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Abstract

Let X be a closed manifold with χ(X) = 0, and let f : X → S1 be a circle-
valued Morse function. We define an invariant I which counts closed orbits of
the gradient of f , together with flow lines between the critical points. We show
that our invariant equals a form of topological Reidemeister torsion defined by
Turaev [28].

We proved a similar result in our previous paper [7], but the present paper re-
fines this by separating closed orbits and flow lines according to their homology
classes. (Previously we only considered their intersection numbers with a fixed
level set.) The proof here is independent of the proof in [7], and also simpler.

Aside from its Morse-theoretic interest, this work is motivated by the fact that
when X is three-dimensional and b1(X) > 0, the invariant I equals a count-
ing invariant I3(X) which was conjectured in [7] to equal the Seiberg–Witten
invariant of X . Our result, together with this conjecture, implies that the
Seiberg–Witten invariant equals the Turaev torsion. This was conjectured by
Turaev [28] and refines the theorem of Meng and Taubes [14].
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1 Introduction

Given a flow on a manifold, it is natural to ask how many closed orbits there
are. It turns out that for some well-behaved flows, the numbers of closed orbits
in different homology classes are related to the Reidemeister torsion of the
underlying manifold. For example, Fried [2] defined a “twisted Lefschetz zeta
function” counting closed orbits of certain nonsingular hyperbolic flows and
showed that it equals a version of topological Reidemeister torsion, which is
independent of the flow.

In this paper, we are interested in the gradient flow of a circle-valued Morse
function. For singular flows such as this one, the zeta function is no longer
invariant under deformation of the flow. It turns out that this lack of invariance
can be fixed by considering the Novikov complex, which counts gradient flow
lines between critical points. We will show that one can obtain a topological
invariant by multiplying the zeta function by the Reidemeister torsion of the
Novikov complex. We call the resulting invariant I .

In our previous work [7], we defined a weaker version of I and showed that it
equals a form of topological Reidemeister torsion. Later we received a preprint
from Turaev [28] defining a refined version of the latter invariant, which we call
“Turaev torsion” here. Along similar lines we can refine the Morse theoretic
invariant in [7] to obtain the invariant I . The main result of this paper asserts
that I equals Turaev torsion.

Our previous methods are not quite sufficient to prove this refinement, so here
we introduce a different and simpler approach. This paper is independent of [7],
except that the latter paper defines certain compactifications in Morse theory
which we use here, and also provides more background and context.

We now proceed to define our invariant I more precisely and state our main
theorem. We then describe the application to three-dimensional Seiberg–Witten
theory. In section 2 we give some background definitions, and in section 3 we
prove the main theorem. In section 4 we give more details on the relation to
Seiberg–Witten theory.

1.1 Statement of results

The basic setup for this paper is as follows. Let X be a closed connected
oriented n–dimensional manifold. We assume throughout that χ(X) = 0, so
that we can define Reidemeister torsion. Also, our result is most interesting
when b1(X) > 0.
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Let f : X → S1 . In order to consider the gradient flow of f , we endow X with
a Riemannian metric. We make the following assumptions:

Assumption 1.1 (a) f is a Morse function.

(b) The ascending and descending manifolds of the critical points of f inter-
sect transversely (see section 2.1).

(c) The closed orbits of the gradient ∇f are nondegenerate (see below).

A standard transversality argument shows that these assumptions hold if f and
the metric are generic.

A closed orbit is a nonconstant map γ : S1 → X with γ′(t) = −λ∇f for
some λ > 0. We declare two closed orbits to be equivalent if they differ by
reparametrization. The period p(γ) is the largest integer p such that γ factors
through a p–fold covering S1 → S1 . A closed orbit is nondegenerate if det(1−
dφ(x)) 6= 0, where φ is the pth return map at a point x ∈ γ(S1) ⊂ X . If so,
the Lefschetz sign ε(γ) is the sign of this determinant.

Notation 1.2 Let H1 := H1(X). Let θ ∈ H1(X;Z) denote the pullback by
f of the “upward” generator of H1(S1;Z).

Let Λ = Nov(H1,−θ) denote the Novikov ring [17, 5], consisting of functions
H1 → Z that are finitely supported on the set {h ∈ H1 | −θ(h) ≤ C} for
each C ∈ R. This ring has the obvious addition, and the convolution prod-
uct. We denote a function a : H1 → Z by the (possibly infinite) formal sum∑

h∈H1
a(h) · h .

Definition 1.3 [2, 20] We count closed orbits with the zeta function, which
is a function H1 → Z defined, in the above notation, by

ζ := exp

∑
γ∈O

ε(γ)
p(γ)

[γ]

 . (1)

Here O denotes the set of closed orbits, and [γ] := γ∗[S1] is the homology class
of γ in H1(X).

A compactness argument using Assumption 1.1, together with the observation
that −θ([γ]) > 0 for all γ , shows that ζ ∈ Λ⊗Q.

We remark that there is also a product formula [3, 7, 8]

ζ =
∏
γ∈I

(1− (−1)i− [γ])−(−1)i0 . (2)
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Here I denotes the set of irreducible (period 1) closed orbits, and i−(γ) and
i0(γ) denote the numbers of real eigenvalues of the return map in the intervals
(−∞,−1) and (−1, 1), respectively. Equation (2) shows that in fact ζ ∈ Λ,
ie, ζ has integer coefficients. A third formula for the zeta function, in terms of
fixed points of return maps, is given in equation (13).

We now introduce a notion of topological Reidemeister torsion following Turaev
[28], and an analogous notion of Morse-theoretic torsion. Detailed definitions
are given in section 2.3.

Let X̃ denote the universal (connected) abelian cover of X , whose automor-
phism group is H1(X). A smooth triangulation of X lifts to X̃ and gives rise to
a chain complex C∗(X̃) over Z[H1]. The Reidemeister torsion of this complex
is an element of Q(Z[H1])/ ±H1 , where Q(R) denotes the total quotient ring
of R. The ±H1 ambiguity arises because the Reidemeister torsion depends on
a choice of ordered basis.

Turaev [27] showed that the H1 ambiguity can be resolved by the choice of an
“Euler structure”. The space Eul(X) of Euler structures is a natural affine
space over H1(X), reviewed in section 2.2. One can also resolve the sign
ambiguity by choosing a homology orientation of X , ie, an orientation o of⊕

iHi(X;Q) (see [26]). We can then define the Turaev torsion

τ(X; o) : Eul(X)→ Q(Z[H1]). (3)

This is an H1–equivariant map which does not depend on the triangulation. We
write τ(X):=±τ(X, o); this is an H1–equivariant map Eul(X)→ Q(Z[H1])/±1 .

Example 1.4 If X is the 3–manifold obtained by zero surgery on a knot
K ⊂ S3 , then for a suitable Euler structure ξ ,

τ(X)(ξ) =
Alex(K)
(1− t)2

where Alex(K) ∈ Z[t, t−1]/ ± 1 is the Alexander polynomial of K and t is a
generator of H1(X) ' Z.

