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Abstract
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on a four-manifold which is the product of a three-manifold with a circle. This
result provides further evidence in support of the following conjecture regarding
symplectic structures on such a four-manifold: if the product of a three-manifold
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over a circle, and up to a self-di�eomorphism of the four-manifold, the sym-
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1 Introduction and statement of results

Suppose M3 is a closed oriented 3{manifold. If M3 �bers over S1 , then the 4{
manifold X = S1�M3 has a symplectic structure canonical up to deformation
equivalence.

An interesting question motivated by Taubes’ fundamental research on sym-
plectic 4{manifolds [12] asks whether the converse is true: Does every symplec-
tic structure (up to deformation equivalence) on X = S1 �M3 come from a
�bration of M3 over S1 , in particular, is it true that M3 must be �bered?

In this paper we prove the following:

Theorem 1.1 Let M3 be a closed 3{manifold which contains no fake 3{cell.
If ! is a symplectic structure on the 4{manifold X = S1�M3 de�ned through
a Lefschetz �bration (with empty base locus), then:

(1) M3 is �bered, with a �bration p : M3 ! S1 .

(2) There is a self-di�eomorphism h : X ! X such that h�! is deformation
equivalent to the canonical symplectic structure on X associated to the
�bration p : M3 ! S1 .

Remarks (1) A 3{manifold could admit essentially di�erent �brations over
a circle (see eg [10]). The �bration p : M3 ! S1 in the theorem is speci�ed by
the Lefschetz �bration.

(2) The self-di�eomorphism h : X ! X is homotopic to the identity.

(3) R Gompf and A Stipsicz have shown [5] that for any 4{manifold with the
rational homology of S1 � S3 , any Lefschetz pencil or �bration (even allowing
singularities with the wrong orientation) must be a locally trivial torus �bration
over S2 , in particular, the manifold is S1 � L(p; 1) with the obvious �bration.

A stronger version of the theorem, in which we also classify symplectic Lefschetz
�brations on S1 �M3 , is given in section 4.

The proof of the theorem consists of two major steps. First, we show that any
symplectic Lefschetz �bration on X = S1 �M3 has no singular �bers, ie, it is
a locally trivial �bration. This result is the content of lemma 3.4 (Lemma on
Vanishing Cycles). Secondly, we show that every such �bration of X = S1�M3

is induced in a certain way from a �bration of M3 over a circle.

The essential ingredient in the proof of the Lemma on Vanishing Cycles is a
result of D Gabai, which says roughly that the minimal genus of an immersed
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surface representing a given homology class in a 3{manifold is equal to the
minimal genus of an embedded surface representing the same homology class.
This result is speci�c for dimension three and does not hold in dimension four.

This paper is organized as follows: Section 2 contains a brief review of some
background results. Section 3 is devoted to a preparatory material for the proof
of the main theorem, in particular, it contains the Lemma on Vanishing Cycles.
In section 4, the full version of the main theorem is stated and proved.

Acknowledgments The authors are grateful to John McCarthy for pointing
out an erroneous quotation of the Nielsen Representation Theorem in an early
version. The second author is indebted to Siddhartha Gadgil for numerous
discussions on 3{dimensional topology. The authors wish to thank the editors
and referees for their comments which have helped to improve the presentation
greatly. The �rst author is partially supported by an NSF grant.

2 Recollections

2.1 Lefschetz pencils and �brations

Let X be a closed, oriented, smooth 4{manifold. A Lefschetz pencil on X is
a smooth map P : X n B ! CP 1 de�ned on the complement of a �nite subset
B of X , called the base locus, such that each point in B has an orientation-
preserving coordinate chart in which P is given by the projectivization map
C2 n f0g ! CP 1 , and each critical point has an orientation-preserving chart on
which P (z1; z2) = z2

1 +z2
2 . Blowing up at each point of B , we obtain a Lefschetz

�bration on X#nCP 2 (n = #B) over CP 1 with �ber Ft = P−1(t)[B for each
t 2 CP 1 .

More generally, a Lefschetz �bration on a closed oriented smooth 4{manifold
X is a smooth map P : X ! B where B is a Riemann surface, such that each
critical point of P has an orientation-preserving chart on which P (z1; z2) =
z2

1 + z2
2 . We require that each �ber is connected and contains at most one

critical point. Every Lefschetz �bration can be changed to satisfy these two
conditions. A Lefschetz �bration is called symplectic if there is a symplectic
structure ! on X whose restriction to each regular �ber is non-degenerate.

In an orientation-preserving chart at a critical point x 2 X , the map P is
given by P (z1; z2) = z2

1 + z2
2 . Let t 2 R � C be a positive regular value. The

�ber Ft = P−1(t) contains a simple closed loop γ which is the intersection of
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Ft with the real plane R2 � C2 , ie, the boundary of the disc in X de�ned
by x2

1 + x2
2 � t. This simple closed loop γ on Ft is called the vanishing cycle

associated to the critical point x. A regular neighborhood of the singular �ber
F0 can be described as the result of attaching a 2{handle along the vanishing
cycle γ to a regular neighborhood of the regular �ber Ft with framing −1
relative to the product framing on Ft�S1 . The monodromy around the critical
value P (x) is a right Dehn twist along the vanishing cycle γ .

