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370 Simon A King

1 Introduction

In this paper, we prove the following result.

Theorem 1 Let L � S3 be a tame link with bridge number b(L). Let T
be a triangulation of S3 with n tetrahedra such that L is contained in the
1{skeleton of T . Then

n >
1
14

p
log2 b(L);

or equivalently

b(L) < 2196n2
:

The de�nition of the bridge number can be found, for instance, in [2]. So far as
is known to the author, Theorem 1 gives the �rst estimate for n in terms of L
that does not rely on additional geometric or combinatorial assumptions on T .
We show in [13] that the bound for b(L) in Theorem 1 can not be replaced by
a sub-exponential bound in n. More precisely, there is a constant c 2 R such
that for any i 2 N there is a triangulation Ti of S3 with � c � i tetrahedra,
containing a two-component link Li in its 1{skeleton with b(Li) > 2i−2 .

The relationship of geometric and combinatorial properties of a triangulation
of S3 with the knots in its 1{skeleton has been studied earlier, see [6], [15],
[1], [3], [7]. For any knot K � S3 there is a triangulation of S3 such that
K is formed by three edges, see [4]. Let T be a triangulation of S3 with n
tetrahedra and let K � S3 be a knot formed by a path of k edges. If T is
shellable (see [3]) or the dual cellular decomposition is shellable (see [1]), then
b(K) � 1

2k . If T is vertex decomposable then b(K) � 1
3k , see [3].

We reduce Theorem 1 to Theorem 2 below, for which we need some de�nitions.
Denote I = [0; 1]. Let M be a closed 3{manifold with a triangulation T . The
i{skeleton of T is denoted by T i . Let S be a surface and let H : S � I ! M
be an embedding, so that T 1 � H(S2 � I). A point x 2 T 1 is a critical point
of H if H� = H(S � �) is not transversal to T 1 in x, for some � 2 I . We call
H a T 1 {Morse embedding, if H is in general position with respect to T 1 ; we
give a more precise de�nition in Section 5. Denote by c(H;T 1) the number of
critical points of H .

Theorem 2 Let T be a triangulation of S3 with n tetrahedra. There is
a T 1{Morse embedding H : S2 � I ! S3 such that T 1 � H(S2 � I) and
c(H;T 1) < 2196n2

.

Geometry & Topology, Volume 5 (2001)



The size of triangulations supporting a given link 371

For a link L � T 1 , it is easy to see that b(L) � 1
2 minHfc(H;T 1)g, where

the minimum is taken over all T 1{Morse embeddings H : S2 � I ! S3 with
L � H(S2 � I). Thus Theorem 1 is a corollary of Theorem 2.

Our proof of Theorem 2 is based on the theory of almost 2{normal surfaces.
Kneser [14] introduced 1{normal surfaces in his study of connected sums of
3{manifolds. The theory of 1{normal surfaces was further developed by Haken
(see [8], [9]). It led to a classi�cation algorithm for knots and for su�ciently
large 3{manifolds, see for instance [11], [17]. The more general notion of almost
2{normal surfaces is due to Rubinstein [19]. With this concept, Rubinstein and
Thompson found a recognition algorithm for S3 , see [19], [22], [16]. Based on
the results discussed in a preliminary version of this paper [12], the author [13]
and Mijatovi�c [18] independently obtained a recognition algorithm for S3 using
local transformations of triangulations.

We outline here the proof of Theorem 2. Let T be a triangulation of S3 with
n tetrahedra. If S � S3 is an embedded surface and S \ T 1 is �nite, then
set kSk = card(S \ T 1). Let S1; : : : ; Sk � S3 be surfaces. A surface that is
obtained by joining S1; : : : ; Sk with some small tubes in M nT 1 is called a tube
sum of S1; : : : ; Sk .

Based on the Rubinstein{Thompson algorithm, we construct a system ~� � S3

of pairwise disjoint 2{normal 2{spheres such that k~�k is bounded in terms of
n and any 1{normal sphere in S3 n ~� is parallel to a connected component of
~�. The bound for k~�k can be seen as part of a complexity analysis for the
Rubinstein{Thompson algorithm and relies on results on integer programming.

A T 1{Morse embedding H then is constructed \piecewise" in the connected
components of S3 n ~�, which means the following. There are numbers 0 < �1 <
� � � < �m < 1 such that:

(1) kH0k = kH1k = 0.
(2) There is one critical value of Hj[0; �1], corresponding to a vertex x0 2 T 0 .

The set of critical points of Hj[�m; 1] is T 0 n fx0g.
(3) For any i = 1; : : : ;m, the sphere H�i is a tube sum of components of ~�.
(4) The critical points of Hj[�i; �i+1] are contained in a single connected com-

ponent Ni of S3 n ~�.
(5) The function � 7! kH�k is monotone in any interval [�i; �i+1], for i =

1; : : : ;m− 1.

This is depicted in Figure 1, where the components of ~� are dotted. The
components Ni run over all components of S3 n ~� that are not regular neigh-
bourhoods of vertices of T . Thus an estimate for m is obtained by an estimate
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Figure 1: About the construction of H

for the number of components of ~�. By monotonicity of kH�k, the number of
critical points in Ni is bounded by 1

2 k@Nik � 1
2 k~�k. This together with the

bound for m yields the claimed estimate for c(H;T 1).

The main di�culty in constructing H is to assure property (5). For this, we
introduce the notions of upper and lower reductions. If S0 is an upper (resp.
lower) reduction of a surfaces S � S3 , then S is isotopic to S0 such that
k � k is monotonely non-increasing under the isotopy. Let N be a connected
component of S3 n ~� with @N = S0 [ S1 [ � � � [ Sk . We show that there is
a tube sum S of S1; : : : ; Sk such that either S is a lower reduction of S0 , or
S0 is an upper reduction of S . Finally, if H�i is a tube sum of S0 with some
surface S0 � S3 nN , then Hj[�i; �i+1] is induced by the lower reductions (resp.
the inverse of the upper reductions) relating S0 with S . Then H�i+1

is a tube
sum of S with S0 , assuring properties (3){(5).

The paper is organized as follows. In Section 2, we recall basic properties of
k{normal surfaces. It is well known that the set of 1{normal surfaces in a trian-
gulated 3{manifold is additively generated by so-called fundamental surfaces.
In Section 3, we generalize this to 2{normal surfaces contained in sub-manifolds
of triangulated 3{manifolds. The system ~� of 2{normal spheres is constructed
in Section 4, in the more general setting of closed orientable 3{manifolds. In
Section 5, we recall the notions of almost k{normal surfaces (see [16]) and of im-
permeable surfaces (see [22]), and introduce the new notion of split equivalence.
We discuss the close relationship of almost 2{normal surfaces and impermeable
surfaces. This relationship is well known (see [22], [16]), but the proofs are only
partly available. For completeness we give a proof in the last Section 9. In
Section 6 we exhibit some useful properties of almost 1{normal surfaces. The
notions of upper and lower reductions are introduced in Section 7. The proof
of Theorem 2 is �nished in Section 8.

In this paper, we denote by #(X) the number of connected components of a
topological space X . If X is a tame subset of a 3{manifold M , then U(X) �M

Geometry & Topology, Volume 5 (2001)



The size of triangulations supporting a given link 373

denotes a regular neighbourhood of X in M . For a triangulation T of M , the
number of its tetrahedra is denoted by t(T ).

Acknowledgements I would like to thank Professor Sergei V Matveev and
my scienti�c supervisor Professor Vladimir G Turaev for many interesting dis-
cussions and for helpful comments on this paper.

2 A survey of k{normal surfaces

Let M be a closed 3{manifold with a triangulation T . The number of its
tetrahedra is denoted by t(T ). An isotopy mod T n is an ambient isotopy of M
that �xes any simplex of T n set-wise. Some authors call an isotopy mod T 2 a
normal isotopy.

De�nition 1 Let � be a 2{simplex and let γ � � be a closed embedded arc
with γ \ @� = @γ , disjoint to the vertices of � . If γ connects two di�erent
edges of � then γ is called a normal arc. Otherwise, γ is called a return.

We denote the number of connected components of a topological space X by
#(X). Let � be a 2{simplex with edges e1; e2; e3 . If Γ � � is a system of
normal arcs, then Γ is determined by Γ \ @� , up to isotopy constant on @� ,
and e1 is connected with e2 by 1

2 (#(Γ \ e1) + #(Γ \ e2)−#(Γ \ e3)) arcs in
Γ.

