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Abstract This is the second in a series of papers in which we investigate
ideal triangulations of the interiors of compact 3–manifolds with tori or
Klein bottle boundaries. Such triangulations have been used with great ef-
fect, following the pioneering work of Thurston [22]. Ideal triangulations are
the basis of the computer program SNAPPEA of Weeks [3] and the program
SNAP of Coulson, Goodman, Hodgson and Neumann [4]. Casson has also
written a program to find hyperbolic structures on such 3–manifolds, by
solving Thurston’s hyperbolic gluing equations for ideal triangulations. In
this second paper, we study the question of when a taut ideal triangulation
of an irreducible atoroidal 3–manifold admits a family of angle structures.
We find a combinatorial obstruction, which gives a necessary and sufficient
condition for the existence of angle structures for taut triangulations. The
hope is that this result can be further developed to give a proof of the
existence of ideal triangulations admitting (complete) hyperbolic metrics.
Our main result answers a question of Lackenby. We give simple exam-
ples of taut ideal triangulations which do not admit an angle structure.
Also we show that for ‘layered’ ideal triangulations of once-punctured torus
bundles over the circle, that if the manodromy is pseudo Anosov, then the
triangulation admits angle structures if and only if there are no edges of
degree 2. Layered triangulations are generalizations of Thurston’s famous
triangulation of the Figure–8 knot space. Note that existence of an angle
structure easily implies that the 3–manifold has a CAT(0) or relatively word
hyperbolic fundamental group.

AMS Classification 57M25; 57N10

Keywords Normal surfaces, 3–manifolds, ideal triangulations, taut and
angle structures

1 Introduction

We will work in the smooth category. For simplicity, all 3–manifolds M will
be the interior of compact manifolds N with tori or Klein bottle boundary
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components.

A map f : T → M from a surface T into M is called π1–injective if the induced
map π1(T ) → π1(M) is one-to one. By an abuse of notation, we will call T

(or f(T )) incompressible, if f is a π1–injective embedding. We will suppose
throughout that all the boundary components of N are incompressible.

All 3–manifolds will be assumed to be irreducible and P2–irreducible, ie, every
embedded 2–sphere bounds a 3–ball and there are no embedded 2–sided pro-
jective planes. Such a 3–manifold M will be called atoroidal, if given any
π1–injective map f : T → M from a torus or Klein bottle into M , f is homo-
topic to a map into one of the boundary components of N . Any surface or map
which is homotopic into a boundary surface of N will be called peripheral.

For basic 3–manifold theory, see either [9] or [10].

An ideal triangulation Γ of M will be a cell complex which is a decomposition
of M into tetrahedra ∆1,∆2, ...,∆k glued along their faces and edges, so that
the vertices of the tetrahedra are all removed. Moreover the link of each such
missing vertex will be a Klein bottle or torus. We call these links the peripheral
surfaces of M . Note that tetrahedra may have faces and edges self-identified.
Using Moise’s construction of triangulations of 3–manifolds [18], one can convert
a triangulation of N into such an ideal triangulation, by collapsing the boundary
surfaces to ideal vertices and also collapsing edges which join the ideal vertices
to the interior vertices. See [11] for a discussion of such collapsing procedures.
One has to ensure that at each stage of such collapsings, that the topological
type of M does not change.

We now summarize Haken’s theory of normal surfaces [7], as extended by
Thurston to deal with spun normal surfaces in ideal triangulations (see also
[13] and [14]). Given an abstract tetrahedron ∆ with vertices ABCD , there
are four normal triangular disk types, cutting off small neighborhoods of each
of the four vertices. There are also three normal quadrilateral disk types, which
separate pairs of opposite edges, such as AB,CD . Each tetrahedron ∆i of
Γ contributes 7 coordinates which are the numbers nj of each of the normal
disk types. We can form a vector of integers of length 7k from a list of these
coordinates nj , 1 ≤ j ≤ 7k .

A normal surface S is formed by gluing finitely many normal disk types together
and its coordinate vector is denoted by [S]. [S] is called the normal class of S .
There are 6k compatibility equations for the coordinates of a normal surface,
each of the form ni + nj = nm + np , where the left side of the equation gives
the number of normal triangles and quadrilaterals with a particular normal arc
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type in the boundary, eg, the arc running between edges AB and AC in ∆. If
the face ABC is glued to A′B′C ′ of the tetrahedron ∆′ , then nm, np are the
number of normal triangles and quadrilaterals with the boundary normal arc
type running between A′B′ and A′C ′ in ∆′ . Note that we allow self identifi-
cations of tetrahedra and hence also of normal disk types. Note that normal
surfaces may be embedded, immersed or branched.

It turns out that the solution space V of these compatibility equations in R7k

has dimension 2k , ie, there are k redundant compatibility equations. The non-
negative integer solutions in V are then normal surfaces and we can regard 2k
as the dimension of the space of these surfaces. For a proof, see [15]. Also
in [15], the dimension of the space W of spun and ordinary normal surfaces
is computed. In fact, if c is the number of tori and Klein bottle boundary
components of N , then it is shown there that the dimension of W is 2k + c.

In an ideal triangulation Γ, a spun normal surface S is formed by gluing infi-
nitely many normal disk types together. By definition, there are finitely many
quadrilaterals and infinitely many triangular disks in such a spun normal sur-
face. A connected neighborhood (in S ) of these quadrilaterals can be formed
by adding finite regions of triangles, yielding a compact core C of S . Then the
closure of S\C is a collection of non-compact triangular regions of S . It is easy
to see that these regions must then all be half open annuli. The reason is that
any such region projects onto a boundary surface of N , which becomes a tri-
angulated Klein bottle or torus, when pushed into M as a normal surface. The
projection is locally one-to-one and so the region must be an annulus winding
around the boundary surface.

Now to form a vector space W of spun and ordinary normal surfaces S , we will
consider only the quadrilateral coordinates of each S . So W will be a subspace
of R3k . This idea has been studied previously in [24], in the case of ordinary
normal surface theory in standard (closed) triangulations and is called Q nor-
mal surface theory. For spun normal surfaces, Q theory has been investigated
in [13] and [14]. There are k compatibility equations for the quadrilaterals and
in [15], it is shown there are c redundancies. In an ideal triangulation, the so-
lutions to these equations are naturally either normal or spun normal surfaces.
The only surfaces which are not ‘seen’ by this theory, are the boundary Klein
bottles and tori, formed entirely of triangular disk types. If we added these
in also, the theory would have dimension 2k + 2c. However these boundary
surfaces play no significant role, so it is reasonable to leave them out of consid-
eration. Spun normal surfaces have been used in an interesting way by Stefan
Tillmann [23], to study essential splitting surfaces arising from representation
varieties in Culler–Shalen theory.
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Finally we briefly discuss the theory of generalized almost normal surfaces,
which turns out to give an elegant way of describing the combinatorial obstruc-
tion to deform a taut structure into an angle structure. The disks of generalized
almost normal surface theory are properly embedded in the tetrahedra and have
boundary loops consisting of normal arcs. It is an elementary exercise to check
that such loops can be described as the boundary of a regular neighborhood of
an embedded arc in the boundary of a tetrahedron, where the latter arc runs
between two vertices and consists of normal arcs plus two arcs from the vertices
to interior points of edges not containing the vertices (see Figure 1). As a con-
sequence, every such disk, which is not a triangle or quadrilateral, has length
4k and we will refer to it as a 4k–gon. We will find an interesting connection
between these 4k–gons, for k ≥ 2, and branch points of normal classes.

