[D_{m}\right) n U(\gamma)\right)\right.$ [A, that is to say, D_{2} is the connected sum of D_{2} and D_{m} along γ. By construction, $\left(D_{1} \backslash D_{2}\right) n @ D_{1}=\left(D_{1} \backslash D_{2}\right) n @ D_{1}$, and $\#\left(D_{1} \backslash D_{2}\right)<\#\left(D_{1} \backslash D_{2}\right)$. In that way, we remove all points of intersection of $\left(@_{1} \backslash D_{2}\right) \mathrm{nT}^{1}$. Thus by now we can assume that $D_{1} \backslash D_{2}$ consists of arcs in D_{1} that do not meet $@_{1}$, and possibly of a single point in T^{1}.

Let $\gamma \quad D_{1} \backslash D_{2}$ be an outermost arc in D_{2}, that is to say, $\gamma\left[@_{2}\right.$ bounds a disc $D^{0} \quad D_{2} n T^{1}$ with $D_{1} \backslash D^{0}=\gamma$. We move D_{1} away from D^{0} by an isotopy $\bmod T^{1}$ and obtain a compressing disc D_{1} for S with $D_{1} \backslash D_{2}=\left(D_{1} \backslash D_{2}\right) n \gamma$. In that way, we remove all arcs of $D_{1} \backslash D_{2}$ and nally get a pair of independent upper and lower compressing discs for S.

Lemma 10 Let $S M$ be an almost 1 nnormal surface. If S has a compressing disc, then S is isotopic mod T^{1} to an almost 1 \{normal surface with
a compressing disc contained in a single tetrahedron. In particular, S is not 1 normal.

Proof Let D be a compressing disc for S. Choose S and D up to isotopy of S[$D \bmod T^{1}$ so that S is almost 1 nnormal and \#($\mathrm{D} \backslash \mathrm{T}^{2}$) is minimal. Choose an innermost component $\gamma \quad\left(D \backslash T^{2}\right)$, which is possible as $D \backslash T^{2} \sigma$; . There is a closed tetrahedron t of T and a component C of $D \backslash t$ that is a disc, such that $\gamma=C \backslash$ @. Let be the closed 2 \{simplex of T that contains γ. We obtain three cases.
(1) Let γ be a circle, thus $@=\gamma$. Then there is a disc D^{0} with $@^{0}=\mathrm{Y}$ and a ball $\mathrm{B} \quad \mathrm{t}$ with $\mathbb{C B}=\mathrm{C}\left[\mathrm{D}^{0}\right.$. By an isotopy mod T^{1} with support in $U(B)$, we move S [D away from B, obtaining a surface S with a compressing disc D. If S is almost 1 \{normal, then we obtain a contradiction to our choice as \#($\mathrm{D} \backslash \mathrm{T}^{2}$) $<\#\left(\mathrm{D} \backslash \mathrm{T}^{2}\right)$.
(2) Let γ be an arc with endpoints in a single component c of $S \backslash$. Since S has no returns, γ is not the string of D. We apply to $S[D$ an isotopy mod T^{1} with support in $U(C)$ that moves C into $U(C) n t$, and obtain a surface S with a compressing disc D. If S is almost 1 \{normal, then we obtain a contradiction to our choice as \#($D \backslash T^{2}$) $<\#\left(D \backslash T^{2}\right)$.
(3) Let γ bean arc with endpoints in two di erent components $\mathrm{C}_{1} ; \mathrm{C}_{2}$ of $\mathrm{S} \backslash$. If both c_{1} and c_{2} are normal arcs, then set $C^{0}=C, c_{1}^{0}=c_{1}$ and $c_{2}^{0}=c_{2}$. If, say, c_{1} is a circle, then we move S [D away from C by an isotopy $\bmod T^{1}$ with support in $U(C)$. If the resulting surface S is still almost 1 \{normal, then we obtain a contradiction to the choice of D.
In either case, S is not almost 1-normal, i.e, the isotopy introduces a return. Therefore there is a component of CnS with closure C^{0} such that $\bigotimes^{0} \backslash \mathrm{~S}$ connects two normal arcs $\mathrm{c}_{1}^{0} ; \mathrm{c}_{2}^{0}$ of $\mathrm{S} \backslash$
Let $\gamma^{0}=C^{0} \backslash$. Up to isotopy of $C^{0} \bmod T^{2}$ that is xed on $@^{0} \backslash S$, we assume that $Y^{0} \backslash\left(c_{1}^{0}\left[c_{2}^{0}\right) \quad @^{0}\right.$. There is an arc contained in an edge of with @ $\quad c_{1}^{0}\left[c_{2}^{0}\right.$. For i $2 f 1 ; 2 g$, there is an arc i $\quad c_{i}^{0}$ that connects $\backslash c_{i}^{0}$ with $\gamma^{9} c_{i}^{0}$. Thecircle [${ }_{1}\left[\quad{ }_{2}\left[\gamma^{0}\right.\right.$ bounds a closed disc D^{0}. Eventually $\mathrm{D}^{0}\left[\mathrm{C}^{0}\right.$ is a compressing disc for S contained in a single tetrahedron.

Lemma 11 Let $S M$ be a 1 normal surface and let D be a splitting disc for S. Then, (D; © $)$ is isotopic in ($M \mathrm{nT}^{1} ; \mathrm{SnT}^{1}$) to a disc embedded in S .

Proof We choose D up to isotopy of (D ; (D) in ($\mathrm{M} \mathrm{nT}^{1} ; \mathrm{SnT}^{1}$) so that (\#((@)) T^{2}); \#($\left.D \mathrm{~T}^{2}\right)$) is minimal in lexicographic order. Assume that
@ $\backslash \mathrm{T}^{2} \mathcal{G}$; Then, there is a tetrahedron t , a 2 \{simplex @t, a component K of $S \backslash t$, and a component γ of @ $\backslash K$ with @ . Since S is 1 \{normal, the closure D^{0} of one component of $K n \gamma$ is a disc with © ${ }^{0} \quad \gamma[$. By choosing γ innermost in D, we can assume that $D^{0} \backslash(\mathbb{D}=\gamma$. An isotopy of (D ; ©) in ($\mathrm{M} \mathrm{nT}^{1} ; \mathrm{S}^{1} \mathrm{~T}^{1}$) with support in U(D9, moving © away from D^{0}, reduces \#(@) $\backslash \mathrm{T}^{2}$), in contradiction to our choice. Thus @ $\backslash \mathrm{T}^{2}=$;

Now, assume that $D \backslash T^{2} G$; . Then, there is a tetrahedron t, a 2 \{simplex
@, and a disc component C of $\mathrm{D} \backslash \mathrm{t}$, such that $\mathrm{C} \backslash=\Subset$ is a single circle. There is a ball B t bounded by C and a disc in . An isotopy of D with support in $U(B)$, moving C away from t, reduces \#($D T^{2}$), in contradiction to our choice Thus D is contained in a single tetrahedron t. Since S is 1 \{normal, © bounds a disc D^{0} in $S \backslash t$. An isotopy with support in t that is constant on © moves D to D^{0}, which yields the lemma.