De�nition 2 Let S � M be a closed embedded surface transversal to T 2 .
We call S pre-normal, if S n T 2 is a disjoint union of discs and S \ T 2 is a
union of normal arcs in the 2{simplices of T .

The set S \ T 1 determines the normal arcs of S \ T 2 . For any tetrahedron t
of T , the components of S \ t, being discs, are determined by S \ @t, up to
isotopy �xed on @t. Thus we obtain the following lemma.

Lemma 1 A pre-normal surface S � M is determined by S \ T 1 , up to
isotopy mod T 2 .

De�nition 3 Let S � M be a pre-normal surface and let k be a natural
number. If for any connected component C of S n T 2 and any edge e of T
holds #(@C \ e) � k , then S is k{normal.
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Figure 2: A triangle, a square and an octagon

We are mostly interested in 1{ and 2{normal surfaces. Let S be a 2{normal
surface and let t be a tetrahedron of T . Then the components of S \ t are
copies of triangles, squares and octagons, as in Figure 2. For any tetrahedron t,
there are 10 possible types of components of S \ t: four triangles (one for each
vertex of t), three squares (one for each pair of opposite edges of t), and three
octagons. Thus there are 10 t(T ) possible types of components of S n T 2 . Up
to isotopy mod T 2 , the set S n T 2 is described by the vector x(S) of 10 t(T )
non-negative integers that indicates the number of copies of the di�erent types
of discs occuring in S n T 2 . Note that the 1{normal surfaces are formed by
triangles and squares only.

We will describe the non-negative integer vectors that represent 2{normal sur-
faces. Let S �M be a 2{normal surface and let xt;1; : : : ; xt;6 be the components
of x(S) that correspond to the squares and octagons in some tetrahedron t. It
is impossible that in S\t occur two di�erent types of squares or octagons, since
two di�erent squares or octagons would yield a self-intersection of S . Thus all
but at most one of xt;1; : : : ; xt;6 vanish for any t. This property of x(S) is called
compatibility condition.

Let γ be a normal arc in a 2{simplex � of T and t1; t2 be the two tetrahedra
that meet at � . In both t1 and t2 there are one triangle, one square and two
octagons that contain a copy of γ in its boundary. Moreover, each of them
contains exactly one copy of γ . Let xti;1; : : : ; xti;4 be the components of x(S)
that correspond to these types of discs in ti , where i = 1; 2. Since @S = ;,
the number of components of S \ t1 containing a copy of γ equals the number
of components of S \ t2 containing a copy of γ . That is to say xt1;1 + � � � +
xt1;4 = xt2;1 + � � � + xt2;4 . Thus x(S) satis�es a system of linear Diophantine
equations, with one equation for each type of normal arcs. This property of
x(S) is called matching condition. The next claim states that the compatibility
and the matching conditions characterize the vectors that represent 2{normal
surfaces. A proof can be found in [11], Chapter 9.
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Proposition 1 Let x be a vector of 10 t(T ) non-negative integers that satis�es
both the compatibility and the matching conditions. Then there is a 2{normal
surface S �M with x(S) = x.

Two 2{normal surfaces S1; S2 are called compatible if the vector x(S1) + x(S2)
satis�es the compatibility condition. It always satis�es the matching condition.
Thus if S1 and S2 are compatible, then there is a 2{normal surface S with
x(S) = x(S1) + x(S2), and we denote S = S1 + S2 . Conversely, let S be
a 2{normal surface, and assume that there are non-negative integer vectors
x1; x2 that both satisfy the matching condition, with x(S) = x1 + x2 . Then
both x1 and x2 satisfy the compatibility condition. Thus there are 2{normal
surfaces S1; S2 with S = S1 + S2 . The Euler characteristic is additive, i.e.,
�(S1 + S2) = �(S1) + �(S2), see [11].

Remark 1 The addition of 2{normal surfaces extends to an addition on the
set of pre-normal surfaces as follows. If S1; S2 � M are pre-normal surfaces,
then S1 + S2 is the pre-normal surface that is determined by T 1 \ (S1 [ S2).
The addition yields a semi-group structure on the set of pre-normal surfaces.
This semi-group is isomorphic to the semi-group of integer points in a certain
rational convex cone that is associated to T . The Euler characteristic is not
additive with respect to the addition of pre-normal surfaces.

3 Fundamental surfaces

We use the notations of the previous section. The power of the theory of 2{
normal surfaces is based on the following two �niteness results.

Proposition 2 Let S � M be a 2{normal surface comprising more than
10 t(T ) two-sided connected components. Then two connected components of
S are isotopic mod T 2 .

This is proven in [9], Lemma 4, for 1{normal surfaces. The proof easily extends
to 2{normal surfaces.

Theorem 3 Let N � M n U(T 0) be a sub{3{manifold whose boundary is a
1{normal surface. There is a system F1; : : : ; Fq � N of 2{normal surfaces such
that

kFik < k@Nk � 218 t(T )

for i = 1; : : : ; q , and any 2{normal surface F � N can be written as a sum
F =

Pq
i=1 kiFi with non-negative integers k1; : : : ; kq .
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The surfaces F1; : : : ; Fq are called fundamental. Theorem 3 is a generalization
of a result of [10] that concerns the case N = M n U(T 0).

The rest of this section is devoted to the proof of Theorem 3. The idea is to
de�ne a system of linear Diophantine equations (matching equations) whose
non-negative solutions correspond to 2{normal surfaces in N . The fundamen-
tal surfaces F1; : : : ; Fq correspond to the Hilbert base vectors of the equation
system, and the bound for kFik is a consequence of estimates for the norm
of Hilbert base vectors. Note that in an earlier version of this paper [12], we
proved Theorem 3 in essentially the same way, but using handle decompositions
of 3{manifolds rather than triangulations.

De�nition 4 A region of N is a component R of N\t, for a closed tetrahedron
t of T . If @R \ @N consists of two copies of one normal triangle or normal
square then R is a parallelity region.

De�nition 5 The class of a normal triangle, square or octagon in N is its
equivalence class with respect to isotopies mod T 2 with support in U(N).

Let t be a closed tetrahedron of T , and let R � t be a region of N . One
veri�es that if R is not a parallelity region then @R\@N either consists of four
normal triangles (\type I") or of two normal triangles and one normal square
(\type II"). If R is of type I, then R is isotopic mod T 2 to t n U(T 0), and
any other region of N in t is a parallelity region. As in the previous section,
R contains four classes of normal triangles, three classes of normal squares and
three classes of normal octagons. If R is of type II, then t contains at most one
other region of N that is not a parallelity region, that is then also of type II. A
normal square or octagon in t that is not isotopic mod T 2 to a component of
@R \ @N intersects @R. Thus R contains two classes of normal triangles and
one class of normal squares.

Let m(N) be the number of classes of normal triangles, squares and octagons
in regions of N of types I and II. If N has k regions of type I, then N has
� 2(t(T ) − k) regions of type II, thus m(N) � 10k + 6(t(T ) − k) � 10 t(T ).
Let m(N) be the number of parallelity regions of N . It is easy to see that
m(N) � 1

2 #(@N n T 2) � 1
6 k@Nk � t(T ).

Any 2{normal surface F � N is determined up to isotopy mod T 2 with support
in U(N) by the vector xN (F ) of m(N)+m(N) non-negative integers that count
the number of components of F n T 2 in each class of normal triangles, squares
and octagons. Let γ1; γ2 � T 2 be normal arcs, and let R1; R2 be two regions
of N with γ1 � @R1 and γ2 � @R2 . For i = 1; 2, let xi;1; : : : ; xi;mi be the
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components of xN (F ) that correspond to classes of normal triangles, squares
and octagons in Ri that contain γi in its boundary. If x1;1 + � � �+x1;m1 = x2;1 +
� � � + x2;m2 then we say that xN (F ) satis�es the matching equation associated
to (γ1; R1; γ2; R2).

For i = 1; 2, Ri contains one class of normal triangles that contain a copy of
γi in its boundary. If Ri is not a parallelity region, then Ri contains one class
of normal squares that contain a copy of γi in its boundary. If Ki is of type I,
then Ki additionally contains two classes of normal octagons containing a copy
of γi in its boundary. Thus if Ri is a parallelity region then mi = 1, if it is of
type I then mi = 4, and if it is of type II then mi = 2.