On the Morse theory side, the Novikov complex CN∗ is a chain complex over
the Novikov ring Λ, whose chains are generated by critical points of the pullback
of f to X̃ , and whose boundary operator counts gradient flow lines between
critical points (see section 2.1). We can similarly define the Morse-theoretic
torsion

τ(CN∗) : Eul(X)→ Q(Λ)/ ± 1. (4)
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Definition 1.5 Define I : Eul(X)→ Q(Λ)/± 1 to be the product of the zeta
function and the Morse-theoretic torsion:

I := ζ · τ(CN∗).

Theorem 1.6 The Morse theory invariant I is independent of the metric and
depends only on the homotopy class of f , ie the cohomology class θ .

One can prove this a priori ; see [7] for the rough idea and [6] for the details.
Although this may help define related invariants in other contexts, in the present
context it is easier to compute I directly, which will prove Theorem 1.6 a
posteriori . That is what we will do in this paper.

Theorem 1.7 (Main theorem) Our Morse theory invariant I is equal to the
topological torsion:

I = i(τ(X))

as maps Eul(X)→ Q(Λ)/± 1.

Here i : Q(Z[H1])→ Q(Λ) is induced by the inclusion Z[H1]→ Λ.

Remarks 1.8 (1) In the extreme case when there are no critical points, X
is a mapping torus and this theorem reduces to an equivariant version of the
Lefschetz fixed point theorem, cf [15, 3].

(2) The extreme case when θ = 0, so that f lifts to a real-valued Morse
function, is also essentially classical (cf [16]), and we treat it in section 2.4. In
this case the Morse-theoretic torsion is a topological invariant; lack of invariance
and existence of closed orbits arise simultaneously when we pass from real-
valued to circle-valued Morse theory.

(3) The class θ ∈ H1(X), regarded as a map H1(X) → Z, induces a map
Λ → Z((t)) sending h 7→ tθ(h) . This in turn induces a partially defined map
Q(Λ) → Q((t)). One can deduce the main result of our previous paper [7] by
applying this map to Theorem 1.7.

(4) The statement of Theorem 1.7 makes sense when df is replaced by a generic
closed 1–form µ and the Novikov ring is graded by −[µ]. It seems possible to
extend Theorem 1.7 to this case by approximating µ by closed 1–forms in
rational cohomology classes, to which Theorem 1.7 applies. Another proof for
closed 1–forms is given in [6] by first proving Theorem 1.6 for closed 1–forms,
and then using this to reduce to the real-valued case.
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(5) Some previous papers, such as [19], studied the torsion of the Novikov com-
plex (or the Whitehead torsion, which is sharper but only defined “relatively”
unless the Novikov complex is acyclic), without considering the zeta function.
In this case one can still obtain a topological invariant by modding out by units
in the Novikov ring with leading coefficient 1. This is useful for understanding
the obstructions to the existence of nonvanishing closed 1–forms [10, 4]. How-
ever, the extra information in the zeta function is important for the connection
with Seiberg–Witten theory below.

(6) A homology orientation of X can apparently remove the sign ambiguity
in τ(CN∗). However we have not checked if Theorem 1.7 holds with the sign
ambiguity removed this way.

1.2 Application to Seiberg–Witten theory

We now consider the special case when dim(X) = 3 and b1(X) > 0. Let
Spinc(X) denote the set of spin-c structures on X . Given a homology orienta-
tion o, the Seiberg–Witten invariant of X is a function

SWX,o : Spinc(X)→ Z

which counts R–invariant solutions to the Seiberg–Witten equations on X×R,
modulo gauge equivalence. (See eg [13, 14, 18].)

Taubes [24] has shown that the SW invariant of a symplectic four–manifold
equals a “Gromov invariant” counting pseudoholomorphic curves. In [7] we
proposed that using similar analysis, one might be able to show that the SW
invariant of a 3–manifold is equal to a Morse theory invariant

I3 : Spinc(X)→ Z.

The invariant I3 counts certain unions of closed orbits and flow lines of the
gradient vector field of a Morse function f : X → S1 with no index 0 or 3
critical points. We review the definition of I3 in section 4.

Conjecture 1.9 [7] The Seiberg–Witten invariant agrees with our Morse the-
ory invariant:

SWX,o = ±I3.

(When b1(X) = 1, the SW invariant also depends on a choice of “chamber”,
and in this conjecture we use the chamber determined by r ∗ df for r >> 0.)
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Remark 1.10 If f has no critical points, and if we arrange for df to be
harmonic, then this conjecture is a corollary of Taubes’ theorem [24] applied
to the symplectic four–manifold (X × S1, df ∧ ds + ∗Xdf). Here s denotes
the S1 coordinate. The idea is that for a suitable homology orientation, if
s ∈ Spinc(X), then

SWX,o(s) = SWX×S1(π∗s) = GrX×S1(π∗s) = I3(s).

The first equality expresses the fact that all solutions to the SW equations
on X × S1 are S1–invariant; see [18] for details of this equality. The second
equality is Taubes’ theorem; here GrX×S1(π∗s) counts, in the sense of [25],
pseudoholomorphic curves in a certain S1–invariant homology class in X×S1 .
An energy argument shows that for a suitable almost complex structure, every
such curve is a union of closed orbits of ∇f crossed with S1 . This leads to the
third equality (cf [8, Thm. 0.1]), using the fact that I3 is a reparametrization
of the zeta function in this case.

Salamon has proved a statement equivalent to Conjecture 1.9 in this case using
a different method [22].

In another direction, Turaev [28] conjectured a combinatorial formula for the
Seiberg–Witten invariant as follows. If dim(X) = 3 and b1(X) > 1, then for an
Euler structure ξ , the torsion τ(X; o)(ξ) is actually in the group ring Z[H1].
If b1 = 1, then i(τ(X; o)(ξ)) ∈ Λ, rather than in the quotient ring. Given a
homology orientation o, one can then define a map

T (X; o) : Eul(X) −→ Z,
ξ 7−→ i(τ(X; o)(ξ))(0).

where (0) indicates evaluation on 0 ∈ H1 . (This depends on the sign of [df ]
when b1 = 1.) There is also a natural isomorphism ı : Spinc(X) → Eul(X)
([27], see section 4.3).

Conjecture 1.11 (Turaev [28]) The Seiberg–Witten invariant agrees with
the Turaev torsion:

SWX,o = T (X; o) ◦ ı : Spinc(X)→ Z.

This statement is a refinement of the theorem of Meng and Taubes [14], which
gives an “averaged” version of this equivalence, in which one sums over spin-c
structures that differ by torsion elements of H2(X;Z).

The invariant I3 turns out to be a reparametrization of the more general in-
variant I . Thus we can apply Theorem 1.7 to prove:
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Theorem 1.12 Conjecture 1.9 is equivalent to Conjecture 1.11 (modulo signs).

The detailed proof is given in section 4.