A

B

C

D

arc

4k–gon

Figure 1: An elementary disk in an almost normal surface

In our work, it turns out to be sufficient to use normal and generalised almost
normal surfaces. However, there is an interesting interaction with spun normal
surface theory, which we will mention for completeness.

We would like to thank Darryl Cooper, Craig Hodgson and Marc Lackenby for
very helpful comments. The second author is supported by a grant from the
Australian Research Council.

2 Efficiency, tautness and angle structures of ideal

triangulations

Taut triangulations were introduced by Lackenby [16], based on Gabai’s the-
ory of taut foliations, as developed by Scharlemann using sutured hierarchies.
Lackenby showed that any irreducible atoroidal orientable compact 3–manifold
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with tori boundary has ideal triangulations which admit taut structures. Angle
structures have been discussed by Casson and Rivin and are sometimes called
semi-hyperbolic structures. One way of viewing an angle structure, is to asso-
ciate all the tetrahedra with ideal hyperbolic simplices, in such a way that the
sums of the dihedral angles about each edge of the triangulation are 2π . The
latter is one of Thurston’s three hyperbolic gluing conditions. One can then
view a taut structure as a limit of such angle structures. For our purposes,
we introduce a slightly weaker version of tautness than used by Lackenby [16].
This fits very conveniently with angle structures and also enables us to consider
non-orientable manifolds.

We also introduce the notion of a semi-angle structure, as a convenient inter-
polation between angle structures and taut structures.

Definition 2.1 Given an ideal triangulation Γ of M , a taut structure is an
assignment of angles 0 or π to the dihedral angles at edges between pairs of faces
in each tetrahedron ∆1,∆2, ...,∆k of Γ. These angles satisfy two conditions:

• For each ∆i there are four 0 dihedral angles and two π angles. The π

angles are at an opposite pair of edges of ∆i .

• For every edge E of Γ, the sum of all the dihedral angles around E is
exactly 2π .

Next, we discuss the concept of angle structures as introduced by Casson and
Rivin.

Definition 2.2 An angle structure is an assignment of non-zero dihedral angles
α, β, γ to each tetrahedron ∆i of an ideal triangulation of M with the following
conditions:

• Each opposite pair of edges of ∆i has the same dihedral angle, so the 3
pairs of opposite edges have dihedral values α, β, γ .

• α + β + γ = π .

• The sum of all the dihedral angles around an edge of M is 2π .

Notice that an ideal hyperbolic tetrahedron ∆ has all 4 vertices on the 2–sphere
at infinity of hyperbolic 3–space H3 . Each face is an ideal hyperbolic triangle
and it is well-known ([22]) that the dihedral angles for such a tetrahedron are
equal for opposite pairs of edges of ∆ and sum to π . So the conditions of
an angle structure are part of the compatibility conditions for gluing together
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choices of hyperbolic metrics on the tetrahedra ∆1,∆2, ...,∆k of Γ to form a
(complete) hyperbolic metric.

Finally we relax the definition of angle structure to give the new definition of a
semi-angle structure. Note that both angle structures and taut structures are
examples of semi-angle structures.

Definition 2.3 A semi-angle structure satisfies the same conditions as an angle
structure except that all dihedral angles are non-negative rather than strictly
positive.

Combinatorial restrictions on an ideal triangulation Γ, are related to the pos-
sibility of finding an angle structure using Γ. The following discussion is based
on an inspiring talk given by Casson in Montreal in 1995. In [11] and [12], these
conditions on ideal triangulations are developed for the more difficult case of
triangulations of closed 3–manifolds.

Definition 2.4 We say that an ideal triangulation Γ of M is 0–efficient, if
there are no embedded normal spheres or projective planes. We say that Γ is
1–efficient, if Γ is 0–efficient and there are no embedded normal tori or Klein
bottles, except for the boundary tori and Klein bottles of N . Finally we say that
Γ is strongly 1–efficient if there are no singular or embedded normal spheres,
projective planes, tori or Klein bottles, except for coverings of the boundary
surfaces, realized as normal surfaces in M .

An initial connection between these concepts is given by the following result,
due to Casson and Rivin.

Theorem 2.5 Suppose that M is the interior of a compact 3–manifold N with

tori and Klein bottle boundary components and has an ideal triangulation Γ
with an angle structure. Then M is irreducible, P2–irreducible and atoroidal.

Moreover Γ is strongly 1–efficient.

Proof Suppose that M has an embedded essential 2–sphere S (which does
not bound a 3–cell), an embedded 2–sided projective plane P or a π1–injective
map f : T → M of a torus or Klein bottle, which is not homotopic into a
boundary component of N . We claim that S or P or f(T ) can be isotoped
or homotoped to be an embedded or immersed normal surface. This follows by
standard arguments, initially due to Haken (see [8]). Note that for the case of
the immersed torus, one can use the method of Freedman, Hass, Scott [5], to
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lift a map homotopic to f to an embedding in a covering space of M and so
Haken’s method applies also in this covering space.

Now the dihedral angles associated with edges of ideal tetrahedra can also be
given to corresponding vertices of the triangular and quadrilateral normal disk
types. The condition for an angle structure that the sum of the 3 dihedral
angles of a tetrahedron is π , means that the angle sum for the vertices of any
normal triangle is also π . On the other hand, the angle sum for the vertices
of any normal quadrilateral is of the form 2α + 2β where α, β, γ are the 3
dihedral angles for pairs of opposite edges of the tetrahedron containing the
quadrilateral. Therefore, we conclude that this angle sum is 2π − 2γ and is
therefore < 2π (see Figure 2).

α

α

α

β

β

β

α

α

angle sum π

angle sum 2π − 2γ

Figure 2: Vertex angle sums for normal disks

Next, notice that the other angle structure condition that the dihedral angles
around an edge add up to 2π , implies the same is true for any vertex of any
immersed normal surface f : S′ → M . Therefore we find that the Euler char-
acteristic of any immersed normal surface f(S′) is non-positive and is strictly
negative if there are any quadrilaterals.

In fact, by Gauss–Bonnet, the Euler characteristic χ(S′) can be calculated by
summing α + β + γ − π and 2α + 2β − 2π over all normal triangles with angles
α, β, γ and normal quadrilaterals with angles α, β, α, β and dividing the total
by 2π .