Corollary 1 Let $S_{0} M$ be a 1 nnormal sphere that splits M, and let S $\mathrm{B}^{-}\left(\mathrm{S}_{0}\right)$ be an almost 1 \{normal sphere disjoint to S_{0} that is split equivalent to S_{0}. Then there is a $T^{1}\left\{\right.$ Morse embedding J: $S^{2} \quad I!M$ with J $\left(S^{2} \quad I\right)=$ $B^{+}(S) \backslash B^{-}\left(S_{0}\right)$ and $c\left(J ; T^{1}\right)=0$.

Proof Let X bea graph isomorphic to $S_{0} \backslash T^{2}$. Since S is a copy of S_{0}, there is an embedding': $X \quad I!B^{+}(S) \backslash B^{-}\left(S_{0}\right)$ with ' $\left(\begin{array}{ll}X^{0} & I\end{array}\right)={ }^{\prime}\left(\begin{array}{ll}X & I\end{array}\right) \backslash T^{1}$, ${ }^{\prime}\left(\begin{array}{ll}\mathrm{X} & 0\end{array}\right)=\mathrm{S}_{0} \backslash \mathrm{~T}^{2}=\mathrm{S}_{0} \backslash{ }^{\prime}\left(\begin{array}{ll}\mathrm{X} & 1\end{array}\right)$, and ${ }^{\prime}\left(\begin{array}{ll}\mathrm{X} & 1\end{array}\right)$ is the union of the normal arcs in S.
 disc $D \quad$ ' $\left(\begin{array}{ll}X & I\end{array}\right) \mathrm{nT}^{1}$. The two components of $\mathrm{S} \mathrm{n} \gamma$ are discs. One of them is disjoint to T^{1}, since otherwise the disc D would give rise to a splitting disc for $\mathrm{S}=\mathrm{S}_{0}$ that is not isotopic mod T^{1} to a sub-disc of S_{0}, in contradiction to the preceding lemma. Thus by cut-and-paste along sub-discs of $\mathrm{S}^{1}{ }^{1}$, we can assume that additionally $\mathrm{S} \backslash{ }^{\prime}\left(\begin{array}{ll}\mathrm{X} & \mathrm{I}\end{array}\right)={ }^{\prime}\left(\begin{array}{ll}\mathrm{X} & 1\end{array}\right)$.

Let $\gamma \quad X$ be a circle so that ' $\left(\begin{array}{ll}\gamma & 0\end{array}\right)$ is contained in the boundary of a tetrahedron of T. Since S_{0} is 1 \{normal, ' $\left(\begin{array}{ll}\gamma & 0) \text { bounds an open disc in }\end{array}\right.$ $\mathrm{S}_{0} \mathrm{nT}^{2}$. By the same argument as in the preceding paragraph, ' $(\gamma 1)$ bounds an open disc in SnT^{1}. One easily veri es that these two discs together with ${ }^{\prime}(\gamma \quad 1)$ bound a ball in $B^{+}(S) \backslash B^{-}\left(S_{0}\right)$ disjoint to T^{1}. Hence $\left(B^{+}(S) \backslash\right.$ $\left.B^{-}\left(S_{0}\right)\right) n U\left({ }^{\prime}\left(\begin{array}{ll}X & I\end{array}\right)\right.$) is a disjoint union of balls in $M n T^{1}$, and this implies the existence of J.

7 Reduction of surfaces

Let M bea closed connected orientable 3 \{manifold with a triangulation T . In this section, we show how to get isotopies of embedded surfaces under which the number of intersections with T^{1} is monotonely non-increasing.

De nition 15 Let S M bea connected embedded surface that is transversal to T^{2} and splits M. Let D be an upper (resp. lower) bond of S, set $D_{1}=U(D) \backslash S$, and set $D_{2}=B^{+}(S) \backslash @(D)$ (resp. $D_{2}=B^{-}(S) \backslash @(D)$). An elementary reduction along D transforms S to the surface $\left(S n D_{1}\right)\left[D_{2}\right.$. Upper (resp. lower) reductions of S are the surfaces that are obtained from S by a sequence of elementary reductions along upper (resp. lower) bonds.

If S^{0} is an upper or lower reduction of S , then $\mathrm{kS} \mathrm{K}_{\mathrm{k}} \quad \mathrm{kSk}$ with equality if and only if $S=S^{0}$. Obviously S is isotopic to S^{0}, such that $k k$ is monotonely non-increasing under the isotopy. If $\mathrm{T}^{1} \mathrm{nT}^{0}$ is an arc with @ S^{0}, then also @ S . It is easy to see that if S^{0} has a lower compressing disc and is an upper reduction of S, then also S has a lower compressing disc.
We will construct surfaces with almost 1 \{normal upper or lower reductions. Let N M be a 3\{dimensional sub\{manifold, such that @N is prenormal. Let $\mathrm{S} \quad \mathrm{N}$ be an embedded surface transversal to T^{2} that splits M and has no lower compressing disc.

Lemma 12 Suppose that there is a system $\Gamma \quad N \mathrm{nT}^{1}$ of arcs such that $S^{\ulcorner } \quad N$ is connected, $\Gamma \quad B^{-}\left(S^{\ulcorner }\right)$, and $@ \mathbb{N} \backslash B^{+}\left(S^{\ulcorner }\right)$is 1 normal.
If, moreover, Γ and an upper reduction $\mathrm{S}^{0} \mathrm{~N}$ of $\mathrm{S}^{「}$ are chosen so that $\mathrm{kS}{ }^{\mathrm{k}}$ is minimal, then S^{0} is almost 1 \{normal.