For any 2{normal surface F � N , let xN (F ) 2 Zm(N)
�0 be the vector that col-

lects the components of xN (F ) corresponding to the classes of normal triangles,
squares and octagons in regions of N of types I and II. As in the previous
section, the vector xN (F ) (resp. xN (F )) satis�es a compatibility condition, i.e.,
for any region R of N vanish all but at most one components of xN (F ) (resp.
xN (F )) corresponding to classes of squares and octagons in R.

Lemma 2 Suppose that any component of N contains a region that is not
a parallelity region. There is a system of matching equations concerning only

regions of N of types I and II, such that a vector x 2 Zm(N)
�0 satis�es these

equations and the compatibility condition if and only if there is a 2{normal
surface F � N with xN (F ) = x. The surface F is determined by xN (F ), up to
isotopy in N mod T 2 .

Proof Let γ � N \ T 2 be a normal arc. Let R1; R2 be the two regions of N
that contain γ . Let F � N be a 2{normal surface. Since @F = ;, the number
of components of F \R1 containing γ and the number of components of F \R2

containing γ coincide. Thus xN (F ) satis�es the matching equation associated
to (γ;R1; γ;R2). We refer to these equations as N {matching equations. We will
transform the system of N {matching equations by eliminating the components
of xN (F ) that do not belong to xN (F ).

Let γ1; γ2 � T 2 be normal arcs, and let R1; R2 be two di�erent regions of N
with γ1 � @R1 and γ2 � @R2 . Assume that R1 is a parallelity region of N .
Then m1 = 1, thus the matching equation associated to (γ1; R1; γ2; R2) is of
the form x1;1 = x2;1 + � � � + x2;m2 . Hence we can eliminate x1;1 in the N {
matching equations. For any region R3 of N and any normal arc γ3 � @R3 ,
the elimination transforms the matching equation associated to (γ1; R1; γ3; R3)
into the matching equation associated to (γ2; R2; γ3; R3). We iterate the elim-
ination process. Since any component of N contains a region that is not a
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parallelity region, we eventually transform the system of N {matching equa-
tions to a system A of matching equations that concern only regions of N of
types I and II.

Let x 2 Zm(N)
�0 be a solution of A � x = 0. By the elimination process, there is a

unique extension of x to a solution x of the N {matching equations. If x satis�es
the compatibility condition then so does x, since a parallelity region contains
at most one class of normal squares. Now the lemma follows by Proposition 1,
that is proven in [11].

Proof of Theorem 3 It is easy to verify that if R is a parallelity region
then there is only one class of 2{normal pieces in R. If a component N1 of
N is a union of parallelity regions, then N1 is a regular neighbourhood of a
1{normal surface F1 � N1 , that has a connected non-empty intersection with
each region of N1 . Any pre-normal surface in N1 is a multiple of F1 (thus, is
1-normal), see [8]. We have kF1k = 1

2 k@N1k. Thus by now we can suppose
that any component of N contains a region that is not a parallelity region.

By Lemma 2, the x{vectors of 2{normal surfaces in N satisfy a system of linear
equations A �x = 0. By the following well known result on Integer Programming
(see [21]), the non-negative integer solutions of such a system are additively
generated by a �nite set of solutions.

Lemma 3 Let A = (aij) be an integer (n�m){matrix. Set

K =

0@ max
i=1;:::;n

mX
j=1

a2
ij

1A1=2

:

There is a set fx1; : : : xpg of non-negative integer vectors such that A � xi = 0
for any i = 1; : : : ; p, the components of xi are bounded from above by mKm ,
and any non-negative integer solution x of A � x = 0 can be written as a sum
x =

P
kixi with non-negative integers k1; : : : ; kp .

The set fx1; : : : xpg is called Hilbert base for A, if p is minimal.

As in the previous section, if F � N is a 2{normal surface and xN (F ) is a
sum of two non-negative integer solutions of A � x = 0 then there are 2{normal
surfaces F 0; F 00 � N with F = F 0 + F 00 . Thus the surfaces F1; : : : ; Fq � N
that correspond to Hilbert base vectors satisfying the compatibility condition
additively generate the set of all 2{normal surfaces in N .
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It remains to bound kFik, for i = 1; : : : ; q . Since Fi is 2{normal and any
edge of T is of degree � 3, we have kFik � 8

3 #(Fi n T 2). By the elimination
process in the proof of Lemma 2, any component of xN (Fi) that corresponds
to a parallelity region of N is a sum of at most four components of xN (Fi). By
the bound for the components of xN (Fi) in Lemma 3 (with m = m(N) and
K2 = 8) and our bounds for m(N) and m(N), we obtain

kFik �
8
3
� (m(N) + 4m(N)) �

�
m(N) � 2 3

2
m(N)

�
� 8

3
�
�

10 t(T ) +
2
3
k@Nk t(T )

�
� 10 t(T ) � 215 t(T )

< (300 + 20 k@Nk) � t(T )2 � 215 t(T ):

Using t(T ) � 5 and k@Nk > 0, we obtain kFik < k@Nk � 218 t(T ) .

4 Maximal systems of 1{normal spheres

Let T be a triangulation of a closed orientable 3{manifold M . By Proposition 2,
there is a system � �M of � 10 t(T ) pairwise disjoint 1{normal spheres, such
that any 1{normal sphere in M n � is isotopic mod T 2 to a component of
�. We call such a system maximal. It is not obvious how to construct �, in
particular how to estimate k�k in terms of t(T ). This section is devoted to a
solution of this problem.

Construction 1 Set �1 = @U(T 0) and N1 = M nU(T 0). Let i � 1. If there
is a 1{normal fundamental projective plane Pi � Ni then set �i+1 = �i [ 2Pi
and Ni+1 = Ni n U(Pi). Otherwise, if there is a 1{normal fundamental sphere
Si � Ni that is not isotopic mod T 2 to a component of �i , then set �i+1 =
�i [ Si and Ni+1 = Ni n U(Si). Otherwise, set � = �i .

Since M is orientable, a projective plane Pi is one-sided and 2Pi is a sphere.
By Proposition 2 and since embedded spheres are two-sided in M , the iteration
stops for some i < 10 t(T ).

Lemma 4 k�k < 2185 t(T )2
.

Proof In Construction 1, we have

k�i+1k < k�ik+ 2k�ik � 218 t(T )

< k�ik � 218 t(T )+2
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by Theorem 3 . The iteration stops after < 10 t(T ) steps, thus

k�k < k�1k � 2180 t(T )2+20 t(T ) � k�1k � 2184 t(T )2
;

using t(T ) � 5. Since k@U(T 0)k equals twice the number of edges of T , we
have k�1k � 4 t(T ), and the lemma follows.

Lemma 5 � is maximal.

Proof It is to show that any 1{normal sphere S �M n U(�) is isotopic mod
T 2 to a component of �. Let N be the component of MnU(�) that contains S .
If N contains a 1{normal fundamental projective plane P , then N = U(P ) by
Construction 1. Thus S = 2P = @N , which is isotopic mod T 2 to a component
of �. Hence we can assume that N does not contain a 1{normal fundamental
projective plane.

We express S as a sum
Pq

i=1 kiFi of fundamental surfaces in N . Since �(S) = 2
and the Euler characteristic is additive, one of the fundamental surfaces in the
sum, say, F1 with k1 > 0, has positive Euler characteristic. It is not a projective
plane by the preceding paragraph, thus it is a sphere. By construction of �,
the sphere F1 is isotopic mod T 2 to a component of �, thus it is parallel to a
component of @N . Hence F1 is disjoint to any 1{normal surface in N , up to
isotopy mod T 2 . Thus S is the disjoint union of k1F1 and

Pq
i=2 kiFi . Since S

is connected, it follows S = F1 . Thus S is isotopic mod T 2 to a component of
�.

We will extend � to a system ~� of 2{normal spheres. To de�ne ~�, we need a
lemma about 2{normal spheres in the complement of �.

Lemma 6 Let N be a component of M n U(�). Assume that there is a
2{normal sphere in N with exactly one octagon. Then there is a 2{normal
fundamental sphere F � N with exactly one octagon and kFk < 2189 t(T )2

.

Proof Let S � N be a 2{normal sphere with exactly one octagon. If N
contains a 1{normal fundamental projective plane P , then N = U(P ) by Con-
struction 1, and any pre-normal surface in N is a multiple of P , i.e., is 1{normal.
Thus since S � N is not 1{normal, there is no 1{normal fundamental projective
plane in N .