So this shows that M cannot have any embedded (or immersed) normal spheres
or projective planes and is therefore irreducible and P2–irreducible. Moreover,
any immersed normal torus or Klein bottle must consist only of triangular
normal disks and is therefore a covering of one of the peripheral normal surfaces
of M , as required in an atoroidal manifold. This also establishes that M is
strongly 1–efficient.
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Remarks Note that a similar argument also shows that for the case of an
angle structure, there are no non boundary parallel embedded or immersed spun
normal annuli or Mobius bands. The reason is that any spun normal surface
with some quadrilaterals would have negative Euler characteristic. Hence for
a spun normal annulus or Mobius band, there can only be triangular normal
disks and the surface is then boundary parallel.

To complete this section, we also look at the situation of a taut or semi-angle
structure. This extends a result due to Lackenby [16].

Theorem 2.6 Suppose that M is the interior of a compact 3–manifold N

with tori and Klein bottle boundary components and has an ideal triangulation

Γ with a taut or semi-angle structure. Then M is irreducible, P2–irreducible

and Γ is 0–efficient. Moreover any embedded normal torus or Klein bottle must

be incompressible. If M is also atoroidal, then Γ is strongly 1–efficient.

Proof For simplicity, we assume a taut structure and leave it to the reader to
make the necessary simple modifications for the case of a semi-angle structure.
For the first part of this theorem, we can follow exactly the same method as
in the previous theorem. Namely, angles can be associated to the vertices of
any embedded or immersed normal surface in M using 0 and π as dihedral
angles at edges of tetrahedra of Γ, coming from the taut structure. As in
Theorem 2.4, it then follows that the angle sum of any normal triangle is π and
for quadrilaterals is either π or 2π . Therefore there cannot be any embedded
normal spheres or projective planes and M is irreducible, P2–irreducible and
Γ is 0–efficient exactly as before.

Next, consider an embedded normal torus or Klein bottle T in M which is
not π1–injective. By the loop theorem and Dehn’s lemma, there must be an
embedded compressing disk for T . (If T is one-sided, we can work instead with
the boundary of a small regular neighborhood, which is a two-sided torus or
Klein bottle). It easily follows that either T is a torus bounding a solid torus
or cube-with-knotted hole or T is a Klein bottle bounding a non-orientable
solid torus. (We know by the previous paragraph that there are no projective
planes in M so this rules out a disk cutting the Klein bottle into two projective
planes). The case of cube-with-knotted hole can be easily ruled out, since an
embedded 2–sphere bounding a 3–cell containing T can be shrunk relative to Γ
using T as a barrier as in [11] to give a normal 2–sphere. But this contradicts
our previous observation that Γ is 0–efficient.

To rule out T bounding a solid torus (orientable or not, depending on whether
T is a torus or Klein bottle), we use the method of sweepouts or thin position
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(see [19] or [21]). Using T as a barrier, we can sweep across the normal solid
torus getting a minimax value of complexity for a moving torus or Klein bot-
tle. This minimax surface T ′ is almost normal, so since we have a 0–efficient
triangulation, must be normal except for a single octagonal disk properly em-
bedded in one of the tetrahedra. The other possibility for the minimax torus
or Klein bottle is a normal sphere with a tube attached parallel to an edge and
0–efficiency rules this out. Now we can do the same Euler characteristic calcu-
lation for T ′ using the angles induced by the taut structure. It is easy to see
for the octagon, the vertex angle sum Σ is either 2π or 4π (see Figure 3). The
contribution towards 2πχ(T ′) from the octagon is then Σ−6π so is always neg-
ative. Since all the normal triangles and quadrilaterals also make non-positive
contributions, it follows that χ(T ′) < 0 and so T ′ cannot be a Klein bottle
or torus. This completes the proof that any embedded normal torus or Klein
bottle must be π1–injective.

π

ππ

π

0

0

0

0

0

0

0

0

angle sum 2π angle sum 4π

Figure 3: Vertex angle sums for an octagonal disk

Finally if M is atoroidal, we need to prove that Γ is strongly 1–efficient. The
idea is to use a covering space approach similar to the one in [5], together with
the argument in the preceding paragraph about non-π1–injective (compress-
ible) normal tori and Klein bottles. Assume first that there is an embedded or
immersed π1–injective normal torus or Klein bottle f : T → M which is not a
covering of a peripheral torus or Klein bottle. By the atoroidal assumption, we
know that the map f is homotopic to a map into such a peripheral normal sur-
face, which we denote by T1 . Let N0 be the covering of N (the compactification
of M ) corresponding to the peripheral subgroup π1(T1) of π1(N). Denote by
T0 an embedded lift of T1 to N0 . Now it is well-known (see eg, [20]) that this
covering space N0 is almost compact, ie, is the result of removing part of one
boundary component of a product of a torus or Klein bottle and an interval. It
is then immediate that we can find a new embedded torus or Klein bottle T2
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which is parallel to the lifted surface T0 in N0 , so that there is a lift f0 of the
map f so that f0(T ) is contained in the product region between T0 and T2 .
But then, by the usual barrier argument as in [11], we can isotopically shrink
T2 to an embedded normal surface T3 using f0(T ) as the barrier (see Figure 4).
But now a sweepout across the product region between T3 and T0 in N0 gives
an almost normal torus or Klein bottle in the interior M0 of N0 . The taut
structure on Γ lifts to a taut structure on the lifted triangulation Γ0 on M0 .
Since we have shown previously there cannot be an embedded almost normal
torus or Klein bottle in a taut triangulation, so this case is done.

T0

T2T3

N0

f0(T )

Figure 4: Isotoping T2 to an embedded normal surface T3

The last case to consider is a compressible immersed normal torus or Klein bot-
tle
f : T → M . Suppose first that the image f∗π1(T ) in π1(M) is trivial. In

this case, the map f lifts to f̃ in the universal covering space M̃ of M . But
the taut structure on Γ obviously lifts to a taut structure on the lifted triangu-
lation Γ̃ on M̃ . Also M̃ is almost compact (see eg, [20]), so is an open 3–cell.

We can find an embedded 2–sphere S in M̃ which bounds a 3–cell containing
f̃(T ) and as previously, can use f̃(T ) as a barrier and shrink S to a normal
2–sphere. But we have shown before there are no such normal 2–spheres in a
taut triangulation Γ̃ so this gives a contradiction.

Assume secondly that the image f∗π1(T ) in π1(M) is non trivial, but not an
isomorphic copy of π1(T ). Then it is easy to see that the only possibility is a
cyclic image isomorphic to Z, since π1(M) has no torsion. Consequently, there
is an essential simple curve C in T with homotopy class in π1(T ) generating
the kernel of f∗ . We can define a continuous map of a disk f̄ : D → M , so that
f̄(∂D) = f(C).

