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1 Introduction

Let S be a compact oriented surface of genus g ≥ 0 with n ≥ 0 boundary
components and k distinguished points. The mapping class group Mg,n,k of S
is the group of the isotopy classes of orientation preserving homeomorphisms
of S which keep the boundary of S and all the distinguished points pointwise
fixed. In this paper we study the problem of finding a finite presentation for
Mg,n = Mg,n,0 . We restrict our attention to the case n = 1. The case n = 0
is easily obtained from the case n = 1. In principle the case of n > 1 (and
the case of k > 0) can be obtained from the case n = 1 via standard exact
sequences, but this method does not produce a global formula for the case of
several boundary components and the presentation (in contrast to the ones we
shall describe for the case n = 0 and n = 1) becomes rather ugly. On the other
hand Gervais in [6] succeeded recently to produce a finite presentation of Mg,n

starting from the results in [20] and using a new approach.

A presentation for g = 1 has been known for a long time. A quite simple
presentation for g = 2 was established in 1973 in [1], but the method did not
generalize to higher genus. In 1975 McCool proved in [19], by purely algebraic
methods, that Mg,1 is finitely presented for any genus g . It seems that ex-
tracting an explicit finite presentation from his proof is very difficult. In 1980
appeared the groundbreaking paper of Hatcher and Thurston [9] in which they
gave an algorithm for constructing a finite presentation for the group Mg,1 for
an arbitrary g . In 1981 Harer applied their algorithm in [7] to obtain a finite
(but very unwieldy) explicit presentation of Mg,1 . His presentation was simpli-
fied by Wajnryb in 1983 in [20]. A subsequent Errata [3] corrected small errors
in the latter. The importance of the full circle of ideas in these papers can be
jugded from a small sample of subsequent work which relied on the presentation
in [20], eg [14], [16], [17], [18]. The proof of Hatcher and Thurston was deeply
original, and solved an outstanding open problem using novel techniques. These
included arguments based upon Morse and Cerf Theory, as presented by Cerf
in [4].

In this paper we shall give, in one place, a complete hands-on proof of a simple
presentation for the groups Mg,0 and Mg,1 . Our approach will follow the lines
set in [9], but we will be able to use elementary methods in the proof of the
connectivity and simple connectivity of the cut system complex. In particular,
our work does not rely on Cerf theory. At the same time we will gather all of the
computational details in one place, making the result accesible for independent
checks. Our work yields a slightly different set of generators and relations from
the ones used in [20] and in [3]. The new presentation makes the computations
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in section 4 a little simpler. We shall give both presentations and prove that
they are equivalent.

A consequence of this paper is that, using Lu [16] or Matveev and Polyak
[18], the fundamental theorem of the Kirby calculus [13] now has a completely
elementary proof (ie, one which makes no appeal to Cerf theory or high dimen-
sional arguments).

This paper is organised as follows. In section 2 we give a new proof of the
main theorem of Hatcher and Thurston. In section 3 we derive a presentation
of the mapping class group following (and explaining) the procedure described
in [9] and in [7]. In section 4 we reduce the presentation to the simple form of
Theorem 1 repeating the argument from [20] with changes required by a slightly
different setup. In section 5 we deduce the case of a closed surface and in section
6 we translate the presentation into the form given in [20], see Remark 1 below.

We start with a definition of a basic element of the mapping class group.

Definition 1 A (positive) Dehn twist with respect to a simple closed curve
α on an oriented surface S is an isotopy class of a homeomorphism h of S ,
supported in a regular neighbourhood N of α (an annulus), obtained as follows:
we cut S open along α, we rotate one side of the cut by 360 degrees to the
right (this makes sense on an oriented surface) and then glue the surface back
together, damping out the rotation to the identity at the boundary of N . The
Dehn twist (or simply twist) with respect to α will be denoted by Tα . If
curves α and β intersect only at one point and are transverse then Tα(β), up
to an isotopy, is obtained from the union α ∪ β by splitting the union at the
intersection point.

α1 α2 α3 αi αi+1 αg

β1 β2
βg

δ3 δg
∂

εi

. . . . . .

Figure 1: Surface Sg,1

We shall say that two elements a, b of a group are braided (or satisfy the braid
relation) if aba = bab.

Theorem 1 Let Sg,1 be a compact, orientable surface of genus g ≥ 3 with
one boundary component. Let ai, bi, ei denote Dehn twists about the curves
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αi, βi, εi on Sg,1 depicted on Figure 1. The mapping class group Mg,1 of Sg,1
is generated by elements b2, b1, a1, e1, a2, e2, . . . , ag−1, eg−1, ag and has defining
relations:

(M1) Elements b2 and a2 are braided and b2 commutes with b1 . Every other
pair of consecutive elements (in the above order) is braided and every other
pair of non-consecutive elements commute.

(M2) (b1a1e1a2)5 = b2a2e1a1b
2
1a1e1a2b2

(M3) d3a1a2a3 = d1,2d1,3d2,3 , where

d1,2 = (a2e1a1b1)−1b2(a2e1a1b1), d1,3 = t2d1,2t
−1
2 , d2,3 = t1d1,3t

−1
1 ,

t1 = e1a1a2e1 , t2 = e2a2a3e2 , d3 = b2a2e1b
−1
1 d1,3b1e

−1
1 a−1

2 b−1
2 .

Theorem 2 The mapping class group M2,1 of an orientable surface S2,1 of
genus g = 2 with one boundary component is generated by elements b2, b1, a1,
e1, a2 and has defining relations (M1) and (M2).

Theorem 3 The mapping class group Mg,0 of a compact, closed, orientable
surface of genus g > 1 can be obtained from the above presentation of Mg,1

by adding one more relation:

(M4) [b1a1e1a2 . . . ag−1eg−1agageg−1ag−1 . . . e1a1b1, dg] = 1, where

ti = eiaiai+1ei , for i = 1, 2, . . . , g − 1, d2 = d1,2 ,

di = (b2a2e1b
−1
1 t2t3 . . . ti−1)di−1(b2a2e1b

−1
1 t2t3 . . . ti−1)−1 , for i = 3, 4, . . . , g

The presentations in Theorems 1 and 3 are equivalent to but not the same as
those in [20] and [3]. We now give alternative presentations of Theorems 1 and
3, with the goal of correlating the work in this paper with that in [20] and
[3]. See Remark 1, below, for a dictionary which allows one to move between
Theorems 1 ′ and 3 ′ and the results in [20] and [3]. See Section 6 of this paper
for a proof that the presentations in Theorems 1 and 1′ , and also Theorems 3
and 3′ , are equivalent.

Theorem 1 ′ The mapping class group Mg,1 admits a presentation with gen-
erators b2, b1, a1, e1, a2, e2, . . . , ag−1, eg−1, ag and with defining relations:

(A) Elements b2 and a2 are braided and b2 commutes with b1 . Every other
pair of consecutive elements (in the above order) is braided and every other
pair of non-consecutive elements commute.

(B) (b1a1e1)4 = (a2e1a1b
2
1a1e1a2)b2(a2e1a1b

2
1a1e1a2)−1b2
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(C) e2e1b1d̃3 = t̃−1
1 t̃−1

2 b2t̃2t̃1t̃
−1
2 b2t̃2b2 where

t̃1 = a1b1e1a1 , t̃2 = a2e1e2a2 , d̃3 = (a3e2a2e1a1u)v(a3e2a2e1a1u)−1 ,

u = e−1
2 a−1

3 t̃−1
2 b2t̃2a3e2 , v = (a2e1a1b1)−1b2(a2e1a1b1).

Theorem 3 ′ The mapping class group Mg,0 of a compact, closed, orientable
surface of genus g > 1 can be obtained from the above presentation of Mg,1

by adding one more relation:

(D) [ageg−1ag−1 . . . e1a1b
2
1a1e1 . . . ag−1eg−1ag, d̃g] = 1, where

d̃g = ug−1ug−2 . . . u1b1(ug−1ug−2 . . . u1)−1 , u1 = (b1a1e1a2)−1v1a2e1a1 ,

ui = (ei−1aieiai+1)−1viai+1eiai for i = 2, . . . , g − 1,

v1 = (a2e1a1b
2
1a1e1a2)b2(a2e1a1b

2
1a1e1a2)−1 ,

vi = t̃−1
i−1t̃

−1
i vi−1t̃it̃i−1 for i = 2, . . . , g − 1,

t̃1 = a1e1b1a1 , t̃i = aieiei−1ai for i = 2, . . . , g − 1.

Remark 1 We now explain how to move back and forth between the results
in this paper and those in [20] and [3].

(i) The surface and the curves in [20] look different from the surface and the
curves on Figure 1. However if we compare the Dehn twist generators in
Theorem 1′ with those in Theorem 1 of [20] and [3] we see that corre-
sponding curves have the same intersection pattern. Thus there exists a
homeomorphism of one surface onto the other which takes the curves of
one family onto the corresponding curves of the other family. The precise
correspondence is given by:

(b2, b1, a1, e1, a2, e2, . . . , ag−1, eg−1, ag)
←→ (d, a1, b1, a2, b2, a3, . . . , bn−1, an, bn),

where the top sequence refers to Dehn twists about the curves in Figure
1 of this paper and the bottom sequence refers to Dehn twists about the
curves in Figure 1 on page 158 of [20].

(ii) Composition of homeomorphisms in [20] was performed from left to right,
while in the present paper we use the standard composition from right to
left.

(iii) The element dg in this paper represents a Dehn twist about the curve δg
in Figure 1 of this paper. The element d̃g in relation (D) of Theorem 3′

represents a Dehn twist about the curve βg in Figure 1. We wrote dg
as a particular product of the generators in Mg,1 . It follows from the
argument in the last section that any other such product representing dg
will also do.
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(iv) In the case of genus g = 2 we should omit relation (C) in Theorems 1′

and 3′ .

Here is the plan of the proof of the theorems. Following Hatcher and Thurston
we define a 2–dimensional cell complex X on which the mapping class group
Mg,1 acts by cellular transformations and the action is transitive on the vertices
of X . We give a new elementary proof of the fact that X is connected and
simply connected. We then describe the stabilizer H of one vertex of X under
the action of Mg,1 and we determine an explicit presentation of H . Following
the algorithm of Hatcher and Thurston we get from it a presentation of Mg,1 .
Finally we reduce the presentation to the form in Theorem 1 and as a corollary
get Theorem 3.

Acknowledgements I wish to thank very much the referee, who studied the
paper very carefully and made important suggestions to improve it.

This research was partially supported by the Fund for the Promotion of Re-
search at the Technion and the Dent Charitable Trust — a non military research
fund.

2 Cut-system complex

We denote by S a compact, connected oriented surface of genus g > 0 with
n ≥ 0 boundary components. We denote by S̄ a closed surface obtained from
S by capping each boundary component with a disk. By a curve we shall mean
a simple closed curve on S . We are mainly interested in the isotopy classes of
curves on S . The main goal in the proofs will be to decrease the number of
intersection points between different curves. If the Euler characteristic of S is
negative we can put a hyperbolic metric on S for which the boundary curves
are geodesics. Then the isotopy class of any non-separating curve on S contains
a unique simple closed geodesic, which is the shortest curve in its isotopy class.
If we replace each non-separating curve by the unique geodesic isotopic to it we
shall minimize the number of intersection points between every two non-isotopic
curves, by Corollary 5.1. So we can think of curves as geodesics. In the proof
we may construct new curves, which are not geodesics and which have small
intersection number with some other curves. When we replace the new curve
by the corresponding geodesic we further decrease the intersection number. If
S is a closed torus we can choose a flat metric on S . Now geodesics are not
unique but still any choice of geodesics will minimize the intersection number
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of any pair of non-isotopic curves. If two curves are isotopic on S then they
correspond to the same geodesic, but we shall call them disjoint because we can
isotop one off the other. Geodesics are never tangent.

If α and β are curves then |α∩β| denotes their geometric intersection number,
ie, the number of intersection points of α and β . If α is a curve we denote by
[α] the homology class represented by α in H1(S̄,Z), up to a sign. We denote
by i(α, β) the absolute value of the algebraic intersection number of α and β .
It depends only on the classes [α] and [β].

We shall describe now the cut-system complex X of S . To construct X we
consider collections of g disjoint curves γ1, γ2, . . . , γg in S such that when we
cut S open along these curves we get a connected surface (a sphere with 2g+n
holes). An isotopy class of such a collection we call a cut system 〈γ1, . . . , γg〉.
We can say that a cut system is a collection of geodesics. A curve is contained
in a cut-system if it is one of the curves of the collection. If γ′i is a curve in S ,
which meets γi at one point and is disjoint from other curves γk of the cut sys-
tem 〈γ1, . . . , γg〉, then 〈γ1, . . . , γi−1, γ

′
i, γi+1, . . . , γg〉 forms another cut system.

In such a situation the replacement 〈γ1, . . . , γi, . . . , γg〉 → 〈γ1, . . . , γ
′
i, . . . , γg〉

is called a simple move. For brewity we shall often drop the symbols for un-
changing circles and shall write 〈γi〉 → 〈γ′i〉. The cut systems on S form the
0–skeleton (the vertices) of the complex X . We join two vertices by an edge
if and only if the corresponding cut systems are related by a simple move. We
get the 1–skeleton X1 . By a path we mean an edge-path in X1 . It consists of
a sequence of vertices p = (v1, v2, . . . , vk) where two consecutive vertices are
related by a simple move. A path is closed if v1 = vk . We distinguish three
types of closed paths:

If three vertices (cut-systems) have g − 1 curves γ1, . . . , γg−1 in common and
if the remaining three curves γg, γ′g, γ′′g intersect each other once, as on Figure
2, C3, then the vertices form a closed triangular path:

(C3) a triangle 〈γg〉 → 〈γ′g〉 → 〈γ′′g 〉 → 〈γg〉.
If four vertices have g − 2 curves γ1, . . . , γg−2 in common and the remaining
pairs of curves consist of (γg−1, γg), (γ′g−1, γg), (γ′g−1, γ

′
g), (γg−1, γ

′
g) where the

curves intersect as on Figure 2, C4, then the vertices form a closed square path:

(C4) a square 〈γg−1, γg〉 → 〈γ′g−1, γg〉 → 〈γ′g−1, γ
′
g〉 → 〈γg−1, γ

′
g〉 → 〈γg−1, γg〉.

If five vertices have g−2 curves γ1, . . . , γg−2 in common and the remaining pairs
of curves consist of (γg−1, γg), (γg−1, γ

′
g), (γ′g−1, γ

′
g), (γ′g−1, γ

′′
g ) and (γg, γ′′g )

where the curves intersect as on Figure 2, C5, then the vertices form a closed
pentagon path:
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(C5) a pentagon 〈γg−1, γg〉 → 〈γg−1, γ
′
g〉 → 〈γ′g−1, γ

′
g〉 → 〈γ′g−1, γ

′′
g 〉 →

〈γ′′g , γg〉 → 〈γg−1, γg〉.

γg

γg

γg

γ′g γ′g
γ′g

γ′′g

γ′′g

γ′g−1

γ′g−1

γg−1

γg−1

(C3) (C4) (C5)

Figure 2: Configurations of curves in paths (C3), (C4) and (C5)

X is a 2–dimensional cell complex obtained from X1 by attaching a 2–cell to
every closed edge-path of type (C3), (C4) or (C5). The mapping class group
of S acts on S by homeomorphisms so it takes cut systems to cut systems.
Since the edges and the faces of X are determined by the intersections of pairs
of curves, which are clearly preserved by homeomorphisms, the action on X0

extends to a cellular action on X .

In this section we shall prove the main result of [9]:

Theorem 4 X is connected and simply connected.

We want to prove that every closed path p is null-homotopic. If p is null-
homotopic we shall write p ∼ o. We start with a closed path p = (v1, . . . , vk)
and try to simplify it. If q is a short-cut, an edge path connecting a vertex vi
of p with vj , j > i, we can split p into two closed edge-paths:
p1 = (vj , vj+1, . . . , vk, v2, . . . , vi−1,q) and p2 = (q−1, vi+1, vi+2, . . . , vj).
If both paths are null-homotopic in X then p ∼ o. We want to prove Theorem
4 by splitting path p into simpler paths according to a notion of complexity
which is described in the next definition.

Definition 2 Let p = (v1, v2, . . . , vk) be a path in X . Let α be a fixed curve
of some fixed vj . We define distance from α to a vertex vi to be d(α, vi) =
min{|α ∩ β| : β ∈ vi}. The radius of p around α is equal to the maximum
distance from α to the vertices of p. The path p is called a segment if every
vertex of p contains a fixed curve α. We shall write α–segment if we want to
stress the fact that α is the common curve of the segment. If the segment has
several fixed curves we can write (α, β, . . . , γ)–segment.
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Theorem 4 will be proven by induction on the genus of S , for the given genus it
will be proven by induction on the radius of a path p and for a given radius m
around a curve α we shall induct on the number of segments of p which have
a common curve γ with |γ ∩ α| = m. The main tool in the proof of Theorem
4 is a reduction of the number of intersection points of curves.

Definition 3 Curves α and β on S have an excess intersection if there exist
curves α′ and β′ , isotopic to α and β respectively, and such that |α ∩ β| >
|α′ ∩ β′|. Curves α and β form a 2–gon if there are arcs a of α and b of β ,
which meet only at their common end points and do not meet other points of
α or β and such that a ∪ b bound a disk, possibly with holes, on S . The disk
is called a 2–gon. We can cut off the 2–gon from α by replacing the arc a of α
by the arc b of β . We get a new curve α′ (see Figure 3).

Lemma 5 (Hass–Scott, see [8], Lemma 3.1) If α, β are two curves on a sur-
face S having an excess intersection then they form a 2–gon (without holes) on
S .

a

b

α α′

β

Figure 3: Curves α and β form a 2–gon.

Corollary 5.1 Two simple closed geodesics on S have no excess intersection.
In particular if we replace two curves by geodesics in their isotopy class then
the number of intersection points between the curves does not increase.

Proof If there is a 2–gon we can shorten one geodesic in its homotopy class,
by first cutting off the 2–gon and then smoothing corners.

Lemma 6 Consider a finite collection of simple closed geodesics on S . Sup-
pose that curves α and β of the collection form a minimal 2–gon (which does
not contain another 2–gon). Let α′ be the curve obtained by cutting off the
minimal 2–gon from α and passing to the isotopic geodesic. Then |α∩α′| = 0,
|β ∩α′| < |β ∩ α| and |γ ∩α′| ≤ |γ ∩ α| for any other curve γ of the collection.
In particular if |γ ∩ α| = 1 then |γ ∩ α′| = 1. Also [α] = [α′].
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Proof Since the 2–gon formed by arcs a and b of α and β is minimal every
other curve γ of the collection intersects the 2–gon along arcs which meet a
and b once. Thus cutting off the 2–gon will not change |α∩ γ| and it may only
decrease after passing to the isotopic geodesic. Clearly α and α′ are disjoint
and homologous on S̄ and by passing to α′ we remove at least two intersection
points of α with β .

2.1 The case of genus 1

In this section we shall assume that S is a surface of genus one, possibly with
boundary. By S̄ we shall denote the closed torus obtained by glueing a disk to
each boundary component of S . We want to prove:

Proposition 7 If S has genus one then the cut system complex X of S is
connected and simply connected.