We write S as a sum of 2{normal fundamental surfaces in N . Since S has
exactly one octagon, exactly one summand is not 1{normal. Since any projec-
tive plane in the sum is not 1{normal by the preceding paragraph, at most one
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summand is a projective plane. Since �(S) = 2 and the Euler characteristic is
additive, it follows that one of the fundamental surfaces in the sum is a sphere
F .

Assume that F is 1{normal, i.e., S 6= F . The construction of � implies that F
is isotopic mod T 2 to a component of @N . Thus it is disjoint to any 2{normal
surface in N . Therefore S is a disjoint union of a multiple of F and of a
2{normal surface with exactly one octagon, which is a contradiction since S is
connected. Hence F contains the octagon of S . We have kFk < k�k � 218 t(T )

by Theorem 3. The claim follows with Lemma 4 and t(T ) � 5.

The preceding lemma assures that the following construction works.

Construction 2 For any connected component N of M nU(�) that contains
a 2{normal sphere with exactly one octagon, choose a 2{normal sphere FN � N
with exactly one octagon and kFk < 2189 t(T )2

. Set

~� = � [
[
N

FN :

Since #(~�) � 10 t(T ) by Proposition 2, it follows k~�k < 10 t(T ) � 2189 t(T )2
<

2190 t(T )2
.

5 Almost k{normal surfaces and split equivalence

We shall need a generalization of the notion of k{normal surfaces. Let M be a
closed connected orientable 3{manifold with a triangulation T .

De�nition 6 A closed embedded surface S �M transversal to T 2 is almost
k{normal, if

(1) S \ T 2 is a union of normal arcs and of circles in T 2 n T 1 , and

(2) for any tetrahedron t of T , any edge e of t and any component � of
S \ @t holds #(� \ e) � k .

Our de�nition is similar to Matveev’s one in [16]. Note that there is a related
but di�erent de�nition of \almost normal" surfaces due to Rubinstein [19]. Any
surface in M disjoint to T 1 is almost 1{normal. Any almost k{normal surface
that meets T 1 can be seen as a k{normal surface with several disjoint small
tubes attached in M n T 1 , see [16]. The tubes can be nested. Of course there

Geometry & Topology, Volume 5 (2001)



382 Simon A King

are many ways to add tubes to a k{normal surface. We shall develop tools to
deal with this ambiguity.

Let S � M be an almost k{normal surface. By de�nition, the connected
components of S \ T 2 that meet T 1 are formed by normal arcs. Thus these
components de�ne a pre-normal surface S� , that is obviously k{normal. It
is determined by S \ T 1 , according to Lemma 1. A disc D � M n T 1 with
@D � S is called a splitting disc for S . One obtains S� by splitting S along
splitting discs for S that are disjoint to T 2 , and isotopy mod T 1 .

If two almost k{normal surfaces S1; S2 satisfy S�1 = S�2 , then S1 and S2 di�er
only by the choice of tubes. This gives rise to the following equivalence relation.

De�nition 7 Two embedded surfaces S1; S2 �M transversal to T 2 are split
equivalent if S1 \ T 1 = S2 \ T 1 (up to isotopy mod T 2 ).

If two almost k{normal surfaces S1; S2 � M are split equivalent, then S�1 =
S�2 , up to isotopy mod T 2 . In particular, two k{normal surfaces are split
equivalent if and only if they are isotopic mod T 2 .

De�nition 8 If S �M is an almost k{normal surface and S� is the disjoint
union of k{normal surfaces S1; : : : ; Sn , then we call S a tube sum of S1; : : : ; Sn .
We denote the set of all tube sums of S1; : : : ; Sn by S1 � � � � � Sn .

De�nition 9 Let S = S1 [ � � � [ Sn �M be a surface transversal to T 2 with
n connected components, and let Γ � M n T 1 be a system of disjoint simple
arcs with Γ \ S = @Γ. For any arc γ in Γ, one component of @U(γ) n S is an
annulus Aγ . The surface

SΓ = (S n U(Γ)) [
[
γ�Γ

Aγ

is called the tube sum of S1; : : : ; Sn along Γ.

If S1; : : : ; Sn are k{normal, then SΓ 2 S1 � � � � � Sn .

We recall the concept of impermeable surfaces, that is central in the study of
almost 2{normal surfaces (see [22],[16]). Fix a vertex x0 2 T 0 . Let S �M be
a connected embedded surface transversal to T . If S splits M into two pieces,
then let B+(S) denote the closure of the component of M nS that contains x0 ,
and let B−(S) denote the closure of the other component. We do not include
x0 in the notation \B+(S)", since in our applications the choice of x0 plays no
essential role.
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De�nition 10 Let S � M be a connected embedded surface transversal to
T 2 . Let � � T 1 n T 0 and � � S be embedded arcs with @� = @� . A closed
embedded disc D � M is a compressing disc for S with string � and base � ,
if @D = � [ � and D \ T 1 = �. If, moreover, D \ S = � , then we call D a
bond of S .

Let S � M be a connected embedded surface that splits M and let D be a
compressing disc for S with string �. If the germ of � in @� is contained in
B+(S) (resp. B−(S)), then D is upper (resp. lower). Let D1;D2 be upper and
lower compressing discs for S with strings �1; �2 . If D1 � D2 or D2 � D1 ,
then D1 and D2 are nested. If D1 \ D2 � @�1 \ @�2 , then D1 and D2 are
independent from each other.

Upper and lower compressing discs that are independent from each other meet
in at most one point.

De�nition 11 Let S �M be a connected embedded surface that is transver-
sal to T 2 and splits M . If S has both upper and lower bonds, but no pair of
nested or independent upper and lower compressing discs, then S is imperme-
able.

Note that the impermeability of S does not change under an isotopy of S
mod T 1 . The next two claims state a close relationship between impermeable
surfaces and (almost) 2{normal surfaces. By an octagon of an almost 2{normal
surface S �M in a tetrahedron t, we mean a circle in S \ @t formed by eight
normal arcs. This corresponds to an octagon of S� in the sense of Figure 2.

Proposition 3 Any impermeable surface in M is isotopic mod T 1 to an al-
most 2{normal surface with exactly one octagon.

Proposition 4 A connected 2{normal surface that splits M and contains ex-
actly one octagon is impermeable.

We shall need these statements later. As the author found only parts of the
proofs in the literature (see [22],[16]), he includes proofs in Section 9.

We end this section with the de�nition of T 1{Morse embeddings and with the
notion of thin position. Let S be a closed 2{manifold and let H : S � I ! M
be a tame embedding. For � 2 I , set H� = H(S � �).

De�nition 12 An element � 2 I is a critical parameter of H and a point
x 2 H� is a critical point of H with respect to T 1 , if x is a vertex of T or x
is a point of tangency of H� to T 1 .
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De�nition 13 We call H a T 1 {Morse embedding, if it has �nitely many criti-
cal parameters, to any critical parameter belongs exactly one critical point, and
for any critical point x 2 T 1 n T 0 corresponding to a critical parameter � , one
component of U(x) nH� is disjoint to T 1 . The number of critical points with
respect to T 1 of a T 1{Morse embedding H is denoted by c(H;T 1).

The last condition in the de�nition of T 1 {Morse embeddings means that any
critical point of H is a vertex of T or a local maximum resp. minimum of an
edge of T .

De�nition 14 Let F be a closed surface, let J : F � I !M be a T 1{Morse
embedding, and let �1; : : : ; �r 2 I be the critical parameters of J with respect
to T 1 . The complexity �(J) of J is de�ned as

�(J) = #

 
T 1 n

 
r[
i=1

J�i

!!
:

If �(J) is minimal among all T 1{Morse embeddings with the property T 1 �
J(F � I), then J is said to be in thin position with respect to T 1 . This
notion was introduced for foliations of 3-manifolds by Gabai [5], was applied by
Thompson [22] for her recognition algorithm of S3 , and was also used in the
study of Heegaard surfaces by Scharlemann and Thompson [20].

If J(F � �) splits M and has a pair of nested or independent upper and lower
compressing discs D1;D2 , then an isotopy of J along D1 [D2 decreases �(J),
see [16], [22]. We obtain the following claim.

Lemma 7 Let J : F � I ! M be a T 1{Morse embedding in thin position
and let � 2 I be a non-critical parameter of J . If J(F � �) has both upper and
lower bonds, then J(F � �) is impermeable.

6 Compressing and splitting discs

Let M be a closed connected 3{manifold with a triangulation T . In the lemmas
that we prove in this section, we state technical conditions for the existence of
compressing and splitting discs for a surface.