Proof By hypothesis, $\Gamma \quad B^{-}\left(S^{\ulcorner }\right)$, and S has no lower compressing discs. Thus by Lemma 8, $\mathrm{S}^{\ulcorner }$has no lower compressing discs. Therefore its upper reduction S^{0} has no lower compressing discs.
Assume that S^{0} is not almost 1 \{normal. Then S^{0} has a compressing disc D^{0} that is contained in a single tetrahedron t (see [16]), with string ${ }^{0}$ and base ${ }^{0}$. Since S^{0} has no lower compressing discs, D^{0} is upper and does not contain proper compressing sub-discs. Thus ${ }^{9} \mathrm{~S}^{0}=@^{0}$, i.e, all components of $\left(\mathrm{D}^{0} \backslash \mathrm{~S}^{9} \mathrm{n}^{0}\right.$ are circles. Since @N is prenormal, © nT^{2} is a disjoint union of discs. Therefore, since D^{0} is contained in a single tetrahedron, we can assume by isotopy of $\mathrm{D}^{0} \bmod \mathrm{~T}^{2}$ that $\mathrm{D}^{0} \backslash \mathrm{~N}$ consists of arcs. We have
$0 \mathrm{~B}^{+}\left(\mathrm{S}^{9}\right) \mathrm{B}^{+}\left(\mathrm{S}^{\Gamma}\right)$. It follows @N ${ }^{0}=$; , since otherwise a sub-disc of D^{0} is a compressing disc for $@ \mathbb{N} \backslash B^{+}\left(S^{\ulcorner }\right)$, which is impossible as @N $\backslash B^{+}\left(S^{\ulcorner }\right)$ is 1 \{normal by hypothesis. Thus @N $\backslash{ }^{0}=$; and $\mathrm{D}^{0} \mathrm{~N}$.

Figure 3: How to produce a bond
By an isotopy with support in $U\left(D^{9}\right)$ that is constant on ${ }^{0}$, we move (D^{0}) $\mathrm{S}^{9} \mathrm{n}{ }^{0}$ to $\mathrm{U}\left(\mathrm{D}^{9} \mathrm{nt}\right.$, and obtain from S^{0} a surface ($\mathrm{S}^{9} \quad \mathrm{~N}$ that has D^{0} as upper bond. This is shown in Figure 3, where $\mathrm{B}^{+}\left(\mathrm{S}^{9}\right)$ is indicated by plus signs and T^{1} is bold. The isotopy moves Γ to a system of arcs $\Gamma \quad \mathrm{N}$ and moves S^{Γ} to S^{Γ} with $\Gamma \quad B^{-}\left(S^{\Gamma}\right)$. Since $0 \quad B^{+}\left(S^{9}\right)$, there is a homeomorphism ': $\mathrm{B}^{-}\left(\mathrm{S}^{9}\right)!\mathrm{B}^{-}\left(\left(\mathrm{S}^{9}\right)\right.$ that is constant on T^{1} with ${ }^{\prime}\left(\mathrm{B}^{-}\left(\mathrm{S}^{\ulcorner }\right)\right)=\mathrm{B}^{-}\left(\mathrm{S}^{\ulcorner }\right)$. One obtains S^{0} by a sequence of elementary reductions along bonds of $S^{\ulcorner }$that are contained in $\mathrm{B}^{-}\left(\mathrm{S}^{9}\right.$. These bonds are carried by ' to bonds of $\mathrm{S}^{「}$. Thus (S 9 is an upper reduction of $\mathrm{S}^{\ulcorner }$. Since (S 9 admits an elementary reduction along its upper bond D^{0}, we obtain a contradiction to the minimality of $\mathrm{kS}{ }^{k}$. Thus S^{0} is almost 1 \{normal.

Lemma 13 Let Γ and S^{0} be as in the previous lemma, and let $\mathrm{G}_{1} ; \mathrm{G}_{2}$ be two connected components of (S 9 that both split M . Then there is no arc in $\left(T^{1} n T^{0}\right) \backslash B^{+}\left(S^{9}\right) \backslash N$ joining G_{1} with G_{2}.

Proof By the previous lemma, S^{0} is almost 1 \{normal. Recall that one obtains (S^{9} up to isotopy mod T^{1} by splitting S^{0} along splitting discs that do not meet T^{2}. Assume that there is an arc $\quad\left(\mathrm{T}^{1} \mathrm{nT}^{0}\right) \backslash \mathrm{B}^{+}\left(\mathrm{S}^{9}\right) \backslash \mathrm{N}$ joining G_{1} with G_{2}. Let Y be the component of $M n\left(G_{1}\left[G_{2}\right)\right.$ that contains .
By hypothesis, S^{Γ} is connected. Thus S^{0} is connected, and there is an arc S^{0} with @ = @. Since $\mathrm{G}_{1} ; \mathrm{G}_{2}$ split M , the set Y is the only component of $\mathrm{Mn}\left(\mathrm{G}_{1}\left[\mathrm{G}_{2}\right)\right.$ with boundary $\mathrm{G}_{1}\left[\mathrm{G}_{2}\right.$. Thus there is a component ${ }^{0}$ of $\backslash \mathrm{Y}$ connecting G_{1} with G_{2}. There is a splitting disc $D \quad Y$ of S^{0} contained in a single tetrahedron with 9 DG ; . By choosing D innermost, we assume that
\D is a single point in @D. Since @N is prenormal and D is contained in a single tetrahedron, we can assume by isotopy of $D \bmod T^{2}$ that $D \backslash @ N=$; thus D N.
Choose a disc $D^{0} U\left(\quad[\quad) \backslash B^{+}\left(S^{9}\right)\right.$ so that $D^{0} \backslash T^{1}=$ and $D^{0} \backslash S^{0}=$ $\mathrm{nU}(@)$). Then D^{0} @N $=$; , since $\mathrm{U}(\mathrm{[} \quad) \backslash \mathbb{} \mathrm{N}=$; . We split S^{0} along D, pull the two components of (S^{0} @(D)) nD along (@D) n ([), and reglue. We obtain a surface (S^{9} with D^{0} as an upper bond.
Since a small collar of © (D D is in $\mathrm{B}^{-}\left(\mathrm{S}^{9}\right.$, there is a homeomorphism ${ }^{\prime}: \mathrm{B}^{-}\left(\mathrm{S}^{9}\right)!\mathrm{B}^{-}\left(\left(\mathrm{S}^{9}\right)\right.$) that is constant on T^{1}. Set $\Gamma={ }^{\prime}(\Gamma)$. Then ${ }^{\prime}\left(\mathrm{S}^{\Gamma}\right)=$ $S^{\ulcorner }$with $\Gamma \quad B^{-}\left(\mathrm{S}^{\ulcorner }\right)$. As in the proof of the previous lemma, (S 9 is an upper reduction of $S^{\ulcorner }$, and (S 9 admits an elementary reduction along D^{0}. This contradiction to the minimality of $\mathrm{kS} \mathrm{K}_{\text {yields }}$ ye lemma.