Update (1) Three days after the first version of this paper was posted on
the internet, a preprint by Pajitnov [20] appeared, giving a result similar to
Theorem 1.7, using Whitehead torsion.

(2) Turaev [29] has shown how to refine the methods of Meng and Taubes to
prove Conjecture 1.11, modulo signs. Together with our results, this indirectly
proves Conjecture 1.9. However, one might still desire a direct analytic proof.
The following is a summary of the situation:

Thm. 1.7

S1 Morse theory = Turaev torsion
analytic proof? @@@@ ����Meng-Taubes/Turaev

Seiberg–Witten

Acknowledgments This paper would not exist were it not for Taubes’ work
on Seiberg–Witten and Gromov invariants. We thank him for sharing his ideas
generously. We also thank R Bott, R Forman, and D Salamon for helpful
conversations.

2 Background

We now give some necessary background. Section 2.1 reviews the definition of
the Novikov complex, which counts gradient flow lines between critical points.
Section 2.2 reviews Turaev’s Euler structures, which are needed for the most
refined version of Reidemeister torsion. Section 2.3 gives the precise definitions
of the versions of Reidemeister torsion that we use. Finally, section 2.4 proves
Theorem 1.7 for real-valued Morse functions, as a warmup for some of the
arguments in section 3.

2.1 The Novikov complex

We begin with some standard definitions from Morse theory. If p is a critical
point in X of f or in X̃ of the pullback of f , the descending manifold D(p) is
the set of all points x such that upward gradient flow starting at x converges
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to p. Similarly the ascending manifold A(p) is the set of all points from which
downward gradient flow converges to p. If ind(p) = i, then D(p) and A(p) are
embedded open balls of dimensions i and n− i respectively.

The Novikov complex (CN∗, ∂f ) is defined as follows. On X̃ , we can lift our
Morse function to a map f̃ : X̃ → R. Let CNi denote the set of (possibly
infinite) linear combinations α of critical points of index i in X̃ , such that for
each C ∈ R, the sum α contains only finitely many critical points p ∈ X̃ with
f̃(p) > C . The action of H1 on the critical points by covering transformations
induces an action of the Novikov ring Λ on CNi . In fact CNi is a free Λ–
module; one can specify a basis for CN∗ by choosing a lift of each critical point
in X to X̃ .

We define ∂f : CNi → CNi−1 as follows. If p, q ∈ X̃ are critical points of index
i and i− 1 respectively, let 〈∂fp, q〉 denote the signed number of gradient flow
lines from p to q . If p is a critical point of index i, define

∂fp :=
∑
q

〈∂fp, q〉q

where the sum is over all critical points q ∈ X̃ of index i − 1. We count flow
lines using the sign conventions from [7]. These conventions are chosen so that
(∂f )2 = 0 and so that equation (16) holds.

Theorem 2.1 (Novikov) The homology of the Novikov complex is naturally
isomorphic to the homology of the “half-infinite” chains in X̃ :

H∗(CN∗, ∂f ) ' H∗(C∗(X̃)⊗ Λ).

See eg [17, 19, 21, 7]. For example, if X = S1 and f : S1 → S1 has nonzero
degree, then the homology of the Novikov complex vanishes.

2.2 Euler structures

We now discuss three different notions of “Euler structure” and how they relate.
One can ignore this material at the expense of allowing an H1 ambiguity in
Reidemeister torsion.

Definition 2.2 (Turaev [27]) If X is a closed smooth manifold with χ(X) =
0 and n = dim(X) > 1, a smooth Euler structure on X is a nonsingular
vector field on X , where two such vector fields are declared equivalent if their
restrictions to the complement of a ball in X are homotopic through nonsingular
vector fields. We let Eul(X) denote the space of smooth Euler structures.
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By obstruction theory, Eul(X) is an affine space over Hn−1(X;πn−1(Sn−1)) =
H1(X). (It is nonempty since χ(X) = 0.)

The following alternate definition of smooth Euler structures is useful for Morse
theory, and also works well when n = 1. If v is a vector field on X with
nondegenerate zeroes, let H1(X, v) denote the set of homology classes of 1–
chains γ ∈ X with ∂γ = v−1(0), where the points in v−1(0) are oriented
in the standard way. The set H1(X, v) is a subset of the relative homology
H1(X, v−1(0)) and is an affine space over H1(X).

Definition 2.3 One can show by a cobordism argument that the spaces
H1(X, v) for different v ’s are canonically isomorphic to each other, and hence
to a single space. We call this space Eul(X). We let iv : H1(X, v) → Eul(X)
denote the canonical isomorphism.

If n > 1, we can go from Definition 2.3 to Definition 2.2 as follows. Given
γ ∈ H1(X, v), we can represent γ by disjoint paths connecting the zeroes of v
in pairs. We then construct a nonsingular vector field by cancelling the zeroes of
v in a neighborhood of γ . (If v has no zeroes, we send 0 ∈ H1(X) = H1(X, v)
to the Euler structure represented by v and extend equivariantly.)

Definition 2.4 [27] Let (X,T ) be a finite connected CW–complex with cells
{σi}. (X denotes the underlying topological space; T denotes the cell struc-
ture.) A combinatorial Euler structure on (X,T ) is a choice of a lift of each cell
to the universal abelian cover X̃ , where two such sets of lifts {σ̃i} and {hiσ̃i},
with hi ∈ H1(X) = Aut(X̃), are considered equivalent if

∑
i(−1)dim(σi)hi = 0.

We let Eul(X,T ) denote the space of combinatorial Euler structures of the
CW–complex (X,T ). This is clearly an affine space over H1(X).

Note that if T̄ is a refinement of the cell-structure T with cells {τj}, then
there is a canonical isomorphism Eul(X,T )→ Eul(X, T̄ ) sending {σ̃i} to {τ̃j},
where τ̃j ⊂ σ̃i if τj ⊂ σi .

Lemma 2.5 [27] If X is a closed smooth manifold with a smooth triangula-
tion T , then there is a natural isomorphism between the spaces of smooth and
combinatorial Euler structures:

Eul(X) ' Eul(X,T ).
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The idea is that there is a natural vector field on each simplex with a zero at the
center of each face and which points into the simplex near the boundary. These
piece together to give a continuous vector field on X . We can perturb this to
a smooth vector field vT with a nondegenerate zero of sign (−1)i in the center
of each i–simplex. Then a smooth Euler structure ξ can be represented by a
chain γ consisting of paths connecting the zeroes in pairs, with [γ] = i−1

vT
(ξ) ∈

H1(X, vT ). We can lift the chain γ to X̃ , and the induced lifts of its endpoints
determine a combinatorial Euler structure.

2.3 Reidemeister torsion

We now review the definition of Reidemeister torsion of certain chain complexes.
We then use this algebra to define Reidemeister torsion for the two geometric
complexes we are interested in.