To complete this case, the idea is to pull back the triangulation Γ of M to D ,
using f̄ . Moreover, there is a natural way to also pull back the taut structure
on Γ to a ‘taut’ structure on D . Then a Gauss–Bonnet argument similar to
that in Theorem 2.5 gives a contradiction.
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After a small perturbation, it can be assumed that f̄ is transverse to the tri-
angulation Γ. So the pull back of the edges of Γ are interior vertices in D and
the pull back of the faces of Γ are arcs and loops in D . We can simplify the
map f̄ by an obvious homotopy to eliminate any loops in the preimage of the
faces. For if C0 is an innermost such loop bounding a subdisk D0 of D , we
can homotop f̄ into the face of Γ containing f̄(C0). It is then easy to slightly
perturb the map to push f̄ off this face on a small neighborhood of D0 , thus
eliminating C0 (and any other arcs and vertices inside D0 ).

Let G denote the graph on D with these vertices and arcs. If G is disconnected,
we can again homotop the map f̄ to eliminate some of the components of the
graph. Just choose a loop C1 disjoint from G and bounding a subdisk D1

containing some components. Then f̄(C1) lies inside some tetrahedron of Γ.
So we can homotop f̄ |D1 into this tetrahedron and eliminate any pieces of the
graph inside D1 . Consequently we may assume that the graph is connected
and it defines a cell decomposition of D .

Next, any polygonal face P of the cell decomposition of D which is a bigon
can be removed by a further homotopy of f̄ . For it is easy to see that first
f̄ |P can be homotoped into an edge or face of Γ and then f̄ can be pushed
off this edge or face on a small neighborhood of P in D . The boundary arcs
of an interior bigon P of D map to arcs with ends on an edge E of Γ. The
two boundary arcs then bound a bigon in the boundary of the tetrahedron,
lying in the two faces containing E . For a bigon P adjacent to the boundary
of D , note that one of its boundary arcs lies on a normal triangular disk or
quadrilateral and the other on a face of Γ, so it follows that the ends must be
on the same edge E of Γ. Hence a similar picture is obtained to the interior
bigon case (see Figure 5). This will eliminate P as claimed and so decrease the
number of faces of the cell decomposition. In a similar manner, any boundary
edge λ of the cell decomposition with image having both ends on the same edge
of Γ can be eliminated by a homotopy of f̄ , by homotoping the map of λ into
the edge and then perturbing the image of λ off the edge, simplifying the cell
decomposition of D . Therefore we can assume that every boundary edge λ of
the cell decomposition of D , maps to a spanning arc in a disk of the normal
surface f(T ) running between two different edges of Γ.

By transversality of f̄ relative to the edges and faces of Γ, we see that all vertices
of G have the same degree as the corresponding edges of Γ. We can therefore
pull back the angles of the taut structure on Γ to the cell decomposition of D .
Therefore every polygonal face has vertices with angles either 0 or π . Moreover
the condition that boundary edges λ of the cell decomposition of D map to
spanning arcs in faces of Γ, means that if the vertex at one end of λ has angle
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interior bigon

boundary bigon

Figure 5: Bigon faces of the cell decomposition of D

π , then the vertex at the other end of λ must have angle 0. Two edges of a
tetrahedron which share a vertex, cannot both have dihedral angle π in a taut
structure.

To complete this discussion, we need to consider boundary edges and polygonal
faces adjacent to ∂D . Note that if a triangular polygonal face F with one arc
σ on ∂D , has the property that f̄ |F is homotopic into a vertex of the normal
structure on the torus or Klein bottle f(T ), then we can use such a homotopy to
remove this face and simplify the cell decomposition on D . To be more specific,
we mean that the arc σ cuts off a triangular corner of a normal triangular disk
or quadrilateral of f(T ) and f̄ |F can be homotoped to have image equal to
this triangular corner (see Figure 6). After removing all such triangular faces,
we claim that any remaining triangular face F with one arc σ on ∂D must
have the angle of 0 at the vertex v opposite to σ , since σ must run between
opposite edges of a quadrilateral of T and the edges of Γ at the four corners
of this quadrilateral must have angles 0, π, 0, π . Then v is mapped by f̄ into
an edge of the tetrahedron disjoint from the quadrilateral and so the dihedral
angle at this edge must be 0, since the three dihedral angles in the tetrahedron
are 0, 0, π for a taut structure (see Figure 6). The property of angles at the
corners of a normal quadrilateral follows by the usual Gauss–Bonnet argument
– if such a quadrilateral had all angles 0, then χ(T ) would be negative and so
the normal surface would not be a torus or Klein bottle.

We can now do a similar Gauss–Bonnet calculation for D . For vertices on ∂D

of faces of D , we assign an angle of π
2 . For any polygonal face F of D with

n sides, the contribution to χ(D) is Σ − (n−2)
2 , where Σ denotes the sum of

the angles at the vertices of F divided by 2π . Now any triangular face F has
Σ = 1

2 and so contributes 0 to χ(D), by our discussion of boundary triangular
faces above. (Any boundary triangular face has angles 0, π

2 , π
2 .) Moreover since

angles at the vertices of an interior polygonal face F , with n ≥ 4 edges, are
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π

π

0

0

0

0
triangular disk
homotopic into vertex

Figure 6: Triangular faces of the cell decomposition of D

either π or 0 and no two adjacent vertices around ∂F are π , we see that the
contribution to χ(D) is non-positive. Similarly for polygonal faces with at
least one boundary edge on ∂D and n ≥ 4 edges, there are angles of π

2 at the
vertices on ∂D and the other angles are π or 0. Again as there are no adjacent
angles of π , the contribution to χ(D) is also non-positive. But then the Euler
characteristic of D will not be one, and this contradiction establishes strong
1–efficiency of Γ.

Corollary 2.7 Any immersed or branched normal surface with non-negative

Euler characteristic is normally boundary parallel, if M has an angle structure

or is atoroidal and has a taut or semi-angle structure on Γ.

Proof This follows easily by the same method as for Theorems 2.4 and 2.5.
By normally boundary parallel, we mean that the surface is a collection of
triangular disks, with no quadrilaterals. The key point in the case of a branched
normal surface f̄ : T̄ → M , is that in the Gauss–Bonnet formula, a branch point
of degree d > 1 contributes an amount of 2π(1−d) to the calculation of 2πχ(T̄ ).
Consequently it follows immediately that for either an angle structure, or a
taut or semi-angle structure, that any branched normal surface gets a negative
contribution to Euler characteristic from its branch points.

Remarks Notice that these two results give an important bridge between taut
structures and angle structures for ideal triangulations of atoroidal 3–manifolds
M which are also irreducible and P2–irreducible. In the next section, we will
show that strong 1–efficiency is one of the two key conditions needed to deform
a taut structure to an angle structure on an ideal triangulation. However it
turns out that certain special branched normal surfaces with negative Euler
characteristic can occur in taut triangulations but not in angle structures and so
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non existence of such surfaces is the obstruction to solving Lackenby’s question
positively.

For completeness, we note a connection between strong 1–efficiency and the
existence of spun normal surfaces with zero Euler characteristic. It is elementary
to check by the same method as in Theorem 2.4 that if Γ has an angle structure,
then there cannot be any such spun normal surfaces. However by the next result,
strong 1–efficiency guarantees this.