We quote an observation of Gompf which roughly says that most of the Lefschetz
�brations are symplectic. For a proof, see [5] or [1].

Theorem 2.1 (Gompf) A Lefschetz �bration on an oriented 4{manifold X
is symplectic if the �ber class is non-zero in H2(X;R). Any Lefschetz pencil
(with non-empty base locus) is symplectic.

A remarkable theorem of Donaldson [3] says that any symplectic 4{manifold
admits a Lefschetz pencil by symplectic surfaces.

The following lemma is known for general Lefschetz �brations. For complete-
ness, we give a short proof for the case of non-singular �brations. This is
su�cient for our purpose.

Lemma 2.1 Let F ,! X
P! B be a �bration and !1 , !2 symplectic forms on

X with respect to which each �ber of P is symplectic. Then !1 and !2 are
deformation equivalent if they induce the same orientation on the �ber.

Proof We orient the base B so that the pull-back of the volume form !B of
B , P �!B , has the property that !1 ^ P �!B is positive on X with respect to
the orientation induced by !1 . Then

!(s) := !1 + sP �!B

is a symplectic form on X for any s � 0. Let !(s; t) = t!2 + (1 − t)!(s) for
0 � t � 1, s � 0. Then

!(s; t) ^ !(s; t) = t2!2 ^ !2 + (1− t)2!(s) ^ !(s)
+2t(1− t)!2 ^ !(s)

is positive for all 0 � t � 1 when s is su�ciently large, since !2^!(s) is positive
for large enough s. This implies that !1 and !2 are deformation equivalent.
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2.2 Seiberg{Witten theory

On an oriented Riemannian 4{manifold X , a Spinc structure S consists of a
hermitian vector bundle W of rank 4, together with a Cli�ord multiplication
� : T �X ! End(W ). The bundle W decomposes into two bundles of rank 2,
W+ �W− , such that detW+ = detW− . Here W− is characterized as the
subspace annihilated by �(�) for all self-dual 2{forms � . We write c1(S) for
the �rst Chern class of W+ . The Levi{Civita connection on X coupled with a
U(1) connection A on detW+ de�nes a Dirac operator DA : Γ(W+)! Γ(W−)
from the space of smooth sections of W+ into that of W− .

The 4{dimensional Seiberg{Witten equations are the following pair of equations
for a section  of W+ and a U(1) connection A on detW+ :

�(F+
A )− f ⊗  �g = 0

DA = 0

Here F+ is the projection of the curvature onto the self-dual forms, and the
curly brackets denote the trace-free part of an endomorphism of W+ .

The moduli space MS is the space of solutions (A; ) modulo the action of the
gauge group G = Map(X;S1), which is compact with virtual dimension

d(S) =
1
4

(c1(S)2[X]− 2�(X) − 3�(X));

where �(X) and �(X) are the Euler characteristic and signature of X respec-
tively. When b+(X) � 1, for a generic perturbation of the Seiberg{Witten
equations where � is a self-dual 2{form

�(F+
A + i�)− f ⊗  �g = 0

DA = 0;

the moduli space MS;� is a compact, canonically oriented, smooth manifold
of dimension d(S), which contains no reducible solutions (ie, solutions with
 � 0). The fundamental class of MS;� evaluated against some universal
characteristic classes de�nes the Seiberg{Witten invariant SW (S) 2 Z, which is
independent of the Riemannian metric and the perturbation � when b+(X) > 1.
When b+(X) = 1, SW (S) is well-de�ned if c1(S)2[X] � 0 and c1(S) is not
torsion, by choosing jj�jj su�ciently small. The set of complex line bundles fEg
on X acts on the set of Spinc structures freely and transitively by (E;S) !
S ⊗ E . We will call a cohomology class � 2 H2(X;Z) a Seiberg{Witten basic
class if there exists a Spinc structure S such that � = c1(S) and SW (S) 6= 0.
There is an involution I acting on the set of Spinc structures on X which
has the property that c1(S) = −c1(I(S)) and SW (S) = �SW (I(S)). As a
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consequence, if a cohomology class � 2 H2(X;Z) is a Seiberg{Witten basic
class, so is −�.

We will use the following fundamental result:

Theorem 2.2 (Taubes) Let (X;!) be a symplectic 4{manifold with canoni-
cal line bundle K! . Then c1(K!) is a Seiberg{Witten basic class if b+(X) > 1
or b+(X) = 1, c1(K!) � [!] > 0 and 2�(X) + 3�(X) � 0.

2.3 Gabai’s Theorem

The following theorem of Gabai says that, given a singular oriented surface in
a closed oriented 3{manifold, one can �nd an embedded surface (not neces-
sarily connected) representing the same homology class and having the same
topological complexity as the singular surface.

Let us recall the de�nition of Thurston norm and the singular norm on the
second homology group of a compact 3{manifold. Let S be an orientable sur-
face. The complexity of S is de�ned by x(S) =

P
Si

max(−�(Si); 0), where the
summation is taken over connected components of S . For a closed, oriented
3{manifold M , the Thurston norm x(z) and singular norm xs(z) of a homology
class z 2 H2(M ;Z) are de�ned by

x(z) = minfx(S)jS is an embedded surface representing zg;

xs(z) = inff 1
n
x(S)jf : S !M;f([S]) = nzg:

Theorem 2.3 (Gabai [6]) Let M be a closed oriented 3{manifold. Then
xs(z) = x(z) for all z 2 H2(M ;Z).