On a closed torus S̄ the homology class [α] of a curve α is defined by a pair of
relatively prime integers, up to a sign, after a fixed choice of a basis of H1(S̄,Z).
If [α] = (a1, a2) and [β] = (b1, b2) then the absolute value of their algebraic
intersection number is equal i(α, β) = |a1b2 − a2b1|. If α and β are geodesics
on S̄ then |α∩β| = i(α, β), therefore it is also true for curves on S which form
no 2–gons, because then they have no excess intersection on S̄ .

Lemma 8 Let α, β be nonseparating curves on S and suppose that |α∩β| =
k 6= 1. Then there exists a nonseparating curve δ such that if k = 0 then
|δ ∩ α| = |δ ∩ β| = 1 and if k > 1 then |δ ∩ α| < k and |δ ∩ β| < k .

Proof If |α ∩ β| = 0 then the curves are isotopic on S̄ and they split S into
two connected components S1 and S2 . We can choose points P and Q on α
and β respectively and connect them by simple arcs in S1 and in S2 . The
union of the arcs forms the required curve δ . If k > 1 and if the curves have
an excess intersection on S̄ then they form a 2–gon on S . We can cut off the
2–gon decreasing the intersection, by Lemma 6. If there are no 2–gons then the
algebraic and the geometric intersection numbers are equal. In particular all
intersections have the same sign. Consider two intersection points consecutive
along β . Choose δ as on Figure 4. Then |δ ∩α| = 1 so it is nonseparating and
|δ ∩ β| < k .
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δ

α

α

β

Figure 4: Curve δ has smaller intersection with α and β .

Corollary 8.1 If surface S has genus 1 then the cut system complex of S is
connected.

Proof A cut system on S is an isotopy class of a single curve. If two curves
intersect once they are connected by an edge. It follows from the last lemma
by induction that any two curves can be connected by an edge-path in X .

We now pass to a proof that closed paths are null-homotopic.

Lemma 9 A closed path p = (δ1, δ2, δ3, δ4, δ1) such that |δ2 ∩ δ4| = 0 is null-
homotopic in X .

Proof Let β = T±1
δ2

(δ3) be the image of δ3 by the Dehn Twist along δ2 .
Recall that as a set β = δ2 ∪ δ3 outside a small neighbourhood of δ2 ∩ δ3 .
From this we get that |β ∩ δ2| = 1, |β ∩ δ3| = 1 and |β ∩ δ4| = 1. Thus
p′ = (δ1, δ2, β, δ4, δ1) is a closed path which is homotopic to p because p− p′

splits into a sum of two triangles t1 = (β, δ2, δ3, β) and t2 = (β, δ3, δ4, β). We
also have i(β, δ1) = |i(δ3, δ1) ± i(δ2, δ1)|, so for a suitable choice of the sign of
the twist we have i(δ3, δ1) > i(β, δ1) unless i(δ3, δ1) = 0. We may assume by
induction that i(δ3, δ1) = 0. If |δ1 ∩ δ3| > 0 then δ1 and δ3 have an excess
intersection on S̄ and form a 2–gon on S . We can cut off the 2–gon from δ3

getting a new curve β such that [β] = [δ3], |β ∩ δ3| = 0, |β ∩ δ1| < |δ3 ∩ δ1|
and |β ∩ δi| = |δ3 ∩ δi| for i 6= 1, by Lemma 6. We get a new closed path
p′ = (δ1, δ2, β, δ4, δ1) and the difference between it and the old path is a closed
path q = (β, δ2, δ3, δ4, β) with |β ∩ δ3| = 0 and |δ2 ∩ δ4| = 0. So by induction it
suffices to assume that |δ1∩δ3| = 0. If we now let β = Tδ2(δ3) then β intersects
each of the four curves once so our path is a sum of four triangles and thus is
null-homotopic in X .

Lemma 10 If p = (α1, . . . , αk) is a closed path then there exists a closed path
p′ = (α′1, . . . , α

′
k) such that p′ is homotopic to p in X , [αi] = [α′i] for all i and

the collection of curves α′1, . . . , α
′
k−1 forms no 2–gons.
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Proof Suppose that there exists a 2–gon bounded by arcs of two curves in p.
Then there also exists a minimal 2–gon bounded by arcs of curves αi and αj .
If we cut off the 2–gon from αi we get a curve α′i such that [αi] = [α′i], α

′
i is

disjoint from αi , |αj ∩ αi| > |αj ∩ α′i| and |αm ∩ α′i| ≤ |αm ∩ αi| for any other
curve αm , by Lemma 6. It follows that if we replace αi by α′i we get a new
closed path p′ with a smaller number of intersection points between its curves.
The difference of the two paths is a closed path q = (αi−1, αi, αi+1, α

′
i, αi−1)

which is null-homotopic by Lemma 9. Thus p′ is homotopic to p in X . Lemma
10 follows by induction on the total number of intersection points between pairs
of curves of p.

Proof of Proposition 7 Let p = (α1, . . . , αk, α1) be a closed path in X1 .
We may assume that the path has no 2–gons. By Lemma 5 there is no excess
intersection on the closed torus S̄ . It means that the geometric intersection
number of two curves of p is equal to their algebraic intersection number. Let
m = max{i(α1, αj)|j = 1, . . . , k} be the radius of p around α1 . Suppose first
that m = 1. Two disjoint curves on S̄ have the same homology class, and
two curves representing the same class have algebraic intersection equal to 0.
It follows that two consecutive curves in a path cannot be both disjoint from
α1 . If k > 4 then either |α1 ∩ α3| = 1 or |α1 ∩ α4| = 1. We get an edge
which splits p into two shorter closed paths with radius 1. If k = 4 and
|α1 ∩ α3| = 0 then p ∼ o by Lemma 9. If k = 3 then p is a triangle. Suppose
now that m > 1. We may assume by induction that every path of radius less
than m is null-homotopic and every path of radius m which has less curves αj
with |α1 ∩ αj | = m is also null-homotopic. Choose the smallest i such that
i(α1, αi) = m. Then i(α1, αi−1) < m and i(α1, αi+1) ≤ m. Choose a basis of
the homology group H1(S̄) which contains the curve α1 . A homology class of a
curve is then represented by a pair of integers (a, b). We consider the homology
classes and their intersection numbers up to a sign. We have [α1] = (1, 0),
[αi−1] = (a, b), [αi] = (p,m) and [αi+1] = (c, d). The intersection form is
defined by i((a, b), (c, d)) = |ad− bc|. Thus am− bp = ±1, cm− dp = ±1, |b| <
m, |d| ≤ m. We get m(ad− bc) = (±d± b). Since 2m > |b|+ |d| we must have
|ad− bc| = 1 or ad− bc = 0. In the first case i(αi−1, αi+1) = |αi−1 ∩αi+1| = 1.
We can “cut off” the triangle q = (αi−1, αi, αi+1, αi−1) getting a path which is
null-homotopic by the induction hypothesis. If ad−bc = 0 then i(αi−1, αi+1) =
|αi−1 ∩ αi+1| = 0. Let β = T±1

αi−1
(αi). Then |β ∩ αi−1| = 1 and |β ∩ αi+1| = 1.

We can replace αi by β getting a new closed path. Their difference is the closed
path q = (αi−1, αi, αi+1, β, αi−1) which is null homotopic by lemma 9. Thus
the new path is homotopic to the old path. For a suitable choice of the sign of
the Dehn twist we have i(β, α1) < m. It may happen that |β ∩ α1| ≥ m. We
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can get rid of 2–gons by Lemma 10 and thus get rid of the excess intersection.
We get a homotopic path which is null-homotopic by the induction hypothesis.
This concludes the proof of Proposition 7

2.2 Paths of radius 0

From now until the end of section 2, we assume that S is a surface of genus
g > 1 with a finite number of boundary components. We denote by X the
cut-system complex of S . We assume:

Induction Hypothesis 1 The cut-system complex of a surface of genus less
than g is connected and simply-connected.

We want to prove that every closed path in X is null-homotopic. We shall
start with paths of radius zero. The simplest paths of radius zero are closed
segments.

Lemma 11 A closed segment is null-homotopic in X .

Proof When we cut S open along the common curve α the remaining curves
of each vertex form a vertex of a closed path in the cut-system complex of a
surface of a smaller genus. By Induction Hypothesis 1 it is a sum of paths of
type (C3), (C4) and (C5) there. When we adjoin α to every vertex we get a
splitting of the original paths into null-homotopic paths.

In a similar way we prove:

Lemma 12 If two vertices of X have one or more curves in common we can
connect them by a path all of whose vertices contain the common curves.

Proof If we cut S open along the common curves the remaining collection of
curves form two vertices of the cut-system complex on the new surface of smaller
genus. They can be connected by a path. If we adjoin all the common curves
to each vertex of this path we get a path in X with the required properties.

Remark 2 If α and β are two disjoint non-separating curves on S then α∪β
does not separate S if and only if [α] 6= [β]. In this case the pair α, β can be
completed to a cut-system on S .

An elementary approach to the mapping class group of a surface

Geometry and Topology, Volume 3 (1999)

417



We shall now construct two simple types of null-homotopic paths in X .

Lemma 13 Let α1 , α2 , α3 be disjoint curves such that the union of any two
of them does not separate S but the union of all three separates S . Then there
exist disjoint curves β1 , β2 , β3 and a closed path

(C6) 〈α1, α2〉 → 〈α1, β2〉 → 〈α1, α3〉 → 〈β1, α3〉 → 〈α2, α3〉
→ 〈α2, β3〉 → 〈α2, α1〉,

which is null-homotopic in X .

Proof Let γ3 ,. . . , γg be a cut system on a surface S − (α1 ∪ α2 ∪ α3) (not
connected), ie, a collection of curves which does not separate the surface any
further. Then 〈α1, α2, γ3, . . . , γg〉 is a cut system on S . Let S1 and S2 be the
components of a surface obtained by cutting S open along all αi ’s and γj ’s.
An arc connecting different components of the boundary does not separate the
surface so we can find (consecutively) disjoint arcs b1 connecting α1 with α2 ,
b2 connecting α2 with α3 and b3 connecting α3 with α1 in S1 , and similar
arcs b′1 , b′2 and b′3 in S2 with the corresponding ends coinciding in S . The
pairs of corresponding arcs form the required curves β1 , β2 and β3 and we get
a closed path p described in (C6). Moreover the curves β2 and β3 are disjoint
and [β2] 6= [β3]. To prove that the path is null-homotopic in X we choose
a curve δ = Tα2(β1). Then |δ ∩ α1| = |δ ∩ α2| = |δ ∩ β1| = |δ ∩ β2| = 1 and
|δ∩α3| = |δ∩β3| = 0. Figure 5 shows how p splits into a sum of triangles (C3),
squares (C4) and pentagons (C5) and therefore is null-homotopic in X .

〈α1, α2〉 � 〈α2, β3〉 � 〈α2, α3〉 � 〈β1, α3〉

〈β2, β3〉 - 〈δ, β3〉 - 〈δ, α3〉

〈α1, β2〉 - 〈α1, α3〉

@
@@R

�
��	

?

6

@
@@R

�
��	

�
��	

@
@@R

Figure 5: Hexagonal path

Proposition 14 If p is a path of radius 0 around a curve α then p ∼ o.
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Proof Let v0 be a vertex of p containing α. We shall prove the proposition
by induction on the number of segments of p having a fixed curve disjoint from
α. Consider the maximal α–segment of p which contains the vertex v0 . We
shall call it the first segment. Let v1 be the last vertex of the first segment.
The next vertex contains a curve β disjoint from α such that β is the common
curve of the next segment of p. Since |α ∩ β| = 0 the simple move from v1

to the next vertex does not involve β hence v1 also contains β . Let v2 be the
last vertex of the second segment. If there are only two segments then v2 also
contains both α and β . By Lemma 12 there is an (α, β)–segment connecting
v1 and v2 . Then p is a sum of a closed α–segment and a closed β–segment.
So we may assume that there is a third segment. The vertex ṽ of p following
v2 contains a curve γ disjoint from α and γ is the common curve of the third
segment. Let v3 be the last vertex of the third segment. We shall reduce the
number of segments. There are three cases.

Case 1 Vertex v2 does not contain γ . Since ṽ contains γ and does not
contain β we have |β ∩ γ| = 1. Let S1 be a surface of genus g− 1 obtained by
cutting S open along β ∪ γ . Vertices v2 and ṽ have g − 1 curves in common
and the common curves form a cut system u on S1 . The union β ∪ γ cannot
separate S − α hence α does not separate S1 and it belongs to a cut-system
u′ on S1 . Vertices u and u′ can be connected by a path q in the cut-system
complex of S1 . If we adjoin β (respectively γ ) to each vertex of q we get a path
q2 (respectively q1 ). Path q2 connects v2 to a vertex u2 containing α and β
and path q1 connects ṽ to a vertex u1 containing α and γ . The corresponding
vertices of q1 and q2 are connected by an edge so the middle rectangle on
Figure 6 splits into a sum of squares of type (C4) and is null-homotopic. We
can connect v1 to u2 by an (α, β)–segment so the triangle on Figure 6 is a
closed β–segment and is also null-homotopic. The part of p between v1 and ṽ
can be replaced by the lower path on Figure 6. We get a new path p′ , which
has a smaller number of segments (no β–segment) and is homotopic to p in
X .

Case 2 Vertex v2 contains γ and α ∪ γ does not separate S . If there exists
a vertex v which contains α and β and γ we can connect it to v1 and v2 using
Lemma 12. We get a closed segment and the remaining path has one segment
less (Figure 7). Otherwise α ∪ β ∪ γ separate S and we can apply Lemma 13.
There exist vertices w1 containing α and β , w2 containing β and γ and w3

containing α and γ and a β–segment from w1 to w2 , a γ–segment from w2

to w3 and an α–segment from w3 to w1 . The sum of the segments is null-
homotopic. We now connect v1 to w1 by an (α, β)–segment and v2 to w2 by

An elementary approach to the mapping class group of a surface

Geometry and Topology, Volume 3 (1999)

419



v0
-

α
v1

-
β

v2
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γ
v3
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@
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(α, β)

6
β

6
γ

u2
- u1

Figure 6: Path of radius 0, Case 1

a (β, γ)–segment. Thus the second segment of p can be replaced by a sum of
an α–segment and a γ–segment, and the difference is a closed β–segment plus
a null-homotopic hexagonal path of Lemma 13 (see the right side of Figure 7).

v1
-

β
v2

-
γ

v3

@
@
@
@@R

(α, β)

6
(β, γ)

v
-

6

6

?

- -

��
��

��*

α

γ

(β, γ)
(α, β)

β γ

β

w1 w3

w2

v2v1 v3

Figure 7: Path of radius 0, Case 2

Case 3 Vertex v2 contains γ and α ∪ γ separates S into two surfaces S1

and S2 . If there were only three segments then, as at the vertex v1 , the first
vertex of the first segment would contain both α and γ and their union would
not separate S . This contradicts our assumptions. It follows in particular
that every closed path of radius zero with at most three segments (where the
common curve of each segment is disjoint from a fixed curve of the first segment)
is null-homotopic. We may assume that the path p has a fourth segment with
a fixed curve δ disjoint from α. Since [γ] = [α] we cannot have |γ ∩ δ| = 1.
Therefore δ is not involved in the simple move from v3 to the next vertex and
v3 contains δ . In particular [γ] 6= [δ] and [α] 6= [δ]. We may assume that β
lies in S1 . If δ lies in S2 then there is a vertex w which contains α and β and
δ . We can connect w to v1 by an (α, β)–segment, to v2 by a β–segment and
to v3 by a δ–segment. We get a new path, homotopic to p, which does not
contain β–segment nor γ–segment (see Figure 8, left part.)
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Suppose now that δ lies in S1 . Consider the cut-system complex X1 of S1 and
choose a vertex s of X1 which contains δ and a vertex s′ of X1 which contains
β . Let q be a path in X1 which connects s to s′ . Let t be a fixed vertex of the
cut-system complex X2 of S2 (if X2 is not empty.) We add α and all curves
of t to each vertex of the path q and get an α–segment in X connecting a
vertex w2 , containing δ , to a vertex w′2 , containing β . Then we add γ and all
curves of t to each vertex of the path q and get a γ–segment in X connecting
a vertex w3 , containing δ , to a vertex w′3 , containing β . We now connect v1 to
w2 by an α–segment, v2 to w′2 by a β–segment, v3 to w′3 by a γ–segment and
v4 to w3 by a δ–segment (see Figure 8, the right side.) Corresponding vertices
of the two vertical segments on Figure 8, the right side, have a common curve
δi , a curve of a vertex of the path q disjoint from α and from γ , and can be
connected by a δi–segment. We get a “ladder”such that each small rectangle
in this ladder has radius zero around γ and consists of only three segments.
Therefore it is null-homotopic. Every other closed path on Figure 8, the right
side, has a similar property. We get a new path, homotopic to p, which does
not contain β–segment nor γ–segment.

v1
-β v2

-γ v3
-δ v4

?

β

w

A
A
A
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�
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���
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α

β

w2
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β
γ
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A
A
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Figure 8: Path of radius 0, Case 3

2.3 The general case

We now pass to the general case and we want to prove it by induction on the
radius of a closed path.

Induction hypothesis 2 A closed path of radius less than m is null-homo-
topic.

We want to prove that a closed path p of radius m around a curve α is null-
homotopic. The general idea is to construct a short-cut, an edge-path which
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splits p and is close to α and to a fixed β–segment. The first step is to construct
one intermediate curve.

Lemma 15 Let γ1 and γ2 be non-separating curves on S such that |γ1∩γ2| =
n > 1. Then there exists a non-separating curve δ such that |γ1 ∩ δ| < n and
|γ2 ∩ δ| < n. Suppose that we are also given non-separating curves α, β and
an integer m > 0 such that |α ∩ β| ≤ m, |γ1 ∩ α| < m, |γ2 ∩ α| ≤ m, and
|β ∩γ1| = |β ∩γ2| = 0. Then we can find a curve δ as above which also satisfies
|δ ∩ α| < m and |δ ∩ β| = 0.