8 Proof of Theorem 2

Let T be a triangulation of S^{3} with a vertex $x_{0} 2 T^{0}$. Let S^{3} be a maximal system of disjoint 1 \{normal spheres with $k \mathrm{k}<2^{185 t(T)^{2}}$, as given by Construction 1. Construction 2 extends to a system $\sim S^{3}$ of disjoint 2 nnormal spheres that are pairwise non-isotopic mod T^{2}, such that
(1) any component of \sim has at most one octagon,
(2) any component of $S^{3} n \sim$ has at most one boundary component that is not 1 nnormal,
(3) if the boundary of a component N of $S^{3} n \sim$ is 1 \{normal, then N does not contain 2 \{normal spheres with exactly one octagon, and
(4) $\mathrm{k} \sim \mathrm{k}<2^{190 \mathrm{t}(\mathrm{T})^{2}}$.

Let N be a component of $\mathrm{S}^{3} \mathrm{n}^{\sim}$ that is not a regular neighbourhood of a vertex of T . Let S_{0} be the component of QN^{2} with $\mathrm{N} \quad \mathrm{B}^{-}\left(\mathrm{S}_{0}\right)$, and let $\mathrm{S}_{1} ;::: ; \mathrm{S}_{\mathrm{k}}$ be the other components of $\mathbb{C N}$. Since is maximal, any almost 1-normal sphere in N is a tube sum of copies of $S_{0} ; S_{1} ;:: ; S_{k}$.

Lemma $14 \mathrm{~N} \backslash \mathrm{~T}^{0}=$;

Proof If $x 2 \mathrm{~N} \backslash \mathrm{~T}^{0}$, then the sphere @ $\mathrm{J}(\mathrm{x}) \mathrm{N}$ is 1 \{normal. It is not isotopic $\bmod T^{1}$ to a component of $@ \mathbb{N}$, since $N \in U(x)$. This contradicts the maximality of

Lemma 15 If @N is 1 nnormal, then there is an arc in $T^{1} \backslash \bar{N}$ that connects two di erent components of $\mathbb{} \mathrm{N}_{\mathrm{nS}}$.

Proof Let $@ \mathrm{~N}=\mathrm{S}_{0}\left[\mathrm{~S}_{1}\left[\quad\left[\mathrm{~S}_{\mathrm{k}}\right.\right.\right.$ be 1\{normal. We rst consider the case where there is an almost 1 nnormal sphere $\mathrm{S} 2 \mathrm{~S}_{1} \quad \mathrm{~S}_{\mathrm{k}}$ in $\overline{\mathrm{N}}$ that has a compressing disc D , with string and base . We choose D innermost, so that $\backslash \mathrm{S}=$ @. In particular, $\backslash @ \mathrm{~N}=@$. Assume that $6 \overline{\mathrm{~N}}$. Since © $\mathrm{n} \overline{\mathrm{N}}$, there is an arc $0 \mathrm{D} \backslash \mathbb{N}$ that connects the endpoints of . The sub-disc D^{0} D bounded by [${ }^{0}$ is a compressing disc for the 1 \{normal surface @N, in contradiction to Lemma 10. By consequence, \bar{N}. Assume that @ is contained in a single component of @N nS_{0}, say, in S_{1}. By Lemma 10, D is not a compressing disc for S_{1}, hence $6 S_{1}$. Thus there is a closed line in $\mathrm{S}_{1} \mathrm{n}$ that separates @ on S_{1}, but not on S . This is impossible as S is a sphere. We conclude that if S has a compressing disc, then there is an arc $\mathrm{T}^{1} \backslash \mathrm{~N}$ that connects di erent components of $@ \mathrm{~N} \mathrm{nS}_{0}$.
It remains to consider the case where no sphere in S_{1}
S_{k} contained in \bar{N} has a compressing disc. We will show the existence of an almost 2 \{normal sphere in N with exactly one octagon, using the technique of thin position. This contradicts property (3) of ~ (see the begin of this section), and therefore nishes the proof of the lemma. Let J: $\mathrm{S}^{2} \mathrm{I}!\mathrm{B}^{-}\left(\mathrm{S}_{0}\right)$ be a $\mathrm{T}^{1}\{$ Morse embedding, such that
(1) $J\left(\begin{array}{ll}S^{2} & 0\end{array}\right)=S_{0}$,
(2) J ($\left.\mathrm{S}^{2} \frac{1}{2}\right) 2 \mathrm{~S}_{1} \quad \mathrm{~S}_{\mathrm{k}}$ (or $\mathrm{kJ}\left(\mathrm{S}^{2} \frac{1}{2}\right) \mathrm{k}=0$, in the case $\mathbb{C N}=\mathrm{S}_{0}$),
(3) $\mathrm{B}^{-} \mathrm{J}\left(\begin{array}{ll}\mathrm{S}^{2} & 1\end{array}\right) \backslash \mathrm{T}^{1}=$; , and
(4) (J) is minimal.

De ne $S=J\left(\begin{array}{ll}S^{2} & \frac{1}{2}\end{array}\right)$. Assume that for some $2 I$ there is a pair $D_{1} ; D_{2} \quad M$ of nested or independent upper and lower compressing discs for $\mathrm{J}=\mathrm{J}$ (S^{2}). We show that we can assume $D_{1} ; D_{2} \quad B^{-}\left(S_{0}\right)$. Since S_{0} is 1 \{normal, it has no compressing discs by Lemma 10. Thus $\left(D_{1}\left[D_{2}\right) \backslash S_{0}\right.$ consists of circles. Any such circle bounds a disc in $\mathrm{S}_{0} \mathrm{nT}^{1}$ by Lemma 11. By cut-and-paste of $D_{1}\left[D_{2}\right.$, we obtain $D_{1} ; D_{2} B^{-}\left(S_{0}\right)$, as claimed. Now, one obtains from J an embedding J $0: S^{2}$ I! $B^{-}\left(S_{0}\right)$ with (S$)<(\mathrm{J})$ by isotopy along $\mathrm{D}_{1}\left[\mathrm{D}_{2}\right.$, see [16], [22]. The embedding J ${ }^{0}$ meets conditions (1) and (3) in the de nition of J. Since $\mathrm{S} 2 \mathrm{~S}_{1} \quad \mathrm{~S}_{\mathrm{k}}$ has no compressing discs by assumption, $\mathrm{S} \backslash \mathrm{D}_{\mathrm{i}}$ consists of circles. Thus S is split equivalent to $\mathrm{J}^{9} \mathrm{~S}^{2} \frac{1}{2}$). So J ${ }^{0}$ meets also condition (2), J $\left.9 S^{2} \quad \frac{1}{2}\right) 2 S_{1} \quad S_{k}$, in contradiction to the choice of J. This disproves the existence of $D_{1} ; D_{2}$. In conclusion, if J has upper and lower bonds, then it is impermeable