Gabai’s theorem is speci�c for dimension three and fails in dimension four in
general. Precisely because our 4{manifold under consideration is the product
of a 3{manifold with a circle, we are able to apply Gabai’s theorem to yield a
stronger estimate for the 4{manifold. This is the essential point in the proof of
the Lemma on Vanishing Cycles.

3 Preparatory material for the proof of the theorem

This section is devoted to preparatory material necessary for the proof of the
theorem.
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3.1 Map(F ) and Di�(F )

We �rst list some results about the mapping class group Map(F ) and the
di�eomorphism group Di� (F ) of an orientable surface F .

The reader is referred to [8] for the proof of the following proposition.

Proposition 3.1 (Nielsen Representation Theorem) Every �nite subgroup G
of the mapping class group of a big (� 2) genus surface can be lifted to the
di�eomorphism group of that surface. Moreover, there is a conformal structure
on F such that G is realized by conformal isometries of F .

We will also need an analogue of the Nielsen Representation Theorem in a
slightly di�erent setting. It states that a commutativity relation between an
arbitrary element and a �nite order element of the mapping class group of a big
(� 2) genus surface can be lifted to the homeomorphism group of the surface.

Lemma 3.1 Let F be a surface with genus(F ) � 2 and  ;’ be two mapping
classes of F such that ’ has �nite order and  � ’ = ’ �  in Map(F ).
Then there are homeomorphisms Ψ;�: F ! F in the mapping classes  ;’
respectively, such that � has �nite order, and Ψ�� = ��Ψ as homeomorphisms.

Proof The proof is based on a theorem of Teichmüller [13, 14]. A very clear
treatment of Teichmüller’s theorem can be found in [2].

We �rst recall the notions of quasi-conformal mappings and total dilatation
of homeomorphisms of a surface. Let F be a Riemann surface with a given
conformal structure, and f : F ! F be an orientation preserving homeomor-
phism. At a point p 2 F where f is C1{smooth we can measure the deviation
of f from being conformal by the ratio of the bigger axis to the smaller axis of
an in�nitesimal ellipse, which is the image of an in�nitesimal circle around the
point p under f . This ratio is called the local dilatation of f and is denoted
by Kp[f ]. A homeomorphism f : F ! F is called a quasi-conformal mapping
if Kp[f ] is de�ned for almost all p 2 F and supKp[f ] < 1. The number
K[f ] = supKp[f ] is called the total dilatation of the quasi-conformal mapping
f .

Teichmüller’s theorem states that among all the homeomorphisms in a given
mapping class of a Riemann surface F of genus(F ) � 2, there is a unique one
which minimizes the total dilatation.

Now back to the proof of the lemma. By the Nielsen Representation Theorem (cf
Proposition 3.1), the mapping class ’ can be represented by an isometry � of F
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with respect to some conformal structure �. By Teichmüller’s theorem, there is
a unique homeomorphism Ψ in the mapping class  which minimizes the total
dilatation with respect to the conformal structure �. Since � is an isometry of
�, �−1�Ψ�� has the same total dilatation as Ψ. On the other hand, �−1�Ψ��
and Ψ are in the same mapping class since  � ’ = ’ �  in Map(F ). The
uniqueness of the extremal homeomorphism in Teichmüller’s theorem implies
that they must coincide, and Ψ � � = � �Ψ as homeomorphisms.

Proposition 3.2 Let Fg be a closed orientable surface of genus g , and denote
by Di� 0(Fg) the identity component of Di� (Fg). Then for all g � 2, Di� 0(Fg)
is contractible, for g = 1, Di� 0(Fg) is homotopy equivalent to the identity
component of the group of conformal automorphisms of the torus and, for
g = 0, Di� 0(Fg) is homotopy equivalent to SO(3).

The reader is referred to [4] for this result.

The rest of this subsection concerns locally trivial �brations of 4{manifolds over
a Riemann surface.

De�nition Two locally trivial �brations F ,! X
P! B and F 0 ,! X 0

P 0! B0 are
said to be equivalent if there are di�eomorphisms f : B ! B0 and ~f : X ! X 0 ,
such that the following diagram

X
~f! X 0

P # # P 0

B
f! B0

commutes. When X = X 0 , we say that P and P 0 are strongly equivalent if ~f
is isotopic to the identity.

Each �bration P de�nes a monodromy homomorphism MonP from the funda-
mental group of the base to the mapping class group of the �ber.

Lemma 3.2 When the �ber is high-genus (� 2), monodromy MonP deter-
mines the equivalence class of a �bration P .

Proof We write the base B as B0 [ D where B0 is a disc with several 1{
handles attached and D is a disc. We choose a base point b0 2 B0 \D . The
�bration P restricted to B0 is determined by MonP as a representation of
�1(B0; b0) in the mapping class group of the �ber Fb0 over the base point b0 .
Over the disc D , P is trivial. We can recover P on the whole manifold X by
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gluing P−1(B0) and P−1(D) along the boundary via some gluing map ’, and
P depends only on the homotopy class of ’ viewed as a map S1 ! Di� 0(Fb0).
Now we recall the fact that Di� 0(Fg) is contractible for all g � 2, so that
’ � Id when genus(Fb0) � 2. The lemma follows.