Proof We orient the curves γ1 and γ2 and split the union γ1 ∪ γ2 into a
different union of oriented simple closed curves as follows. We start near an
intersection point, say P1 , on the side of γ2 after γ1 crosses it and on the side
of γ1 before γ2 crosses it. Now we move parallel to γ1 to the next intersection
point with γ2 , say P2 . We do not cross γ2 at P2 and move parallel to γ2 , in
the positive direction, back to P1 . We get a curve δ1 . Now we start near P2

and move parallel to γ1 until we meet an intersection point, say P3 , which is
either equal to P1 or was not met before. We do not cross γ2 at P3 and move
parallel to γ2 , in the positive direction, back to P2 . We get a curve δ2 . And so
on. Curve δi meets γ1 near some points of γ1∩γ2 , but not near Pi and it meets
γ2 near some points of γ1 ∩ γ2 , but not near Pi+1 . So δi meets both curves
less than n times. Let γ̄ denote the (oriented) homology class represented by
an oriented curve γ in H1(S̄,Z). We have γ̄1 + γ̄2 = δ̄1 + . . . + δ̄k . Now we
repeat a similar construction for the opposite orientation of γ2 starting near the
same point P1 . We get new curves ε1 ,. . . ,εr and γ̄1 − γ̄2 = ε̄1 + . . . + ε̄r . Also
δ̄1− ε̄1 = γ̄2 . Combining these equalities in H1(S̄,Z) we get ε̄1 +

∑
i6=1 δ̄i = γ̄1 ,

δ̄1 +
∑

i6=1 ε̄i = γ̄1 ,
∑

i6=1 δ̄i −
∑

i6=1 ε̄i = γ̄2 . A simple closed curve separates S
if and only if it represents 0 in H1(S̄,Z). Since γ1 and γ2 are non-separating
it follows that either δ1 and some δi , i 6= 1, are not separating or ε1 and some
εi , i 6= 1, are not separating. And each of them meets γ1 and γ2 less than n
times, so it can be chosen for δ . If we are also given curves α and β and integer
m > 0 which satisfy the assumptions of the Lemma then |γ1 ∩ α| + |γ2 ∩ α| =
Σ|δi ∩ α| = Σ|εi ∩ α| ≤ 2m− 1 therefore one of the constructed nonseparating
curves intersects α less than m times and is disjoint from β .

Lemma 16 Let γ1 and γ2 be disjoint non-separating curves on S such that
γ1 ∪ γ2 separates S . Then there exists a non-separating curve δ such that
|γ1 ∩ δ| = 1 and |γ2 ∩ δ| = 1. Suppose that we are also given non-separating
curves α, β and an integer m > 0 such that |α∩β| ≤ m, |α∩β| = 1 if m = 1,
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|γ1 ∩ α| < m, |γ2 ∩ α| ≤ m, and |β ∩ γ1| = |β ∩ γ2| = 0. Then we can find a
curve δ as above which also satisfies |δ ∩ α| < m and |δ ∩ β| < m.

Proof By our assumptions γ1 ∪ γ2 separates S into two components S1 and
S2 . We can choose a simple arc d1 in S1 which connects γ1 to γ2 and a simple
arc d2 in S2 which connects γ1 to γ2 . Then we can slide the end-points of d1

and d2 along γ1 and γ2 to make the end-points meet. We get a nonseparating
curve δ which intersects γ1 and γ2 once. Suppose that we are also given curves
α and β and an integer m > 0. We need to alter the arcs d1 and d2 , if
necessary, in order to decrease the intersection of δ with α and β . We may
assume that β lies in S1 . We have to consider several cases.

Case 1 Curve α lies in S1 . Then d2 is disjoint from α. If m = 1 then
|α∩β| = 1 so the union α∪β does not separate its regular neighbourhood and
does not separate S1 . We can choose d1 disjoint from α and β and then δ is
also disjoint from α and β .

Suppose that m > 1. If α separates S1 (but does not separate S ) then it
separates γ1 from γ2 in S1 . There exists an arc d in S1 which connects γ1

with γ2 and is disjoint from α, if α does not separate S1 , or meets α once,
if α separates S1 . We choose such an arc d which has minimal number of
intersections with β . If |β ∩ d| > m then there exist two points P and Q of
β ∩ d, consecutive along β , and not separated by a point of β ∩ α. We can
move along d to P then along β , without crossing β , to Q, and then continue
along d to its end. This produces an arc which meets α at most once and has
smaller number of intersections with β . So we may assume that |β ∩ d| = m
and that every pair of points of β ∩ d consecutive along β is separated by a
point of β∩α. We now alter d as follows. Consider the intersection d∩ (α∪β).
If the first or the last point along d of this intersection belongs to α we start
from this end of d. Otherwise we start from any end. We move along d to the
first point, say P , of intersection with α ∪ β . If P ∈ α we continue along α,
without crossing it, to the next point of α∩β . Then along β , without crossing
it, to the last point, say Q, of β ∩ d on d, and then along d to its end. The
new arc crosses β at most once, near Q, and crosses α less than m times. If
P ∈ β we continue along β , without crossing β , to Q and then along d to its
end, which produces a similar result. We can choose such an arc for d1 and
then the curve δ satisfies the Lemma.

Case 2 Curve α meets γ1 or γ2 . Then m > 1, because if m = 1 and
|γ1 ∩ α| = 0 and α crosses γ2 into S1 then it must cross it again in order to
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exit S1 , and this contradicts |γ2 ∩ α| ≤ m. The arcs of α split S1 (and S2 )
into connected components. One of the components must meet both γ1 and
γ2 (Otherwise the union of all components meeting γ1 has α for a boundary
component and then α is disjoint from γ1 and γ2 .) Choosing d1 (respectively
d2 ) in such a component we can make them disjoint from α. Now we want to
modify d1 in such a way that |d1 ∩ α| = 0 and |d1 ∩ β| < m. There are three
subcases.

Case 2a There exists an arc a1 of α in S1 which connects γ1 and γ2 . Choose
d1 parallel to this arc. It may happen that d1 meets β m times. Then a1 is
the only arc of α which meets β . We then modify d1 as follows. We move from
γ1 along d1 until it meets β . Then we turn along β , away from a1 , to the next
point of a1 . We turn before crossing a1 and move parallel to a1 to γ2 . The
new arc does not meet α and meets β less than m times.

Case 2b There exists an arc of α in S1 which connects γ1 and β and there
exists an arc of α which connects γ2 and β . Then there exist points P and Q
of α ∩ β , consecutive along β , and arcs a1 and a2 of α such that a1 connects
γ1 to P and a2 connects Q to γ2 . We move along a1 to P then along β ,
without crossing β , to Q, and then along a2 to γ2 . The new arc does not meet
α and meets β less than m times.

Case 2c If an arc of α in S1 meets β then it meets only γ1 . (The case of γ2

is similar.) We consider an arc d in S1 which is disjoint from α and connects γ1

and γ2 . We start at γ2 and move along d to the first point of intersection with
β . Then we move along β , without crossing it, to the first point of intersection
with α. Then we move along α, away from β , to γ1 . The new arc does not
meet α and meets β less than m times. If β is disjoint from α then β is either
disjoint from a component of S1 − α which connects γ1 to γ2 or is contained
in it. We can find an arc in the component (disjoint from α) which connects
γ1 with γ2 and meets β at most once.

So in each case we have an arc d1 which is disjoint from α and meets β less
than m times. We now slide the end-points of d1 along γ1 and γ2 to meet the
end-points of d2 . Each slide can be done along one of two arcs of γi . Choosing
suitably we may assume that d1 meets at most m/2 points of α sliding along
γ2 and at most (m− 1)/2 points of α sliding along γ1 . The curve δ obtained
from d1 and d2 meets α and β less than m times.

Case 3 The curve α lies in S2 . Then |α ∩ β| = 0 so we must have m > 1.
We can choose d2 which is disjoint from β and meets α at most once and we
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can choose d1 which is disjoint from α and meets β at most once. The curve
δ obtained from d1 and d2 meets α and β less than m times.

Lemma 17 Let δ1 and δ2 be non-separating curves on S and let w1 be a
vertex of X containing δ1 and let w2 be a vertex of X containing δ2 . Then
there exists an edge-path q = (w1 = z1, z2, . . . , zk = w2) connecting w1 and
w2 . Suppose that we are also given non-separating curves α, β and an integer
m > 0 such that |α∩β| ≤ m, |α∩β| = 1 if m = 1, |δ1 ∩α| < m, |δ2 ∩α| ≤ m,
and |β ∩ δ1| = |β ∩ δ2| = 0. Then there exists a path q as above and an integer
j , 1 ≤ j < k , such that d(zi, β) < m for all i, d(zi, α) < m for 1 ≤ i ≤ j < k
and zi contains δ2 for j < i ≤ k .

Proof We shall prove the lemma by induction on |δ1 ∩ δ2| = n.

If δ1 = δ2 we can connect w1 and w2 by a δ1 –segment, by Lemma 12.

If n = 1 there exist vertices u1 , u2 in X which are connected by an edge and
such that δ1 ∈ u1 , δ2 ∈ u2 . Now we can connect u1 to w1 and w2 to u2 as in
the previous case.

If n = 0 and δ2∪δ1 does not separate S then there exists a vertex v containing
both curves δ2 and δ1 . We can connect v to w1 and w2 as in the first case.

Suppose now that n = 0 and that δ2 ∪ δ1 separates S . Then, by Lemma 16,
there exists a curve δ such that |δ2 ∩ δ| = |δ1 ∩ δ| = 1. We can find a vertex v
containing δ and we can connected v to w1 and w2 as in the second case. If we
are also given curves α, and β and an integer m we can choose δ which also
satisfies |α ∩ δ| < m and |β ∩ δ| < m. Then the path obtained by connecting
v to w1 and w2 have all vertices in a distance less than m from β and in a
distance less than m from α, except for the final δ2 –segment which ends at w2

(Curve δ2 may have distance m from α.)

If n > 1 then by Lemma 15 there exists a curve δ such that |δ1 ∩ δ| < n and
|δ2 ∩ δ| < n. We choose a vertex v containing δ . By induction on n we can
connect v to w1 and w2 . If we are also given curves α and β and an integer
m then we can find δ which also satisfies |δ ∩ α| < m and |δ ∩ β| = 0. By
induction on n we can connect w1 to v and v to w2 by a path the vertices
of which are closer to β than m, and closer to α than m except for a final
δ2 –segment which ends at w2 .

As an immediate corollary we get:

Corollary 17.1 Complex X is connected.
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We need one more lemma before we prove that every closed path is null-
homotopic in X .

Lemma 18 Let α, β , γ be non-separating curves on S such that |α∩β| = m,
|α ∩ γ| ≤ m, |β ∩ γ| = 1. There exists a non-separating curve δ such that
|δ ∩ α| < m, |δ ∩ β| = 0 and |δ ∩ γ| ≤ 1. If m = 1 then |δ ∩ γ| = 0 and [δ] is
different from [α], [β] and [γ].

Proof When we split S along γ ∪ β we get a surface S1 with a “rectangular”
boundary component ∂ consisting of two β–edges (vertical) and two γ–edges
(horizontal on pictures of Figure 9). We can think of S1 as a rectangle with
holes and with some handles attached to it. Curve α intersects S1 along some
arcs ai with end-points Pi and Qi on ∂ . If, for some i, points Pi and Qi lie
on the same β–edge then m > 1 and we can construct a curve δ consisting
of an arc parallel to ai and an arc parallel to the arc of β which connects Pi
and Qi passing through the point γ ∩ β . Then |δ ∩ β| = 0, |δ ∩ α| < m and
|δ∩γ| = 1. Recall that if two curves intersect exactly at one point then they are
both non-separating on S . Therefore δ satisfies the conditions of the Lemma.
If for some i points Pi and Qi lie on different γ–edges of ∂ then we can modify
the arc ai sliding its end-point Pi along the γ edge to the point corresponding
to Qi . We get a closed curve δ satisfying the conditions of the Lemma. So we
may assume that there are no arcs ai of the above types.

Suppose that for every pair i, j the pairs of end-points Pi, Qi and Pj , Qj do
not separate each other on ∂ . Then we can connect the corresponding end
points by nonintersecting intervals inside a rectangle. In the other words a
regular neighbourhood of α ∪ ∂ in S1 is a planar surface homeomorphic to a
rectangle with holes. Since S1 has positive genus there exists a subsurface of S1

of a positive genus attached to one hole or a subsurface of S1 which connects
two holes of the rectangle. Such a subsurface contains a curve δ which is non-
separating on S and is disjoint from α, β and γ and the homology class [δ] is
different from [α], [β] and [γ]. This happens in particular when m = 1 because
then there is at most one point on every edge and the pairs of end points of
arcs do not separate each other.

So we may assume that m > 1 and that there exists a pair of arcs, say a1

and a2 , such that the pair P1, Q1 separates the pair P2, Q2 in ∂ . Since an arc
ai does not connect different γ–edges we must have two points, say P1 and
P2 , on the same edge. Suppose that they lie on a β–edge, say the left edge.
Choosing an intermediate point, if there is one, we may assume that P1 and P2

are consecutive points of α along β . We have different possible configurations
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of pairs of points. For each of them we construct curves δi , as on Figure 9.
Each δi is disjoint from β and intersects γ at most once, and if it is disjoint
from γ it intersects some other curve once. So δi is not-separating. We shall
prove that we can always choose a suitable δi with |δi ∩ α| < m. Observe that
δi may meet α only along the boundary ∂ , and not along the arc connecting
P1 to P2 .

Case 1 Points Q1 and Q2 lie on the same γ–edge, say lower edge. If there
is no point of α on γ to the left of Q1 then |δ1 ∩α| < m. If there is a point of
α on γ to the left of Q1 then |δ2 ∩ α| < m.

Case 2 Points Q1 and Q2 lie on different γ–edges. Then |δ3 ∩ α| < m.

Case 3 Points Q1 and Q2 lie on the right edge. Then |δ4 ∩ α| < m.

Case 4 One of the points Qi , say Q1 , lies on a γ–edge and the other lies on a
β–edge. Let ui , i = 1, . . . , 6 denote the number of intersection points of α with
the corresponding piece of ∂ on Figure 9. Then u3 +u4 = u5 +u6 = |α∩β| = m
and u1 +u2 ≤ m. Also |δ1 ∩α| = u1 +u4 , |δ5 ∩α| = u1 +u3 , |δ6 ∩α| = u2 +u5

and |δ7 ∩ α| = u2 + u6 . Moreover, since P2 and Q2 are connected by an arc of
α, they represent different points on S (otherwise it would be the only arc of
α) and u4 6= u6 . It follows that |δi ∩ α| < m for i = 1, 5, 6 or 7.

We may assume now that for every pair of arcs (i, j) whose end-points separate
each other no two end-points lie on the same β–edge. If Pi and Qi lie on a
γ–edge and Pj lie in between then ai together with the interval of γ between
Pi and Qi form a nonseparating curve which meets α less than m times. So we
may assume that P1 and P2 lie on different β–edges, say P1 on the left edge
and P2 on the right edge, and Q1 and Q2 lie on the lower edge. Replacing Q1

or Q2 by an intermediate point, if necessary, we may also assume that for every
point Qi between Q1 and Q2 the corresponding point Pi also lies between
Q1 and Q2 . Now if there is no point of α on the left edge below P1 then
|δ1 ∩α| < m. If there is such point of α consider the one closest to P1 and call
it P3 . Then, by our assumptions, point Q3 lies on the lower edge to the left of
Q2 and |δ8 ∩ α| < m.

This concludes the proof of the Lemma.

Proposition 19 A path p of radius m around α is null-homotopic.

Proof Let v0 be a vertex of p containing α. We say that p begins at v0 .
Let v1 be the first vertex of p which has distance m from α. Let q be the
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Figure 9: Constructing curve δ

maximal segment of p, which starts at v1 and contains some fixed curve β
satisfying |β∩α| = m and such that no vertex of q contains a curve β′ satisfying
|β′∩α| < m. Let v2 be the last vertex of q. Let u1 be the vertex of p preceding
v1 and let u2 be the vertex of p following v2 . Vertex u1 contains a curve γ1

such that |γ1 ∩ α| < m. Vertex u2 is the first vertex of the second segment
which has a fixed curve γ2 such that |γ2 ∩ α| ≤ m. If u1 contains β then
|γ1 ∩ β| = 0. Otherwise, since v1 does not contain γ1 , the move from u1 to
v1 involves γ1 and β , so |γ1 ∩ β| = 1. If v2 contains γ2 then |γ2 ∩ β| = 0. It
may also happen that |γ2 ∩ α| < m and that β ∈ u2 . Then also |γ2 ∩ β| = 0.
Otherwise |γ2 ∩β| = 1. We want to construct vertices w1 , w′1 , w2 and w′2 and
edge paths connecting them, as on Figure 10, so that the rectangles are null
homotopic. Then we can replace the part of p between u1 and u2 by the path
connecting consecutively u1 to w′1 , w′1 to w1 , w1 to w2 , w2 to w′2 and w′2 to
u2 . We denote the new path by p′ .

In our construction vertex wi contains a nonseparating curve δi disjoint from
β . If |γi ∩ β| = 0 we let δi = γi , wi = w′i = ui and the corresponding rectangle
degenerates to an edge. If |γi ∩ β| = 1 we proceed as follows. By Lemma 18
there exists a nonseparating curve δi such that |δi ∩ β| = 0, |δi ∩ α| < m, and
|δi∩γi| ≤ 1. If |δi∩γi| = 0 (this is always the case if m = 1) then [δi] 6= [γi] and
[δi] 6= [β] because they have different intersections. There exists a vertex w′i
containing δi and γi and a vertex wi containing δi and β . We can connect ui
to w′i by a γi–segment, w′i to wi by a δi–segment and wi to vi by a β–segment.
The corresponding rectangle has radius zero around δi , so it is null-homotopic
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by the Induction Hypothesis 2.

If |δi ∩ γi| = 1 there exist vertices w′i and wi which are connected by an edge
and contain γi and δi respectively. We connect w′i to ui by a γi–segment.
We now apply Lemma 17 to vertices wi and vi with δ1, δ2, α, β replaced by
δi, β, γi, β respectively and m > 1. There exists a path connecting wi to vi
such that all vertices of the path have distance less than m from γi and β .
The corresponding rectangle has radius less than m around γi so it is null-
homotopic, by the Induction Hypothesis 2.

We now apply Lemma 17 to vertices w1 and w2 . There exists a path q =
(w1 = z1, z2, . . . , zk = w2) connecting w1 and w2 such that d(zi, β) < m for
all i, d(zi, α) < m for 1 ≤ i ≤ j < k and zi contains δ2 for j < i ≤ k . In
particular the middle rectangle on Figure 10 has radius less than m around β so
it is null-homotopic by the Induction Hypothesis 2. All vertices of the new part
of path p′ have distance less than m from α except for the final γ2–segment
from w′2 to u2 , if |γ2 ∩ β| = 1, or final δ2 = γ2–segment of q, if |γ2 ∩ β| = 0
and the right rectangle degenerates. Thus p′ has smaller number of segments
at the distance m from α, it has no β–segment, and it is null-homotopic by
induction on the number of segments of p at the distance m from some curve
α.

- - - - -

?

γ1

6 6 6

-

β γ2

δ1 δ2

γ2

u1 v1 v2 u2

w′1 w1
- w2

- w′2

Figure 10: Reducing a path of radius m

This concludes the proof of Theorem 4.

3 A presentation of Mg,1

In this section we shall consider a surface S of genus g > 1 with one boundary
component ∂ . Let Mg,1 be the mapping class group of S . Let X be the
cut-system complex of S described in the previous section. We shall establish
a presentation of Mg,1 via its action on X . The action of Mg,1 on X is
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defined by its action on vertices of X . If v = 〈C1, . . . , Cg〉 is a vertex of X and
g ∈Mg,1 then g(v) = 〈g(C1), . . . , g(Cg)〉.

We start with some properties of homeomorphisms of a surface. Then we de-
scribe stabilizers of vertices and edges of the action of Mg,1 on X . Finally we
consider the orbits of faces of X and determine a presentation of X .