2.3.1 Algebra

Let (C∗, ∂) be a finite complex of finite dimensional vector spaces over a field F .
The standard short exact sequences 0→ Zi → Ci → Bi−1 → 0 and 0→ Bi →
Zi → Hi → 0 induce canonical isomorphisms det(Ci) = det(Zi)⊗det(Bi−1) and
det(Zi) = det(Bi)⊗det(Hi), where ‘det’ denotes top exterior power. Combining
these isomorphisms gives an isomorphism

Φ:
⊗
i

det(Ci)(−1)i →
⊗
i

det(Hi)(−1)i . (5)

Let e be an ordered basis for C∗ , ie, an ordered basis ei for each Ci . Let h be
an ordered basis for H∗ . Let [e] ∈

⊗
i det(Ci)(−1)i and [h] ∈

⊗
i det(Hi)(−1)i

denote the resulting volume forms.

Definition 2.6 We define the Reidemeister torsion

τ̂(C∗, e, h) := Φ([e])/[h] ∈ F×.

We also define

τ(C∗, e) :=
{
τ̂(C∗, e, 1) if H∗ = 0,

0 otherwise.

Usually we will be interested in τ rather than τ̂ . In practice, we can compute
the torsion τ in terms of an alternating product of determinants as follows.
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Lemma 2.7 If H∗ = 0, we can find a decomposition C∗ = A∗ ⊕B∗ such that
(i) Ai and Bi are spanned by subbases of the basis ei , and (ii) the map

πBi−1 ◦ ∂|Ai : Ai → Bi−1

(which we abbreviate by ∂ : Ai → Bi−1 ) is an isomorphism. Then

τ(C∗, e) := ±
∏
i

det(∂ : Ai → Bi−1)(−1)i .

Here the determinants are computed using the subbases of e.

We now extend the definition of torsion to complexes over certain rings which
might not be fields.

Definition 2.8 [28] Let R be a ring, and assume that its total quotient ring
(denoted by Q(R)) is a finite sum of fields, Q(R) = ⊕jFj . Let (C∗, ∂) be a
finite complex of finitely generated free R–modules with an ordered basis e.
We define

τ(C∗, e) :=
∑
j

τ(C∗ ⊗R Fj , e⊗ 1) ∈
⊕
j

Fj = Q(R).

In this case H∗(C) might not be free, in which case it does not have a basis in
the usual sense. However in this paper we call a set h := {hj} a “basis” for
H∗(C) when hj is a basis for H∗(C∗ ⊗R Fj) for each j . Given h = {hj}, we
define

τ̂(C∗, e, h) :=
∑
j

τ̂(C∗ ⊗R Fj , e⊗ 1, hj) ∈ Q(R)×.

Example 2.9 If 0 → C2
∂→ C1 → 0 is a 2–term complex with C1 = C2 , and

if e is a basis which is identical on C1 and C2 , then

τ(C∗, e) = det(∂).

We are interested in the rings Z[H1] and Λ. Their quotients are finite sums of
fields (see eg [28]), and these decompositions are compatible with the inclusion
Z[H1]→ Λ.

In section 3.2, we will need the following product formula for torsion. Let R be a
ring such that Q(R) is a finite sum of fields Fj . Let 0→ C∗ → C ′∗ → C ′′∗ → 0 be
a short exact sequence of finite complexes of finitely generated free R–modules.
Let e, e′, e′′ be bases for C∗, C ′∗, C ′′∗ compatible with the exact sequence. Let
h, h′, h′′ be bases for the homology as in Definition 2.8. Let L∗ denote the long
exact sequence in homology, regarded as an acyclic chain complex, and let b
denote the basis for L∗ obtained by combining h, h′, h′′ .
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Lemma 2.10 We have the following product formula for torsion:

τ̂(C ′, e′, h′) = τ̂(C, e, h)τ̂ (C ′′, e′′, h′′)τ(L∗, b).

Proof This follows from [16].

2.3.2 Geometry

We now define the Turaev torsion (3). In the notation of Definition 2.4, let
(X,T ) be a finite connected CW–complex with universal abelian cover X̃ . Lif-
ing the cells gives a chain complex C∗(X̃, T ) over Z[H1(X)]. A combinatorial
Euler structure ξ determines a set of lifts of each cell to X̃ , up to equiva-
lence. Choose one set of lifts; this gives a basis for C∗(X̃, T ). A homology
orientation o determines an orientation of this basis, via the isomorphism (5)
applied to C∗(X,T ). Let e(ξ, o) denote the resulting ordered basis. We de-
fine the combinatorial Turaev torsion τ(X,T ; o) to be the H1–equivariant map
Eul(X,T )→ Q(Z[H1]) given by

τ(X,T ; o)(ξ) := τ(C∗(X̃, T ), e(ξ, o)) ∈ Q(Z[H1]).

Note that the right hand side of this equation does not depend on the choice
of a set of lifts. Furthermore, τ(X,T ; o) = τ(X, T̄ ; o) under the canonical
isomorphism Eul(X,T )→ Eul(X, T̄ ), if T̄ is a refinement of T .

Definition 2.11 Let X be a closed connected smooth manifold with χ(X) =
0, with a smooth Euler structure ξ ∈ Eul(X) and a homology orientation
o. Choose a smooth triangulation T of X . Let ξT ∈ Eul(X,T ) denote the
combinatorial Euler structure equivalent to ξ via Lemma 2.5. We define the
Turaev torsion

τ(X; o)(ξ) := τ(X,T ; o)(ξT ).

The results of [27] show that the Turaev torsion does not depend on the choice
of smooth triangulation T .

We now define the Morse theoretic torsion (4). A smooth Euler structure ξ can
be represented by a chain γ connecting the critical points of f in pairs, with
[γ] = i−1

∇f (ξ) ∈ H1(X,∇f). We can lift γ to X̃ , and the induced lifts of the
endpoints determine a basis e(ξ) for CN∗ .

Definition 2.12 We define the Morse theoretic torsion τ(CN∗) : Eul(X) →
Q(Λ)/ ± 1 by

τ(CN∗)(ξ) := τ(CN∗, e(ξ)).
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The map τ(CN∗) is H1–equivariant, and again does not depend on the choice
of lifting. There is a sign ambiguity because the basis e(ξ) is unordered. In
the special case when f has no critical points, we define τ(CN∗) to be the H1

equivariant map such that τ(CN∗)(ξ) = 1 for the smooth Euler structure ξ
represented by ∇f .

In the future, we call two bases for C∗(X̃, T ) or CN∗ equivalent if they corre-
spond to the same Euler structure ξ .

2.4 The real-valued case

Before proceeding more deeply into circle-valued Morse theory, it will be useful
to prove the main theorem for real-valued Morse functions.

Lemma 2.13 Theorem 1.7 holds when f : X → S1 lifts to a real-valued Morse
function X → R.

Proof In this case ζ = 1, so we just need to check that the Morse theoretic
and topological torsions agree. This is essentially classical (cf [16]), except for
the identification of the bases determined by an Euler structure.