Theorem 2.8 Suppose that Γ is a strongly 1–efficient ideal triangulation of

M . Then there are no spun normal surfaces U with zero Euler characteristic

in M .

Proof By passing to 2–fold covering spaces, we can assume without loss of
generality that M is orientable and U is an annulus, rather than possibly a
Mobius band. Let f : U → M denote the immersion or embedding of U and
let T0 denote one of the peripheral tori with one of the half open annuli ends of
U projecting onto T0 . Also let f̃ : U → M̃ denote the lift to the covering space
M̃ , where π1(M̃ ) corresponds to the subgroup f∗π1(T0). Finally let Ñ be the
covering space of the compact manifold N also corresponding to f∗π1(T0) (see
Figure 7).

As in Theorem 2.5, we know that Ñ (and hence M̃ ) is almost compact. So
if f̃(U) has both half open annuli (its two ends) covering the same lift T̃0

of the peripheral surface T0 for M0 , then we can use f̃(U) ∪ T̃0 as a barrier

as in [11] and find an embedded normal torus in M̃ which is not peripheral.
This contradicts our assumption that M is strongly 1–efficient. On the other
hand, if f̃(U) has its second half open annulus (other end) covering a second
peripheral surface, then clearly f(U) is not homotopic, keeping its structure at
infinity fixed, into a neighborhood of T0 . Consequently we can replace f(U) by
a compact properly immersed annulus denoted V in N , by replacing the half
open annular ends by compact annular ends finishing at boundary components
of N . Then either this annulus V has both ends on T0 and is not homotopic,
keeping its boundary fixed, into T0 , or the annulus has ends on two different
peripheral tori. But then by the classical characteristic variety theorem (see
[10], [9]), either N is a Seifert fibred space with two exceptional fibers or N has
an embedded π1–injective torus which is not homotopic to a peripheral torus.
In the first case, there are many immersed π1–injective tori in M which are
not homotopic into a peripheral torus. So in either case, we can homotop such
tori to be normal in M and this contradicts our hypothesis that M is strongly
1–efficient.
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f̃(U)
f̃(U)

ÑÑ

T̃0T̃0

Figure 7: The lift of f(U) to the covering space M̃

3 Tautness and angle structures of ideal triangula-

tions

In this section, our objective is to show that taut structures can be deformed to
angle structures for atoroidal manifolds M if certain branched normal surfaces
do not occur. The two major ideas needed are strong 1–efficiency as in the
previous section, together with the observation that angle structures can be
written in terms of a collection of compatibility equations, which are ‘dual’ to
the canonical basis for normal surface theory (see [15]), when written in Q–
coordinates. So our first task is to review some more facts for normal surface
theory and also to write down the equations for angle structures.

From [15], it follows that for an ideal triangulation Γ of M with tetrahedra
∆1,∆2, ...,∆k , the solution space V for the 6k compatibility equations using
standard normal coordinates, has a canonical basis B consisting of k tetrahedral
and k edge solutions. A tetrahedral solution di for the tetrahedron ∆i is
di = q1 + q2 + q3 − t1 − t2 − t3 − t4 , where the qj , tk denote the quadrilateral
and triangular disk types in ∆i (see Figure 8). Given an edge Ei of Γ, the
corresponding edge solution ei is ei = qj1 + ... + qjr

− tm1
− ... − tms

, where
the qju

are quadrilaterals in the tetrahedra adjacent to the edge Ei with Ei

at least one of the edges disjoint from the quadrilateral disk type and the tmv

are triangular disk types in the same collection of tetrahedra but which have at
least one vertex on Ei (see Figure 8). Note that if in some tetrahedron adjacent
to Ei , both the edges disjoint from some quadrilateral disk type are Ei , then
we must take this quadrilateral with multiplicity 2, or equivalently take qju

and
qjv

as being equal, for some pair u 6= v .

It is easy to see that the number of edges is the same as the number of tetrahedra
in Γ, since χ(M) = 0. So there are 2k ‘formal’ normal surfaces d1, e1, ..., dk, ek

which are tetrahedral or edge solutions. These form the canonical basis B .
It is often convenient to talk about formal normal surfaces as vectors of in-
tegers satisfying the compatibility equations, for which the coordinates need
not be non-negative. If all the coordinates are non-negative, then the vector
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quadrilaterals triangles

a tetrahedral solution an edge solution

Figure 8: Canonical basis for the solution space

corresponds to a standard normal surface. If we work in Q–coordinates, then
normal surfaces are vectors of length 3k and a tetrahedral surface di has three
‘ones’ and all remaining coordinates 0, whilst an edge surface ei has ‘ones’ at
the entries corresponding to the quadrilateral types in adjacent tetrahedra to
E which have E as a disjoint edge. Notice that if there are self identifications
of edges in the tetrahedra of Γ, then some ‘ones’ might be twos as noted in the
previous paragraph. Note however that the sum of the coordinates of an edge
surface is precisely the degree of that edge in the triangulation.

Next, we introduce the compatibility equations for angle structures on Γ. Let
αi, βi, γi denote the 3 angles for the tetrahedron ∆i of Γ, so that opposite edges
are assigned the same angle. The angle equations are the following system:

αi + βi + γi = π

αj1 + ... + αjr
= 2π

(∗)

There are k equations of the first kind, one for each tetrahedron ∆i of Γ and k

equations of the second kind, one for each edge Ei of Γ. Every αju
is an angle

at the edge Ei for one of the adjacent tetrahedra to Ei . So αju
is one of α, β, γ .

An angle structure is then a solution for the system (∗), where every angle has a
positive value. The ‘duality’ between the angle equations (∗) and the canonical
basis B is the observation that the coefficients of the angle variables in (∗) are
precisely the vectors making up B in Q–coordinates. Note that as previously
discussed for edge solutions, we can have αju

= αjv
, for u 6= v , in case two

opposite edges in the same tetrahedron are identified with Ei .

The main result of this paper is the following;

Theorem 3.1 Suppose that M is atoroidal and has a taut or semi-angle ideal

triangulation Γ. Then there is a non-empty k–dimensional space A of angle
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structures for Γ if and only if there are no branched normal classes containing

some quadrilaterals with angle sum 2π in the taut or semi-angle structure and

no quadrilaterals with angle sum < 2π .

Proof The argument proceeds by a series of steps. For simplicity, we again
discuss the case of a taut structure and leave it to the reader to check the simple
modifications needed for semi-angle structures.

Claim 1 Given an immersed normal surface S , if it has normal class [S] given

by [S] = Σi(nidi+miei), a linear combination of solutions in the canonical basis

B , then the Euler characteristic of S is given by χ(S) = −Σi(ni + 2mi).