Let max be the greatest critical parameter of J with respect to T^{1} in the interval $0 ; \frac{1}{2}$. We have $N \backslash T^{0}=$; by Lemma 14. Hence the critical point corresponding to \max is a point of tangency of $\mathrm{J} \max$ to some edge of T . By assumption, S has no upper bonds, thus $\mathrm{kSk}<\mathrm{kJ} \max ^{\operatorname{kax}} \mathrm{k}$ for su ciently small >0. Let $\min 2 \mathrm{I}$ bethe smallest critical parameter of J with respect to T^{1}. By Lemma 10, S_{0} has no bonds, thus $\mathrm{kS} \mathrm{S}_{0}<\mathrm{kJ}{ }_{\min }+\mathrm{k}$. Therefore there are consecutive critical parameters 1; $220 ; \frac{1}{2}$ such that

$$
k J_{1}-k<k J_{1}+k>k J_{2}+k:
$$

Thus J ${ }_{1}+$ has both upper and lower bonds, and is therefore impermeable by the preceding paragraph. One component of J_{1+} is a 2 \{normal sphere in N with exactly one octagon, by Proposition 3. The existence of that 2 \{normal sphere is a contradiction to the properties of \sim, which proves the lemma.

We show that some tube sum $\mathrm{S} 2 \mathrm{~S}_{1} \quad \mathrm{~S}_{\mathrm{k}}$ is isotopic to S_{0} such that $\mathrm{k} k$ is monotone under the isotopy. We consider three cases. In the rst case, let © ${ }^{\text {N }}$ be 1 normal.

Lemma 16 If @N is 1 \{normal, then there is a sphere $S 2 S_{1} \quad S_{k}$ in N with an upper reduction $\mathrm{S}^{0} \quad \mathrm{~N}$ so that there is a $\mathrm{T}^{1}\{$ Morse embedding $\mathrm{J}: \mathrm{S}^{2} \quad \mathrm{I}!\mathrm{S}^{3}$ with $\mathrm{J}\left(\mathrm{S}^{2} \mathrm{I}\right)=\mathrm{B}^{+}\left(\mathrm{S}^{9}\right) \backslash \mathrm{B}^{-}\left(\mathrm{S}_{0}\right)$ and $\mathrm{c}\left(\mathrm{J} ; \mathrm{T}^{1}\right)=0$.

Proof By Lemma 15, there is an arc $\mathrm{T}^{1} \backslash \mathrm{~N}$ that connects two components of @N $n S_{0}$, say, S_{1} with S_{2}. By Lemma 14, is contained in an edge of T . By Lemma 10, the 1 \{normal surfaces $\mathrm{S}_{1} ;::: ; \mathrm{S}_{\mathrm{k}}$ have no lower compressing discs. Let $\Gamma \quad \mathrm{N}$ be a system of $k-1$ arcs, such that the tube sum S of $\mathrm{S}_{1} ;:: ; ; \mathrm{S}_{\mathrm{k}}$ along Γ is a sphere and an upper reduction $S^{0} \quad \mathrm{~N}$ of S minimizes $\mathrm{kS}{ }^{2}$. We have $\mathrm{kS} \mathrm{F}_{\mathrm{k}}<\mathrm{kSk}$, since it is possible to choose Γ so that S has an upper bond with string . Since $\Gamma \quad B^{-}(S)$ and by Lemma $12, S^{0}$ is almost 1 nnormal.
By the maximality of , it follows $S^{0} 2 n_{0} S_{0} \quad n_{k} S_{k}$ with non-negative integers $\mathrm{n}_{0} ; \mathrm{n}_{1} ;::: ; \mathrm{n}_{\mathrm{k}}$. Moreover, $\mathrm{n}_{\mathrm{i}} \quad 2$ for $\mathrm{i}=0 ;::: ; \mathrm{k}$ by Lemma 13. Since S separates S_{0} from $\mathrm{S}_{1} ;::: ; \mathrm{S}_{\mathrm{k}}$, so does S^{0}. Thus any path connecting S_{0} with S_{j} for some j $2 \mathrm{f} 1 ;::: ; \mathrm{kg}$ intersects S^{0} in an odd number of points. So alternatively $n_{0} 2 f 0 ; 2 \mathrm{~g}$ and $\mathrm{n}_{\mathrm{i}}=1$ for all i $2 \mathrm{f} 1 ;::: ; \mathrm{kg}$, or $\mathrm{n}_{0}=1$ and $n_{i} 2$ f0; 2 g for all i $2 \mathrm{f} 1 ;::: ; \mathrm{kg}$. Since $k S k<k S k$, it follows $\mathrm{n}_{0}=1$ and $\mathrm{n}_{\mathrm{i}}=0$ for i $2 \mathrm{f} 1 ;::: ; \mathrm{kg}$, thus $(\mathrm{S} 9)=\mathrm{S}_{0}$. The existence of a T^{1} \{Morse embedding J with the claimed properties follows then by Corollary 1.

The second case is that S_{0} is 1 normal, and exactly one of $S_{1} ;::: ; S_{k}$ contains exactly one octagon, say, S_{1}. The octagon gives rise to an upper bond D of S_{1}
contained in a single tetrahedron. Since @N nS_{1} is 1 \{normal, $\mathrm{D} \quad \mathrm{N}$. Thus an elementary reduction of S_{1} along D transforms S_{1} to a sphere $F \quad N$. Since S_{1} is impermeable by Proposition 4, F has no lower compressing disc (such a disc would give rise to a lower compressing disc for S_{1} that is independent from D).

Lemma 17 If @N $n S_{0}$ is not 1 nnormal, then there is a sphere $\mathrm{S} 2 \mathrm{~S}_{1} \quad \mathrm{~S}_{\mathrm{k}}$ in N with an upper reduction $S^{0} \quad N$ so that there is a $T^{1}\{$ M orse embedding $\mathrm{J}: \mathrm{S}^{2} \quad \mathrm{I}!\mathrm{S}^{3}$ with J $\left(\begin{array}{ll}\mathrm{S}^{2} & \mathrm{I})\end{array}\right)=\mathrm{B}^{+}\left(\mathrm{S}^{9}\right) \backslash \mathrm{B}^{-}\left(\mathrm{S}_{0}\right)$ and $\mathrm{c}\left(\mathrm{J} ; \mathrm{T}^{1}\right)=0$.