3.2 Cyclic coverings and S1{valued functions

Here we describe a construction, which, starting with a S1{valued function
on a CW {complex and a positive integer, gives a cyclic �nite covering of the
CW {complex and a generator of the deck transformation group. An inverse of
this construction is then discussed.

For the rest of the paper we view S1 as the unit circle in C, oriented in the
usual way, ie, in the counter-clockwise direction.

Consider a CW {complex Y and let g : Y ! S1 be a function. It determines a
cohomology class [g] 2 H1(Y ;Z). Denote by d(g) the divisibility of [g]. For a
positive integer n and a function g : Y ! S1 such that gcd(n; d(g)) = 1, de�ne
a subset eY � S1 � Y byeY = f(t; y) 2 S1 � Y j tn = g(y)g:

Obviously eY is invariant under the transformation ’ : S1�Y ! S1�Y induced
from rotation of S1 by angle 2�

n in the positive direction. Let pr : eY ! Y be
the restriction of the projection from S1 � Y onto the second factor. It is a
cyclic n{fold covering of Y and ’ generates the group of deck transformations
of this covering.

Now we would like to invert this construction, ie, starting with a �nite cyclic
covering pr : eY ! Y and a generator ’ : eY ! eY of the structure group of pr ,
�nd a function g : eY ! S1 such that the construction above yields pr : eY ! Y
and ’. However this is not always possible.

Fix a �nite cyclic covering pr : eY ! Y with a generator ’ : eY ! eY of the
structure group of pr . Let G = h’i be the group of deck transformations of
pr and n = jGj. De�ne an action of G on S1 by ’ � z = e2�i=nz . This gives
rise to an S1 {bundle Z over Y and eY sits naturally in Z . The Euler class of
this bundle is a torsion class, for the nth power of the bundle (considered as
U(1) bundle) is trivial. Moreover, there is a choice of trivialization, canonical
up to rotations of S1 , given by an n{valued section of pr , which becomes a
section in the nth power of the bundle. Suppose the Euler class vanishes, then
Z �= S1 � Y and this di�eomorphism is canonical up to isotopy. Consider the
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map ~g : eY ! S1 , which is the restriction to eY of the projection from S1 � Y
onto the S1{factor. The map ~gn is ’ invariant and therefore descends to a
map g : Y ! S1 . It is an easy exercise to show that the construction above
applied to the pair (g; n) yields (pr; ’).

Thus we have proved the following:

Lemma 3.3 Let Y be a CW {complex such that H2(Y ;Z) has no torsion.
Then the construction above gives a 1{1 correspondence between two sets A =
f(pr; ’)g and B = f(n; [g])g, where pr : eY ! Y is a �nite cyclic covering,
’ : eY ! eY is a generator of the deck transformation group of pr , n is a
positive integer and [g] is the homotopy class of a map g : Y ! S1 with
gcd(n; d(g)) = 1.

3.3 Surface �brations over a torus

In this subsection we will explore a family of surface �brations of X = S1�M3

over a torus, where M3 is a closed orientable 3{manifold �bered over a circle
with �ber � and �bration p : M3 ! S1 . Denote by �� the �ber over a point
� 2 S1 and by [p] 2 H1(M3;Z) the homotopy class of p.

Consider a smooth function g : M3 ! S1 and denote by [g] 2 H1(M ;Z) its
homotopy class and by d(g) the divisibility of [g] restricted to the �ber �. Let
n be a positive integer such that gcd(n; d(g)) = 1.

De�ne Pg;n : X = S1 �M3 ! S1 � S1 by Pg;n(t;m) = (tng(m); p(m)), where
g(m) stands for the complex conjugate of g(m) in S1 . The map Pg;n is a
locally trivial �bration of X over a torus such that the �ber F(�;�) over a point
(�; �) 2 S1 � S1 is the graph of a multi-valued function (�gj�� )

1
n on �� , ie,

F(�;�) = f(t;m) 2 S1 � �� j tn = �g(m)g � S1 � �� � S1 �M3:

Fix g : M3 ! S1 and n as above. Let us �nd the monodromy of Pg;n . First of
all, the projection S1��� ! �� restricted to F(�;�) is a cyclic n{fold covering
pr : F(�;�) ! �� . Denote by ’ the self-di�eomorphism of F(1;1) induced by
a rotation of the S1{factor in S1 � �1 by angle 2�=n, then ’ generates the
group of deck transformations of pr : F(1;1) ! �1 . Secondly, denote by Monp 2
Map(�1) the monodromy of p : M3 ! S1 , then Monp pulls back to an element
in Map(F(1;1)).

Let q = S1 � f1g and r = f1g � S1 be the \coordinate" simple closed loops in
S1 � S1 . Then it is easily seen that the monodromy MonPg;n(q) of Pg;n along
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q is equal to [’] and the monodromy MonPg;n(r) along r is the pull-back of
Monp to Map(F(1;1)).