The explanation is simple; we just note that χ(di) = −1 and χ(ei) = −2. In
fact, calculating 2πχ(di) for example, we sum 2π( 1

u1
+ 1

u2
+ 1

u3
− 1

2), for each
triangle of di or ei , where the uj are the degrees of the three edges met by the
triangle, and also sum 2π( 1

u1
+ 1

u2
+ 1

u3
+ 1

u4
− 1) for every quadrilateral of di

or ei , where the uj are the degrees of the four edges met by the quadrilateral.
This gives the total −2π for 2πχ(di) and −4π for 2πχ(ei). Note that we have
used the very convenient device of extending χ to a linear functional on the
total space of formal solutions to the normal surface equations W , by defining
values of χ for triangles and quadrilaterals. This gives the correct result for χ

on a vector with non-negative coordinates, so long as the corresponding normal
surface is an immersion.

For the next steps, we need to define χ∗(S) for surfaces S with branch points as
well as for immersions. This is not the usual Euler characteristic when branch
points occur, but χ∗(S) = χ(S) for embeddings or immersions. So χ∗(S) is
defined for a vector exactly as in Claim 1; we just add all the contributions of
triangles and quadrilaterals with signs as for the vector satisfying the normal
surface equations. Specifically, if the normal class [S] = Σiniti+Σjmjqj , where
the ti are the normal triangles and the qj are the normal quadrilaterals, then
χ∗(S) = Σiniχ(ti)+Σjmjχ(qj), where the Euler characteristic contributions of
the triangles and quadrilaterals are computed as in Claim 1 above. Note that
Claim 1 extends then to surfaces with branch points, ie, the formula χ∗(S) =
−Σi(ni + 2mi) is valid if [S] = Σi(nidi + miei), since χ∗ is a linear functional.

It is often convenient to compute χ∗(S) by a Gauss–Bonnet angle sum approach,
but ignoring branch points. So every triangle contributes zero angle sum and
every quadrilateral contributes its angle sum minus 2π , for angles induced from
a taut or semi-angle structure. The total angle sum divided by 2π is then χ∗(S).
An easy way to prove this gives the previous formula for χ∗ is to note that for
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the canonical basis B = {d1, . . . , dk, e1, . . . , ek}, this angle sum approach also
yields −1 for tetrahedral solutions di and −2 for edge solutions ej . So since
a linear functional is determined by its values on a basis, this establishes that
the angle sum formula is the same as that given previously.

Note that for a normal surface S with branch points in a taut structure, having
χ∗(S) = 0 is the same as requiring that S can contain quadrilaterals with two
dihedral angles π , but cannot have a quadrilateral with all angles zero (see
Figure 9).

E

π
π

0

0

0

Figure 9: Quadrilaterals in a normal surface with a branch point

Such surfaces will then have their ‘real’ Euler characteristic χ(S) < 0, if they
are not peripheral tori or Klein bottles. For branch points contribute a strictly
negative amount to the Euler characteristic, as noted in the previous section.

Claim 2 There is a normal surface S , which may be embedded, immersed or

branched and is non peripheral, with χ∗(S) = 0, if and only if there is a linear

combination of the equations of the system (∗) with right side having value 0
and all coefficients of the variables αi, βi, γi of the left side being non negative,

with at least one coefficient being positive.

We can write S as a linear combination Σi(nidi + miei) of solutions in the
canonical basis B , where the ni,mi are integers. By Claim 1, χ∗(S) = 0 if and
only if Σi(ni+2mi) = 0. Notice then that if we compute the linear combination
of the equations (∗) by adding multiples ni of the first type of equation (angle
sum in the tetrahedron ∆i is π) and mi of the second type of equation (angle
sum around the edge Ei is 2π), then the equation Σi(ni + 2mi) = 0 means
precisely that the right hand side of the resulting equation is zero.
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Next, for this particular linear combination of the system (∗), the condition that
all the coefficients of the variables on the left side are non negative corresponds
to the requirement that all the quadrilaterals in S are taken with non negative
multiplicity. Adding up the contributions from the individual equations is the
same as adding up the corresponding multiples of the coordinates in the basis
vectors di, ei . This follows since as noted above that these coordinates are
exactly the same as the coefficients of the angle variables in the equations of
(∗). But then as all the quadrilateral coordinates of S must be non negative
and at least one must be strictly positive, since we are dealing with a surface
which is not peripheral, the claim follows.

Claim 3 Let A∗ denote the affine space of solutions of the system (∗) of

angle equations and let O be the positive octant consisting of vectors with all

coordinates strictly positive. Then A∗ intersects O if and only if there are no

linear combinations of the equations of the system (∗), with right side zero and

all coefficients of the angle variables of the left side being non negative, with at

least one coefficient being positive.

Note that this claim completes the proof of the theorem, since the angle space
A = A∗ ∩ O . In one direction this claim is easy – if there is such a linear
combination, we know by Claim 2 that there is a non peripheral normal surface
S with χ∗(S) = 0. But this contradicts Theorem 2.5 if S is embedded or
immersed. Otherwise we have precisely the condition that there are no non
peripheral branched classes with only quadrilaterals having two angles π and
no quadrilaterals with all angles zero. So it remains to show that if there are
no linear combinations as in claim 3, that A is non empty.

Firstly, the assumption that Γ has a taut structure implies that the affine space
A∗ intersects ∂O at the vector of angles corresponding to the taut structure.
If A∗ misses O , then we would like to construct a hyperplane U in R3k which
contains A∗ and misses O . So let us suppose that A∗ ∩ O = ∅. By taking all
multiples of vectors in the affine space A∗ , we get a subspace U which includes
A∗ (see Figure 10). We claim that U does not intersect O . To verify this,
notice that there is at least one vector of ∂O in A∗ (corresponding to the taut
structure) and certainly all multiples L of this vector will also be in ∂O . Let Ō
denote the closure of O . If U intersected O , then U ∩ Ō would be a cone with
cross section a polytope of dimension one less than the dimension of U . But
then the line L would be in this cone and would therefore be in the closure of
U ∩ O . But this would imply that O intersected A∗ , contrary to assumption.
For U is a cone on A∗ locally near L. Since L crosses A∗ , lines of U through
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the origin, nearby to L, clearly meet A∗ in nearby points to L and so such
lines would be in U ∩ O . So the description of U is verified.

z

y

x

1

L

U

A∗

Figure 10: Hyperplane containing A∗ and missing O

Consider all subspaces U ′ which contain U as a hyperplane. If such a subspace
intersects O , then this must be inside one of the two half spaces bounded by
U in U ′ , since the intersection is convex and misses U . As U ′ rotates around
U , the two half spaces bounded by U interchange positions. Consequently, by
continuity, for some intermediate position, U ′ ∩O must be empty. In this way
we can find subspaces of increasing dimension including A∗ and disjoint from
O . So the procedure terminates with the required hyperplane V .