In order to shorten some long formulas we shall adopt the following notation
for conjugation: a ∗ b = aba−1 . As usually [a, b] = aba−1b−1 .

Remark 3 Some proofs of relations between homeomorphisms of a surface
are left to the reader. The general idea of a proof is as follows. We split the
surface into a union of disks by a finite number of curves (and arcs with the
end-points on the boundary if the surface has a boundary). We prove that the
given product of homeomorphisms takes each curve (respectively arc) onto an
isotopic curve (arc), preserving some fixed orientation of the curve (arc). Then
the product is isotopic to a homeomorphism pointwise fixed on each curve and
arc. But a homeomorphism of a disk fixed on its boundary is isotopic to the
identity homeomorphism, relative to the boundary, by Lemma of Alexander.
Thus the given product of homeomorphisms is isotopic to the identity.

Dehn proved in [5] that every homeomorphism of S is isotopic to a product of
twists. We start with some properties of twists.

Lemma 20 Let α be a curve on S , let h be a homeomorphism and let α′ =
h(α). Then Tα′ = hTαh

−1 .

Proof Since h maps α to α′ we may assume that (up to isotopy) it also maps
a neighborhood N of α to a neighborhood N ′ of α′ . The homeomorphism h−1

takes N ′ to N , then Tα maps N to N , twisting along α, and h takes N back
to N ′ . Since Tα is supported in N , the composite map is supported in N ′ and
is a Dehn twist about α′ .

Lemma 21 Let γ1, γ2, . . . , γk be a chain of curves, ie, the consecutive curves
intersect once and non-consecutive curves are disjoint. Let N denote the regular
neighbourhood of the union of these curves. Let ci denote the twist along γi .
Then the following relations hold:

(i) The “commutativity relation”: cicj = cjci if |i− j| > 1.

(ii) The “braid relation”: cicj(γi) = γj , and cicjci = cjcicj if |i− j| = 1.
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(iii) The “chain relation”: If k is odd then N has two boundary components,
∂1 and ∂2 , and (c1c2 . . . ck)k+1 = T∂1T∂2 . If k is even then N has one
boundary component ∂1 and (c1c2 . . . ck)2k+2 = T∂1 .

(iv) (c2c1c3c2)(c4c3c5c4)(c2c1c3c2) = (c4c5c3c4)(c2c1c3c2)(c4c3c5c4).

(v) (c1c2 . . . ck)k+1 = (c1c2 . . . ck−1)k(ckck−1 . . . c2c
2
1c2 . . . ck−1ck) =

(ckck−1 . . . c2c
2
1c2 . . . ck−1ck)(c1c2 . . . ck−1)k .

Proof Relation (i) is obvious. It follows immediately from the definition of
Dehn twist that c2(γ1) = c−1

1 (γ2). Both statements of (ii) follow from this and
from Lemma 20. Relation (iii) is a little more complicated. It can be proven
by the method explained in Remark 3. Relations (iv) and (v) follow from the
braid relations (i) and (ii) by purely algebraic operations. We shall prove (iv).

(c2c1c3c2)(c4c3c5c4)(c2c1c3c2) = c2c3c1c2c4c5c3c4c2c3c1c2 =
c2c3c4c1c5c2c3c2c4c3c1c2 = c2c3c4c3c1c5c2c3c4c3c1c2 =
c4c2c3c4c1c5c2c4c3c1c2c4 = c4c2c3c1c4c5c4c2c3c1c2c4 =
c4c5c2c3c1c4c2c3c1c2c5c4 = c4c5c2c3c1c2c1c4c3c2c5c4 =
c4c5c3c2c3c4c1c2c3c2c5c4 = c4c5c3c2c3c4c3c1c2c3c5c4 =
c4c5c3c4c2c3c4c1c2c3c5c4 = (c4c5c3c4)(c2c1c3c2)(c4c3c5c4).

We now prove (v). We prove by induction that for s ≤ k we have (c1c2 . . . ck)s =
(c1c2 . . . ck−1)s(ckck−1 . . . ck−s+1). Using (i) and (ii) one checks easily that for
i > 1 we have ci(c1c2 . . . ck) = (c1c2 . . . ck)ci−1 . Now

(c1c2 . . . ck)s+1 = (c1c2 . . . ck−1)s(ckck−1 . . . ck−s+1)(c1c2 . . . ck) =
(c1c2 . . . ck−1)sc1c2 . . . ckck−1 . . . ck−s = (c1c2 . . . ck−1)s+1ckck−1 . . . ck−s .

For s = k + 1 we get (c1c2 . . . ck)k+1 = (c1c2 . . . ck−1)k(ckck−1 . . . c1c1c2 . . . ck).

This proves the first equality in (v). By (i) and (ii) (ckck−1 . . . c2c
2
1c2 . . . ck−1ck)

commutes with ci for i < k , which implies the second equality.

The next lemma was observed by Dennis Johnson in [12] and was called a
lantern relation.

Lemma 22 Let U be a disk with the outer boundary ∂ and with 3 inner holes
bounded by curves ∂1, ∂2, ∂3 which form vertices of a triangle in the clockwise
order. For 1 ≤ i < j ≤ 3 let αi,j be the simple closed curve in U which bounds
a neighbourhood of the “edge” (∂i, ∂j) of the triangle (see Figure 11). Let d
be the twist along ∂ , di the twist along ∂i and ai,j the twist along αi,j .

Then dd1d2d3 = a1,2a1,3a2,3 .
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α1,2
α2,3

α1,3

∂

∂1

∂2

∂3

Figure 11: Lantern relation

We now describe a presentation of the mapping class group of a disk with holes.

Lemma 23 Let U be a disk with the outer boundary ∂ and with n inner
holes bounded by curves ∂1, ∂2, . . . , ∂n . For 1 ≤ i < j ≤ n let αi,j be the
simple closed curve in U shown on Figure 12, separating two holes ∂i and ∂j
from the other holes. Let d be the twist along ∂ , di the twist along ∂i and ai,j
the twist along αi,j . Then the mapping class group of U has a presentation
with generators di and ai,j and with relations

(Q1) [di, dj ] = 1 and [di, aj,k] = 1 for all i, j, k .

(Q2) pure braid relations

(a) a−1
r,s ∗ ai,j = ai,j if r < s < i < j or i < r < s < j ,

(b) a−1
r,s ∗ as,j = ar,j ∗ as,j if r < s < j ,

(c) a−1
r,j ∗ ar,s = as,j ∗ ar,s if r < s < j ,

(d) [ai,j , a−1
r,j ∗ ar,s] = 1 if r < i < s < j .

Proof Relations (Q2) come in place of standard relations in the pure braid
group on n strings and we shall first prove the equivalence of (Q2) to the
standard presentation of the pure braid group. The standard presentation has
generators ai,j and relations (this is a corrected version of the relations in [2]):

(i) a−1
r,s ∗ ai,j = ai,j if r < s < i < j or i < r < s < j ,

(ii) a−1
r,s ∗ as,j = ar,j ∗ as,j if r < s < j ,

(iii) [ar,j, as,j] = [a−1
r,s , a

−1
r,j ] if r < s < j ,

(iv) a−1
r,s ∗ ai,j = [ar,j, as,j] ∗ ai,j if r < i < s < j .

So relations (a) and (b) are the same as (i) and (ii) respectively. We can
substitute relation (iii) in (iv) and get (d), after cancellation of ar,s . When we

Bronislaw Wajnryb

Geometry and Topology, Volume 3 (1999)

432



αi,j

∂

∂1 ∂2 ∂i ∂j ∂n

Figure 12: Generators of M0,n

substitute (ii) for the first three terms of (iii) we get (c), after cancellation of
a−1
r,s .

We now consider the disk U with holes. When we glue a disk with a distin-
guished center to each curve ∂i we get a disk with n distinquished points. Its
mapping class group is isomorphic to the pure braid group Pn with generators
ai,j and with relations (Q2). In the passage from the mapping class group of
U to the mapping class group of the punctured disk we kill exactly the twists
di , which commute with everything. One can check that the removal of the
disks does not affect the relations (Q2) so the mapping class group of U has a
presentation with relations (Q1) and (Q2).

We now consider the surface S . We shall fix some curves on S . The surface
S consists of a disk with g handles attached to it. For i = 1, . . . , g and j =
1, . . . , g−1 we fix curves αi , βi , εj (see Figure 1). Curve αi is a meridian curve
across the i-th handle, βi is a curve along the i-th handle and εi runs along
i-th handle and (1 + i)-th handle. Curves α1, α2, . . . , αg form a cut-system.

We denote by I0 the set of indices I0 = {−g, 1−g, 2−g, . . . ,−1, 1, 2, . . . , g−1, g}.
When we cut S open along the curves α1, . . . , αg we get a disk S0 with 2g holes
bounded by curves ∂i , i ∈ I0 , where curves ∂i and ∂−i correspond to the same
curve αi on S (see Figure 13). The glueing back map identifies ∂i with ∂−i
according to the reflection with respect to the x–axis. Curves on S can be
represented on S0 . If a curve on S meets some curves αi then it is represented
on S0 by a disjoint union of several arcs. In particular εi is represented by two
arcs joining ∂−i to ∂−i−1 and ∂i to ∂i+1 . We denote by δi,j , i < j ∈ I0 , curves
on S represented on Figure 13. Curve δi,j separates holes ∂i and ∂j from the
other holes on S0 . We now fix some elements of Mg,1 .

Definition 4 We denote by ai, bi, ej the Dehn twists along the curves αi, βi, εj
respectively. We fix the following elements of Mg,1 :
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s = b1a1a1b1 .
ti = eiaiai+1ei for i = 1, . . . , g − 1.
d1,2 = (b−1

1 a−1
1 e−1

1 a−1
2 ) ∗ b2 .

For i < j ∈ I0 we let

di,j = (ti−1ti−2 . . . t1tj−1tj−2 . . . t2) ∗ d1,2 if i > 0,
di,j = (t−1

−i−1t
−1
−i−2 . . . t

−1
1 s−1tj−1tj−2 . . . t2) ∗ d1,2 if i < 0 and i+ j > 0,

di,j = (t−1
−i−1t

−1
−i−2 . . . t

−1
1 s−1tjtj−1 . . . t2) ∗ d1,2 if i < 0, j > 0 and i+ j < 0,

di,j = (t−1
−j−1t

−1
−j−2 . . . t

−1
1 t−1
−i−1t

−1
−i−2 . . . t

−1
2 s−1t−1

1 s−1) ∗ d1,2 if j < 0,

di,j = (t−1
j−1dj−1,jt

−1
j−2dj−2,j−1 . . . t

−1
1 d1,2) ∗ (s2a4

1) if i+ j = 0.

The products described in the above definition represent very simple elements
of Mg,1 and we shall explain their meaning now. We shall first define special
homeomorphisms of S0 .

Definition 5 A half-twist hi,j along a curve δi,j is an isotopy class (on S0

relative to its boundary) of a homeomorphism of S0 which is fixed outside δi,j
and is equal to a counterclockwise “rotation” by 180 degrees inside δi,j . In
particular hi,j switches the two holes ∂i and ∂j inside δi,j so it is not fixed on
the boundary of S0 , but h2

i,j is fixed on the boundary of S0 and is isotopic to
the full Dehn twist along δi,j .

Lemma 24 The result of the action of tk (respectively s) on a curve δi,j is
the same as the result of the action of the product of half-twists hk,k+1h−k−1,−k
(respectively the result of the action of h−1,1 ) on δi,j . So tk rotates δi,j around
δk,k+1 counterclockwise and around δ−k−1,−k conterclockwise and switches the
corresponding holes. If the pair (i, j) is disjoint from {k, k + 1,−k,−k − 1}
than tk leaves δi,j fixed. It also leaves curves δk,k+1 and δ−k−1,−k fixed. In a
similar way s rotates δi,j counterclockwise around δ−1,1 and switches the holes.
If (i, j) is disjoint from (−1, 1) than s leaves δi,j fixed. Also δ−1,1 is fixed by
s.

Proof The result of the action can be checked directly.

Lemma 25 The element di,j of Mg,1 is equal to the twist along the curve δi,j
for all i, j .

Proof We start with the curve β2 and apply to it the product of twists
b−1
1 a−1

1 e−1
1 a−1

2 . We get the curve δ1,2 . Therefore, by Lemma 20, d1,2 is equal
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to the twist along δ1,2 . For i 6= −j we start with δ1,2 and apply consecutive
factors ti and s, one at a time. We check that the result is δi,j so di,j is the
twist along δi,j , by Lemma 20. For d−1,1 we use (iii) of Lemma 21. The curve
δ−1,1 is the boundary of a regular neighbourhood of α1∪β1 and (a1b1)6 = s2a4

1

by (i) and (ii) of Lemma 21, therefore d−1,1 = (a1b1)6 is the twist along δ−1,1

by (iii) of Lemma 21. Now we apply a suitable product of ti ’s and di,i+1 ’s to
δ−1,1 and get δ−j,j . Therefore d−j,j is equal to the twist along δ−j,j by Lemma
20.

∂−1 ∂−2 ∂−i ∂−j ∂−g

∂1 ∂2 ∂i ∂j ∂gδ1,2
δ−i,j

. . . . . . . . .

∂

Figure 13: Curves δi,j on S0

We can explain now the relations in Theorem 1.

Lemma 26 The relations (M1), (M2) and (M3) from Theorem 1 are satisfied
in Mg,1 .

Proof Relations (M1) follow from Lemma 21 (i) and (ii). Curves β1, α1, ε1
form a chain. One boundary component of a regular neighbourhood of α1∪β1∪
ε1 is equal to β2 . It is easy to check that a2e1a1b

2
1a1e1a2(β2) is equal to the other

boundary component. By Lemma 21 (iii) and by Lemma 20 we have (b1a1e1)4 =
b2a2e1a1b

2
1a1e1a2b2(a2e1a1b

2
1a1e1a2)−1 . This is equivalent to relation (M2) by

Lemma 21 (v). Consider now relation (M3). Applying consecutive twists one
can check that (b2a2e1b

−1
1 )(δ1,3) = δ3 , where δ3 is the curve on Figure 1. Thus

d3 represents the twist along δ3 . When we cut S along curves α1 , α2 , α3 and
δ3 we split off a sphere with four holes from surface S . Since elements di,j
represent twists along curves δi,j , relation (M3) follows from lantern relation,
Lemma 22.

Our first big task is to establish a presentation of a stabilizer of one vertex of X .
Let v0 be a fixed vertex of X corresponding to the cut system 〈α1, α2, . . . , αg〉.
Let H be the stabilizer of v0 in Mg,1 .
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Proposition 27 The stabilizer H of vertex v0 admits the following presenta-
tion:

The set of generators consists of a1 , a2, . . . , ag , s, t1 , t2 , . . ., tg−1 and the
di,j ’s for i < j, i, j ∈ I0 .

The set of defining relations consists of:

(P1) [ai, aj ] = 1 and [ai, dj,k] = 1 for all i, j, k ∈ I0 .

(P2) pure braid relations

(a) d−1
r,s ∗ di,j = di,j if r < s < i < j or i < r < s < j ,

(b) d−1
r,s ∗ ds,j = dr,j ∗ ds,j if r < s < j ,

(c) d−1
r,j ∗ dr,s = ds,j ∗ dr,s if r < s < j ,

(d) [di,j , d−1
r,j ∗ dr,s] = 1 if r < i < s < j .

(P3) titi+1ti = ti+1titi+1 for i = 1, . . . , g − 2 and [ti, tj] = 1 if 1 ≤ i <
j − 1 < g − 1.

(P4) s2 = d−1,1a
−4
1 and t2i = di,i+1d−i−1,−ia

−2
i a−2

i+1 for i = 1, . . . , g − 1.

(P5) [ti, s] = 1 for i = 2, . . . , g − 1.

(P6) st1st1 = t1st1s.

(P7) [s, ai] = 1 for 1 ≤ i ≤ g , ti ∗ ai = ai+1 for 1 ≤ i ≤ g − 1,

[ai, tj ] = 1 for 1 ≤ i ≤ g , j 6= i, i− 1.

(P8) s ∗ di,j = di,j if i 6= ±1 and j 6= ±1 or if i = −1 and j = 1,

s ∗ d−1,j = d1,j for 2 ≤ j ≤ g , s ∗ di,−1 = di,1 for −g ≤ i ≤ −2,

tk ∗ di,j = di,j if 1 ≤ k ≤ g − 1 and ( j = i+ 1 = k + 1, or j = i+ 1 = −k
or i, j /∈ {±k,±(k + 1)} ),

tk ∗ dk,j = dk+1,j for 1 ≤ k ≤ g − 1 and k + 2 ≤ j ≤ g ,

tk ∗ di,−k−1 = di,−k for 1 ≤ k ≤ g − 1 and −g ≤ i ≤ −k − 2,

tk ∗ d−k−1,k = d−k,k+1 , tk ∗ d−k−1,k+1 = dk,k+1 ∗ d−k,k , for 1 ≤ k ≤ g − 1
tk ∗ d−k−1,j = d−k,j for 1 ≤ k ≤ g − 1 and j > −k , j 6= k, k + 1,

tk ∗ di,k = di,k+1 for 1 ≤ k ≤ g − 1 and i < k , i 6= −k,−k − 1.

Proof An element of H leaves the cut-system v0 invariant but it may permute
the curves αi and may reverse their orientation. Clearly ai belongs to H . One
can easily check that ti(αi) = αi+1 , ti(αi+1) = αi , ti(αk) = αk for k 6= i, i+ 1.
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s(α1) is equal to α1 with the opposite orientation and s is fixed on other αi ’s.
Thus ti ’s and s belong to H . By Lemma 25 we know that di,j is a twist along
the curve δi,j so it also belongs to H . We shall prove in the next section that
the relations (P1) – (P8) follow from the relations (M1) – (M3), so they are
satisfied in Mg,1 and thus also in H . The group H can be defined by two
exact sequences.

1→ Zg2 → ±Σg → Σg → 1.(1)

1→ H0 → H → ±Σg → 1.(2)

Before defining the objects and the homomorphisms in these sequences we shall
recall the following fact from group theory.

Lemma 28 Let 1 → A → B → C → 1 be an exact sequence of groups with
known presentations A = 〈ai|Qj〉 and C = 〈ci|Wj〉. A presentation of B can
be obtained as follows: Let bi be a lifting of ci to B . Let Rj be a word obtained
from Wj by substitution of bi for each ci . Then Rj represents an element dj
of A which we write as a product of generators ai of A. Finally for every ai
and bj the conjugate bj ∗ ai represents an element ai,j of A, which we write as
a product of the generators ai .

Then B = 〈ai, bj |Qj, Rj = dj , bj ∗ ai = ai,j〉.

We now describe the sequence (1) and the group ±Σg . This is the group of
permutations of the set I0 = {−g, 1− g, . . . ,−1, 1, 2, . . . , g} such that σ(−i) =
−σ(i). The homomorphism ±Σg → Σg forgets the signs. A generator of the
kernel changes the sign of one letter. The sequence splits, Σg can be considered
as the subgroup of the permutations which take positive numbers to positive
numbers. Let τi = (i, i + 1) be a transposition in Σg for i = 1, 2, . . . , g − 1.
Then

(S1) [τi, τj ] = 1 for |i− j| > 1,

(S2) τi ∗ τi+1 = τ−1
i+1 ∗ τi for i = 1, . . . , g − 2,

(S3) τ2
i = 1 for i = 1, . . . , g − 1.