Lemma 8 Let S1; : : : ; Sn � M be embedded surfaces transversal to T 2 and
let S be the tube sum of S1; : : : ; Sn along a system Γ �M nT 1 of arcs. Assume
that S splits M , and Γ � B−(S). If none of S1; : : : ; Sn has a lower compressing
disc, then S has no lower compressing disc.
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Proof Set � = S1 [ � � � [ Sn . Let D �M be a lower compressing disc for S .
One can assume that a collar of @D\S in D is contained in B−(S). Then, since
by hypothesis U(Γ)\� � B−(S), any point in @D\U(Γ)\� is endpoint of an
arc in D \ �. Therefore there is a sub-disc D0 � D , bounded by parts of @D
and of arcs in D\�, that is a lower compressing disc for one of S1; : : : ; Sn .

Lemma 9 Let S � M be a surface transversal to T 2 with upper and lower
compressing discs D1 , D2 such that @(D1 \ D2) � @D2 \ S . Assume either
that (@D1) \ D2 � T 1 or that there is a splitting disc Dm for S such that
D1 \Dm = @D1 \ @Dm = fxg is a single point and D2 \Dm = ;. Then S has
a pair of independent or nested upper and lower compressing discs.

Proof If D1 \D2 \ T 1 comprises more than a single point then the string of
D2 is contained in the string of D1 . Thus D1\S contains an arc di�erent from
the base of D1 , bounding in D1 a lower compressing disc, that forms with D1

a pair of nested upper and lower compressing discs for S .

Assume that a component γ of D1 \ D2 is a circle. Then there are discs
D01 � D1 and D02 � D2 with @D01 = @D02 = γ . Since @(D1 \ D2) � @D2 ,
D02 does not contain arcs of D1 \ D2 . Thus if we choose γ innermost in D2 ,
then D1 \D02 = γ . By cut-and-paste of D1 along D02 , one reduces the number
of circle components in D1 \D2 . Therefore we assume by now that D1 \D2

consists of isolated points in @D1 \ @D2 and of arcs that do not meet @D1 .

Assume that there is a point y 2 (@D1 \ @D2) n T 1 . Then there is an arc
γ � @D1 with @γ = fx; yg. Without assumption, let γ \ D2 = fyg. Let A
be the closure of the component of U(γ) n (D1 [ D2 [ Dm) whose boundary
contains arcs in both D2 and Dm . De�ne D�2 = ((D2 [Dm) n U(γ)) [A, that
is to say, D�2 is the connected sum of D2 and Dm along γ . By construction,
(D1 \D�2) n @D1 = (D1 \D2) n @D1 , and #(D1 \D�2) < #(D1 \D2). In that
way, we remove all points of intersection of (@D1 \D2) n T 1 . Thus by now we
can assume that D1 \ D2 consists of arcs in D1 that do not meet @D1 , and
possibly of a single point in T 1 .

Let γ � D1 \D2 be an outermost arc in D2 , that is to say, γ [ @D2 bounds a
disc D0 � D2 nT 1 with D1\D0 = γ . We move D1 away from D0 by an isotopy
mod T 1 and obtain a compressing disc D�1 for S with D�1\D2 = (D1\D2)nγ .
In that way, we remove all arcs of D1\D2 and �nally get a pair of independent
upper and lower compressing discs for S .

Lemma 10 Let S � M be an almost 1{normal surface. If S has a com-
pressing disc, then S is isotopic mod T 1 to an almost 1{normal surface with
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a compressing disc contained in a single tetrahedron. In particular, S is not
1{normal.

Proof Let D be a compressing disc for S . Choose S and D up to isotopy of
S[D mod T 1 so that S is almost 1{normal and #(D\T 2) is minimal. Choose
an innermost component γ � (D\T 2), which is possible as D\T 2 6= ;. There
is a closed tetrahedron t of T and a component C of D\ t that is a disc, such
that γ = C \ @t. Let � be the closed 2{simplex of T that contains γ . We
obtain three cases.

(1) Let γ be a circle, thus @C = γ . Then there is a disc D0 � � with
@D0 = γ and a ball B � t with @B = C [D0 . By an isotopy mod T 1

with support in U(B), we move S [D away from B , obtaining a surface
S� with a compressing disc D� . If S� is almost 1{normal, then we obtain
a contradiction to our choice as #(D� \ T 2) < #(D \ T 2).

(2) Let γ be an arc with endpoints in a single component c of S \ � . Since
S has no returns, γ is not the string of D . We apply to S[D an isotopy
mod T 1 with support in U(C) that moves C into U(C) n t, and obtain
a surface S� with a compressing disc D� . If S� is almost 1{normal, then
we obtain a contradiction to our choice as #(D� \ T 2) < #(D \ T 2).

(3) Let γ be an arc with endpoints in two di�erent components c1; c2 of S\� .
If both c1 and c2 are normal arcs, then set C 0 = C , c01 = c1 and c02 = c2 .
If, say, c1 is a circle, then we move S [ D away from C by an isotopy
mod T 1 with support in U(C). If the resulting surface S� is still almost
1{normal, then we obtain a contradiction to the choice of D .

In either case, S� is not almost 1-normal, i.e., the isotopy introduces a return.
Therefore there is a component of C n S with closure C 0 such that @C 0 \ S
connects two normal arcs c01; c

0
2 of S \ � .

Let γ0 = C 0 \ � . Up to isotopy of C 0 mod T 2 that is �xed on @C 0 \ S , we
assume that γ0 \ (c01 [ c02) � @γ0 . There is an arc � contained in an edge of �
with @� � c01 [ c02 . For i 2 f1; 2g, there is an arc �i � c0i that connects � \ c0i
with γ0\c0i . The circle �[�1[�2[γ0 bounds a closed disc D0 � � . Eventually
D0 [ C 0 is a compressing disc for S contained in a single tetrahedron.

Lemma 11 Let S � M be a 1{normal surface and let D be a splitting disc
for S . Then, (D;@D) is isotopic in (M n T 1; S n T 1) to a disc embedded in S .

Proof We choose D up to isotopy of (D;@D) in (M n T 1; S n T 1) so that
(#((@D) \ T 2);#(D \ T 2)) is minimal in lexicographic order. Assume that
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@D\T 2 6= ;. Then, there is a tetrahedron t, a 2{simplex � � @t, a component
K of S \ t, and a component γ of @D \K with @γ � � . Since S is 1{normal,
the closure D0 of one component of K n γ is a disc with @D0 � γ [ � . By
choosing γ innermost in D , we can assume that D0 \ @D = γ . An isotopy of
(D;@D) in (M n T 1; S n T 1) with support in U(D0), moving @D away from
D0 , reduces #(@D \ T 2), in contradiction to our choice. Thus @D \ T 2 = ;.

Now, assume that D \ T 2 6= ;. Then, there is a tetrahedron t, a 2{simplex
� � @t, and a disc component C of D \ t, such that C \ � = @C is a single
circle. There is a ball B � t bounded by C and a disc in � . An isotopy
of D with support in U(B), moving C away from t, reduces #(D \ T 2), in
contradiction to our choice. Thus D is contained in a single tetrahedron t.
Since S is 1{normal, @D bounds a disc D0 in S \ t. An isotopy with support
in t that is constant on @D moves D to D0 , which yields the lemma.

Corollary 1 Let S0 � M be a 1{normal sphere that splits M , and let S �
B−(S0) be an almost 1{normal sphere disjoint to S0 that is split equivalent to
S0 . Then there is a T 1{Morse embedding J : S2 � I ! M with J(S2 � I) =
B+(S) \B−(S0) and c(J;T 1) = 0.

Proof Let X be a graph isomorphic to S0\T 2 . Since S� is a copy of S0 , there
is an embedding ’ : X�I ! B+(S)\B−(S0) with ’(X0�I) = ’(X�I)\T 1 ,
’(X � 0) = S0 \T 2 = S0 \’(X � I), and ’(X � 1) is the union of the normal
arcs in S .

Let γ � S \ ’(X � I) be a circle that does not meet T 1 . Then, γ bounds a
disc D � ’(X � I) n T 1 . The two components of S n γ are discs. One of them
is disjoint to T 1 , since otherwise the disc D would give rise to a splitting disc
for S� = S0 that is not isotopic mod T 1 to a sub-disc of S0 , in contradiction
to the preceding lemma. Thus by cut-and-paste along sub-discs of S n T 1 , we
can assume that additionally S \ ’(X � I) = ’(X � 1).