It is an elementary fact from linear algebra that any hyperplane containing
the affine space of solutions of the system (∗) comes from a linear equation
obtained by taking a linear combination of the equations of (∗), so that the
right side is zero. Hence there is such a linear equation which yields V as
solution space. Now a normal vector to V is given by the coefficients of the
variables in this linear equation. By our assumption above that there are no
branched normal surfaces with some quadrilaterals having two dihedral angles
π and no quadrilaterals with all dihedral angles, Claim 2 implies that any non
zero linear equation which is a linear combination of the system (∗) with right
side zero, must have some coefficients of the left side being negative and some
must be positive. Hence we conclude that the normal vector to V has some
negative and some positive coordinates. Consequently there is a vector in V

with all positive entries perpendicular to the normal vector, contradicting our
construction of V ∩ O being empty. Therefore the proof of Claim 3 and the
theorem is complete.
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Remarks (1) In [2], we investigate existence of taut and angle structures
‘experimentally’ for examples where the number of tetrahedra in Γ is at most
8. Examples are found where Γ admits a complete hyperbolic metric of finite
volume but no taut structure. Other examples are described where Γ has an
angle structure but no taut structures and similarly where Γ has angle struc-
tures but no complete hyperbolic structure of finite volume. In particular, these
examples show that strong 1–efficiency on its own is not enough to guarantee
existence of a taut structure or hyperbolic structure.

(2) In [1], [17] it is shown that if Γ has an angle structure then π1(M) is
CAT(0) and also relatively word hyperbolic.

(3) We next discuss the connection between normal classes with branch points
which have only quadrilaterals with two angles π and embedded generalized
almost normal surfaces. In fact, the normal arcs belonging to a collection of
p, q of the two different quadrilaterals with two angles π and two angles zero
in a tetrahedron ∆, where p, q are relatively prime, precisely correspond to the
boundary of a 4(p + q− 1)–gon in ∆ (see Figure 11). If p′, q′ are not relatively
prime, we get n copies of such a disk where n is the g.c.d. of p′, q′ and p′ =
np, q′ = nq , given p′, q′ quadrilaterals with two angles π and two angles zero.
Consequently we can do regular branch cuts between compatible normal disk
types, ie, pairs of quadrilaterals of the same type or triangles and quadrilaterals
or between triangles, and replace sets of incompatible quadrilaterals with 4(p+
q − 1)–gons. So we can find an embedded generalized almost normal surface
corresponding to a normal class S with branch points and only quadrilaterals
with angle sum 2π in a taut structure.

branch cut and paste

π

ππ

π

0 0

00

0 0

00

Figure 11: Regular branch cuts between compatible disk types

Notice that each 4(p + q)–gon produced in this manner has 2(p + q) angles π

and 2(p + q) angles zero. It is easy to see that one cannot deform the taut
structure to an angle structure, given any embedded almost normal surface
containing such 4(p + q)–gons. For the formula for Euler characteristic of such
a surface will decrease, under the deformation of a taut structure to an angle
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structure, by the same argument as in Theorem 2.4. Since Euler characteristic
cannot change, this is an interesting illustration of why such surfaces are an
obstruction to the existence of angle structures near the taut structure.

4 Examples

Example 1

We begin with a simple example of a taut triangulation which is strongly 1–
efficient but has a normal classes with branch points, which is the obstruction
to finding an angle structure. Start with the standard ideal triangulation of
the Figure–8 knot space M as in [22] and ‘blow up’ two faces into two new
tetrahedra. By this we mean split open along two faces which belong to one of
the two tetrahedra and which glue together into a copy of the once punctured
torus which is a Seifert surface for M . Now glue one tetrahedron to these two
faces and then another onto the free two faces of the first one. Do this so that
the boundary pattern of the two free faces of the second tetrahedron is the same
as the original faces (see Figure 12). So we can glue back together to get a new
taut triangulation with 4 tetrahedra, which comes from the taut triangulation
corresponding to the fibred structure on M . Note there are two other taut
structures on M which we are not considering here. Next, it is easy to find a
normal class with branch points by taking one of each quadrilateral type with
two angles π in both of the new tetrahedra and complete the normal class with
triangles. Using branch cuts, one can also convert the two quadrilaterals with
two angles π into a single quadrilateral with all angles 0 in each of the new
tetrahedra. The remainder of the surface is then triangles. It can be seen that
this is an embedded surface of genus 2 given by adding a tube to the peripheral
torus along the common edge between the two faces shared by the two new
tetrahedra. So this is a simple taut triangulation which does not admit an
angle structure.

Example 2

Next, take any ideal taut triangulation of an orientable punctured surface bun-
dle over a circle with pseudo Anosov monodromy, where there can be several
punctures and the surface can have higher genus. Assume that the triangulation
is formed by taking an ideal triangulation of the surface and adding tetrahedra
along two faces at a time, similar to the structure on the Figure–8 knot space.
Suppose that in the sequence of tetrahedra, we find two at different positions
which are added along two faces with edge loops which are isotopic. Now we
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Figure–8 knot gluing

attachedinsert two tetrahedra

between AB and A′B′ faces

A AB
B

A′

A′ B′ B′

Figure 12: New taut triangulation of the Figure–8 knot space

can perform a similar construction to the previous paragraph, assuming that
the isotopy between edge loops is as in the Figure–8 knot example. Namely
take the corresponding quadrilaterals with all angles 0 in each of these two
tetrahedra (see Figure 13). We can connect these by disks and annuli, since
the arcs at the top and bottom of the octagons are isotopic. These disks and
annuli can be made normal and so we again get a genus two generalized almost
normal surface which has a (big) tube attached to the peripheral torus. So this
shows that many taut triangulations of an orientable punctured surface bundle
over a circle with pseudo Anosov monodromy do not admit angle structures.

Example 3

Take M as any once-punctured torus bundle over the circle with monodromy
as a matrix A in SL(2,Z) having |traceA| > 2. As is well known, these are
precisely the bundles which are irreducible and atoroidal and so admit com-
plete hyperbolic structures of finite volume. We want to consider the canonical
ideal triangulation as in the first example, again given by triangulating the
once punctured torus by two ideal triangles glued together and then adding a
sequence of ideal tetrahedra along two faces at a time. Moreover we are only
interested in such sequences which do not admit a ‘canceling pair’ as in the first
example, ie, there are no edges of degree two in the triangulation.

In a recent paper on the arXiv [6], Gueritaud shows directly that these triangu-
lations can be given hyperbolic structures which match to produce the complete
hyperbolic metric of finite volume. Here we wish to show that the obstruction to
deforming the taut structure coming from the fiber bundle to an angle structure
always vanishes. So this gives another proof that these triangulations all admit
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π

π

π

π

0

0 0

00

00

0
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B

C

D

A′

B′

C′

D′

.

.

..

..

..

..

..

AB ‖ A′B′

Figure 13: Connecting two quadrilaterals with all angles 0

angle structures and also gives some insight into the behavior of the obstruction
normal classes.