We end this subsection with the following classi�cation of Pg;n .

Proposition 3.3 Two �brations Pg;n and Pg0;n0 are strongly equivalent if and
only if n = n0 and [g] � [g0] mod ([p]), ie, when the two planes in H1(X;Z) =
H1(S1;Z) � H1(M3;Z) spanned by two pairs of vectors (n[t] − [g]; [p]) and
(n0[t]− [g0]; [p]) coincide.

Proof The necessity follows from homotopy theoretical considerations: the
two said planes are pull-backs of H1(S1�S1;Z) by Pg;n and Pg0;n0 respectively,
therefore they must coincide if Pg0;n0 is homotopic to Pg;n post-composed with
a self-di�eomorphism of S1 � S1 .

On the other hand, by changing basis on one of the tori, we can arrange that
the homotopy classes of g and g0 are equal. Then a homotopy from g to g0

leads to a strong equivalence between Pg;n and Pg0;n0 .

We observe that when the �ber � of p : M3 ! S1 has genus zero, there is a
unique equivalence class of Pg;n , ie, the trivial one when [g] = 0 and n = 1.

3.4 Lemma on Vanishing Cycles

Lemma 3.4 Let M3 be a closed 3{manifold and P : X = S1 �M3 ! B be
a symplectic Lefschetz �bration with regular �ber F . Then P has no singular
�bers.

Proof We �rst observe that every vanishing cycle must be non-separating since
X has an even intersection form. There are three cases to consider according
to the genus of the �ber.

(1) The �ber F is a sphere. There are no vanishing cycles since every curve
on a sphere is separating.

(2) The �ber F is a torus. Recall a formula for the Euler characteristic of the
total space of a Lefschetz �bration

�(X) = �(F ) � �(B) + #fvanishing cyclesg:

There must be no vanishing cycles since �(F ) = 0 and �(X) = 0.
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(3) The �ber F is a high genus (� 2) surface. We �rst show that the canonical
class K is Seiberg{Witten basic. By Theorem 2.2, we only need to show that,
if b+(X) = 1, then K � [!] > 0, where ! is the symplectic form on X . This
could be seen as follows. The 4{manifold X has a hyperbolic intersection form
since b+(X) = 1 and �(X) = 0. Let x; y 2 H2(X;R) form a hyperbolic basis,
ie, x �x = y � y = 0 and x � y = 1. Since F �F = 0, K �K = 2�(X) + 3�(X) = 0
and K � F = 2gF − 2 > 0, we can assume without loss of generality that
PD[F ] = ax and K = by for some positive a and b. Let [!] = �x + �y .
Observe that [!] � [!] = �� > 0 and [!] � F = a� > 0, therefore � and �
are both positive. But K � [!] = b� > 0. Thus, by Theorem 2.2, K is a
Seiberg{Witten basic class.

Let V 2 H2(M3;Z) be the homology class of the projection of F into M3 .
Suppose there is a singular �ber. Since the vanishing cycle for this singular
�ber is non-separating, the class V can be represented by a map f : F 0 !M3

such that gF 0 = gF − 1. The singular norm of V , xs(V ), is less than or equal
to 2gF 0 − 2. By Theorem 2.3, there are embedded surfaces Si in M3 such
that

P
i[Si] = V and

P
i x(Si) = xs(V ) � 2gF 0 − 2, where x stands for the

complexity of an orientable surface. On the other hand, since K is Seiberg{
Witten basic, by the adjunction inequality (cf [9]), we have

x(Si) � jK � Sij; for all i:

Therefore,

2gF 0 − 2 �
X
i

x(Si) � jK � V j = K � F = 2gF − 2;

which is a contradiction. We used the fact that K � V = K � F . This is
because H1(S1;Z) ⊗H1(M3;Z) � H2(X;Z) consists of classes represented by
embedded tori in X , thus, by the adjunction inequality, K � H = 0 for any
H 2 H1(S1;Z) ⊗ H1(M3;Z). This concludes the proof for the case of high
genus �ber.

4 The main theorem

Let us recall that if M is a closed oriented 3{manifold �bered over S1 , then
the 4{manifold X = S1�M carries a canonical (up to deformation) symplectic
structure compatible with the orientation on X . Note that we have canonically
oriented S1 so that the orientation of M determines an orientation of the �ber
of M ! S1 .
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The Poincar�e associate of a 3{manifold M , denoted by P(M), is de�ned by
the condition that P(M) contains no fake 3{cell and M = P(M)#A where A
is a homotopy 3{sphere. The theorem about unique normal prime factorization
of 3{manifolds implies that the Poincar�e associate exists and is unique [7].
An orientation on M canonically determines an orientation on the Poincar�e
associate P(M).

Theorem 4.1 Let M3 be a closed oriented 3{manifold and X = S1�M3 . Let
P : X ! B be a symplectic Lefschetz �bration with respect to some symplectic
form ! on X compatible with the orientation. Denote by F the regular �ber
of P . Then:

(1) The Poincar�e associate P(M3) of M3 is �bered over S1 with �bration
p : P(M3)! S1 .