This defines a presentation of Σg . Further let σi for i = 1, . . . , g denote the
change of sign of the i-th letter in a signed permutation. Then σ2

i = 1 and
[σi, σj ] = 1 for all i, j . Finally the conjugation gives τi∗σi = σi+1 , τi∗σi+1 = σi
and [σj, τi] = 1 for j 6= i and j 6= i+ 1. In fact it suffices to use one generator
σ = σ1 and the relations σi = (τi−1τi−2 . . . τ1) ∗ σ . We get the relations

(S4) σ2 = 1,
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(S5) [σ, τj ] = 1 and [(τiτi−1 . . . τ1) ∗ σ, τj ] = 1 for 1 ≤ i ≤ g − 1 and j 6= i
and j 6= i+ 1,

(S6) [(τiτi−1 . . . τ1) ∗ σ, σ] = 1 and [(τiτi−1 . . . τ1) ∗ σ, (τjτj−1 . . . τ1) ∗ σ] = 1
for 1 ≤ i, j ≤ g − 1.

Group ±Σg has a presentation with generators σ, τ1, . . . , τg−1 and with defining
relations (S1) – (S6).

We shall describe now the sequence (2). A homeomorphism in H may per-
mute the curves αi and may change their orientations. We fix an orientation of
each curve αi and define a homomorphism φ1: H → ±Σg as follows: a home-
omorphism h is mapped onto a permutation i 7→ ±j if h(αi) = αj and the
sign is “+” if the orientations of h(αi) and of αj agree, and “−” otherwise.
If h preserves the isotopy class of αi and preserves its orientation then it is
isotopic to a homeomorphism fixed on αi . The kernel of φ1 is the subgroup
H0 of the elements of H represented by the homeomorphisms which keep the
curves α1, α2, . . . , αg pointwise fixed. We want to find a presentation of H
from the sequence (2). We start with a presentation of H0 . An element of H0

induces a homeomorphism of S0 . When we glue back the corresponding pairs
of boundary components of S0 we get the surface S . This glueing map induces
a homomorphism from the mapping class group of S0 onto H0 .

We shall prove that the kernel of this homomorphism is generated by products
did
−1
−i , where di is the twist along curve ∂i , so both twists are identified with

ai in H0 . It suffices to assume, by induction, that we glue only one pair of
boundaries ∂i and ∂−i on S0 and get a nonseparating curve αi on S . Homeo-
morphism did

−1
−i induces a spin map s of S along αi (see [2], Theorem 4.3 and

Fig. 14). Let γ be a curve on S which meets αi at one point P . Let h0 be
a homeomorphism of S0 which induces a homeomorphism h of S isotopic to
the identity and fixed on αi . We shall prove that for a suitable power k the
map skh is fixed on γ (after an isotopy of S liftable to S0 ). If h(γ) forms a
2–gon with γ we can get rid of the 2–gon by an isotopy liftable to S0 (fixed on
αi ). If h(γ) and γ form no 2–gons then they are tangent at P . Let us move
h(γ) off γ , near the point P , to a curve γ′ . If γ′ and γ intersect then they
form a 2–gon. But then h(γ) and γ form a self-touching 2–gon (see Figure 14).
Clearly the spin map s or s−1 removes the 2–gon. If γ′ and γ are disjoint then
they bound an annulus. If the annulus contains the short arc of αi between
γ′ and γ then h(γ) is isotopic to γ by an isotopy liftable to S0 . If the annu-
lus contains the long arc of αi between γ′ and γ then the situation is similar
to Figure 14, but h(γ) does not meet γ outside P . The spin map s or s−1

takes h(γ) onto a curve isotopic to γ by an isotopy liftable to S0 . So we may
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assume, by induction on |h(γ) ∩ γ|, that h(γ) = γ . We proceed as in Remark
3. We spilt S into disks by curves αi , γ , and other curves disjoint from αi .
Homeomorphism h takes each curve to an isotopic curve and the 2–gons which
appear do not contain αi . Thus all isotopies are liftable to S0 .

It follows that the kernel is generated by did
−1
−i ’s. By Lemma 23 the map-

P

αi

γ

h(γ)

Figure 14: Self-touching 2–gon

ping class group of S0 has a presentation with generators dk and di,j and with
relations (Q1) and (Q2), where ai,j = di,j , i, j ∈ I0 . Therefore H0 has a pre-
sentation with generators a1, . . . , ag and di,j for i < j ∈ I0 and with relations
(P1), (P2). In these relations di,j is represented by a Dehn twist along δi,j .

We come back to sequence (2). We see from the action of ti and s on αj that we
can lift τi to ti and σ to s. Relations (S1) and (S2) lift to (P3). Relations (S3)
and (S4) lift to (P4). Relation (S5) lifts to [(titi−1 . . . t1)∗s, tj ] = 1 for j 6= i and
j 6= i+1 and it follows from (P3) and (P5). We shall deal with (S6) a little later.
We now pass to the conjugation of the generators of H0 by s and tk . Since
s2 ∈ H0 and t2k ∈ H0 , by (P4), it suffices to know the result of the conjugation
of each generator of H0 by either s or by s−1 , and by either tk or by t−1

k , the
other follows. The result of the conjugation is described in relations (P7) and
(P8). Finally we lift the relation (S6). We start with the case [τ1 ∗σ, σ]. It lifts
to t1st

−1
1 st1s

−1t−1
1 s−1 = (by (P6)) t1st−1

1 ss−1t−1
1 s−1t1 = t1st

−2
1 s−1t−1

1 t21 . We
have t21 ∈ H0 , by (P4), and the conjugation of an element of H0 by s and ti is
already determined by (P7) and (P8). So we know how to lift [τ1 ∗ σ, σ] = 1.
In the general case we have a commutator [(titi−1 . . . t1) ∗ s, (tjtj−1 . . . t1) ∗ s].
If i > j then, by (P3) and (P5), this commutator is equal to the conjugate of
[t1 ∗ s, s] by tjtj−1 . . . t1titi−1 . . . t2 . This is a conjugation of an element of H0

by tk ’s, so the result is determined by (P7) and (P8).

This concludes the proof of Proposition 27.

We shall prove now that Mg,1 acts transitively on vertices of X , so there is
only one vertex orbit, and that H acts transitively on edges incident to v0 , so
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there is only one edge orbit. When we cut S open along the curves α1, . . . , αg
we get a disk with 2g holes. It is homeomorphic to any other such disk and we
can prescribe the homeomorphism on the boundary components, hence every
two cut systems can be transformed into each other by a homeomorphism and
Mg,1 acts transitively on X0 . Let w be a vertex connected to v0 by an edge.
Then w contains a curve β which intersects some curve αi at one point and is
disjoint from the other curves of v0 . We cut S open along α1, α2, . . . , αg, β and
get a disk with 2g − 1 holes, including one “big” hole bounded by arcs of both
αi and β . If we cut S along curves belonging to another edge incident to v0 we
get a similar situation. There exists a homeomorphism of one disk with 2g − 1
holes onto the other which preserves the identification of curves of the boundary
and takes the set α1, α2, . . . , αg onto itself. It induces a homeomorphism of S
which leaves v0 invariant and takes one edge onto the other. Thus H acts
transitively on the edges incident to v0 .

We now fix one such edge and describe its stabilizer. If we replace curve α1

of cut-system v0 by curve β1 we get a new cut-system connected to v0 by an
edge. We denote the cut-system by v′0 and the edge by e0 . Let H ′ be the
stabilizer of e0 in H .

Lemma 29 The stabilizer H ′ of the edge e0 is generated by a2
1s, t1st1 , a2 ,

d2,3 , d−2,2 , d−1,1d−1,2d1,2a
−2
1 a−1

2 , and t2, . . . , tg−1 .

Proof An element h of H ′ may permute curves α2, . . . , αg and may reverse
their orientations. It may also reverse simultaneously orientations of both
curves α1 and β1 (it preserves the orientation of S so it must preserve algebraic
intersection of curves). We check that a2

1s reverses orientations of β1 and α1 ,
t1st1 reverses orientation of α2 and leaves β1 and α1 invariant. Elements ti
permute the curves α2, . . . , αg . Modulo these homeomorphisms we may assume
that h is fixed on all curves αi and β1 . It induces a homeomorphism of S cut
open along all these curves. We get a disk with holes and, by Lemma 23, its
mapping class group is generated by twists around holes and twists along suit-
able curves surrounding two holes at a time. Element d−1,1 = (a2

1s)
2 represents

twist around the big hole (the cut along α1 ∪ β1 ). Conjugates of a2 by tj ’s
produce twists around other holes. The conjugate of d2,3 by (t1st1)−1 is equal
to d−2,3 and the conjugate of d−2,3 by (t2t1st1)−1 is equal to d−3,−2 . Every
dk,k+1 can be obtained from these by conjugation by ti ’s, i > 1. It is now
clear that every curve δi,j with i, j 6= ±1 can be obtained from d2,3 and d−2,2

by conjugation by the elements chosen in the Lemma. So the corresponding
twists are products of the above generators. We also need twists along curves

Bronislaw Wajnryb

Geometry and Topology, Volume 3 (1999)

440



which surround the “big” hole and another hole. Consider such a curve on S0 .
It must contain inside both holes ∂−1 and ∂1 , including the arc between them
corresponding to β1 , and one other hole. One such curve, call it γ , contains
∂−1, ∂1, ∂2 . By Lemma 22 the twist along γ is equal to d−1,1d−1,2d1,2a

−2
1 a−1

2 .
Any other curve which contains ∂−1, ∂1, ∂i with i > 1 is obtained from γ by
application of ti ’s. The curve which contains ∂−1, ∂1, ∂−2 is obtained from γ
by application of (t1st1)−1 and a curve which contains ∂−1, ∂1, ∂i with i < −2
is obtained from the last curve by application of t−1

i ’s. Therefore all generators
of H ′ are products of the generators in the Lemma.

We now distinguish one more element of Mg,1 , which does not belong to H .
Let r = a1b1a1 . The element r is a “quarter-twist”. It switches curves α1 and
β1 , r2 = sa2

1 = h−1,1 is a half-twist around δ−1,1 and r4 = d−1,1 . Also r leaves
the other curves αi fixed, so it switches the vertices of the edge e0 , r(v0) = v′0
and r(v′0) = v0 .

We now describe precisely a construction from [15] and [9] which will let us
determine a presentation of Mg,1 . This construction was very clearly explained
in [10].

Let us consider a free product (H ∗ Z) where the group Z is generated by r .
An h-product is an element of (H ∗ Z) with positive powers of r , so it has a
form h1rh2r . . . hkrhk+1 . We have an obvious map η: (H ∗Z)→Mg,1 through
which the h–products act on X . We shall prove that η is onto and we shall
find the h products which normally genarate the kernel of η .

To every edge-path p = (v0, v1, . . . , vk) which begins at v0 we assign an h–
product g = h1rh2r . . . hkrhk+1 such that h1r . . . hmr(v0) = vm for m =
1, . . . , k . We construct it as follows. There exists h1 ∈ H such that h1(v0) = v0

and h1(v′0) = v1 . Then h1r(v0) = v1 . Next we transport the second edge to
v0 . (h1r)−1(v1) = v0 and (h1r)−1(v2) = v′1 . There exists h2 ∈ H such that
h2r(v0) = v′1 and h1rh2r(v0) = v2 . And so on. Observe that the elements hi in
the h–product corresponding to an edge-path p are not uniquely determined.
In particular hk+1 is an arbitrary element of H . The construction implies:

Lemma 30 The generators of H together with the element r generate the
group Mg,1 .

Proof Let g be an element of Mg,1 . Then g(v0) is a vertex of X and can
be connected to v0 by an edge-path p = (v0, v1, . . . , vk = g(v0)). Let g1 =
h1rh2r . . . hkr be an h–product corresponding to p. Then g1(v0) = vk = g(v0),
therefore η(g−1

1 )g = hk+1 leaves v0 fixed and belongs to the stabilizer H of v0 .
It follows that g = η(h1rh2r . . . hkrhk+1) in Mg,1 .
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By the inverse process we define an edge-path induced by the h–product g =
h1rh2r . . . hkrhk+1 . The edge-path starts at v0 then v1 = h1r(v0), v2 =
h1rh2r(v0) and so on. The last vertex of the path is vk = g(v0).

Remark 4 An h–product g represents an element in H if and only if vk = v0 .
This happens if and only if the corresponding edge-path is closed. We can
multiply such g by a suitable element of H on the right and get an h–product
which represents the identity in Mg,1 and induces the same edge-path as g .

We now describe a presentation of Mg,1 .

Theorem 31 The mapping class group Mg,1 admits the following presenta-
tion:

The set of generators consists of a1 , a2, . . . , ag , s, t1 , t2 , . . . , tg−1 , r and the
di,j ’s for i < j, i, j ∈ I0 .

The set of defining relations consists of relations (P1) – (P8) of Proposition 27
and of the following relations:

(P9) r commutes with a2
1s, t1st1 , a2 , d2,3 , d−2,2 , d−1,1d−1,2d1,2a

−2
1 a−1

2 , and
t2, . . . , tg−1 .

(P10) r2 = sa2
1 .

(P11) (kir)3 = (kisa1)2 for i = 1, 2, 3, 4, where

k1 = a1 , k2 = d1,2 , k3 = a−1
1 a−2

2 d1,2d−2,1d−2,2 , k4 = a−1
1 a−1

2 a−1
3 d1,2d1,3d2,3 ,

(rk5rk
−1
5 )2 = sa2

1k5sa
2
1k
−1
5 , where k5 = a2t1d

−1
1,2 , (ra1t1)5 = (sa2

1t1)4 .

Relations (P9) – (P11) say that some elements of H ∗ Z belong to ker(η), so
Theorem 31 claims that (H ∗ Z) modulo relations (P9) – (P11) is isomorphic
to Mg,1 .

Relations (P9) tell us that r commutes with the generators of the stabilizer H ′

of the edge e0 . We shall prove this claim now. An element h of H ′ leaves the
edge e0 fixed but it may reverse the orientations of α1 and β1 . The element
r2 = sa2

1 does exactly this and commutes with r . Modulo this element we may
assume that h leaves α1 and β1 pointwise fixed. But then we may also assume
that it leaves some neighbourhood of α1 and β1 pointwise fixed. On the other
hand r is equal to the identity outside a neighbourhood of α1 and β1 so it
commutes with h.

From relations (P9) and (P10) we get information about h–products.

Claim 1 If two h–products represent the same element in Mg,1 and induce
the same edge-path then they are equal in (H ∗ Z)/(P9).
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Proof If two h–products g1 = h1r . . . rhk+1 and g2 = f1r . . . rfk+1 induce
the same edge-path p = (v0, v1, . . . , vk) then h1r(v0) = f1r(v0). Therefore
h−1

1 f1r(v0) = r(v0) and h−1
1 f1 ∈ H ′ commutes with r in (H ∗ Z)/(P9). Now

f1rf2 = h1h
−1
1 f1rf2 = h1rf

′
2 in (H ∗ Z)/(P9). Therefore g2 and a new h–

product h1rf
′
2rf3r . . . rfk+1 are equal in (H ∗ Z)/(P9) and induce the same

edge-path p. If we apply r−1h−1
1 to the vertices (v1, v2, . . . , vk) of p we get a

shorter edge-path which starts at v0 and is induced by both shorter h–products
h2r . . . rhk+1 and f ′2r . . . rfk+1 . Claim 1 follows by induction on k .

Two different edge-paths may be homotopic in the 1–skeleton X1 . This means
that there is a backtracking vi, vi+1, vi along the edge-path.

Claim 2 If two h–products represent the same element in Mg,1 and induce
edge-paths which are equal modulo back-tracking then the h–products are equal
in (H ∗ Z)/((P9), (P10)).

Proof Consider an h–product g = gihi+1rhi+2r , where gi is an h–product
inducing a shorter edge-path p and the edge-path induced by g has a back-
tracking at the end: gi(v0) = vi , gihi+1r(v0) = vi+1 , and gihi+1rhi+2r(v0) =
vi . Clearly the h–product gihi+1rr induces the same edge-path. In partic-
ular gihi+1r

2(v0) = vi hence there exists h′ ∈ H such that η(gihi+1r
2h′) =

η(gihi+1rhi+2r). Now by Claim 1 the h–products are equal in (H ∗ Z)/(P9).
But gihi+1r

2h′ is equal in (H ∗ Z)/(P10) to a shorter h–product which in-
duces the edge-path p. Claim 2 follows by induction on the number of back-
trackings.

Relations (P11) correspond to edge-paths of type (C3), (C4) and (C5). Six
relations correspond to six particular edge-paths.

As in (P11) we let k1 = a1 , k2 = d1,2 , k3 = d1,2d−2,1d−2,2a
−2
2 a−1

1 ,
k4 = a−1

1 a−1
2 a−1

3 d1,2d1,3d2,3 = d3 , k5 = a2d
−1
1,2t1 , k6 = a1t1 .

We now choose six h–products. For i = 1, 2, 3, 4 let gi = (kir)3 , g5 =
(rk5rk

−1
5 )2 and g6 = (rk6)5 . Product gi appears in the corresponding rela-

tion in (P11).

For i = 1, . . . , 6 let γi be the corresponding curve on Figure 15, represented on
surface S0 (γ5 = β2 ).

For i = 1, 2, 3, 4 homeomorphism ki leaves all curves αi invariant. Also
kir(α1) = γi , kir(γi) = β1 , kir(β1) = α1 . It follows that the h–product gi
represents the edge path pi = (〈α1〉 → 〈γi〉 → 〈β1〉 → 〈α1〉).
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Figure 15: Curves γi

It is not hard to check that for i = 5, 6 the h–product gi represents the edge-
path pi , where

p5 = (〈α1, α2〉 → 〈β1, α2〉 → 〈β1, γ5〉 → 〈α1, γ5〉 → 〈α1, α2〉).

p6 = (〈α1, α2〉 → 〈β1, α2〉 → 〈β1, ε1〉 → 〈γ6, ε1〉 → 〈γ6, α1〉 → 〈α2, α1〉).

Since gi represents a closed edge-path it is equal in Mg,1 to some element
hi ∈ H . Then Vi = gih

−1
i also represents pi and is equal to the identity

in Mg,1 . We shall prove in the next section that hi is equal in H to the
right hand side of the corresponding relation in (P11) and thus Vi = 1 in
(H ∗ Z)/((P9), (P10), (P11)).