If ξ is an Euler structure, then the bifurcation analysis in [11] shows that
τ(CN∗)(ξ) is independent of the real-valued Morse function and the metric. It
is not hard to check that the Euler structures work out at each stage. In [11] it
is assumed that the metric has a standard form near the critical points, but this
can be arranged by a perturbation which does not affect the Novikov complex.

Now let T be a smooth triangulation of X . We can apparently perturb the
vector field VT of section 2.2 so that it is the gradient of a Morse function
F : X → R with respect to some metric. In this case, the Novikov complex
(CN∗, ∂F ) is identical to the chain complex (C∗(X̃;T ), ∂). Moreover the bases
determined by ξ agree. Thus the Morse-theoretic and topological torsion are
equal.

3 Proof of the main theorem

We will now prove the main theorem as follows. In section 3.1 we prepare for the
computation of torsion by constructing a cell complex X ′ which “approximates”
X and is adapted to the vector field ∇f . In section 3.2 we prove a technical
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lemma (Lemma 3.6) asserting that X and X ′ have the same Reidemeister
torsion. The heart of the proof is in section 3.3 and section 3.4, where we
determine the torsion of X ′ by a short computation, and then interpret the
answer geometrically to recover the invariant I .

3.1 The cell complex X ′

Assume 0 ∈ S1 = R/Z is a regular value of f (by composing f with a rotation
if necessary). Let Σ := f−1(0). Let Y be the compact manifold with boundary
obtained by cutting X along Σ. We can write ∂Y = Σ1 t Σ0 , where Σi is
canonically isomorphic to Σ, and −∇f points inward along Σ1 .

We give Y a cell decomposition as follows. Let T1 be a smooth triangulation
of Σ1 such that each simplex is transverse to the ascending manifolds of the
critical points in Y . If p ∈ Y is a critical point, let D0(p) denote the descending
manifold of p in Y . If σ ∈ T1 is a simplex, let F(σ) denote the set of all
y ∈ Y such that upward gradient flow starting at y hits σ . Choose a cell
decomposition T0 of Σ0 , such that the intersections with Σ0 of D0(p) and
F(σ) are subcomplexes, for each critical point p and each simplex σ ∈ T1 .

Lemma 3.1 The cells in T1 and T0 , together with all the cells D0(p) and
F(σ), give a legitimate cell decomposition, T ′Y , of Y .

Proof Recall that D0(p) and F(σ) have natural compactifications using bro-
ken flow lines (cf [7]). It may be shown by “induction on height” that these
compactifications are homeomorphic to closed balls. There are moreover natu-
ral continuous maps of the compactifications to Y which send the interiors of
the balls homeomorphically to D0(p) and F(σ). The transversality condition
on T1 and Assumption 1.1(b) ensure that the boundary of a cell consists of
lower dimensional cells in T ′Y .

We would like to glue the boundary components of Y back together to obtain a
nice cell decomposition of X , but usually T0 will not agree with T1 . To correct
for this, let ρ : (Σ0, T0)→ (Σ1, T1) be a cellular approximation to the canonical
identification Σ0 → Σ1 . Consider the mapping cylinder of ρ:

Mρ =
(Σ0 × [0, 1]) t Σ1

(x, 1) ∼ ρ(x)
.

This has a cell decomposition consisting of T0 and T1 , together with the cells
∆ × (0, 1) for each ∆ ∈ T0 . There is a canonical inclusion Σ0 → Mρ sending
x 7→ (x, 0), and there is also a canonical inclusion Σ1 →Mρ .
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Definition 3.2 Let X ′ be the space obtained by gluing Y and Mρ along
Σ0 tΣ1 .

The space X ′ inherits a cell decomposition, but for our computations we prefer
a simpler cell decomposition, obtained by fusing some cells together as follows.
If ∆ is a cell in Y of the form D0(p) or F(σ), we define a corresponding cell
in X ′ by

∆̂ := ∆ ∪ ((∂∆ ∩ Σ0)× [0, 1)).

Here (∂∆ ∩ Σ0)× [0, 1) indicates a subset of Mρ .

Definition 3.3 Let T ′ be the cell decomposition of X ′ consisting of cells of
the following types:

(a) D̂0(p) for p ∈ Y a critical point;

(b) simplices in T1 ;

(c) F̂(σ) for σ ∈ T1 .

3.2 X and X ′ have the same Reidemeister torsion

We now show that X and X ′ have the same Reidemeister torsion, if the Euler
structures are compatible in an appropriate sense.

We begin by noting that H∗(X ′) = H∗(X), and H∗(X̃ ′) = H∗(X̃) as Z[H1]–
modules, as one can see from the exact sequences (8), (9) below. Note that the
universal abelian cover X̃ ′ of X ′ is obtained from X̃ by modifying a neighbor-
hood of the inverse image of Σ.

Notation 3.4 (1) If Z is a subset of X or X ′ , then Z̃ will denote the inverse
image of Z in X̃ or X̃ ′ . So Z̃ is usually not the universal abelian cover of Z .

(2) We omit the cell structures from the notation when they are clear from
context.

A smooth Euler structure ξ on X corresponds to an equivalence class of lifts
of the critical points of f to X̃ , as in section 2.3.2. A combinatorial Euler
structure ξ′ on X ′ consists of an equivalence class of lifts of the cells T ′ to X̃ ′ .

Definition 3.5 We say that ξ and ξ′ are compatible if, within these equiva-
lence classes, the lifts can be chosen so that:
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(a) The lift of each critical point p in ξ is contained in the lift of the cell
D̂0(p) in ξ′ .

(b) For each simplex σ ∈ T1 , the lift of σ in ξ′ agrees with the “top” of the
lift of F̂(σ) in ξ′ .

The compatibility conditions in Definition 3.5 induce an isomorphism from
Eul(X) to Eul(X ′, T ′) as affine spaces over H1 .

Recall that τ(X) := ±τ(X, o); similarly write τ(X ′, T ′) := ±τ(X ′, T ′, o).

Lemma 3.6 If the Euler structures ξ ∈ Eul(X) and ξ′ ∈ Eul(X ′, T ′) are
compatible as above, then

τ(X)(ξ) = ±τ(X ′, T ′)(ξ′).

Proof The strategy is to compute the torsion of X and X ′ by cutting them
into pieces and using the product formula (Lemma 2.10) applied to various
exact sequences, and see that we obtain the same answer. We proceed in three
steps.

Step 1 Consider the cell decomposition on Σ̃×[0, 1] consisting of cells ∆̃×{0},
∆̃× (0, 1), and ∆̃×{1}, where ∆̃ is a lift of a simplex ∆ ∈ T1 . Also recall that
M̃ρ has a natural cell decomposition. We claim that with respect to these cell
structures,

τ̂ (C∗(Σ̃× [0, 1]), eΣ, h) = ±τ̂(C∗(M̃ρ), e′Σ, h
′), (6)

provided that the bases eΣ, h, e
′
Σ, h

′ satisfy the following conditions:

(a) The bases h, h′ for homology agree under the isomorphism induced by
the canonical map Σ× [0, 1]→Mρ .