Proof We apply the Lemma 12 to $\mathrm{F} ; \mathrm{S}_{2} ;::: ; \mathrm{S}_{\mathrm{k}}$, and together with the ele mentary reduction along D we obtain a sphere $S 2 S_{1} \quad S_{2} \quad S_{k}$ with an almost 1 \{normal upper reduction $\mathrm{S}^{0} \mathrm{~N}$. One concludes $(\mathrm{S} 9)=\mathrm{S}_{0}$ and the existence of J as in the proof of the previous lemma.

We come to the third and last case, namely S_{0} has exactly one octagon and $@ \mathrm{~N} \mathrm{~S}_{0}$ is 1 \{normal. The octagon gives rise to a lower bond D of S_{0}, that is contained in N since $@ \mathbb{N} \mathrm{nS}_{0}$ is 1 \{normal. Thus an elementary reduction of S_{0} along D yieds a sphere $F \quad N$. Since S_{0} is impermeable by Proposition 4, F has no upper compressing disc, similar to the previous case

Lemma 18 If S_{0} is not 1 \{normal, then there is a lower reduction $S^{0} 2 S_{1}$ S_{k} of S_{0}, with $S^{0} \quad N$.

Proof We apply Lemma 12 with $\Gamma=$; to lower reductions of F, which is possible by symmetry. Thus, together with the elementary reduction along D, there is a lower reduction $S^{0} 2 n_{0} S_{0} \quad n_{k} S_{k}$ of S_{0}, and $n_{0} ;::: ; n_{k} \quad 2$ by Lemma 13. Since $S^{0} \quad B^{-}(F)$ and $S_{0} \quad B^{+}(F)$, it follows $n_{0}=0$. Since S^{0} separates @ $\backslash B^{+}(F)$ from $\mathbb{C N} \backslash B^{-}(F)$, it follows $n_{1} ;::: ; n_{k}$ odd, thus $\mathrm{n}_{1}=\quad=\mathrm{n}_{\mathrm{k}}=1$.

We are now ready to construct the $T^{1}\left\{\right.$ Morse embedding $\mathrm{H}: \mathrm{S}^{2} \mathrm{I}!\mathrm{S}^{3}$ with $\mathrm{c}\left(\mathrm{H} ; \mathrm{T}^{1}\right)$ bounded in terms of $\mathrm{t}(\mathrm{T})$, thus to nish the proof of Theorems 1 and 2. Let $x_{0} 2 \mathrm{~T}^{0}$ be the vertex involved in the de nition of $\mathrm{B}^{+}()$. We construct H inductively as follows.
Choose $\left.{ }_{1} 2\right] 0 ; 1\left[\right.$ and choose $\mathrm{Hj}[0 ; 1]$ so that $\mathrm{H}_{0} \backslash \mathrm{~T}^{2}=;, \mathrm{H}_{1}=@ \mathrm{D}\left(\mathrm{x}_{0}\right) \quad$, and x_{0} is the only critical point of $\mathrm{Hj}[0 ; 1]$.
For i 1, let $\mathrm{Hj}\left[0 ;{ }_{\mathrm{i}}\right]$ be already constructed. Our induction hypothesis is that $H_{i} 2 S_{0} S$ for some component S_{0} of \sim, and moreover for any choice of S_{0} we have $H_{i} \quad B^{+}\left(S_{0}\right)$. Choose $\left.i+12\right]_{i} ; 1[$.

Assume that S_{0} is not of theform $\mathrm{S}_{0}=@(\mathrm{x})$ for a vertex $\times 2 \mathrm{~T}^{0} \mathrm{nf} \mathrm{x}_{0} \mathrm{~g}$. Then, let N_{i} bethe component of $\mathrm{S}^{3} \mathrm{n} \sim$ with $\mathrm{N}_{\mathrm{i}} \quad \mathrm{B}^{-}\left(\mathrm{S}_{0}\right)$ and $\mathrm{QN}_{\mathrm{i}}=\mathrm{S}_{0}\left[\mathrm{~S}_{1}\left[\quad\left[\mathrm{~S}_{\mathrm{k}}\right.\right.\right.$ for $S_{1} ;::: ; S_{k} \quad \sim$. If S_{0} is 1 \{normal, then let $\mathrm{S} 2 \mathrm{~S}_{1} \quad \mathrm{~S}_{\mathrm{k}}, \mathrm{S}^{0}$ and J be as in Lemmas 16 and 17. Then, we extend $\mathrm{Hj}[0 ; ~ i]$ to $\mathrm{Hj}\left[0 ;{ }_{i+1}\right]$ induced by the embeddingJ, relating S_{0} with S^{0}, and by the inverses of the elementary upper reductions, relating S^{0} with S . If S_{0} is not 1 \{normal, then let $\mathrm{S} 2 \mathrm{~S}_{1} \quad \mathrm{~S}_{\mathrm{k}}$ be as in Lemma 18. We extend $\mathrm{Hj}[0 ;$ i $]$ to $\mathrm{Hj}\left[0 ;{ }_{i+1}\right]$ along the elementary lower reductions, relating S_{0} with S . In either case, $\mathrm{H}_{\mathrm{i}+1} 2 \mathrm{~S}_{1} \quad \mathrm{~S}_{\mathrm{k}} \mathrm{S}$. The critical points of $\mathrm{Hj}\left[\mathrm{i} ;{ }_{i+1}\right]$ are contained in N_{i}, given by elementary reductions. Thus the number of these critical points is $\frac{1}{2}$ maxf $\mathrm{kS} \mathrm{S}_{0} \mathrm{k}$ kSkg $\frac{1}{2} k \sim k<2^{190 t(T)^{2}}$, by Construction 2. Since $H_{i+1} \quad B^{+}\left(S_{m}\right)$ for any $m=$ $1 ;::: ; k$, we can proceed with our induction.
After at most \#(\sim) steps, we have $\mathrm{H}_{i}=@\left(\mathrm{~T}^{0}{ }^{n f} \mathrm{x}_{0} \mathrm{~g}\right)$. Then, choose $\mathrm{Hj}[\mathrm{i} ; 1]$ so that $H_{1} \backslash T^{2}=$; and the set of its critical points is $T^{0} n f x_{0} g$. By Proposition 2 holds \#($\sim 10 \mathrm{t}(\mathrm{T})$. Thus nally

$$
\mathrm{c}\left(\mathrm{H} ; \mathrm{T}^{1}\right)<\#\left(\mathrm{~T}^{0}\right)+10 \mathrm{t}(\mathrm{~T}) 2^{190 \mathrm{t}(\mathrm{~T})^{2}}<2^{196 \mathrm{t}(\mathrm{~T})^{2}}:
$$

9 Proof of Propositions 3 and 4

Let M be a closed connected 3\{manifold with a triangulation T . We prove Proposition 3, that states that any impermeable surface in M is isotopic mod T^{1} to an almost 2 \{normal surface with exactly one octagon. The proof consists of the following three lemmas.