Let γ � X be a circle so that ’(γ � 0) is contained in the boundary of a
tetrahedron of T . Since S0 is 1{normal, ’(γ � 0) bounds an open disc in
S0 nT 2 . By the same argument as in the preceding paragraph, ’(γ�1) bounds
an open disc in S n T 1 . One easily veri�es that these two discs together with
’(γ � I) bound a ball in B+(S) \ B−(S0) disjoint to T 1 . Hence (B+(S) \
B−(S0)) nU(’(X � I)) is a disjoint union of balls in M n T 1 , and this implies
the existence of J .

Geometry & Topology, Volume 5 (2001)



388 Simon A King

7 Reduction of surfaces

Let M be a closed connected orientable 3{manifold with a triangulation T . In
this section, we show how to get isotopies of embedded surfaces under which
the number of intersections with T 1 is monotonely non-increasing.

De�nition 15 Let S �M be a connected embedded surface that is transver-
sal to T 2 and splits M . Let D be an upper (resp. lower) bond of S , set
D1 = U(D) \ S , and set D2 = B+(S) \ @U(D) (resp. D2 = B−(S) \ @U(D)).
An elementary reduction along D transforms S to the surface (S nD1) [D2 .
Upper (resp. lower) reductions of S are the surfaces that are obtained from S
by a sequence of elementary reductions along upper (resp. lower) bonds.

If S0 is an upper or lower reduction of S , then kS0k � kSk with equality if and
only if S = S0 . Obviously S is isotopic to S0 , such that k � k is monotonely
non-increasing under the isotopy. If � � T 1 n T 0 is an arc with @� � S0 , then
also @� � S . It is easy to see that if S0 has a lower compressing disc and is an
upper reduction of S , then also S has a lower compressing disc.

We will construct surfaces with almost 1{normal upper or lower reductions. Let
N � M be a 3{dimensional sub{manifold, such that @N is pre-normal. Let
S � N be an embedded surface transversal to T 2 that splits M and has no
lower compressing disc.

Lemma 12 Suppose that there is a system Γ � N n T 1 of arcs such that
SΓ � N is connected, Γ � B−(SΓ), and @N \B+(SΓ) is 1{normal.

If, moreover, Γ and an upper reduction S0 � N of SΓ are chosen so that kS0k
is minimal, then S0 is almost 1{normal.

Proof By hypothesis, Γ � B−(SΓ), and S has no lower compressing discs.
Thus by Lemma 8, SΓ has no lower compressing discs. Therefore its upper
reduction S0 has no lower compressing discs.

Assume that S0 is not almost 1{normal. Then S0 has a compressing disc
D0 that is contained in a single tetrahedron t (see [16]), with string �0 and
base �0 . Since S0 has no lower compressing discs, D0 is upper and does not
contain proper compressing sub-discs. Thus �0 \ S0 = @�0 , i.e., all components
of (D0 \ S0) n �0 are circles. Since @N is pre-normal, @N n T 2 is a disjoint
union of discs. Therefore, since D0 is contained in a single tetrahedron, we
can assume by isotopy of D0 mod T 2 that D0 \ @N consists of arcs. We have
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�0 � B+(S0) � B+(SΓ). It follows @N \ �0 = ;, since otherwise a sub-disc of
D0 is a compressing disc for @N \B+(SΓ), which is impossible as @N \B+(SΓ)
is 1{normal by hypothesis. Thus @N \ �0 = ; and D0 � N .

D0
D0

�0

�0

S0

(S0)�

+

+

+

+
−

−
−

−
−

−

Figure 3: How to produce a bond

By an isotopy with support in U(D0) that is constant on �0 , we move (D0 \
S0) n �0 to U(D0) n t, and obtain from S0 a surface (S0)� � N that has D0 as
upper bond. This is shown in Figure 3, where B+(S0) is indicated by plus signs
and T 1 is bold. The isotopy moves Γ to a system of arcs Γ� � N and moves
SΓ to SΓ� with Γ� � B−(SΓ�). Since �0 � B+(S0), there is a homeomorphism
’ : B−(S0) ! B−((S0)�) that is constant on T 1 with ’(B−(SΓ)) = B−(SΓ�).
One obtains S0 by a sequence of elementary reductions along bonds of SΓ that
are contained in B−(S0). These bonds are carried by ’ to bonds of SΓ� . Thus
(S0)� is an upper reduction of SΓ� . Since (S0)� admits an elementary reduction
along its upper bond D0 , we obtain a contradiction to the minimality of kS0k.
Thus S0 is almost 1{normal.

Lemma 13 Let Γ and S0 be as in the previous lemma, and let G1; G2 be two
connected components of (S0)� that both split M . Then there is no arc in
(T 1 n T 0) \B+(S0) \N joining G1 with G2 .

Proof By the previous lemma, S0 is almost 1{normal. Recall that one obtains
(S0)� up to isotopy mod T 1 by splitting S0 along splitting discs that do not
meet T 2 . Assume that there is an arc � � (T 1 n T 0)\B+(S0)\N joining G1

with G2 . Let Y be the component of M n (G1 [G2) that contains �.

By hypothesis, SΓ is connected. Thus S0 is connected, and there is an arc
� � S0 with @� = @�. Since G1; G2 split M , the set Y is the only component
of M n(G1[G2) with boundary G1[G2 . Thus there is a component �0 of �\Y
connecting G1 with G2 . There is a splitting disc D � Y of S0 contained in a
single tetrahedron with �0 \D 6= ;. By choosing D innermost, we assume that
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� \D is a single point in @D . Since @N is pre-normal and D is contained in a
single tetrahedron, we can assume by isotopy of D mod T 2 that D \ @N = ;,
thus D � N .

Choose a disc D0 � U(� [ �) \ B+(S0) so that D0 \ T 1 = � and D0 \ S0 =
� n U(@D). Then D0 \ @N = ;, since U(� [ �) \ @N = ;. We split S0 along
D , pull the two components of (S0 \ @U(D)) n D along (@D0) n (� [ �), and
reglue. We obtain a surface (S0)� with D0 as an upper bond.

Since a small collar of @D in D is in B−(S0), there is a homeomorphism
’ : B−(S0)! B−((S0)�) that is constant on T 1 . Set Γ� = ’(Γ). Then ’(SΓ) =
SΓ� with Γ� � B−(SΓ�). As in the proof of the previous lemma, (S0)� is an
upper reduction of SΓ� , and (S0)� admits an elementary reduction along D0 .
This contradiction to the minimality of kS0k yields the lemma.

8 Proof of Theorem 2

Let T be a triangulation of S3 with a vertex x0 2 T 0 . Let � � S3 be a
maximal system of disjoint 1{normal spheres with k�k < 2185 t(T )2

, as given
by Construction 1. Construction 2 extends � to a system ~� � S3 of disjoint
2{normal spheres that are pairwise non-isotopic mod T 2 , such that

(1) any component of ~� has at most one octagon,

(2) any component of S3 n ~� has at most one boundary component that is
not 1{normal,

(3) if the boundary of a component N of S3 n ~� is 1{normal, then N does
not contain 2{normal spheres with exactly one octagon, and

(4) k~�k < 2190 t(T )2
.

Let N be a component of S3n ~� that is not a regular neighbourhood of a vertex
of T . Let S0 be the component of @N with N � B−(S0), and let S1; : : : ; Sk
be the other components of @N . Since � is maximal, any almost 1-normal
sphere in N is a tube sum of copies of S0; S1; : : : ; Sk .

Lemma 14 N \ T 0 = ;.

Proof If x 2 N \ T 0 , then the sphere @U(x) � N is 1{normal. It is not
isotopic mod T 1 to a component of @N , since N 6= U(x). This contradicts the
maximality of �.
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Lemma 15 If @N is 1{normal, then there is an arc in T 1 \N that connects
two di�erent components of @N n S0 .

Proof Let @N = S0 [ S1 [ � � � [ Sk be 1{normal. We �rst consider the case
where there is an almost 1{normal sphere S 2 S1 � � � � � Sk in N that has a
compressing disc D , with string � and base � . We choose D innermost, so
that � \ S = @�. In particular, � \ @N = @�. Assume that � 6� N . Since
@D n � � N , there is an arc �0 � D \ @N that connects the endpoints of
�. The sub-disc D0 � D bounded by � [ �0 is a compressing disc for the
1{normal surface @N , in contradiction to Lemma 10. By consequence, � � N .
Assume that @� is contained in a single component of @N nS0 , say, in S1 . By
Lemma 10, D is not a compressing disc for S1 , hence � 6� S1 . Thus there is a
closed line in S1 n� that separates @� on S1 , but not on S . This is impossible
as S is a sphere. We conclude that if S has a compressing disc, then there is
an arc � � T 1 \N that connects di�erent components of @N n S0 .