We already know, by Theorem 4, that every closed path in X is a sum of paths
of type (C3), (C4) and (C5). Some of these paths are represented by the paths
p1 – p6 . We say that a closed path is conjugate to a path pi if it has a form
q1q2q−1

1 , where q1 starts at v0 and q2 is the image of pi under the action
of some element of Mg,1 . We shall prove that every closed path is a sum of
paths conjugate to one of the paths p1 – p6 or their inverses. This will imply
Theorem 31.
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We shall start with Harer’s reduction for paths of type (C3) (see [7]). We
fix curves α2, . . . , αg and consider cut-systems containing one additional curve.
Consider a triangular path (〈α〉, 〈β〉, 〈γ〉). Give orientations to curves α, β, γ so
that the algebraic intersection numbers satisfy (α, β) = (α, γ) = 1. Switching
β and γ , if necessary, we may also assume (β, γ) = −1. We cut S open along
α2, . . . , αg and get a torus S1,2g−1 with 2g− 1 holes. Each square on Figure 16
represents a part of the universal cover of a closed torus, punctured above holes
of S1,2g−1 . We show more than one preimage of some curves in the universal
cover. A fundamental region is a square bounded by α and β with 2g−1 holes,
one of them bounded by the boundary ∂ of S . We may assume that γ crosses
α and β in two distinct points. Then γ splits the square into three regions: F1

to the right of γ after γ crosses α, F2 to the left of γ after γ crosses β , and
F0 (see Figure 16 (a)). Reversing the orientations of all curves we can switch
the regions F1 and F2 . Let li be the number of holes in Fi for i = 0, 1, 2.
We want to prove that every triangular path is a sum of triangular paths with
l1 ≤ 2, l2 = 0, and with the hole ∂ not in the region F1 . We shall prove it
by induction on l1 + l2 . A thin circle on Figure 16 denotes a single hole and a
thick circle denotes all remaining holes of the region.

Suppose first that l1 > 1. Move curves α, β , γ off itself (on a closed torus)
in such a way that the region bounded by α and α′ contains only one hole,
belonging to F1 , the region bounded by β and β′ contains another hole of F1

and the region bounded by γ and γ′ contains both of these holes. Up to an
isotopy (translating holes and straightening curves) the situation looks like on
Figure 16 (c).

Now consider Figure 16 (b) — an octahedron projected onto one of its faces.
All faces of the octahedron are “triangles” in X . In order to understand regions
F0 , F1 , F2 corresponding to each face we translate the fundamental domain to
a suitable square in the universal cover. For every face different from (α, β, γ)
the region F1 has at least one hole less than l1 and the region F0 has all of
its original holes and possibly some more. Clearly the boundary of the face
(α, β, γ) is a sum of conjugates of the boundaries of the other faces. So by
induction we may assume that l1 ≤ 1. By symmetry we may assume that
l2 ≤ 1 and l1 > 2. We chose new curves α′ , β′ and γ′ whose liftings are
shown on Figure 16 (d). Consider again the octahedron on Figure 16 (b). Now
region F2 is fixed for all faces of the octahedron and region F0 has all of its
original holes and some additional holes for all faces different from (α, β, γ).
So by induction we may assume that l1 ≤ 2 and l2 ≤ 1. Suppose l1 = 2 and
l2 = 1 and choose new curves α′ , β′ and γ′ as on Figure 16 (e). Again consider
the octahedron. Now for each face different from (α, β, γ) at least one of the
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Figure 16: Reduction for paths of type (C3)

regions F1 and F2 looses at least one of its holes. Suppose now that each region
has exactly one hole. Consider curves α′ , β′ and γ′ on Figure 16 (f). Again
for each face of the corresponding octahedron different from the face (α, β, γ)
at least one of the regions F1 and F2 looses at least one of its holes. So we
may assume that l2 = 0 and l1 ≤ 2. Finally it may happen that a hole in F1

is bounded by ∂ . We can isotop γ (on the torus with holes) over F2 to the
other side of the intersection of α and β . Clearly F1 becomes now F0 . We can
repeat the previous reduction and the hole ∂ will remain in F0 . Thus we are
left with four cases:

l1 = l2 = 0,

l1 = 1, l2 = 0,

l1 = 2, l2 = 0 and the two holes in F1 correspond to the same curve αi ,

l1 = 2, l2 = 0 and the two holes in F1 correspond to different curves αi and
αj .
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Clearly each case is uniquely determined up to homeomorphism (of one square
with holes onto another, preserving γ ). Paths pi , i = 1, 2, 3, 4 represent triangle
paths of these four types with α corresponding to α1 , β corresponding to β1

and γ corresponding to γi . Given any path of type (C3) we can map it onto
a path which starts at v0 . Applying an element of H we may assume that
the second vertex is v′0 . Then the path is of the type considered in the above
reduction and it is a sum of conjugates of p1 , p2 , p3 , p4 and their inverses
(we may need to switch β and γ in the proof).

Consider now the path p5 . When we cut S open along α1, α2, . . . , αg, β1 and
γ5 we get a disk with two “big” holes and 2g−4 “small” holes. Any other path
q of type (C4) produces a similar configuration. There exists g ∈ G which
takes p5 on q. Therefore every path of type (C4) is a conjugate of p5 .

Consider now p6 and another path q of type (C5). When we cut S open along
the first four changing curves of p6 : α1, α2, β1, ε1 and along all fixed curves of
the cut systems we get a disk with one “big” hole and 2g − 4 “small” holes.
When we do the same for the curves in q we get a similar configuration. We
may map q onto a path

(〈α1, α2〉 → 〈β1, α2〉 → 〈β1, ε1〉 → 〈γ, ε1〉 → 〈γ, α1〉 → 〈α2, α1〉)

in which only the curve γ is different from the corresponding curve γ6 in p6

and all other curves are as in p6 . Consider curve γ5 = β2 on Figure 15. Curve
γ5 can be homotop onto the union of β1 , ε1 and a part of α1 . Since γ intersects
β1 once and does not intersect α1 nor ε1 it must intersect γ5 once. Therefore
we may form a subgraph of X as on Figure 17.

〈α1, γ〉 � 〈ε1, γ〉

6 6

〈α2, α1〉

�
��

@
@I

〈α1, γ5〉 � 〈ε1, γ5〉

6 6

〈α1, γ6〉 � 〈ε1, γ6〉

@
@R

�
�	

- 〈α2, β1〉 - 〈ε1, β1〉

Figure 17: Reduction for paths of type (C5)
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Here bottom and middle square edge-paths are of type (C4). In the square
edge-path on the left side (and on the right side) only one curve changes so
the path is a sum of triangles by Proposition 7. The top pentagon edge-path
is equal to p6 . The new edge-path coincides with the outside pentagon. It is a
sum of conjugates of the other edge paths.

We can now complete the proof of Theorem 31. Let W ∈ H ∗ Z be such that
η(W ) = 1. We want to prove that W = 1 in (H ∗ Z)/((P9), (P10), (P11)).
Modulo (P10) we can write W as an h–product g which represents a closed
edge path p. By Theorem 4 the edge-path p is a sum of conjugates of path
of type (C3), (C4) and (C5). By the above discussion it is a sum of conjugates
of the special paths p1 – p6 and their inverses, modulo backtracking. So,
modulo backtracking, p = Πqifi(p±1

ji
)q−1
i for some fi ∈ Mg,1 . Each path

qifi(p±1
ji

)q−1
i can be represented by an h–product gi . Since the path is closed

we have η(gi) ∈ H , so we can correct the h–product gi and assume that
η(gi) = 1. The product Πgi represents the path Πqifi(p±1

ji
)q−1
i , so, by Claims

1 and 2, W is equal to Πgi in (H ∗ Z)/((P9), (P10)). It suffices to prove
that gi = 1 in (H ∗ Z)/((P9), (P10), (P11)). Let k = ji and suppose that gi
represents a path qifi(pk)q−1

i . Let ui be an h–product representing qi . Then
ui(v0) = fi(v0) is the first vertex of fi(pk), hence η(ui)−1fi = hi ∈ H . Recall
that pk can be represented by an h–product Vk which is equal to the identity in
(H ∗ Z)/((P9), (P10), (P11)). The h–product uihiVk represents qifi(pk) and
there exists an h–product uihiVkwi such that η(uihiViwi) = 1 and uihiVkwi
represents the edge-path qifi(pk)q−1

i . Clearly uihiwi represents the edge-path
q1q−1

1 which is null-homotopic by backtracking. By Claims 1 and 2 the h–
product gi is equal to uihiVkwi in (H ∗Z)/((P9), (P10)), uihiVkwi is equal to
uihiwi in (H∗Z)/((P9), (P10), (P11)) and uihiwi = 1 in (H∗Z)/((P9), (P10)).

The path inverse to pk is represented by some other h–product V ′k but then
VkV

′
k represents a path contractible by back-tracking. Thus VkV ′k = 1 in (H ∗

Z)/((P9), (P10)) and Vk = 1 in (H∗Z)/((P9), (P10), (P11)) hence also V ′k = 1

in (H ∗ Z)/((P9), (P10), (P11)).

This concludes the proof of Theorem 31.

4 Reduction to a simple presentation

Let us recall the following obvious direction of Tietze’s Theorem.
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Lemma 32 Consider a presentation of G with generators g1, . . . , gk and rela-
tions R1, . . . , Rs . If we add another relation Rs+1 , which is valid in G, we get
another presentation of G. If we express some element gk+1 of G as a product
P of the generators g1, . . . , gk we get a new presentation of G with generators
g1, . . . , gk+1 and with defining relations R1, . . . , Rs, g

−1
k+1P . Conversely suppose

that we can express some generator, say gk , as a product P of g1, . . . , gk−1 . Let
us replace every appearence of gk in each relation Ri , i = 1, . . . , s by P , getting
a new relation Pi . Then G has a presentation with generators g1, . . . , gk−1 and
with relations P1, . . . , Ps .

We start with the presentation of the mapping class group Mg,1 established
in Theorem 31. The generators represent the mapping classes of corresponding
homeomorphisms of the surface S = Sg,1 represented on Figure 1. We adjoin
additional generators

b1 = a−1
1 ra−1

1 , b2 = (t1a1b1) ∗ d1,2, e1 = (rd1,2a
−1
2 ) ∗ b2(3)

ei+1 = (titi+1) ∗ ei for i = 1, . . . , g − 2.

These generators also represent the corresponding twists in Mg,1 . We adjoin
the relations (M1) – (M3). Now, by Theorem 31, generators s, ti, di,j, r can be
expressed in Mg,1 by the formulas from Definition 4. We substitute for each of
these generators the corresponding product of b2, b1, a1, e1, a2, . . . , ag−1, eg−1, ag
in all relations (P1) – (P11) and in (3). We check easily that the relations (3)
become trivial modulo the relations (M1) – (M3) (the last one will be proven
in (17).) We want to prove that all relations (P1) – (P11) follow from relations
(M1) – (M3).

Remark 5 We shall establish many auxiliary relations of increasing complex-
ity which follow from the relations (M1) – (M3). We shall explain some standard
technique which one can use (some proofs will be left to the reader). From the
braid relation aba = bab one can derive several other useful relations, like:
a ∗ b = b−1 ∗ a, a ∗ (b2) = b−1 ∗ (a2), (ab) ∗ a = b. When we want to prove that
[a, b] = 0 we shall usually try to prove that a∗b = b. The relation aba = bab tells
us that a can “jump” over ba to the right becoming b. By consecutive jumping
to the right we can prove that a1(e1a1a2e1e2a2) = (e1a1a2e1e2a2)e2 . We also
get e1a1a2e1e2a2 = e1a2e2a1e1a2 and (b1a1e1a2) ∗ b2 = (b−1

2 a−1
2 e−1

1 a−1
1 ) ∗ b1 .

We shall say that some relations follow by (J) – jumping, if they follow easily
from (M1) by the above technique.

We start the list of the auxiliary relations.

ti ∗ ai = ai+1, ti ∗ ai+1 = ai, ti ∗ ak = ak for k 6= i, i+ 1,(4)
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s ∗ ai = ai for i = 1, . . . , g by (J).

Let w0 = ageg−1ag−1eg−2 . . . e1a1b1 .

w−1
0 ∗ b2 = d1,2, w

−1
0 ∗ b1 = a1, w

−1
0 ∗ ai = ei, w

−1
0 ∗ ei = ai+1,(5)

d1,2 ∗ b1 = b−1
1 ∗d1,2, d1,2 ∗e2 = e−1

2 ∗d1,2, [d1,2, ai] = 1, [d1,2, ej ] = 1, for j 6= 2,
[d1,2, tj ] = 1 for j 6= 2.

Proof of (5) We have w−1
0 ∗b2 = (by (M1)) (b−1

1 a−1
1 e−1

1 a−1
2 )∗b2 = d1,2 . Other

results of conjugation by w0 follow by (J). Now
d1,2 ∗ b1 = (b−1

1 a−1
1 e−1

1 a−1
2 b2a2e1a1b1) ∗ b1 = (by J)

(b−1
1 a−1

1 e−1
1 a−1

2 b−1
1 a−1

1 e−1
1 a−1

2 ) ∗ b2 = (by jumping from left side to the right)
(b−1

1 b−1
1 a−1

1 e−1
1 a−1

2 ) ∗ b2 = b−1
1 ∗ d1,2 .

Other relations follow from (M1) by conjugation by w−1
0 .

ak ∗ di,j = di,j for all i, j, k, by (J) and (4) and (5).(6)

ti ∗ ti+1 = t−1
i+1 ∗ ti for i = 1, 2, . . . , g − 2,(7)

(by the calculations similar to the proof of Lemma 21 (iv)),
[ti, tk] = 1 for |i− k| > 1, [ti, s] = 1 for i > 1, by (M1).

Using relations (5) and (7) we can write the elements di,j in a different way.

di,i+1 = (ti−1titi−2ti−1 . . . t1t2) ∗ d1,2 for i > 0,(8)

d−i−1,−i = (t−1
i−1t

−1
i t−1

i−2t
−1
i−1 . . . t

−1
1 t−1

2 ) ∗ d−2,−1 for i > 0,

di,i+1 = (ti−1ti) ∗ di−1,i, tk ∗ di,i+1 = di,i+1 for |k − i| 6= 1.

Let w1 = a2e1a1b
2
1a1e1a2 .

(b1a1e1)4 = b2w1b2w
−1
1 , w1 ∗ b2 = w−1

1 ∗ b2, [w1 ∗ b2, b2] = 1(9)

Proof of (9) We have b2w1b2 = (by (M2)) (b1a1e1a2)5 = (as in the proof of
Lemma 21 (v)) (b1a1e1)4w1 = (by (J)) w1(b1a1e1)4 .
Also b2(b1a1e1)4 = (b1a1e1)4b2 , by (M1).

Therefore w1b2w
−1
1 = b−1

2 (b1a1e1)4 = (b1a1e1)4b−1
2 = w−1

1 b2w1 commutes with
b2 .

st1s = b1a1e1a
2
2e1a1b1t1 = t1b1a1e1a

2
2e1a1b1 hence st1st1 = t1st1s(10)
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Proof of (10) We have a sequence of transformations by (J).
st1s =
b1a1a1b1e1a1a2e1b1a1a1b1 = b1a1a1e1b1a1b1a2e1a1a1b1 =
b1a1a1e1a1b1a2a1e1a1a1b1 = b1a1e1a1e1b1a2e1e1a1e1b1 =
b1a1e1a1b1a2e1a2e1a1b1e1 = b1a1e1a2a1b1a2e1a1b1a2e1 =
b1a1e1a2a2e1a1b1t1.

The second equality follows immediately by symmetry.

Let w2 = e2a2e1a
2
1e1a2e2 .

(a1e1a2)4 = t21a
2
1a

2
2 = d1,2d−2,−1, [d1,2, d−2,−1] = 1.(11)

d−2,−1 = w2 ∗ d1,2 = w−1
2 ∗ d1,2 = (b1a1e1a2) ∗ b2

Proof of (11) We have d−2,−1 = (s−1t−1
1 s−1) ∗ d1,2 = (by (10))

((b1a1e1a2a2e1a1b1)−1t−1
1 b−1

1 a−1
1 e−1

1 a−1
2 ) ∗ b2 = (by (J))

((b1a1e1a2a2e1a1b1)−1b−1
1 a−1

1 e−1
1 a−1

2 ) ∗ b2 = (by (9)) (b1a1e1a2) ∗ b2 .

Conjugating (9) by (b−1
1 a−1

1 e−1
1 a−1

2 ) we get (a1e1a2)4 = d1,2d−2,−1 . Also, by
(M1),

t21a
2
1a

2
2 = (a1e1a2)4 . This proves the first relation. The second relation fol-

lows from it by (5). Conjugating (9) by w−1
0 we get, by (5), (a1e1a2)4 =

d1,2w2d1,2w
−1
2 and w2 ∗ d1,2 = w−1

2 ∗ d1,2 . Therefore, from the first relation,
d−2,−1 = w2 ∗ d1,2 = w−1

2 ∗ d1,2 = (b1a1e1a2) ∗ b2 .

Definition 6 If A is a product of the generators we denote by A′ the element
obtained from A by replacing each generator by its inverse. We call A′ the
element symmetric to A.

Remark 6 Relations (M1) and (M2) are symmetric. They remain valid when
we replace each generator by its inverse. Therefore every relation between some
elements of Mg,1 (products of generators) which follows from (M1) and (M2)
remains valid if we replace each element by the element symmetric to it.

For i+ j 6= 0 di,j is symmetric to d−1
−j,−i.(12)

Proof of (12) Element d1,2 is symmetric to d−1
−2,−1 , by (11). Also t′1 = t−1

1

and s′ = s−1 . We see immediately that d′i,j = d−1
−j,−i for i > 0. If i < 0 and

i+ j > 0 then
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di,j = (t−1
−i−1 . . . t

−1
1 s−1tj−1 . . . t2) ∗ d1,2

and d−1
−j,−i = (t−1

j−1 . . . t
−1
1 s−1t−i . . . t2) ∗ d−1

1,2 .

Jumping with the positive powers of tk to the left we get

d−1
−j,−i = (t−i−1 . . . t1st

−1
j−1 . . . t

−1
2 s−1t−1

1 s−1) ∗ d−1
1,2 =

(t−i−1 . . . t1st
−1
j−1 . . . t

−1
2 ) ∗ d′1,2 = d′i,j .

di+1,i+2 = (t−1
i t−1

i+1) ∗ di,i+1 = (titi+1) ∗ di,i+1 for i = 1, . . . , g − 2.(13)

Proof of (13) For i = 1 we have (t2t21t2) ∗ d1,2 = (by 11)
(e2a2a3e2e1a1a2e1e1a1a2e1e2a2a3e2e

−1
2 a−1

2 e−1
1 a−2

1 e−1
1 a−1

2 e−1
2 ) ∗ d−2,−1

= (by (J)) (e2a2a3e2e1a1a2e1e1a2e2a3a
−1
1 e−1

1 a−1
2 e−1

2 ) ∗ d−2,−1 = (by (J))
(e2a2a3e2e1a1a2e1e1a

−1
1 a2e

−1
1 e2a

−1
2 a3e

−1
2 ) ∗ d−2,−1 = (by (J))

(e2a2a3e2e1a2e
−1
1 a1a1e1a2e

−1
1 e2a

−1
2 a3e

−1
2 ) ∗ d−2,−1 = (by (J))

(a−1
3 e2a2e1a

2
1e1a2e2a3) ∗ d−2,−1 = (by (6) and (11)) a−1

3 ∗ d1,2 = (by (6)) d1,2 .