Lemma 19 Any impermeable surface in M is almost 2 \{normal, up to isotopy $\bmod \mathrm{T}^{1}$.

Proof Wegiveherejust an outline A completeproof can befound in [16]. Let S M bean impermeablesurface By de nition, it has upper and lower bonds with strings $1 ; 2$. By isotopies mod T^{1}, one obtains from S two surfaces $S_{1} ; S_{2} \quad M$, such that S_{i} has a return i $\quad T^{2}$ with $@_{i}=@_{i}$, for i $2 \mathrm{f} 1 ; 2 \mathrm{~g}$. A surface that has both upper and lower returns admits an independent pair of upper and lower compressing discs, thus is not impermeable. By consequence, under the isotopy mod T^{1} that relates S_{1} and S_{2} occurs a surface S^{0} that has no returns at all, thus is almost k \{normal for some natural number k.
If there is a boundary component of a component of $\mathrm{S}^{0} \mathrm{nT}^{2}$ and an edge e of T with \# ($\backslash \mathrm{e})>2$, then there is an independent pair of upper and lower compressing discs. Thus $\mathrm{k}=2$.

Lemma 20 Let $S M$ be an almost 2 \{normal impermeable surface. Then S contains at most one octagon.

Proof Two octagons in di erent tetrahedra of T give riseto a pair of independent upper and lower compressing discs for S. Two octagons in one tetrahedron of T give rise to a pair of nested upper and lower compressing discs for S . Both is a contradiction to the impermeability of S.

Lemma 21 Let $S M$ be an almost 2\{normal impermeable surface Then S contains at least one octagon.

Proof By hypothesis, S has both upper and lower bonds. Assumethat S does not contain octagons, i.e, it is almost 1 \{normal. We will obtain a contradiction to the impermeability of S by showing that S has a pair of independent or nested compressing discs.

According to Lemma 10, we can assume that S has a compressing disc D_{1} with string ${ }_{1}$ that is contained in a single closed tetrahedron t_{1}. Choose D_{1} innermost, i.e., $\quad 1 \backslash S=@_{1}$. Without assumption, let D_{1} be upper. Since S has no octagon by assumption, 1 connects two di erent components $1 ; 1$ of $S \backslash @_{1}$. Le D be a lower bond of S. Choose S, D_{1} and D so that, in addition, \#($\mathrm{D} \backslash \mathrm{T}^{2}$) is minimal.
Let C be the closure of an innermost component of DnT^{2}, which is a disc. There is a closed tetrahedron t_{2} of T and a closed 2\{simplex $2 @_{2}$ of T such that @ $@_{2}$ is a single component $\gamma \quad 2$. We have to consider three cases.
(1) Let γ be a circle, thus $@=\gamma$. There is a disc $D^{0} \quad 2$ with $@^{0}=\gamma$ and a ball $B \quad t_{2}$ with $\Subset B=C\left[D^{0}\right.$. We move $S[D$ away from B by an isotopy mod T^{1} with support in $U(B)$, and obtain a surface S with a lower bond D . As D is a bond, $\mathrm{S} \backslash \mathrm{D}^{0}$ consists of circles. Therefore the normal arcs of $S \backslash T^{2}$ are not changed under the isotopy, and the isotopy does not introduce returns, thus S is almost 1 \{normal. Since ${ }_{1} \backslash D^{0}={ }_{1} \backslash D^{0}=$; and $C \backslash S=;$, it follows $B \backslash @_{1}=$; Thus D_{1} is an upper compressing disc for S, and $\#\left(D \backslash T^{2}\right)<\#\left(D \backslash T^{2}\right)$ in contradiction to our choice
(2) Let γ be an arc with endpoints in a single component c of $\mathrm{S} \backslash$. By an isotopy mod T^{1} with support in $U(C)$ that moves C into $U(C) n t_{2}$, we obtain from S and D a surface S with a lower bond D. Since D is a bond, the isotopy does not introduce returns, thus S is almost 1 \{normal.

One component of $S \backslash t_{1}$ is isotopic mod T^{2} to the component of $S \backslash t_{1}$ that contains $@_{1} \backslash S$. Thus up to isotopy mod T^{2}, D_{1} is an upper compressing disc for S, and $\#\left(D \backslash T^{2}\right)<\#\left(D \backslash T^{2}\right)$ in contradiction to our choice
(3) Let γ be an arc with endpoints in two di erent components $c_{1} ; c_{2}$ of $S \backslash$. Assume that, say, c_{1} is a circle By an isotopy mod T^{1} with support in $U(C)$ that moves C into $U(C) n t_{2}$, we obtain from S and D a surface S with a lower bond D. Since D is a bond, the isotopy does not introduce returns, thus S is almost 1 \{normal. There is a disc D^{0} with $@ D^{0}=c_{1}$. Let K be the component of $S \backslash t_{1}$ that contains $@ D_{1} \backslash S$. One component of $S \backslash t_{1}$ is isotopic mod T^{2} either to K or, if $@ D^{0} \backslash K G$; , to $K\left[D^{0}\right.$. In either case, D_{1} is an upper compressing disc for S, up to isotopy mod T^{2}. But \#(D $\left.\backslash T^{2}\right)<\#\left(D \backslash T^{2}\right)$ in contradiction to our choice T hus, c_{1} and c_{2} are normal arcs.
Since S is almost 1 \{normal, C_{1}, c_{2} are contained in di erent components $2 ; 2$ of $S \backslash @_{2}$. Since D is a lower bond, $\left.@ C \backslash D_{1}\right) @ \backslash S$. Thereis a sub-arc 2 of an edge of t_{2} and a disc $D^{0} \quad$ with @D ${ }^{0} \quad{ }_{2}\left[\gamma\left[{ }_{2}\left[\quad 2\right.\right.\right.$ and $\quad 2 \backslash S=@_{2}$. Thedisc $D_{2}=C\left[D^{0} \quad t_{2}\right.$ is a lower compressing disc for S with string 2 , and $\left.@ D_{1} \backslash D_{2}\right) \quad\left(D_{2} \backslash S\right.$. At least one component of $\mathrm{C}_{1} \mathrm{n}\left({ }_{1}\left[{ }_{1}\right)\right.$ is a disc that is disjoint to D_{2}. Let D_{m} bethe closure of a copy of such a disc in the interior of t_{1}, with $@_{m} \quad S$. By construction, $D_{1} \backslash D_{m}=@ D_{1} \backslash @ D_{m}$ is a single point and $D_{2} \backslash D_{m}=;$ Thus by Lemma $9, S$ has a pair of independent or nested upper and lower compressing discs and is therefore not impermeable.