(2) There is a di�eomorphism h : S1 � P(M3)! X such that h�! is defor-
mation equivalent to the canonical symplectic structure on S1 � P(M3)
de�ned through the �bration p : P(M3)! S1 .

There are two possibilities for the Lefschetz �bration P :

(a) If P (S1 � fptg) is not null-homotopic in B , then genus(B) = 1, and
P � h = Pg;n for some integer n > 0 and map g : P(M3) ! S1 (see
subsection 3.3 for the de�nition of Pg;n).

(b) If P (S1 � fptg) is null-homotopic, then genus(F ) = 1. Moreover, S1 �
P(M3) = F �B and P �h = pr2 is the projection onto the second factor,
and the �bration p = pr1 : P(M3) = S1 �B ! S1 is the projection onto
the �rst factor.

Proof By lemma 3.4, the Lefschetz �bration P has no singular �bers.

Let’s �rst consider the case when the base B = S2 . The �ber F must be T 2 ,
and X is simply the product F � B and P = pr2 is the projection onto the
second factor. This belongs to the case when P (S1 � fptg) is null-homotopic.
It is easily seen that the Poincar�e associate P(M3) of M3 is homeomorphic to
S1 �B .

For the rest of the proof, we assume genus(B) � 1. Denote x0 a base point in
X and let b0 = P (x0). Consider the exact sequence induced by the �bration:

1! �1(Fb0 ; x0) ,! �1(X;x0) P�! �1(B; b0)! 1

Observe that �1(X;x0) = Z��1(M3). Denote the generator of the Z{summand
by u = [S1 � fptg] 2 �1(X;x0).
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Case 1 The image P�(u) 6= 1 in �1(B; b0).

The element u is central in �1(X;x0), therefore P�(u) is central in �1(B; b0).
It follows immediately that B is a torus. Let n be the divisibility of P�(u),
v = 1

nP�(u) and q be a simple closed loop in B containing b0 and representing
v . The monodromy MonP (P�(u)) is trivial in the mapping class group of Fb0 .
This is because the mapping class group of Fb0 is isomorphic to Out(�1(Fb0 ; x0))
and MonP (P�(u))(γ) = uγu−1 = γ for every γ in �1(Fb0 ; x0) � �1(X;x0) (note
that u is central in �1(X;x0)).

The cases when the �ber F is a torus or a sphere need special treatment, and
will be considered after the general case.

We assume for now that genus(F ) � 2. Observe that MonP (v) has �nite order
in Map(Fb0).

Claim MonP (v) = MonP (q) has a representative ’ : Fb0 ! Fb0 which has
order n and is periodic-point-free.

Proof Let ’ be a �nite order representative of MonP (q) provided by propo-
sition 3.1. Suppose it has periodic points. We can go back to the beginning of
the proof and make sure that x0 2 Fb0 is a periodic point of ’, ie, ’n

0
(x0) = x0

for some n0 such that 0 < n0 < n. The minimal period n0 divides n and we set
k = n=n0 .

The idea of the proof, which follows, is that if ’n
0

has a �xed point, then ’n
0
�

acts (periodically) on �1(Fb0 ; x0) \on a nose", not up to inner automorphisms of
�1(Fb0 ; x0) as in the case of periodic-point-free actions. This will contradict the
structure of �1(X;x0) seen from the exact sequence induced by the �bration.

Let Z = Fb0 � I=[(x;1)�(’(x);0)] be the mapping torus of ’ and eZ = Fb0 �
I=[(x;1)�(’n0 (x);0)] be the mapping torus of ’n

0
. There are a natural n0{fold

covering cov : eZ ! Z and an embedding emb : Z ,! X , such that cov(x0; 0) =
(x0; 0) and emb(x0; 0) = x0 . Their composition induces a monomorphism in
the fundamental groups (emb�cov)� : �1( eZ; (x0; 0)) ,! �1(X;x0). Let � be the
image of [fx0g � I] 2 �1( eZ; (x0; 0)) under the above monomorphism. For any
γ 2 �1(Fb0 ; x0) � �1(X;x0), the following relations hold in �1(X;x0):

�γ�−1 = ’n
0
� (γ)

�kγ�−k = γ

On the other hand, we have �k = �u for some element � in �1(Fb0 ; x0), since
P�(�k) = P�(u). The relations above then imply that �γ�−1 = γ for any
γ 2 �1(Fb0 ; x0), thus � = 1. Thus we have �k = u for k > 1. This contradicts
the fact that u generates a direct summand in �1(X;x0).
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Denote � = Fb0=’. Let r be an oriented simple closed loop in B such that
q\r = b0 and hq; ri = 1. The monodromy MonP (r) commutes with MonP (q).
Hence it has a representative ~ : F ! F , which commutes with ’ by lemma
3.1, and therefore descends to a map  : � ! �. Let ~g : � ! S1 be the
S1{valued function corresponding to the cyclic covering pr : Fb0 ! � = Fb0=’
and the generator ’ of the deck transformations of pr (cf lemma 3.3). Since ’
commutes with  , the function ~g extends to a function g : fM3 ! S1 , wherefM3 is the mapping torus of  . In general g is only a continuous function. We
can always deform it into a smooth function, which is still denoted by g for
simplicity. Identify B with S1 � S1 so that (q; r) becomes (S1 � f1g; f1g �
S1), then the �brations Pg;n : S1 � fM3 ! B and P : X ! B have the same
monodromy and therefore X = S1�M3 is di�eomorphic to S1�fM3 by lemma
3.2.