So (13) is true for i = 1. We continue by induction. Conjugating relation (13)
by titi+1ti+2 we get, by (8) and (7), relation (13) for index i+ 1.

t2i = di,i+1d−i−1,−ia
−2
i a−2

i+1.(14)

Proof of (14) The relation is true for i = 1, by (11). We proceed by induction.

t2i+1 = (t−1
i t−1

i+1) ∗ t2i = (t−1
i t−1

i+1) ∗ (di,i+1d−i−1,−ia
−2
i a−2

i+1)

= (by (7), (13), (8) and (4)) di+1,i+2d−i−2,−i−1a
−2
i+1a

−2
i+2 .

d−i,i is symmetric to d−1
−i,i.(15)

Proof of (15) The relation is true for i = 1. The general case follows from
(14), (4), (5), (12) and the definitions.

[b1, d−2,2] = 1(16)

Proof of (16) By the definition d−2,2 = (t−1
1 d1,2) ∗ (s2a4

1) = (by (4))
a4

2((d1,2t
−1
1 ) ∗ s2).

Now t−1
1 ∗ s = t−1

1 st1ss
−1 = (by (10)) b1a1e1a

2
2e1a

−1
1 b−1

1 .
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Taking squares we get t−1
1 ∗ s2 = b1a1e1a

2
2e

2
1a

2
2e1a

−1
1 b−1

1 and
d−2,2 = a4

2d1,2b1a1e1a
2
2e

2
1a

2
2e1a

−1
1 b−1

1 d−1
1,2 . Now b1 commutes with d−2,2 , by (4),

(5) and (J).

(titi+1) ∗ ei = ei+1 for i = 1, . . . , g − 2.(17)

Proof of (17) We have, by (J), (titi+1) ∗ ei =
(eiaiai+1eiei+1ai+1ai+2ei+1) ∗ ei = (eiaiai+1ei+1eiai+1) ∗ ei = ei+1 .

[b1, di,i+1] = 1 if i > 1,(18)

[ek, di,i+1] = 1 if |k − i| 6= 1, i > 0, di,i+1 ∗ ek = e−1
k ∗ di,i+1 if |k − i| = 1.

Proof of (18) By (13) and (J)
d2,3 = (e−1

1 a−1
2 e−1

2 a−1
3 a−1

1 e−1
1 a−1

2 e−1
2 b−1

1 a−1
1 e−1

1 a−1
2 ) ∗ b2 =

(e−1
1 a−1

2 e−1
2 a−1

3 a−1
1 b−1

1 e−1
1 a−1

1 a−1
2 e−1

1 e−1
2 a−1

2 ) ∗ b2 .

Now b1 commutes with d2,3 , by (J). For i > 2 we have b1 commutes with di,i+1

by (M1) and (8). Conjugating by a1b1t1 we get, by (7) and (J), [e1, di,i+1] = 1,
for i > 2. We also have d1,2 ∗b1 = b−1

1 ∗d1,2 , by (5). We conjugate this equality
by u = a1b1t1t2 and get d2,3 ∗ e1 = e−1

1 ∗ d2,3 , by (8) and the first part of the
proof. Conjugating relations (5) and the above relations by suitable products
titi+1 we get all remaining relations, by (17).

[b1, d1,2sd1,2] = 1, hence [s, d1,2sd1,2] = 1,(19)

[ej , di,i+1tjdi,i+1] = 1, hence [tj , di,i+1tjdi,i+1] = 1, if |i− j| = 1.

Proof of (19) By (5) we have (d1,2sd1,2) ∗ b1 = (d1,2b1a1a1b1b
−1
1 ) ∗ d1,2 =

(d1,2b1)∗d1,2 = b1 . The other case is similar, but we use (18) instead of (5).

Remark 7 Relation uvuv = vuvu implies (uv)∗u = v−1 ∗u and (u−1v−1)∗
u = v ∗ u. Relations (19) will be often used in this form.

Observe that relations (4) – (14) imply in particular that relations (P1) and
relations (P3) – (P7) follow from (M1) and (M2). We shall prove now that
relations (P8) follow from (M1) and (M2).
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Definition 7 We say that homeomorphism tk (respectively t−1
k dk+1,k+2 or s)

moves a curve δi,j properly if it takes it to some curve δp,q .

Lemma 33 If tk (respectively s) moves curve δi,j to some curve δp,q then
tk ∗ di,j = dp,q (respectively s ∗ di,j = dp,q ).

Remark 8 Since the action of tk and s on a curve δi,j is described by Lemma
24 and is easily determined, Lemma 33 helps us to understand the result of the
conjugation. In fact the action corresponds exactly to relations (P8), so we
have to prove that relations (P8) follow from (M1) and (M2).

Proof of Lemma 33 We know that [ti, di,i+1] = 1, by (8), (7), and (5).

If i < 0 and i+ j = 1 then t−1
j−1 ∗ di,j = (t−1

j−1t
−1
j−2 . . . t

−1
1 s−1tj−1 . . . t2) ∗ d1,2 =

di−1,j−1 .

For i > 0 or i < 0, i + j > 0 all other cases of conjugation by tk follow from
(5), (7) and the definitions. The other cases of i 6= −j follow by symmetry.

Consider conjugation by s for i 6= −j . Again it suffices to consider i > 0 or
i < 0, i+j > 0. The other cases follow by symmetry. We have s−1∗d1,j = d−1,j .

If i > 1 then di,j = (by (7)) (ti−1 . . . t2tj−1 . . . t3) ∗ d2,3 and s ∗ di,j = di,j , by
(7), (6) and (18).

If i < 1 then di,j = (by 7) (t−1
−i−1 . . . t

−1
2 tj−1 . . . t3) ∗ d−2,3 . Also s−1 ∗ d−2,3 =

(s−1t−1
1 s−1t2)∗d1,2 = (s−1t−1

1 s−1t−1
1 )∗d2,3 = (by (10)) (t−1

1 s−1t−1
1 s−1)∗d2,3 =

d−2,3 (by (6) and (18)). So s−1 ∗ di,j = di,j , by (7).

We now consider conjugation of d−j,j . Clearly s ∗d−1,1 = d−1,1 , by (M1). Also
s ∗d−2,2 = d−2,2 , by (6) and (16). For i > 1 we have [s, ti] = 1, by (M1), hence
s ∗ d−j,j = d−j,j for all j , by the first part of the proof.

Consider conjugation by tk .

For k > j we have tk ∗ d−j,j = d−j,j , by (7) and the first part.

Curves tj(δ−j,j) and tj−1(δ−j,j) are not of the form δp,q .

Consider k = j − 2 (the other cases follow by conjugation and by the first part
of the proof). We have
d−j,j = (dj−1,jt

−1
j−1t

−1
j−2dj−2,j−1) ∗ d2−j,j−2 = (by (8) and (13))

(t−1
j−2t

−1
j−1dj−2,j−1tj−1tj−2t

−1
j−1t

−1
j−2dj−2,j−1) ∗ d2−j,j−2 = (by (7) and (8))

(t−1
j−2t

−1
j−1t

−1
j−2dj−2,j−1tj−1dj−2,j−1) ∗ d2−j,j−2 . Now, by (7) and (19),

t−1
j−2 ∗ d−j,j = (t−1

j−2t
−1
j−1t

−1
j−2dj−2,j−1tj−1dj−2,j−1t

−1
j−1) ∗ d2−j,j−2 = d−j,j (by the

previous case).
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We now pass to the biggest task of this section: the relations (P2).

di,j commutes with d−1,1 if i, j 6= ±1,(20)

di,j commutes with dk,k+1 if all indices are distinct.

Proof of (20) We know by Lemma 33 that di,j commutes with s, hence also
with d−1,1 . Consider the other cases. We assume first that k > 0. Consider
curves δi,j and δk,k+1 . We want to move the curves properly to some standard
position by application of products of s and tm ’s. This moves holes (see def-
inition 5) and corresponds to conjugation of di,j and dk,k+1 , by the previous
lemma.

Case 1 i 6= −j Observe that for every k either tk+1tk or t−1
k+1t

−1
k moves δi,j

properly. Both products take δk+1,k+2 onto δk,k+1 and conjugation of dk+1,k+2

by either product produces dk,k+1 . If either |i| or |j| is bigger than k + 1 we
may assume, moving δi,j properly, and not moving δk,k+1 , that either |i| or |j|
is equal to k+ 2. Then either tktk+1 or t−1

k t−1
k+1 moves δi,j properly and moves

δk,k+1 to δk+1,k+2 and leaves at most one index |i| or |j| bigger than k + 1.
Applying this procedure again, if necessary, we may assume j < k . If j > 0
we can move δi,j properly, without moving δk,k+1 , and get a curve δi,j with
j < 0. Now applying consecutive products tm+1tm or t−1

m+1t
−1
m we reach k = 1.

Further moves will produce one of the following three cases:

Case 1a d1,2 commutes with d−2,−1 . True, by (11).

Case 1b d1,2 commutes with d−3,−1 or d−3,−2 . We can conjugate d−3,−2 by
t1 and get d−3,−1 . Now d−3,−1 = t−1

2 ∗d−2,−1 = (by (11)) (e−1
2 a−1

3 a−1
2 e−1

2 w2)∗
d1,2 = (by (J) and (5)) (e−1

2 a−1
3 e1a1d

−1
1,2e
−1
2 a−1

2 e−1
1 ) ∗ a1 = (by (J) and (5))

(e−1
2 d−1

1,2a
−1
3 e−1

2 e1a1a
−1
2 e−1

1 ) ∗ a1 .

The last expression commutes with d1,2 , by (J) and (5).

Case 1c d−2,−1 commutes with d3,4 . The proof is rather long. We consider
relation (M3): d3 = a−1

3 a−1
2 a−1

1 d1,2d1,3d2,3 , where
d3 = (b−1

1 b2a2e1e2a2a3e2b
−1
1 a−1

1 e−1
1 a−1

2 ) ∗ b2 =
(b−1

1 b2a2e1e2a2a3e2b2a2e1a1) ∗ b1 . It follows, by (J), that d3 commutes with
a2e1e2a2a3e2 , hence d3 = (b−1

1 ((a2e1e2a2a3e2)−1 ∗ b2)b−1
1 a−1

1 e−1
1 a−1

2 ) ∗ b2 . We
now conjugate relation (M3) by u = (a4e3a3e2a2e1a1b1)−1a3e2a2e1a1b1 . When
we write d1,2 = (b−1

1 a−1
1 e−1

1 a−1
2 ) ∗ b2 we see that d1,2 commutes with u, by (J).
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All other factors on the RHS commute with u by (J), so we may replace d3 in
the relation (M3) by u ∗ d3 =
(a4e3a3e2a2e1a1b1)−1 ∗ ((a3e2a2e1a1((a2e1e2a2a3e2)−1 ∗ b2)b−1

1 a−1
1 e−1

1 a−1
2 ) ∗ b2).

We conjugate each term by (a4e3a3e2a2e1a1b1)−1 and get
u ∗ d3 = (e3a3e2a2e1((e2a2a3e2e3a3)−1 ∗ d1,2)a−1

1 e−1
1 a−1

2 e−1
2 ) ∗ d1,2 .

We now conjugate each term of relation (M3) by t−1
2 t−1

3 =
e−1

2 a−1
3 e−1

3 a−1
4 a−1

2 e−1
2 a−1

3 e−1
3 .

The RHS becomes a−1
4 a−1

3 a−1
1 (t−1

2 ∗ d1,2)((t−1
2 t−1

3 t2) ∗ d1,2)d3,4 .

The LHS becomes
(e−1

2 a−1
3 e−1

3 a−1
4 ) ∗ ((e1((e2a2a3e2e3a3)−1 ∗ d1,2)(a−1

1 e−1
1 a−1

2 e−1
2 )) ∗ d1,2).

We conjugate each bracket.
(e−1

2 a−1
3 e−1

3 a−1
4 ) ∗ e1 = e1 .

(e−1
2 a−1

3 e−1
3 a−1

4 (e2a2a3e2e3a3)−1) ∗ d1,2 = (by (J) and (5)) (t−1
3 t−1

2 ) ∗ d1,2 .
(e−1

2 a−1
3 e−1

3 a−1
4 a−1

1 e−1
1 a−1

2 e−1
2 ) ∗ d1,2 = (by (J) and (5)) (a−1

1 e−1
1 t−1

2 ) ∗ d1,2 .

We shall prove that all terms of the obtained equation commute with d−2,−1 ,
except possibly for d3,4 . Therefore d3,4 also commute with d−2,−1 . Clearly
a1, e1, a2, a3, a4, t1, t3 commute with d−2,−1 by (5) and symmetry. Also d1,2

commutes with d−2,−1 by Case 1a and d1,3 and d2,3 commute with d−2,−1 by
Case 1b. Therefore t−1

2 ∗ d1,2 = t1 ∗ d2,3 commute with d−2,−1 and (t−1
2 t−1

3 t2) ∗
d1,2 = (by (7) and (5)) (t3t−1

2 ) ∗ d1,2 commutes with d−2,−1 . It follows that
d3,4 commutes with d−2,−1

Case 2 i = −j We have to prove that dk,k+1 commutes with d−j,j if j 6=
k, k + 1. If j < k then the result follows by Lemma 33 and by Case 1. If
j > k + 2 we can properly move δk,k+1 to δj−2,j−1 , without moving δ−j,j . So
we may assume j = k + 2. We have
d−j,j = (dk+1,k+2t

−1
k+1t

−1
k dk,k+1) ∗ d−k,k = (by (6) and (14))

(d−1
−k−2,−k−1tk+1tkd

−1
−k−1,−k)∗ d−k,k .

We conjugate dk,k+1 by (d−1
−k−2,−k−1tk+1tkd

−1
−k−1,−k)

−1 and get, by Case 1 and
(13), (d−1−k,−kt

−1
k t−1

k+1d−k−2,−k−1) ∗ dk,k+1 = d−1−k,−k ∗ dk+1,k+2 = dk+1,k+2 ,
which commutes with d−k,k by the first part of Case 2.

Suppose now that k < 0. Cases 1a and 1b follow by symmetry. In the Case
1c we arrive by symmetry at the situation where we have to prove that d1,2

commutes with d−4,−3 . Conjugating by t2t1t3t2 we get a pair d3,4 , d−2,−1 ,
which commutes by Case 1c. Now Case 2 follows by symmetry.
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Lemma 34 If t−1
k dk,k+1 takes a curve δi,j to δp,q then t−1

k dk,k+1 ∗ di,j = dp,q .

Proof We shall list the relevant cases. If i or j is equal to k it becomes k+1,
if i or j is equal to −k it becomes −k − 1. In particular t−1

k dk,k+1(δ−k,k) =
δ−k−1,k+1 . Indices k+ 1 and −k− 1 are forbidden, they do not move properly,
except for δk,k+1 and δ−k−1,−k which are fixed by t−1

k dk,k+1 . Other indices i,
j do not change.

We now pass to the proof of the Lemma. If i = −j the result follows from
the definitions and from (20) and Lemma 33. Suppose i 6= −j . If i and j are
different from k then di,j commutes with dk,k+1 , by (20), and t−1

k moves δi,j
properly, so we are done by Lemma 33. If i and j are different from −k we
can replace t−1

k dk,k+1 by tkd
−1
−k−1,−ka

2
ka

2
k+1 , using (14), and we are done by a

similar argument.

Lemmas 33 and 34 allow us to reduce relations (P2) to relatively small number
of cases. We can apply product of half-twists hk,k+1 and h−k−1,−k either in
the same direction, conjugating by tk , or in opposite directions, conjugating
by t−1

k dk,k+1 , and move properly curves corresponding to elements dp,q in the
relations (P2) into a small number of standard configurations.

di,j commutes with dr,s if r < s < i < j or i < r < s < j.(21)

Proof of (21) Moving curves δi,j and δr,s properly we can arrive at a situation
s = r+1 or j = i+1 or −r = s = 1 or −i = j = 1. In particular if i < r < s < j
and r = −s then conjugating by t2d−1

2,3 . . . ts−1d
−1
1−s,s−1 we get a pair d−1,1 , di,j .

Then (21) follows from (20).

d−1
r,i ∗ di,j = dr,j ∗ di,j if r < i < j.(22)

Proof of (22) Indices (i,−i) move together (either remain fixed or move to
(i− 1, 1− i) or to (i+ 1,−i− 1)) when we conjugate by tk or s or t−1

k dk,k+1 .
Moving curves properly we can arrive at one of the following four cases depend-
ing on the pairs of opposite indices.

Case 1 There is no pair of opposite numbers among r, i, j . We may assume
that (r, i, j) = (1, 2, 3).
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d−1
1,2 ∗ d2,3 = (by (13)) (d−1

1,2t
−1
1 t−1

2 ) ∗ d1,2 = (by (5) and (19)) (t−1
1 t2) ∗ d1,2 .

d1,3 ∗ d2,3 = (t2d1,2t
−1
2 t1t2) ∗ d1,2 = (by (5) and (7)) (t2t1d1,2t2) ∗ d1,2 = (by

(19)) (t2t1t−1
2 ) ∗ d1,2 = (by (5) and (7)) (t−1

1 t2) ∗ d1,2 .

Case 2 i = −r We may assume that (r, i, j) = (−1, 1, 2).

d−1
−1,1 ∗ d1,2 = (s−2a−4

1 ) ∗ d1,2 = (by (19)) (s−1d1,2s) ∗ d1,2 = d−1,2 ∗ d1,2 .

Case 3 r = −j We may assume that (r, i, j) = (−2, 1, 2). We have to prove
that d−1

−2,1 ∗ d1,2 = d−2,2 ∗ d1,2 . We conjugte by d−1
1,2t1 . The right hand side

becomes s2 ∗ d1,2 and the left hand side becomes (d−1
1,2t1t

−1
1 s−1d−1

1,2st1) ∗ d1,2 =
(by (5) and (19)) (sd−1

1,2s
−1d−1

1,2) ∗ d1,2 = (by (19)) s2 ∗ d1,2 .

Case 4 i = −j We may assume that (r, i, j) = (−2,−1, 1).

d−1
−2,−1 ∗ d−1,1 = a4

1(d−1
−2,−1 ∗ s2) = (by (19) and symmetry) a4

1((sd−2,−1s
−1) ∗

s2) = d−2,1 ∗ d−1,1 .

d−1
r,j ∗ dr,i = di,j ∗ dr,i if r < i < j.(23)

Proof of (23) Let us apply symmetry to relation (22). We get
d−i,−r ∗ d−1

−j,−i = d−1
−j,−r ∗ d−1

−j,−i if −j < −i < −r . This is relation (23) after a
suitable change of indices.

[di,j , d−1
r,j ∗ dr,s] = 1 if r < i < s < j.(24)

Proof of (24) Again we have to consider different cases depending on pairs of
opposite indices. For each of them we move curves properly to some standard
position. If we apply symmetry we get [d−j,−i, d−j,−r ∗ d−s,−r] = 1. Now
conjugate by d−1

−j,−r and get [d−s,−r, d−1
−j,−r∗d−j,−i] = 1 if −j < −s < −i < −r .

This is again relation (24) with different pairs of opposite indices. So i = −j
is equivalent to r = −s and s = −j is equivalent to r = −i. We are left with
the following five cases.