(b) The bases eΣ, e
′
Σ are given by lifts of cells such that:

(i) The lifts of the cells in Σ× {1} ⊂ Σ× [0, 1] and Σ1 ⊂Mρ agree.
(ii) The lift of each cell ∆ in Σ× {0} ⊂ Σ× [0, 1] or in Σ0 × {0} ⊂Mρ

is adjacent to the lift of the cell ∆ × (0, 1) in Σ × [0, 1] or Mρ

respectively.

To prove (6), we compute both sides by applying the product formula for torsion
to the relative exact sequences

0→ C∗(Σ̃× {1})→ C∗(Σ̃× [0, 1])→ C∗(Σ̃× [0, 1], Σ̃ × {1})→ 0,

0→ C∗(Σ̃1)→ C∗(M̃ρ)→ C∗(M̃ρ, Σ̃1)→ 0.
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The answers agree, because condition (a) implies that the τ(L∗) factors agree,
condition (b(i)) implies that the τ̂(C∗(Σ̃)) factors agree, and condition (b(ii))
implies that

τ̂(C∗(Σ̃× [0, 1], Σ̃ × {1}), eΣ, 1) = ±τ̂(C∗(M̃ρ, Σ̃1), e′Σ, 1) = ±1.

Step 2 Let TY be a smooth triangulation on Y whose restriction to each
component of ∂Y = Σ0 tΣ1 agrees with T1 . The smooth Euler structure ξ on
X determines an equivalence class of bases, eY , for C∗(Ỹ , Σ̃0;TY ), because TY
glues to a smooth triangulation of X .

Let T ′Y denote the cell decomposition of Y given by Lemma 3.1. The com-
binatorial Euler structure ξ′ on X ′ determines an equivalence class of bases
e′Y for C∗(Ỹ , Σ̃0;T ′Y ), because the cells of T ′Y in Y \ Σ0 are in one to one
correspondence with the cells of X ′ .

We claim that

τ̂(C∗(Ỹ , Σ̃0;T ′Y ), e′Y , h
′) = ±τ̂(C∗(Ỹ , Σ̃0;TY ), eY , h) (7)

provided that the bases h′ and h on homology agree.

To prove (7), note that the pullback of the Morse function f to Y lifts to a
real-valued function f̂ : Y → R. Let CM∗(f̂) denote the Morse complex of f̂
on the covering Ỹ . A direct computation, using the compatibility of ξ and ξ′ ,
shows that

τ̂(C∗(Ỹ , Σ̃0;T ′Y ), e′Y , h
′) = ±τ̂(CM∗(f̂), e′′, h′′).

(For similar calculations see section 3.3 and section 3.4; the result here corre-
sponds essentially to setting t = 0 in (11) and Lemma 3.7.) Here the basis e′′

for CM∗(f̂) is determined by the lifts of the critical points determined by ξ
as before, and we assume that the bases h′, h′′ on homology agree under the
standard isomorphism H∗(Ỹ , Σ̃0) ' H∗(CM∗(f̂)).

We also have

τ̂(CM∗(f̂), e′′, h′′) = ±τ̂(C∗(Ỹ , Σ̃0;TY ), eY , h).

The idea of the proof is to vary f̂ in the space of Morse functions on Y such that
(i) the gradient points outward along Σ0 and does not point outward along Σ1 ,
and (ii) wherever the gradient is tangent to Σ1 , the inward covariant derivative
of the gradient points inward. As in section 2.4, one can show that the resulting
torsion is independent of the Morse function. Deforming f̂ to a Morse function
FY adapted to the triangulation TY , such that CM∗(FY ) = C∗(Ỹ , Σ̃0, TY ),
we have τ̂(CM∗(f̂), e′′, h′′) = ±τ̂(CM∗(FY ), ifF (e′′), h′′), where ifF (e′′) is the
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equivalence class of lifts (which correspond to bases of CM∗ ) induced from e′′

via the homotopy from f̂ to FY . But ifF (e′′) = eY because the homotopy from
∇f̂ to ∇FY extends to a homotopy of vector fields on X = Y ∪ (Σ× I), which
is homotopic to a homotopy from ∇f to the standard vector field associated to
the triangulation of X (cf end of section 2.2).

The above two equations prove (7).

Step 3 We now use (6) and (7) to compute the torsion of X and X ′ .

We can regard X as the union of Y and Σ× [0, 1] along Σ0tΣ1 . Let T denote
the cell decomposition of X obtained by gluing the triangulation TY of Y to
the product cell structure on Σ× [0, 1] obtained from T1 . We then have a short
exact sequence

0→ C∗
(

Σ̃0 t Σ̃1

)
→ C∗(Σ̃ × [0, 1]) ⊕ C∗(Ỹ ;TY )→ C∗(X̃ ;T )→ 0. (8)

Let T ′ denote the “unfused” cell decomposition of X ′ from section 3.1. We
then have a short exact sequence

0→ C∗
(

Σ̃0 t Σ̃1

)
→ C∗(M̃ρ)⊕ C∗(Ỹ ;T ′Y )→ C∗(X̃ ′;T ′)→ 0. (9)

We can choose representatives eY , e
′
Y such that they agree on Σ × {1} and

Σ1 with eΣ, e
′
Σ respectively. Let e(ξ) denote the basis for C∗(X̃ ;T ) obtained

by combining the bases eΣ, eY of Step 1 and Step 2 respectively. Similarly let
e′(ξ′) denote the basis for C∗(X̃ ′;T ′) obtained by combining the bases e′Σ, e

′
Y

of Step 1 and Step 2. Then e(ξ) is a representative of the combinatorial Eu-
ler structure on (X, T̄ ) corresponding to the smooth Euler structure ξ , and
e′(ξ′) is a representative of the image of ξ′ under the canonical isomorphism
Eul(X ′, T ′)→ Eul(X ′, T̄ ′).

Applying the product formula to the above exact sequences, and using equations
(6) and (7), we obtain

τ̂(C∗(X̃;T ), e(ξ), h) = ±τ̂(C∗(X̃ ′;T ′), e′(ξ′), h′). (10)

Here we are assuming that the bases h, h′ for homology agree under the natural
isomorphism H∗(X̃) ' H∗(X̃ ′). Also, to apply (7) in the above computation,
one relates Ỹ to the pair (Ỹ ,Σ0) as in Step 1.

In particular, equation (10) implies that

τ(C∗(X̃ ;T ), e(ξ)) = ±τ(C∗(X̃ ′;T ′), e′(ξ′)).

This implies the lemma because τ(C∗(X̃ ;T ), e(ξ)) = τ(X)(ξ), since the in-
sertion of Σ × [0, 1] changes nothing, and similarly τ(C∗(X̃ ′;T ′), e′(ξ′)) =
τ(X ′, T ′)(ξ′).
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3.3 Computing the torsion

We now compute the torsion of the approximating cell complex (X ′, T ′), for a
combinatorial Euler structure ξ′ compatible with a smooth Euler structure ξ
on X as in the previous section.