Now we consider the case when genus(F ) = 1.

Claim MonP (v) = MonP (q) is trivial.

Proof Suppose MonP (v) is not trivial in Map(Fb0). Then we must have
n 6= 1. We identify Map(Fb0) with SL(2;Z) by the action of Map(Fb0)
on H1(Fb0 ;Z), and denote by A 2 SL(2;Z) the element corresponding to
MonP (v). It has two complex eigenvalues, neither of which is equal to one.
This implies, in particular, that Id − A has non-zero determinant and Q =
H1(Fb0 ;Z)=Im(Id −A) is a �nite group. Consider the 3{manifold Z = P−1(q).
It is di�eomorphic to the mapping torus of MonP (v). The natural embedding
of Z into X induces a monomorphism of fundamental groups and u is in the
image of this monomorphism; thus we can regard u as an element of �1(Z; x0).
Let us recall that �1(X;x0) splits into a direct sum, �1(X;x0) = Zhui��1(M3).
Since Zhui � �1(Z; x0), the fundamental group of Z also splits into a direct
sum, �1(Z; x0) = Zhui� [�1(Z; x0)\�1(M3)]. In particular, the image [u] of u
in H1(Z;Z) has in�nite order. Choose a loop � 2 �1(Z; x0) such that P�(�) = v .
Then u and � are related by equation �n = uγ for some γ 2 �1(Fb0 ; x0). Denote
by [�] the image of � in H1(Z;Z). Calculating homology of Z we have

H1(Z;Z) = Zh[�]i �Q and [u] = n[�]− [γ]

where Q = H1(Fb0 ;Z)=Im(Id − A), and [γ] 2 Q is the image of γ . On the
other hand, we have

H1(Z;Z) = Zh[u]i �Q0 and [�] = m[u] + [γ0]
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for some integer m 6= 0 and [γ0] 2 Q0 , where Q0 is the abelianization of
�1(Z; x0)\�1(M3). Note that Q0 is a �nite group because the rank of H1(Z;Z)
is 1. Putting the two equations together, we have

(nm− 1)[u] = [γ]− n[γ0]; n > 1:

This is a contradiction, since the left-hand-side has in�nite order in H1(Z;Z),
but the right-hand-side has �nite order.

Thus we have established that MonP (v) is trivial and, in fact, the manifold Z
is di�eomorphic to S1 � Fb0 . It will be convenient to �x a product structure
S1 � Fb0 on Z and a flat metric on Fb0 . These give rise to a flat metric on
Z = S1 � Fb0 .

Let us recall that Di� 0(Fb0) is homotopy equivalent to the set of conformal
isometries of Fb0 ; hence every element in �1(Di� 0(Fb0); Id) could be repre-
sented by a linear family of parallel transforms of Fb0 .

Let  : Fb0 ! Fb0 be a representation of the monodromy of P along r , where
r is an oriented simple closed loop in B such that q \ r = b0 and hq; ri = 1.
We may assume that  is linear with respect to the chosen flat metric on Fb0 .

Since X �bers over a circle with �ber Z , it is di�eomorphic to the mapping
torus of some self-di�eomorphism Ψ: Z ! Z , which could be chosen so that it
preserves each �ber fptg � Fb0 . Such a Ψ is the composition of Id �  with a
\Dehn twist" of Z along Fb0 , which is de�ned as follows: Choose an element
in �1(Di� 0(Fb0); Id) and represent it by a loop � : S1 ! Di� 0(Fb0). De�ne
a Dehn twist tFb0 ;� : Z = S1 � Fb0 ! Z by tFb0 ;�(s; x) = (s; �(s)(x)). If we
choose � to be a linear loop in the space of conformal automorphisms of Fb0 ,
then Ψ will be a linear self-di�eomorphism of Z .

Recall that X = S1�M3 and denote by pr1 : X ! S1 the projection onto the
�rst factor. Let � : Z ! S1 be a linear map representing the homotopy class
of pr1jZ , which de�nes a trivial �bration on Z with �ber � �= T 2 . Then �
and � �Ψ are homotopic, because pr 1 is de�ned on the whole X , which is the
mapping torus of Ψ. This implies that � = � �Ψ since both are linear maps.

Thus Ψ preserves the �bration structure of Z by �, so that � extends to a
�bration �: X ! S1 . Let ’ : � ! � be the self-homeomorphism induced by
Ψ, and denote the mapping torus of ’ by fM3 and the corresponding �bration
by p : fM3 ! S1 . We claim that � is a trivial �bration over S1 with �berfM3 , therefore X �= S1 � fM3 . This can be seen as follows: The monodromy
Ψ of � is a composition of Id � ’ with a Dehn twist of Z along � since
Ψ preserves the trivial �bration on Z by �. The Dehn twist must be trivial
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since otherwise we would have Ψ�(u) 6= u, which contradicts the fact that u is
central in �1(X;x0). Therefore � is trivial and X = S1 � fM3 , where fM3 is
�bered with �bration p : fM3 ! S1 and �ber � �= T 2 . Note that the product
structure h : X ! S1 � fM3 could be chosen to be homotopic to the given
product structure X = S1�M3 in the sense that h is homotopic to a product
of homotopy equivalences from S1 to S1 and from M3 to fM3 . Speci�cally,
this could be done as follows: Choose a product structure S1 � � on Z by
choosing a projection from Z to � so that the induced map on fundamental
groups sends u to zero. Since both u and � are preserved by Ψ, the product
structure on Z extends to a product structure on X , which has the required
property.