Case 1 There is no pair of opposite numbers among r, i, s, j . We may assume
that (r, i, s, j) = (1, 2, 3, 4). Conjugate by t−1

3 .
t−1
3 ∗ d2,4 = d2,3 .

(t−1
3 d−1

1,4) ∗ d1,3 = (t2d−1
1,2t
−1
2 t−1

3 t2) ∗ d1,2 = (by (7)) (t2d−1
1,2t3t

−1
2 t−1

3 ) ∗ d1,2 = (by
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(5)) (t2t3d−1
1,2t
−1
2 ) ∗ d1,2 = (by (19)) (t2t3t2) ∗ d1,2 = d1,4 , and it commutes with

d2,3 , by (21).

Case 2 r = −i We may assume that (r, i, s, j) = (−1, 1, 2, 3). We conjugate
by t−1

2 .
t−1
2 ∗ d1,3 = d1,2 .

(t−1
2 d−1

−1,3) ∗ d−1,2 = (t−1
2 s−1t2d

−1
1,2t
−1
2 ) ∗ d1,2 = (by (7) and (19)) (s−1t2) ∗ d1,2 =

d−1,3 , and it commutes with d1,2 , by (21).

Case 3 r = −s We may assume that (r, i, s, j) = (−2, 1, 2, 3). By (23) we
have d−1

−2,3 ∗ d−2,2 = d2,3 ∗ d−2,2 , so we have to prove that d1,3 commutes with
d2,3 ∗ d−2,2 . We conjugate by t−1

2 and get
t−1
2 ∗ d1,3 = d1,2 .

(t−1
2 d2,3) ∗ d−2,2 = d−3,3 , and it commutes with d1,2 , by (21).

Case 4 r = −j and i 6= −s We may assume that (r, i, s, j) = (−3, 1, 2, 3).
By (23) we have d−1

−3,3 ∗ d−3,2 = d2,3 ∗ d−3,2 . After conjugation by t−1
1 d−1

2,3

we have to prove that t−1
1 ∗ d−3,2 = d−3,1 commutes with (t−1

1 d−1
2,3) ∗ d1,3 =

(t−1
1 d−1

2,3t
−1
1 ) ∗ d2,3 = (by (19)) d2,3 . This is true by (21).

Case 5 i = −s We may assume that (r, i, s, j) = (−2,−1, 1,m), where m = 2
or m = 3. By (23) we have d−1

−2,m ∗ d−2,1 = d1,m ∗ d−2,1 . After conjugation
by s−1d−1

1,m we have to consider s−1 ∗ d−2,1 = d−2,−1 and (s−1d−1
1,m) ∗ d−1,m .

For m = 2 the last expression is equal (s−1d−1
1,2s
−1) ∗ d1,2 = d1,2 , by (19). For

m = 3 we get (s−1d−1
1,3s
−1) ∗ d1,3 = (s−1t2d

−1
1,2t
−1
2 t2s

−1) ∗ d1,2 = (by (19)) d1,3 .
Both elements commute with d−2,−1 , by (21).

This concludes the proof of the fact that relations (P2) follow from (M1) –
(M3).

We now pass to the relations (P9) – (P11).

Consider first relations (P9). Clearly a1 commutes with all the elements in
(P9), by (4) and (6), so it suffices to prove that b1 commutes with these el-
ements. It commutes with a2

1s, t1st1 , a2 , and ti , for i > 1, by (J). Also b1
commutes with d−2,2 , by (16), and commutes with d2,3 by (18). Finally it com-
mutes with d1,2sd1,2 , by (19), hence also commutes with d−1,1d−1,2d1,2a

−2
1 a−1

2 =
a4

1s
2s−1d1,2sd1,2a

−2
1 a−1

2 = a2
1sd1,2sd1,2a

−1
2 . This proves relations (P9). Relation

(P10) follows from the definitions and (M1).

We now pass to relations (P11).
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For i = 1, 2, 3, 4 we have gi = (kir)3 . By (6) ki ∗ a1 = a1 therefore it suffices
to prove that ki ∗ b1 = b−1

1 ∗ ki . Then
gi = (kia1b1a1)3 = (by (6)) kia1b1a

2
1kib1kia

2
1b1a1 = kia1skisa1 and this is

exactly relation (P11) for i = 1, 2, 3, 4.

k1 ∗ b1 = b−1
1 ∗ k1.(25)

Proof of (25) Since k1 = a1 the result follows from (M1).

k2 ∗ b1 = b−1
1 ∗ k2.(26)

Proof of (26) Since k2 = d1,2 the result follows from (5).

k3 ∗ b1 = b−1
1 ∗ k3.(27)

Proof of (27) We have
k3 = a−1

1 a−2
2 d1,2d−2,1d−2,2 = a−1

1 a−2
2 d1,2t

−1
1 s−1d1,2st1t

−1
1 d1,2s

2a4
1d
−1
1,2t1 =

(by (5) and (J)) a−1
1 t−1

1 d1,2s
−1d1,2sd1,2s

2a2
1d
−1
1,2t1 = (by (19))

a−1
1 t−1

1 d1,2sd1,2sa
2
1t1 = (by (5) and (J)) a−1

1 t−1
1 (d1,2b1a1)4t1 .

Let u = t1b1d1,2a1b1 . It follows from (5) and (J) that u ∗ a1 = d1,2 , u ∗ e1 = b1 ,
u ∗ a2 = a1 , u ∗ d1,2 = a2 . Conjugating (11) by u we get (d1,2b1a1)4 =
a2(u ∗ d−2,−1), hence k3 = (by (4)) (t−1

1 u) ∗ d−2,−1 = (b1d1,2a1b1) ∗ d−2,−1 .
We want to prove that b1 and k3 are braided. It suffices to prove it for their
common conjugates. We conjugate by b−1

1 and get b1 and (d1,2a1b1) ∗ d−2,−1 .
Now we conjugate by a−1

1 b−1
1 d−1

1,2 and get, by (5), (6) and symmetry, d1,2 and
b1 ∗ d−2,−1 = d−1

−2,−1 ∗ b1 . Now we conjugate by d−2,−1 and get, by (20), d1,2

and b1 , which are braided.

k4 ∗ b1 = b−1
1 ∗ k4(28)

Proof of (28) By the definition and by (M3) we have k4 = d3 = (b2a2e1b
−1
1 )∗

d1,3 . Conjugating k4 and b1 by t−1
2 b1e

−1
1 a−1

2 b−1
2 we get d1,2 and b1 , which are

braided, by (5).

g5 = sa2
1k5sa

2
1k
−1
5(29)
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Proof of (29) By the definition g5 = (rk5rk
−1
5 )2 where k5 = a2d

−1
1,2t1 . We

shall prove that r commutes with k5rk
−1
5 . Then g5 = r2k5r

2k−1
5 = sa2

1k5sa
2
1k
−1
5 ,

as required.

k5rk
−1
5 = a2d

−1
1,2e1a1a2e1a1b1a1e

−1
1 a−1

1 a−1
2 e−1

1 d1,2a
−1
2 = (by (J) and (5))

a2
2d
−1
1,2e1a1b1a

−1
1 e−1

1 d1,2 = (by (J))

a2
2d
−1
1,2b
−1
1 a−1

1 e1a1b1d1,2 .

The last expression commutes with a1 and b1 , by (J) and (5)).

g6 = (sa2
1t1)4(30)

Proof of (30) By the definition g6 = (ra1t1)5 . The required relation is proved
by a rather long computation, using (J). Observe first that sa2

1 = (b1a1)3 , and
that ra1 = (b1a1)2 . We also have

t1(b1a1)2t1 = e1a1a2e1b1a1b1a1e1a1a2e1 =
e1a1b1a2e1a1b1a1e1a1a2e1 = b1e1a1b1a2e1a1b1a1e1a2e1 =
b1a1e1a1b1a2e1a1b1a1e1a2 = b1a1e1a1a2e1b1a1b1a1e1a2 =
(b1a1)t1(b1a1)2e1a2

and

e1a2(b1a1)2t1 = b1e1a1a2b1a1e1a1a2e1 = b1e1a1a2e1b1a1e1a2e1 =
b1e1a1a2e1b1a2a1e1a2 = b1a1e1a1a2e1b1a1e1a2 = (b1a1)t1(b1a1)e1a2 =
b1a1e1a1b1a2e1a1e1a2 = b1a1b1e1a1b1a2e1a1a2 = b1a1b1a1e1a1b1a2e1a1 =
(b1a1)2t1(b1a1).

The required result follows from the above relations.

This concludes the proof of Theorem 1.

5 Mapping class group of a closed surface

We shall consider in this section the mapping class groupMg of a closed surface
Sg,0 of genus g > 1. We shall keep the notation from the previous section. In
particular Mg,1 is the mapping class group of S = Sg,1 and Sg,0 is obtained
from S by capping the boundary ∂ of S by a disk D with a distinguished
center p, and then forgetting p. We have two exact sequences

1→ Z ψ−→Mg,1
φ−→Mg,0,1 → 1
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1→ π1(Sg,0,1, p)
σ−→Mg,0,1

e∗−→Mg,0,0 → 1

In the first sequence the Dehn twist ∆ = T∂ belongs to the kernel of φ. We
shall prove now that it generates the kernel. When we split the surface Sg,1
open along the curves β1, α1, ε1, α2, . . . , εg−1, αg we get an annulus N , and
one boundary of N is equal to ∂ . If h ∈ ker(φ) than h takes each curve
γ ∈ {β1, α1, ε1, α2, . . . , εg−1, αg} onto a curve h(γ) which is isotopic to γ in
Sg,0 by an isotopy fixed on p. Therefore γ and h(γ) form 2–gons which are
disjoint from p and hence from D . It follows that h is isotopic in Sg,1 to a
homeomorphism equal to the identity on all curves β1, α1, ε1, α2, . . . , εg−1, αg .
But then it is a homeomorphism of the annulus N so it is isotopic to a power
of ∆.

The second sequence is described in [2], Theorem 4.3. The kernel of e∗ is
generated by spin-maps Tγ′T

−1
γ , where γ and γ′ are simple, nonseparating

curves which bound an annulus on Sg,0,1 containing the distinguished point
p. The composition e∗φ is an epimorphism from the group Mg,1 onto the
group Mg = Mg,0,0 and its kernel is generated by ∆ and by the spin maps
Tγ′T

−1
γ , where γ and γ′ are simple, nonseparating curves on S which bound

an annulus with a hole bounded by ∂ . Clearly all such annuli are equivalent by
a homeomorphism of S , hence all spin maps are conjugate in Mg,1 . It suffices
to consider one spin map Tδ′gT

−1
δg

, where δg and δ′g are curves on Figure 18.
Tδg is equal to the element dg in the relation (M4).

∂

∂1 ∂2 ∂g

∂−1 ∂−2 ∂−g

δg
δg+1

δ′g

γ

γ′

Figure 18: Spin maps in the proof of Theorem 3

Let w = b1a1e1a2 . . . ag−1eg−1a
2
geg−1ag−1 . . . a2e1a1b1 . It is easy to check, draw-

ing pictures, that w(δg) = δ′g . Therefore, by Lemma 20, relation (M4) is equiv-
alent, modulo relations in Mg,1 , to Tδg = Tδ′g . By the above argument Mg

has a presentation with relations (M1) – (M4) and relation ∆ = 1. We have to
prove that the last relation follows from the others.

Let M′ = (Mg,1)/(M4). Let dg , d′g , dg+1 , c, c′ be twists along curves δg ,
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δ′g , δg+1 , γ , γ′ respectively, depicted on Figure 18. Each element of Mg,1

represents an element in M′ which we denote by the same symbol.

From now on, till the end of this section, symbols denote elements in M′ . We
want to prove that ∆ = 1.

All relations from Lemma 21 are true in M′ . We have dg ∗ b1 = b−1
1 ∗ dg and

dg commutes with every ai and ei . By Lemma 21, (iii) and (v) we have:

∆ = (ageg−1ag−1 . . . e1a1b1dg)2g+2 =
(ageg−1ag−1 . . . e1a1)2g(b1a1 . . . agag . . . a1b1)(dgb1a1 . . . agag . . . a1b1dg),
dgd
′
g = (ageg−1ag−1 . . . e1a1)2g =

(ageg−1ag−1 . . . e2a2)2g−2(e1a2 . . . agag . . . a2e1)(a1e1a2 . . . agag . . . a2e1a1),
(ageg−1ag−1 . . . e2a2)2g−2 = cc′ ,
(dgb1a1)4 = cdg+1 .

We also see that c′d−1
g+1 and d′gd

−1
g are spin maps, hence c′ = dg+1 and dg = d′g .

Therefore

(ageg−1ag−1 . . . e2a2)2g−2 = (dgb1a1)4 ,
d2
g = (ageg−1ag−1 . . . e2a2)2g−2(e1a2 . . . agag . . . a2e1)(a1e1a2 . . . agag . . . a2e1a1),

hence

(a1e1a2 . . . agag . . . a2e1a1) = (e1a2 . . . agag . . . a2e1)−1(dgb1a1)−4d2
g .

Further

∆ = (ageg−1ag−1 . . . e1a1)2g(b1a1 . . . agag . . . a1b1)(dgb1a1 . . . agag . . . a1b1dg) =
d2
gb1(a1e1a2 . . . agag . . . a2e1a1)b1(dgb1a1 . . . agag . . . a1b1dg) =

d2
gb1(e1a2 . . . agag . . . a2e1)−1(dgb1a1)−4d2

gb1(dgb1a1 . . . agag . . . a1b1dg).

Now (dgb1a1 . . . agag . . . a1b1dg) commutes with dg , by (M4), and commutes
with b1 and a1 , by (J), hence

∆ =
d2
gb1(e1a2 . . . agag . . . a2e1)−1(dgb1a1)−1(dgb1a1 . . . agag . . . a1b1dg)(dgb1a1)−3d2

gb1

= d2
gb1a1b1dg(a−1

1 b−1
1 d−1

g )3d2
gb1 = 1, by (J).

This concludes the proof of Theorem 3.
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6 Equivalence of presentations

In this section we shall prove that the presentations of Mg,1 in Theorems 1 and
1′ are equivalent. The relations (M1) coincide with the relations (A). It follows
from relations (A) that b2 commutes with the left hand side of the relation (B).
Thus (B) is equivalent to

(b2a2e1a1b
2
1a1e1a2b2)(a2e1a1b

2
1a1e1a2)−1 = (b1a1e1)4 .

Multiplying by (a2e1a1b
2
1a1e1a2) on the right we get

(b2a2e1a1b
2
1a1e1a2b2) = (b1a1e1)4(a2e1a1b

2
1a1e1a2) = (b1a1e1a2)5 , as in the

proof of Lemma 21 (v), and we get a relation identical with (M2).

We now pass to relation (M3). We shall transform it using relations (M1) and
(M2) and then we shall conjugate it by w = a3e2a2e1a1b1 to get the relation
(C). Since (M1)=(A) and (M2) is equivalent to (B) in presence of (M1), it will
prove that (M3) is equivalent to (C) in presence of (M1) and (M2). It follows
from (M1) and the definitions that each factor on the right hand side of (M3)
commutes with a1a2a3 , therefore d3 also commutes with a1a2a3 . Recall the
relations (5), (7) and (19) from section 4, which follow from the relations (M1)
and (M2).

(5) d1,2t1 = t1d1,2 ,

(7) t1t2t1 = t2t1t2 ,

(19) t2d1,2t2d1,2 = d1,2t2d1,2t2 .

We now have

d1,2d1,3d2,3 = d1,2t2d1,2t
−1
2 t1t2d1,2t

−1
2 t−1

1 = (by 7)
d1,2t2d1,2t1t2t

−1
1 d1,2t

−1
2 t−1

1 = (by 5) d1,2t2t1d1,2t2d1,2t
−1
1 t−1

2 t−1
1 = (by 7)

d1,2t2t1d1,2t2d1,2t
−1
2 t−1

1 t−1
2 = (by 19) d1,2t2t1t

−1
2 d1,2t2d1,2t

−1
1 t−1

2 = (by 7 and 5)
t−1
1 d1,2t2t1d1,2t2d1,2t

−1
1 t−1

2 = (by 5) t−1
1 d1,2t2d1,2t1t2t

−1
1 d1,2t

−1
2 = (by 7 and 19)

t−1
1 t−1

2 d1,2t2d1,2t1t2d1,2t
−1
2 = (by 5 and 19) t−1

1 t−1
2 d1,2t2t1t

−1
2 d1,2t2d1,2 .

We now conjugate everything by w and, using (M1), we get

w ∗ a1 = b1 , w ∗ e1 = a1 , w ∗ a2 = e1 , w ∗ e2 = a2 , w ∗ a3 = e2 ,
w ∗ t1 = a1b1e1a1 = t̃1 , w ∗ t2 = a2e2e1a2 = t̃2 , w ∗ d1,2 = b2 .

Therefore after conjugation by w the right hand side of (M3) becomes the right
hand side of (C).
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We have shown in the proof of relations (20), Case 1c, using only relations
(M1), that

d3 = (b−1
1 ((a2e1e2a2a3e2)−1 ∗ b2)b−1

1 a−1
1 e−1

1 a−1
2 ) ∗ b2 .

When we conjugate the last expression by w we get exactly the expression for
d̃3 in Theorem 1′ .

This proves the equivalence of the presentations in Theorems 1 and 1′ .

In order to compare Theorems 3 and 3′ we need another set of generators. Let
us call the curves β2, β1, α1, ε1, α2 . . . , εg−1, αg — the generating curves. Let βg
be the curve shown on Figure 1 and let β′2 be a curve which intersects εg−2 once
and intersects βg once and is disjoint from the other generating curves. Then
the curves β′2, αg, εg−1, αg−1, . . . , ε1, α1, β1 have the same intersection pattern
as the generating curves and the curve βg plays the same role with respect to
these curves as the curve δg with respect to the generating curves. Let bg and
b′2 be twists along the curves βg and β′2 respectively. Then, by Theorem 1, we
have a new presentation of Mg,1 with generators b′2, ag, eg−1, ag−1, . . . , a1, b1
and with defining relations (M1 ′), (M2 ′), (M3 ′) corresponding to (M1), (M2),
(M3). It is a presentation of the same group and therefore, when we express b′2
in terms of the generators from Theorem 1, it is equivalent to the presentation
((M1), (M2), (M3)) and to the presentation ((A), (B), (C)). By Theorem 3
the group Mg,0 has a presentation with relations (M1 ′), (M2 ′), (M3 ′) and one
more relation

(M4 ′) [ageg−1ag−1 . . . e1a1b
2
1a1e1 . . . ag−1eg−1ag, bg] = 1.

Here bg is some product of generators which represents the Dehn twist of Sg,1
along the curve βg . All such products are equivalent modulo relations (M1 ′),
(M2 ′), (M3 ′). Relation (D) of Theorem 3′ has the same form with bg replaced
by d̃g . Therefore in order to check that the presentations in Theorems 3 and
3′ are equivalent it suffices to prove that the expression for d̃g in (D) also
represents the Dehn twist with respect to the curve βg . This task (of drawing
very many pictures) is left to the reader.
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