It remains to consider the case where no sphere in S1 � � � � � Sk contained in
N has a compressing disc. We will show the existence of an almost 2{normal
sphere in N with exactly one octagon, using the technique of thin position.
This contradicts property (3) of ~� (see the begin of this section), and therefore
�nishes the proof of the lemma. Let J : S2 � I ! B−(S0) be a T 1{Morse
embedding, such that

(1) J(S2 � 0) = S0 ,

(2) J(S2 � 1
2) 2 S1 � � � � � Sk (or kJ(S2 � 1

2)k = 0, in the case @N = S0 ),

(3) B−
(
J(S2 � 1)

�
\ T 1 = ;, and

(4) �(J) is minimal.

De�ne S = J(S2� 1
2 ). Assume that for some � 2 I there is a pair D1;D2 �M

of nested or independent upper and lower compressing discs for J� = J(S2��).
We show that we can assume D1;D2 � B−(S0). Since S0 is 1{normal, it has
no compressing discs by Lemma 10. Thus (D1 [ D2) \ S0 consists of circles.
Any such circle bounds a disc in S0 n T 1 by Lemma 11. By cut-and-paste of
D1[D2 , we obtain D1;D2 � B−(S0), as claimed. Now, one obtains from J an
embedding J 0 : S2� I ! B−(S0) with �(J 0) < �(J) by isotopy along D1[D2 ,
see [16], [22]. The embedding J 0 meets conditions (1) and (3) in the de�nition
of J . Since S 2 S1 � � � � � Sk has no compressing discs by assumption, S \Di

consists of circles. Thus S is split equivalent to J 0(S2 � 1
2). So J 0 meets also

condition (2), J 0(S2 � 1
2 ) 2 S1 � � � � � Sk , in contradiction to the choice of J .

This disproves the existence of D1;D2 . In conclusion, if J� has upper and lower
bonds, then it is impermeable.
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Let �max be the greatest critical parameter of J with respect to T 1 in the
interval

�
0; 1

2

�
. We have N \ T 0 = ; by Lemma 14. Hence the critical point

corresponding to �max is a point of tangency of J�max to some edge of T . By
assumption, S has no upper bonds, thus kSk < kJ�max−�k for su�ciently small
� > 0. Let �min 2 I be the smallest critical parameter of J with respect to T 1 .
By Lemma 10, S0 has no bonds, thus kS0k < kJ�min+�k. Therefore there are
consecutive critical parameters �1; �2 2

�
0; 1

2

�
such that

kJ�1−�k < kJ�1+�k > kJ�2+�k:
Thus J�1+� has both upper and lower bonds, and is therefore impermeable by
the preceding paragraph. One component of J��1+� is a 2{normal sphere in N
with exactly one octagon, by Proposition 3. The existence of that 2{normal
sphere is a contradiction to the properties of ~�, which proves the lemma.

We show that some tube sum S 2 S1 � � � � � Sk is isotopic to S0 such that k � k
is monotone under the isotopy. We consider three cases. In the �rst case, let
@N be 1{normal.

Lemma 16 If @N is 1{normal, then there is a sphere S 2 S1 � � � � � Sk in
N with an upper reduction S0 � N so that there is a T 1{Morse embedding
J : S2 � I ! S3 with J(S2 � I) = B+(S0) \B−(S0) and c(J;T 1) = 0.

Proof By Lemma 15, there is an arc � � T 1\N that connects two components
of @N nS0 , say, S1 with S2 . By Lemma 14, � is contained in an edge of T . By
Lemma 10, the 1{normal surfaces S1; : : : ; Sk have no lower compressing discs.
Let Γ � N be a system of k − 1 arcs, such that the tube sum S of S1; : : : ; Sk
along Γ is a sphere and an upper reduction S0 � N of S minimizes kS0k. We
have kS0k < kSk, since it is possible to choose Γ so that S has an upper bond
with string �. Since Γ � B−(S) and by Lemma 12, S0 is almost 1{normal.

By the maximality of �, it follows S0 2 n0S0 � � � � � nkSk with non-negative
integers n0; n1; : : : ; nk . Moreover, ni � 2 for i = 0; : : : ; k by Lemma 13. Since
S separates S0 from S1; : : : ; Sk , so does S0 . Thus any path connecting S0

with Sj for some j 2 f1; : : : ; kg intersects S0 in an odd number of points. So
alternatively n0 2 f0; 2g and ni = 1 for all i 2 f1; : : : ; kg, or n0 = 1 and
ni 2 f0; 2g for all i 2 f1; : : : ; kg. Since kS0k < kS�k, it follows n0 = 1 and
ni = 0 for i 2 f1; : : : ; kg, thus (S0)� = S0 . The existence of a T 1{Morse
embedding J with the claimed properties follows then by Corollary 1.

The second case is that S0 is 1{normal, and exactly one of S1; : : : ; Sk contains
exactly one octagon, say, S1 . The octagon gives rise to an upper bond D of S1
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contained in a single tetrahedron. Since @N nS1 is 1{normal, D � N . Thus an
elementary reduction of S1 along D transforms S1 to a sphere F � N . Since
S1 is impermeable by Proposition 4, F has no lower compressing disc (such a
disc would give rise to a lower compressing disc for S1 that is independent from
D).

Lemma 17 If @N nS0 is not 1{normal, then there is a sphere S 2 S1 � � � � �Sk
in N with an upper reduction S0 � N so that there is a T 1{Morse embedding
J : S2 � I ! S3 with J(S2 � I) = B+(S0) \B−(S0) and c(J;T 1) = 0.

Proof We apply the Lemma 12 to F; S2; : : : ; Sk , and together with the ele-
mentary reduction along D we obtain a sphere S 2 S1 � S2 � � � � � Sk with an
almost 1{normal upper reduction S0 � N . One concludes (S0)� = S0 and the
existence of J as in the proof of the previous lemma.

We come to the third and last case, namely S0 has exactly one octagon and
@N n S0 is 1{normal. The octagon gives rise to a lower bond D of S0 , that is
contained in N since @N n S0 is 1{normal. Thus an elementary reduction of
S0 along D yields a sphere F � N . Since S0 is impermeable by Proposition 4,
F has no upper compressing disc, similar to the previous case.

Lemma 18 If S0 is not 1{normal, then there is a lower reduction S0 2 S1 �
� � � � Sk of S0 , with S0 � N .

Proof We apply Lemma 12 with Γ = ; to lower reductions of F , which is
possible by symmetry. Thus, together with the elementary reduction along D ,
there is a lower reduction S0 2 n0S0 � � � � � nkSk of S0 , and n0; : : : ; nk � 2 by
Lemma 13. Since S0 � B−(F ) and S0 � B+(F ), it follows n0 = 0. Since
S0 separates @N \ B+(F ) from @N \ B−(F ), it follows n1; : : : ; nk odd, thus
n1 = � � � = nk = 1.

We are now ready to construct the T 1{Morse embedding H : S2 � I ! S3

with c(H;T 1) bounded in terms of t(T ), thus to �nish the proof of Theorems 1
and 2. Let x0 2 T 0 be the vertex involved in the de�nition of B+(�). We
construct H inductively as follows.

Choose �1 2 ]0; 1[ and choose Hj[0; �1] so that H0\T 2 = ;, H�1 = @U(x0) � ~�,
and x0 is the only critical point of Hj[0; �1].