Start with a square v1v2v3v4 which is glued up in the usual way to form a
once-punctured torus T , so after opposite sides are identified together, the
single vertex is removed. Suppose also that the diagonal edge v1v3 is included
so as to produce an ideal triangulation of T . We also suppose that an ideal
tetrahedron ∆ is glued onto T so that the two triangles of T become two faces
of ∆. A second tetrahedron ∆′ with vertices w1w2w3w4 is then glued onto
the two bottom faces of ∆ which are v1v2v4 and v2v3v4 by either; w1w3w2 →
v1v4v2 and w1w3w4 → v2v3v4 or w1w3w2 → v4v3v2 and w1w3w4 → v1v2v4 (see
Figure 14).

Note that these are the only two possibilities since the third way of gluing on ∆′

would make the two tetrahedra ∆,∆′ a canceling pair with an edge of degree
2, contrary to hypothesis. There are precisely three possibilities since we are
gluing together two once-punctured tori divided into three triangles with three
edges. So once a single edge matching is chosen, the gluing is determined.

We now study how a normal class with quadrilaterals with two dihedral angles π

but none with all angles 0 can look inside these two tetrahedra. In the triangle
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∆

∆′∆′

a

b

c

d

e

f
g

g

h

h

j

j

v1

v2

v3

v4

w1w1

w2w2

w3w3

w4w4

w1w3w2w1w3w2

w1w3w4w1w3w4

v1v4v2

v1v2v4v2v3v4

v4v3v2

Figure 14: Gluing of an ideal tetrahedron onto T

v1v2v3 (respectively v1v3v4 ), let a, b, c (respectively d, e, f ) denote the number
of normal arcs which cut off the vertices v1, v2, v3 (respectively v1, v3, v4 ). Then
it is straightforward to check that by the usual compatibility equations for
normal surface theory, the normal arcs on the once-punctured torus T must
glue up to form normal curves, so satisfy the compatibility equations that the
number of ends of normal arcs on the two sides of an edge must agree. We see
immediately that this forces d = c, e = a, f = b.

Next suppose that the numbers of triangular disks at the vertices v1, v2, v3, v4

in ∆ are n1, n2, n3, n4 respectively and the number of quadrilaterals disjoint
from the edges v1v2 and v1v4 are m1,m2 respectively also. Finally let g, h, j

denote the number of normal arcs cutting off vertices v4, v1, v2 in the triangle
v4v1v2 , so that j, g, h are the number of normal arcs cutting off the vertices
v4, v2, v3 in the triangle v4v2v3 .

We get the system of equations

a = n1 + m2 = n3 + m2, b = n2 = n4, c = n3 + m1 = n1 + m1.
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So n1 = n3 and n2 = n4 . We can write our system then as

a = n1 + m2, b = n2, c = n1 + m1.

Let x = n2 − n1 . Then

g = n2 + m1 = c + x, h = n1 = b − x, j = n2 + m2 = a + x.

Therefore, if x > 0 we conclude that the total number of normal arcs g+h+j >

a + b + c.

Notice that if b is larger than either a or c, then consequentially n2 > n1 , so
x > 0. After gluing on ∆′ , there are two possibilities for which of the three
integers g, h, j plays the role of b in the new tetrahedron. By this, we mean the
normal arc cutting off w2 (or w4 ) on the top two faces of ∆′ , which does not
have ends on the top diagonal. The first gluing pattern above gives j and the
second g for this normal arc. However notice now that h = n1 < n2 ≤ min{g, j}
and so neither g nor j is the smallest of the three numbers g, h, j . So the
computation for the second tetrahedron will result in the same conclusion as
the first, namely the total number of normal arcs in the bottom two faces is
larger than the number in the top two faces. But we are now trapped in a cycle
and so cannot go around the bundle and return to the top of the tetrahedron
∆. At every stage the total number of normal arcs is increasing, so we cannot
glue the top to the bottom to close up the normal class. So this shows that
there cannot be a normal class with only quadrilaterals which are disjoint from
the edges v1v2 and v1v4 , in this case.

The case when n2 < n1 is entirely similar and corresponds to ‘turning the
bundle upside down’, ie, interchanging the roles of the top and bottom two faces
of each tetrahedron. We see by symmetry that the total number of normal arcs
must monotonically decrease as we traverse the bundle and again we cannot
close up the normal class around the bundle, as in the previous case.

If n2 = n1 , ie x = 0, then the total number of normal arcs does not change
across the first tetrahedron. If this total increases across the second tetrahedron,
we are back in the first case above, and if it decreases, we are in the second
situation. So it remains to consider the case where in traversing the second
tetrahedron ∆′ , we also have the same total number of normal arcs. This leads
to the conclusion that either m1 = 0 or m2 = 0 or m1 = m2 = 0. Consequently,
either there are no quadrilaterals at all, which is not allowed for the normal
classes we are interested in constructing, or there is a single quadrilateral class
in each tetrahedron. The latter is easily checked to correspond to the case
of monodromy with trace ±2 which has been excluded, so the discussion is
complete.

Algebraic & Geometric Topology, Volume 5 (2005)



Ideal triangulations of 3–manifolds II 1531

5 Epilogue

We set out to try to construct angle structures from Lackenby’s taut structures
[16]. In our next paper [2], we find that taut structures are very common
amongst minimal small ideal triangulations. In some sense, there are too many
taut triangulations and the obstruction found in section 2 above, shows that
many of these do not admit angle structures. There are also most likely too
many ideal triangulations with angle structures and further work needs to be
done to identify other obstructions to finding hyperbolic structures via this
approach. To conclude, we make some observations about our obstruction.
Here we restrict to irreducible, P2–irreducible and atoroidal manifolds with
incompressible tori and Klein bottle boundary components.

Observation 1 If M has a taut ideal triangulation which has a non empty

obstruction to find angle structures, then any covering space of M has the same

properties.

Observation 2 If M has a number of different taut and semi angle structures

on the same ideal structure, then the obstruction for one such structure vanishes

if and only if the obstruction vanishes for any other one.

Note that it may be interesting to have a more direct understanding of why
this is true, rather than just through the general results above that all such
structures lie on the boundary of the same angle space, if and only if any one
such structure has vanishing obstruction.

Observation 3 If M has a taut ideal triangulation Γ, then so does Γ′ for at

least 2
3 of the possible choices of a single 2 → 3 Pachner move, to change Γ

to Γ′ . Note that if two tetrahedra ∆,∆′ in Γ are chosen with a common face,

then so long as the π angles at the edges of the two tetrahedra do not occur

at the same edge of the common face, then there is an easy way of putting the

‘same’ taut structure on Γ′ as on Γ.

Observation 4 With the same setup as for Observation 3, there is an ob-

struction to deform the taut structure on Γ to an angle structure if and only if

there is a similar obstruction for Γ′ . The proof is by enumerating cases and we

will omit it.

One would like to see how the obstruction to an angle structure changes, in
passing between the standard two tetrahedra triangulation of the Figure–8 knot
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space and the simple four tetrahedra Example 1 above, by 2 → 3 and 3 → 2
Pachner moves. The conclusion is this can only be done in a way that destroys
the taut structure. So unfortunately this means that such moves will not give
an easy way of keeping the taut structure but eliminating the obstruction.
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