Now we will �nd g : fM3 ! S1 and n such that the �bration Pg;n is equivalent
to the original �bration P on X . Let pr : Fb0 ! � be the restriction to Fb0 of
the projection from Z to �. Recall that both Fb0 and � are linear subspaces
in Z . It follows that pr is a cyclic covering with deck transformations being
parallel transforms on Fb0 . Set n to be equal to the degree of pr . Now let
~g = (�jFb0 )n , where the power is taken point-wise in S1 . The function ~g
descends to a function ~~g : � ! S1 , which is linear and ’{invariant, therefore
extends to a map g : fM3 ! S1 . It is left as an exercise for the reader to show
that Pg;n is equivalent to P : X ! B .

It remains to show that in both cases fM3 is homeomorphic to the Poincar�e
associate P(M3) of M3 . This follows from the fact that the di�eomorphism
between S1�fM3 and X = S1�M3 induces a homotopy equivalence fM3 !M3 ,
which, by a theorem of Stallings [11], implies fM3 �= P(M3).

When genus(F ) = 0, X is di�eomorphic to F � B (since X is spin) with
P = pr2 the projection onto the second factor. The Poincar�e associate P(M3)
is homeomorphic to S1 � S2 .

Case 2 The image P�(u) = 1 in �1(B; b0).

Thus u lies in �1(Fb0 ; x0) and generates a direct summand in �1(Fb0 ; x0). Hence
the �ber F must be a torus, and u is primitive in �1(Fb0 ; x0).

Identify F with S1�S1 such that the loop q = S1�fptg represents the class u
in �1(Fb0 ; x0) and the loop r = fptg � S1 represents a class in �1(M3), which
we denote by [r]. Then we have a reduced exact sequence:

1! Zh[r]i ,! �1(M3)
P�j�1(M3)−! �1(B; b0)! 1
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Let f : P(M3) ! M3 be a homotopy equivalence between the Poincar�e asso-
ciate P(M3) and M3 . It is easily seen that there is a commutative diagram

1 ! Z j�! �1(P(M3)) ��−! �1(B; b0) ! 1
k # f� k

1 ! Zh[r]i ,! �1(M3)
P�j�1(M3)−! �1(B; b0) ! 1:

By Theorem 11.10 in [7], the Poincar�e associate P(M3) is an S1{�bration over

the Riemann surface B , S1 j
,! P(M3) �! B , from which the exact sequence

1! Z j�! �1(P(M3)) ��! �1(B; b0)! 1

is induced. We claim that P(M3) must be the trivial �bration S1�B . Suppose
it is not a trivial �bration, then the homology class of the �ber j�[S1] is torsion
in H1(P(M3);Z), so is the �ber of the associated T 2{�bration of S1 �P(M3)

obtained by taking the product with S1 , S1 � S1 Id�j! S1 � P(M3) �! B . But
((Id�f)�(Id �j))�[S1�S1] is homologous to the �ber [F ] in H2(X;Z), which
is not torsion since F ,! X

P! B is a symplectic Lefschetz �bration. Hence
P(M3) is the trivial �bration S1 �B .

We then have the following commutative diagram

1 ! Z� Z (Id�j)�! Z� Z� �1(B; b0) ��−! �1(B; b0) ! 1
k # (Id�f)� k

1 ! �1(Fb0 ; x0) ,! �1(X;x0) P�−! �1(B; b0) ! 1;
from which it follows that P has trivial monodromy. Let B0 be a surface with
boundary obtained by removing from B a small disc D0 disjoint from the base
point b0 2 @B0 . The restrictions P jB0 and P jD0 are trivial �brations, and P is
determined by the homotopy class [�] of a gluing map �: S1�Fb0 ! S1�Fb0
viewed as an element in Map(S1;Di� 0(Fb0)). By proposition 3.2, we have
�1(Di� 0(Fb0); Id) = Z � Z. So P is equivalent to a �bration which is the
product of an S1{�bration over B , say � , with S1 , where the �rst Chern
number of � is the divisibility of [�] in �1(Di� 0(Fb0); Id) = Z � Z. On the
other hand, [F ] 6= 0 in H2(X;R), so we must have c1(�) = 0 so that � � Id .
Thus we have proved that X is di�eomorphic to F � B with P = pr2 the
projection onto the second factor.

We �nish the proof of the theorem by showing the uniqueness of the symplectic
structure: The existence of di�eomorphism h : S1 �P(M3)! X is clear from
the above classi�cation of the Lefschetz �bration P . Moreover, the canoni-
cal symplectic form on S1 � P(M3) is positive on each �ber of the pull-back
�bration P � h, hence by lemma 2.1, it is deformation equivalent to h�! .
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