Since Lemma 2.13 proves the theorem for real-valued Morse functions, we as-
sume from now on that

θ 6= 0.

Without loss of generality, we may also assume that θ is indivisible in H1(X;Z).
(If θ is divisible by k , we can lift f to a k–fold cover of S1 without changing
the invariant I .) Let V := Ker(θ), and choose a splitting

H1(X) = V ⊕ Z.
Let t denote the generator of the Z component with θ(t) = −1. Then the
Novikov ring can be identified with the ring of formal Laurent series in t with
coefficients in Z[V ]:

Λ = Z[V ]((t)).

Recall that Q(Λ) is a finite sum of fields. To prove Theorem 1.7, it suffices to
show that it holds after projecting to each such field. Let K be a field com-
ponent of Q(Λ). By the Novikov isomorphism (Theorem 2.1), the complexes
CN∗ ⊗K and C∗(X̃)⊗K have isomorphic homology. So we will assume that
these complexes are both acyclic, since otherwise they both have zero torsion
τ , and there is nothing to prove. In all of the calculations below, we implicitly
tensor everything with the field K .

We can decompose

Ci(X̃ ′) = Di ⊕Ei ⊕ Fi
where the three summands are generated by the cells of types (a), (b), and (c)
respectively from Definition 3.3. Let us choose a basis e(ξ′) for Ci(X̃ ′) as in
Definition 3.5. We can identify

Fi ' Ei−1.

The matrix for the boundary operator on Ci(X̃ ′) can then be written as

∂i =


Di Ei Fi

Di−1 Ni 0 Wi

Ei−1 −tMi ∂Σ
i 1− tφi−1

Fi−1 0 0 −∂Σ
i−1

. (11)
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We remark that ∂Σ
i is the boundary operator on C∗(Σ̃). Also φi−1 is a matrix

with entries in Z[V ], which can be interpreted as the return map of the gradient
flow from Σ̃ to Σ̃, after perturbation by our cellular approximation ρ. Likewise
Mi sends D̂0(p), where p ∈ X̃ is a critical point, to a perturbation of the
“descending slice” D̂0(p) ∩ Σ̃.

Continuing the calculation, due to the acyclicity assumption we may choose
decompositions Di = DA

i ⊕ DB
i such that DA

i and DB
i are spanned by (cells

corresponding to) critical points, and the differential ∂f induces an isomor-
phism DA

i → DB
i−1 . In the notation below, we denote matrices with domain or

range D∗ by boldface letters, and we denote their restrictions to DA
i and/or

projections to DB
i−1 by plain letters.

We now apply Lemma 2.7 with Ai = DA
i ⊕ Fi and Bi = DB

i ⊕ Ei . (We will
explain in a moment why this choice of Ai and Bi is legitimate.) We obtain

τ(C∗(X̃ ′, e(ξ′)) =
n∏
i=1

det(Ωi)(−1)i+1

where

Ωi =
( DA

i Fi

DB
i−1 Ni Wi

Ei−1 −tMi 1− tφi−1

)
.

We note that 1− tφi−1 is invertible because φi−1 has entries in Z[V ]. It follows
that

det(Ωi) = det(1− tφi−1) det(Ki)

where

Ki := Ni + tWi(1− tφi−1)−1Mi : Di → Di−1. (12)

It will follow from Lemma 3.9(b) and the choice of DA
i ,D

B
i that Ki is non-

singular, provided that the triangulation T1 is sufficiently fine and the cellular
approximation ρ is sufficiently close to the identity. In particular, the matrices
Ωi are then nonsingular, so that Lemma 2.7 legitimately applies to the Ai and
Bi chosen above.

In conclusion, the above calculations imply the following lemma.

Lemma 3.7 If T1 is sufficiently fine and ρ is sufficiently close to the identity,
then

τ(C∗(X̃ ′))(ξ′) =
n∏
i=1

(
det(1− tφi−1) det(Ki)

)(−1)i+1

.
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3.4 Geometric interpretation

We will now interpret the factors on the right side of Lemma 3.7 in terms of
Morse theory.

Notation 3.8 Suppose x, y are elements of Λ = Z[V ]((t)), or matrices with
entries in Λ, which might depend on the choice of triangulation T1 and cellular
approximation ρ. We write

x ≈ y
if x − y = O(tk), where k can be made arbitrarily large by choosing T1 suffi-
ciently fine and ρ sufficiently close to the identity.

Lemma 3.9 (a)
∏n−1
i=0 det(1− tφi)(−1)i ≈ ζ .

(b) Under the natural identification D∗ ' CN∗ , we have

Ki ≈ ∂fi .

Proof (a) Let f̂ : X̃ → R be a lift of f , and let Σ̃ := f̂−1(0). The downward
gradient flow of f̂ induces partially defined return maps

ϕk : Σ̃→ tkΣ̃.

The definition (1) of ζ is equivalent to

ζ = exp

 ∑
k>0, g∈V

Fix(ϕk ◦ t−kg−1)
gtk

k

 ∈ Z[V ]((t)) = Λ. (13)

Here Fix(s) counts fixed points of the equivariant map s modulo covering
transformations, with their Lefschetz signs.

Suppose to begin that ρ = id. By the machinery used to prove the Lefschetz
fixed point theorem in [1], for each k we have∑

g∈V
Fix(ϕk ◦ t−kg−1) · g =

n−1∑
i=0

(−1)i Tr(φki ) ∈ Z[V ]. (14)

In this case we have

ζ =
n−1∏
i=0

det(1− tφi)(−1)i . (15)

To see this, it is enough to check that the logarithmic derivatives of both sides
are equal, which follows from equations (13) and (14).
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In general, let H : Σ×[0, 1]→ Σ be the homotopy from id to ρ. In [7] we defined
a natural compactification Γ ⊂ Σ × Σ of the graph of ϕ. Using this one can
define a compactified graph Γit of (H(·, t)◦ϕ)i) in a similar manner. Now there
exists a positive integer N such that if the cells in T1 are all contained in balls
of radius ε, then the homotopy H can be chosen so that dist(H(t, x), x) < Nε
for all t ∈ [0, 1] and x ∈ Σ. (Cf the construction of H in [23]; by carefully
controlling each intermediate step in the homotopy, the above claim may be
achieved.) Also, the set of fixed points of ϕi lies in the interior of Γ̄i under the
diagonal map Σ→ Σ×Σ by definition of Γ̄i , and is compact as a consequence
of Assumption 1.1. It follows that for any positive integer k we can choose ε so
that for all i ≤ k and all t ∈ [0, 1], the compactified graph Γit does not cross the
diagonal in Σ × Σ. Then equation (14) will hold up to order k , and therefore
so will equation (15).