For i � 1, let Hj[0; �i] be already constructed. Our induction hypothesis is
that H�i 2 S0 � S� for some component S0 of ~�, and moreover for any choice
of S0 we have H�i � B+(S0). Choose �i+1 2 ]�i; 1[.
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Assume that S0 is not of the form S0 = @U(x) for a vertex x 2 T 0nfx0g. Then,
let Ni be the component of S3n~� with Ni � B−(S0) and @Ni = S0[S1[� � �[Sk
for S1; : : : ; Sk � ~�. If S0 is 1{normal, then let S 2 S1 �� � � �Sk , S0 and J be as
in Lemmas 16 and 17. Then, we extend Hj[0; �i] to Hj[0; �i+1] induced by the
embedding J , relating S0 with S0 , and by the inverses of the elementary upper
reductions, relating S0 with S . If S0 is not 1{normal, then let S 2 S1 � � � � �Sk
be as in Lemma 18. We extend Hj[0; �i] to Hj[0; �i+1] along the elementary
lower reductions, relating S0 with S . In either case, H�i+1

2 S1 � � � � � Sk � S� .
The critical points of Hj[�i; �i+1] are contained in Ni , given by elementary
reductions. Thus the number of these critical points is � 1

2 maxfkS0k; kSkg �
1
2 k~�k < 2190 t(T )2

, by Construction 2. Since H�i+1
� B+(Sm) for any m =

1; : : : ; k , we can proceed with our induction.

After at most #(~�) steps, we have H��i = @U(T 0nfx0g). Then, choose Hj[�i; 1]
so that H1 \ T 2 = ; and the set of its critical points is T 0 n fx0g. By Proposi-
tion 2 holds #(~�) � 10 t(T ). Thus �nally

c(H;T 1) < #(T 0) + 10 t(T ) � 2190 t(T )2
< 2196 t(T )2

:

9 Proof of Propositions 3 and 4

Let M be a closed connected 3{manifold with a triangulation T . We prove
Proposition 3, that states that any impermeable surface in M is isotopic mod
T 1 to an almost 2{normal surface with exactly one octagon. The proof consists
of the following three lemmas.

Lemma 19 Any impermeable surface in M is almost 2{normal, up to isotopy
mod T 1 .

Proof We give here just an outline. A complete proof can be found in [16]. Let
S �M be an impermeable surface. By de�nition, it has upper and lower bonds
with strings �1; �2 . By isotopies mod T 1 , one obtains from S two surfaces
S1; S2 �M , such that Si has a return �i � T 2 with @�i = @�i , for i 2 f1; 2g.
A surface that has both upper and lower returns admits an independent pair of
upper and lower compressing discs, thus is not impermeable. By consequence,
under the isotopy mod T 1 that relates S1 and S2 occurs a surface S0 that has
no returns at all, thus is almost k{normal for some natural number k .

If there is a boundary component � of a component of S0 n T 2 and an edge e
of T with #(� \ e) > 2, then there is an independent pair of upper and lower
compressing discs. Thus k = 2.
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Lemma 20 Let S � M be an almost 2{normal impermeable surface. Then
S contains at most one octagon.

Proof Two octagons in di�erent tetrahedra of T give rise to a pair of indepen-
dent upper and lower compressing discs for S . Two octagons in one tetrahedron
of T give rise to a pair of nested upper and lower compressing discs for S . Both
is a contradiction to the impermeability of S .

Lemma 21 Let S � M be an almost 2{normal impermeable surface. Then
S contains at least one octagon.

Proof By hypothesis, S has both upper and lower bonds. Assume that S does
not contain octagons, i.e., it is almost 1{normal. We will obtain a contradiction
to the impermeability of S by showing that S has a pair of independent or
nested compressing discs.

According to Lemma 10, we can assume that S has a compressing disc D1

with string �1 that is contained in a single closed tetrahedron t1 . Choose D1

innermost, i.e., �1 \ S = @�1 . Without assumption, let D1 be upper. Since
S has no octagon by assumption, �1 connects two di�erent components �1; �1

of S \ @t1 . Let D be a lower bond of S . Choose S , D1 and D so that, in
addition, #(D \ T 2) is minimal.

Let C be the closure of an innermost component of D n T 2 , which is a disc.
There is a closed tetrahedron t2 of T and a closed 2{simplex �2 � @t2 of T
such that @C \ @t2 is a single component γ � �2 . We have to consider three
cases.

(1) Let γ be a circle, thus @C = γ . There is a disc D0 � �2 with @D0 = γ
and a ball B � t2 with @B = C [D0 . We move S [D away from B by
an isotopy mod T 1 with support in U(B), and obtain a surface S� with
a lower bond D� . As D is a bond, S \D0 consists of circles. Therefore
the normal arcs of S \ T 2 are not changed under the isotopy, and the
isotopy does not introduce returns, thus S� is almost 1{normal. Since
�1 \D0 = �1 \D0 = ; and C \ S = ;, it follows B \ @D1 = ;. Thus D1

is an upper compressing disc for S� , and #(D� \ T 2) < #(D \ T 2) in
contradiction to our choice.

(2) Let γ be an arc with endpoints in a single component c of S \ � . By an
isotopy mod T 1 with support in U(C) that moves C into U(C) n t2 , we
obtain from S and D a surface S� with a lower bond D� . Since D is a
bond, the isotopy does not introduce returns, thus S� is almost 1{normal.

Geometry & Topology, Volume 5 (2001)



396 Simon A King

One component of S� \ t1 is isotopic mod T 2 to the component of S \ t1
that contains @D1 \ S . Thus up to isotopy mod T 2 , D1 is an upper
compressing disc for S� , and #(D� \ T 2) < #(D \ T 2) in contradiction
to our choice.

(3) Let γ be an arc with endpoints in two di�erent components c1; c2 of
S \ � . Assume that, say, c1 is a circle. By an isotopy mod T 1 with
support in U(C) that moves C into U(C) n t2 , we obtain from S and
D a surface S� with a lower bond D� . Since D is a bond, the isotopy
does not introduce returns, thus S� is almost 1{normal. There is a disc
D0 � � with @D0 = c1 . Let K be the component of S \ t1 that contains
@D1 \ S . One component of S� \ t1 is isotopic mod T 2 either to K or,
if @D0 \ @K 6= ;, to K [D0 . In either case, D1 is an upper compressing
disc for S� , up to isotopy mod T 2 . But #(D� \ T 2) < #(D \ T 2) in
contradiction to our choice. Thus, c1 and c2 are normal arcs.

Since S is almost 1{normal, c1 , c2 are contained in di�erent components �2; �2

of S\@t2 . Since D is a lower bond, @(C\D1) � @C\S . There is a sub-arc �2

of an edge of t2 and a disc D0 � � with @D0 � �2[γ[�2[�2 and �2\S = @�2 .
The disc D2 = C[D0 � t2 is a lower compressing disc for S with string �2 , and
@(D1\D2) � @D2\S . At least one component of @t1 n(�1[�1) is a disc that is
disjoint to D2 . Let Dm be the closure of a copy of such a disc in the interior of
t1 , with @Dm � S . By construction, D1 \Dm = @D1 \ @Dm is a single point
and D2 \Dm = ;. Thus by Lemma 9, S has a pair of independent or nested
upper and lower compressing discs and is therefore not impermeable.

Proof of Proposition 4 Let S � M be a connected 2{normal surface that
splits M , and assume that exactly one component O of S n T 2 is an octagon.
The octagon gives rise to upper and lower bonds of S .

Let D1;D2 be any upper and lower compressing discs for S . We have to show
that D1 and D2 are neither impermeable nor nested. It su�ces to show that
@D1 \ @D2 6� T 1 . To obtain a contradiction, assume that @D1 \ @D2 � T 1 .
Choose D1;D2 so that #(@D1 n T 2) + #(@D2 n T 2) is minimal.

Let t be a tetrahedron of T with a closed 2{simplex � � @t, and let � be a
component of @D1 \ t (resp. @D2 \ t) such that @� is contained in a single
component of S \ � . Since S is 2{normal, there is a disc D � S \ t and an arc
γ � S\� with @D = �[γ . By choosing � innermost in D , we can assume that
D \ (@D1 [ @D2) = � . An isotopy of (D1; @D1) (resp. (D2; @D2)) in (M;S)
with support in U(D) that moves � to U(D) n t reduces #(@D1 n T 2) (resp.
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#(@D2 n T 2)), leaving @D1 \ @D2 unchanged. This is a contradiction to the
minimality of D1;D2 .

For i = 1; 2, there are arcs �i � @Di n T 1 and γi � Di \ T 2 such that �i [ γi
bounds a component of Di n T 2 , by an innermost arc argument. Let ti be the
tetrahedron of T that contains �i , and let �i � @ti be the close 2{simplex that
contains γi . We have seen above that @�i is not contained in a single component
of S \�i . Since S is 2{normal, i.e., has no tubes, it follows that �i � O . Since
collars of �1 in D1 and of �2 in D2 are in di�erent components of t n O , it
follows �1 \ �2 6= ;. Thus @D1 \ @D2 6� T 1 , which yields Proposition 4.
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