Proof of Proposition 4 Let $S M$ be a connected 2 \{normal surface that splits M, and assume that exactly one component O of $\mathrm{SnT}{ }^{2}$ is an octagon. The octagon gives rise to upper and lower bonds of S.

Let $D_{1} ; D_{2}$ be any upper and lower compressing discs for S. We have to show that D_{1} and D_{2} are neither impermeable nor nested. It su ces to show that $@_{1} \backslash @_{2} 6 \mathrm{~T}^{1}$. To obtain a contradiction, assume that @ $\mathrm{D}_{1} \backslash \mathrm{D}_{2} \mathrm{~T}^{1}$. Choose $D_{1} ; D_{2}$ so that $\#\left(@ D_{1} n T^{2}\right)+\#\left(@_{2} \mathrm{nT}^{2}\right)$ is minimal.

Let t be a tetrahedron of T with a closed 2\{simplex and let be a component of $@_{1} \backslash \mathrm{t}$ (resp. $@_{2} \backslash \mathrm{t}$) such that @ is contained in a single component of $S \backslash$. Since S is 2 \{normal, there is a disc $D \quad S \backslash t$ and an arc $Y S \backslash$ with $@ D=[\gamma$. By choosing innermost in D, we can assumethat $D \backslash\left(@ D_{1}\left[\left(D_{2}\right)=\right.\right.$. An isotopy of $\left(D_{1} ;\left(D_{1}\right)\right.$ (resp. $\left(D_{2} ;\left(D_{2}\right)\right)$ in $(M ; S)$ with support in $U(D)$ that moves to $U(D)$ nt reduces $\#\left(@ D_{1} n T^{2}\right)$ (resp.
$\#\left(@_{2} \mathrm{nT}^{2}\right)$), leaving $@_{1} \backslash @_{2}$ unchanged. This is a contradiction to the minimality of $D_{1} ; D_{2}$.
For $\mathrm{i}=1 ; 2$, there are arcs $\mathrm{i} \quad @_{i} n T^{1}$ and $\gamma_{i} \quad D_{i} \backslash T^{2}$ such that $\quad i\left[\gamma_{i}\right.$ bounds a component of $\mathrm{D}_{\mathrm{i}} \mathrm{nT}^{2}$, by an innermost arc argument. Let t_{i} be the tetrahedron of T that contains i, and let $i @_{i}$ be the close 2 \{simplex that contains γ_{i}. We have seen above that $@_{i}$ is not contained in a single component of $S \backslash i$. Since S is 2 \{normal, i.e, has no tubes, it follows that i O. Since collars of 1_{1} in D_{1} and of 2 in D_{2} are in di erent components of tnO , it follows ${ }_{1} \backslash{ }_{2} \sigma^{\circ}$. Thus $@_{1} \backslash @_{2} 6 \mathrm{~T}^{1}$, which yields Proposition 4 .

References

[1] S Armentrout, K nots and shellable cell partitionings of S^{3}, Illinois J. Math. 38 (1994) $347\{365$
[2] G Burde, H Zieschang, Knots, De Gruyter studies in mathematics 5, De Gruyter (1985)
[3] R Ehrenborg, M Hachimori, Non-constructible complexes and the bridge index, preprint
[4] Furch, Zur Grundlegung der kombinatorischen Topologie, Abh. Math. Sem. Hamb. Univ. 3 (1924) $60\{88$
[5] D G abai, Foliations and the topology of 3 \{manifolds III, J. Di er. Geom. 26 (1987) 445\{503
[6] R E Goodrick, Non-simplicially collapsible triangulations of In, Proc. Camb. Phil. Soc. 64 (1968) 31 \{36
[7] M Hachimori, G Ziegler, Decompositions of simplicial balls and spheres with knots consisting of few edges, Math. Z. 235 (2000) 159\{171
[8] W H aken, Über das Homöomorphieproblem der 3\{Mannigfaltigkeiten I, Math. Z. 80 (1962) $89\{120$
[9] W H aken, Some results on surfaces in 3 \{manifolds, from: \Studies in Modern Topology", (P Hilton, editor) Math. Assoc. Amer. Stud. Math. 5, Prentice Hall (1968) $39\{98$
[10] J Hass, L C Lagarias, The number of Reidemester moves needed for unknotting, J. Amer. Math. Soc. 14 (2001) 399\{428
[11] Hemion, The Classi cation of Knots and 3\{Dimensional Spaces, Oxford University Press (1992)
[12] S K ing, The size of triangulations supporting a given link, preliminary version, arxi v: nath. GT/ 0007032: v2
[13] S King, How to make a triangulation of S^{3} polytopal, preprint (2000)
[14] H K neser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, J ahresber. Deut. Math. Ver. 38 (1929) 248\{260 .
[15] W B R Lickorish, Unshellable triangulations of spheres, European J. Combinatorics, 12 (1991) 527\{530
[16] SV Matveev, An algorithm for the recognition of $3\{$ spheres (according to Thompson), Mat. sb. 186 (1995) 69\{84, English translation in Sb. Math. 186 (1995)
[17] SV M atveev, On the recognition problem for Haken 3\{manifolds, Suppl. Rend. Circ. Mat. Palermo. 49 (1997) 131\{148
[18] A Mijatovic, Simplifying triangulations of S^{3}, preprint (2000)
[19] J H R ubinstein, Polyhedral minimal surfaces, Heegaard splittings and decision problems for 3\{dimensional manifolds, from: \Geometric Topology (Athens, GA. 1993)", Stud. Adv. Math. 2.1, Amer. Math. Soc. \& Intl. Press (1997) 1 \{20
[20] M Scharlemann, A Thompson, Thin position for 3-manifolds. from: \Geometric Topology" , AMS Contemporary Math. 164 (1992) 231-238
[21] A Schrijver, Theory of linear and integer programming, Wiley-Interscience, Chichester (1986)
[22] A Thompson, Thin position and the recognition problem for S^{3}, Mathematical Research Letters 1 (1994) 613\{630
[23] A Thompson, Algorithmic recognition of 3\{manifolds, Bull. Am. Math. Soc. 35 (1998) 57\{66