(b) If p is a critical point of index i, then

∂[D(p)] = [D(∂fp)] (16)

where the brackets indicate the fundamental class of the compactification of the
descending manifold [7]. Now suppose again that ρ = id. Recall from equation
(12) that the matrix Ki sends D̂0(p) to a linear combination of cells of the form
D̂0(q), where q is a critical point of index i− 1. (We will henceforth omit the
hatsˆon D0 or F when ρ = id, since in this case hatted and unhatted versions
can be identified.) In fact,

Ki(D0(p)) = D0(∂f (p)).

To see this, note that from the definition of Mi in equation (11), we have

[D(p)] = D0(p) +
∞∑
k=0

tk+1F(φkMi(D0(p))).

(Here the initial descending manifolds D0 and initial downward flow F are
defined as in section 3.1, but using X̃ and Σ̃ instead of X and Σ.) Applying
equation (11) to this gives

∂[D(p)] = Ki(D0(p)) + (terms without initial descending manifolds). (17)

Equations (16) and (17) imply that ∂fi = Ki when D∗ (the domain/range of
K∗ ) is identified with CN∗ .

The case ρ 6= id can be handled similarly to part (a).
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We can now complete the proof of Theorem 1.7. Lemmas 3.9(b) and 2.7 imply
that

n∏
i=1

det(Ki))(−1)i+1 ≈ τ(CN∗)(ξ).

Together with Lemmas 3.6, 3.7, and 3.9(a), this implies that Theorem 1.7 holds
up to order k for all k .

4 The 3–dimensional case and Seiberg–Witten the-

ory

We now review from [7] the definition of the Morse-theoretic invariant I3 , and
the background for Conjecture 1.9 relating this invariant to Seiberg–Witten
theory. We will then prove Theorem 1.12, relating this invariant to Turaev
torsion.

4.1 Motivation from Seiberg–Witten theory

Let X be a closed connected oriented smooth 3–manifold with b1(X) > 0. Let
s be a spin-c structure on X . This determines a U(2)–bundle S → X with a
Clifford action of TX on S . A section ψ of S and a connection A on det(S)
satisfy the Seiberg–Witten equations with perturbation ω if, in the notation of
[9],

6 ∂Aψ = 0,
ρ(FA) = iσ(ψ,ψ) + iρ(ω).

The Seiberg–Witten invariant SW(s) counts solutions to these equations mod-
ulo gauge equivalence. (For more on 3–dimensional Seiberg–Witten invariants
see eg [13, 14, 18].)

Let us choose the perturbation to be ω = r∗df , where f : X → S1 is harmonic,
∗ denotes the Hodge star, and r is a real number. By perturbing the metric,
we may arrange that f is a Morse function. Away from the critical points, the
spinor bundle S splits into eigenspaces of Clifford multiplication by df ,

S = E ⊕ (E ⊗K−1), (18)

where K−1 := Ker(df : TX → R).
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Taking r →∞, one expects that for a Seiberg–Witten solution the zero set of
the E component of ψ to become parallel to ∇f . (The energy of the Seiberg–
Witten solution will be concentrated along this zero set. For detailed analysis
see [24] and its sequels.) This suggests that SW(s) counts unions of closed
orbits and flow lines of ∇f starting and ending at critical points, whose total
homology class is Poincaré dual to c1(E).

The above homological condition implies that in our union of closed orbits and
flow lines there is precisely one flow line starting at each index 2 critical point
and ending at each index 1 critical point. (See [7]. There are no index 0 or 3
critical points because f is harmonic, and there are equally many index 1 and
index 2 points because χ(X) = 0.) In other words, in the notation of section
2.2, our union of closed orbits and flow lines lives in H1(X, v), where v = −∇f .
As in Remark 1.10, the counting of closed orbits is related to Taubes’ counting
of pseudoholomorphic tori in symplectic 4–manifolds [25], which indicates that
we should allow closed orbits to be multiply covered when they are elliptic, but
not when they are hyperbolic.

4.2 The definition of I3

We now want to define I3(s) to be a signed count of such unions of closed
orbits and flow lines. A convenient way to do so is to use generating functions
as follows. Choose orderings of the index 1 and index 2 critical points. Let Pij
denote the set of flow lines from the ith index 2 point to the jth index 1 point.
Define the path matrix P by

P ij :=
∑
γ∈Pij

ε(γ)[γ].

Here [γ] ∈ H1(X, v−1(0)) is the homology class of γ (oriented downward), and
ε(γ) is the sign of γ as in section 2.1. The entries of P live in the Novikov
ring of the relative homology group H1(X, v−1(0)) with grading given by minus
intersection number with Σ.

Note that det(P ), regarded as a Z–valued function on H1(X, v−1(0)), is sup-
ported on H1(X, v). Also, the subset of Nov(H1(X, v−1(0))) consisting of func-
tions supported on H1(X, v) is a Λ–submodule. A generating function counting
unions of closed orbits and flow lines of the type we want is now given by

Iv3 := ζ · det(P ) ∈ Nov(H1(X, v)).

In the above equation, ‘·’ denotes the Λ action. The closed orbits are counted
correctly as a result of the product formula for the zeta function (2).
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Let jv : Spinc(X) → H1(X, v) denote the map that sends a spin-c structure
to the Poincaré–Lefschetz dual of c1(E), where E is the line bundle defined in
(18). The map jv is an H1–equivariant isomorphism.

Definition 4.1 [7] Regarding Iv3 as a function H1(X, v)→ Z, we define

I3 := Iv3 ◦ jv : Spinc(X)→ Z.

This definition makes sense for any Morse function f : X → S1 with no index 0
or 3 critical points, even if f is not harmonic. The calculation below will show
that I3 does not depend on f , except that there is a global sign ambiguity in
I3 due to the orientation choices we made. (Also I3 depends on the sign of
θ ∈ H1(X;Z) when b1(X) = 1.)

4.3 Relation with Turaev torsion

To relate I3 to torsion, we note that the isomorphism iv ◦ jv : Spinc(X) →
Eul(X) does not depend on v . It follows that there is a canonical isomorphism
ι : Spinc(X)→ Eul(X). (This isomorphism was first defined by Turaev [27] in
a different but equivalent way. The inverse map sends a smooth Euler structure
represented by a nonsingular vector field u to the spin-c structure whose spin
bundle is Cu⊕ u⊥ with a standard Clifford action.) In summary, we have the
following commutative triangle:

H1(X, v) iv−→ Eul(X)
jv↖ ↗ι

Spinc(X)

Proof of Theorem 1.12 It is enough to show that

Iv3 ◦ i−1
v = ±T (X; o) : Eul(X)→ Z.

By Theorem 1.7 and the definition of T , this is equivalent to asserting that for
some orientation choice, we have

det(P )(i−1
v (ξ)) = τ(CN∗)(ξ)(0)

for all Euler structures ξ . If ξ0 is a reference Euler structure and γ := i−1
v (ξ0) ∈

H1(X, v), then this equation is equivalent to

det(P )(·+ γ) = τ(CN∗)(ξ0)(·) : H1 → Z.

This last equation follows from the definition of τ(CN∗) and Example 2.9.
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