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Abstract There are classical examples of spaces X with an involution τ
whose mod2-comhomology ring resembles that of their fixed point set Xτ :
there is a ring isomorphism κ : H2∗(X) ≈ H∗(Xτ ). Such examples include
complex Grassmannians, toric manifolds, polygon spaces. In this paper,
we show that the ring isomorphism κ is part of an interesting structure
in equivariant cohomology called an H∗ -frame. An H∗ -frame, if it exists,
is natural and unique. A space with involution admitting an H∗ -frame
is called a conjugation space. Many examples of conjugation spaces are
constructed, for instance by successive adjunctions of cells homeomorphic to
a disk in Ck with the complex conjugation. A compact symplectic manifold,
with an anti-symplectic involution compatible with a Hamiltonian action
of a torus T , is a conjugation space, provided XT is itself a conjugation
space. This includes the co-adjoint orbits of any semi-simple compact Lie
group, equipped with the Chevalley involution. We also study conjugate-
equivariant complex vector bundles (“real bundles” in the sense of Atiyah)
over a conjugation space and show that the isomorphism κ maps the Chern
classes onto the Stiefel-Whitney classes of the fixed bundle.
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1 Introduction

In this article, we study topological spaces equipped with a continuous in-
volution. We are motivated by the example of the complex Grassmannian
Gr(k, Cn) of complex k -vector subspaces of Cn (n ≤ ∞), with the involu-
tion complex conjugation. The fixed point set of this involution is the real
Grassmannian Gr(k, Rn). It is well known that there is a ring isomorphism
κ : H2∗(Gr(k, Cn)) ≈ H∗(Gr(k, Rn)) in cohomology (with Z2 -coefficients) di-
viding the degree of a class in half. Other such isomorphisms have been found for
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natural involutions on smooth toric manifolds [7] and polygon spaces [13, § 9].
The significance of this isomorphism property was first discussed by A. Borel
and A. Haefliger [6] in the framework of analytic geometry. For more recent
consideration in the context of real algebraic varieties, see [28, 29].

The goal of this paper is to show that, for the above examples and many oth-
ers, the ring isomorphism κ is part of an interesting structure in equivariant
cohomology. We will use H∗ to denote singular cohomology, taken with Z2

coefficients. For a group C , we will let H∗C denote C -equivariant cohomol-
ogy with Z2 coefficients, using the Borel construction [5]. Let τ be a (con-
tinuous) involution on a topological space X . We view this as an action of
the cyclic group of order two, C = {I, τ}. Let ρ : H2∗

C (X) → H2∗(X) and
r : H∗C(X) → H∗C(Xτ ) be the restriction homomorphisms in cohomology. We
use that H∗C(Xτ ) = H∗(Xτ × BC) is naturally isomorphic to the polynomial
ring H∗(Xτ )[u] where u is of degree one. Suppose that Hodd(X) = 0. A
cohomology frame or H∗ -frame for (X, τ) is a pair (κ, σ), where

(a) κ : H2∗(X) → H∗(Xτ ) is an additive isomorphism dividing the degrees
in half; and

(b) σ : H2∗(X)→ H2∗
C (X) is an additive section of ρ.

In addition, κ and σ must satisfy the conjugation equation

r◦σ(a) = κ(a)um + ℓtm, (1.1)

for all a ∈ H2m(X) and all m ∈ N, where ℓtm denotes some polynomial in the
variable u of degree less than m.

An involution admitting a H∗ -frame is called a conjugation and a space together
with a conjugation is called a conjugation space. Required to be only additive
maps, κ and σ are often easy to construct degree by degree. But we will show
in the “multiplicativity theorem” in Section 3 that in fact σ and κ are ring
homomorphisms. Moreover, given a C -equivariant map f : Y → X between
spaces with involution, along with H∗ -frames (σX , κX) and (σY , κY ), we have
H∗Cf ◦σX = σY ◦H

∗f and H∗f τ ◦κX = κY ◦H
∗f . In particular, the H∗ -frame

for a conjugation is unique.

As an example of a conjugation space, one has the complex projective space
CP k (k ≤ ∞), with the complex conjugation as involution. If a is the generator
of H2(CP k) and b = κ(a) that of H1(RP k), we will see that the conjugation
equation has the form r◦σ(am) = (bu + b2)m (Example 3.7).

The complex projective spaces are particular cases of spherical conjugation
complexes, which constitute our main class of examples. A spherical conju-

gation complex is a space (with involution) obtained from the empty set by
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countably many successive adjunction of collections of conjugation cells. A
conjugation cell (of dimension 2k) is a space with involution which is equivari-
antly homeomorphic to the closed disk of radius 1 in R2k , equipped with a
linear involution with exactly k eigenvalues equal to −1. At each step, the
collection of conjugation cells consists of cells of the same dimension but, as in
[11], the adjective “spherical” is a warning that these dimensions do not need to
be increasing. We prove that every spherical conjugation complex is a conjuga-
tion space. There are many examples of these; for instance, there are infinitely
many C -equivariant homotopy types of spherical conjugation complexes with
three conjugation cells, one each in dimensions 0, 2 and 4. We prove that for
a C -equivariant fibration (with a compact Lie group as structure group) whose
fiber is a conjugation space and whose base is a spherical conjugation complex,
then its total space is a conjugation space.

Schubert cells for Grassmannians are conjugation cells, so these spaces are
spherical conjugation complexes and therefore conjugation spaces. This gen-
eralizes in the following way. Let X be a space together with an involution τ
and a continuous action of a torus T . We say that τ is compatible with this
torus action if τ(g · x) = g−1 · τ(x) for all g ∈ T and x ∈ X . It follows that τ
induces an involution on the fixed point set XT and an action of the 2-torus
T2 (the elements of order 2) of T on Xτ . We are particularly interested in
the case when X is a compact symplectic manifold for which the torus action
is Hamiltonian and the compatible involution is smooth and anti-symplectic.
Using a Morse-Bott function obtained from the moment map for the T -action,
we prove that if XT is a conjugation space (respectively a spherical conjugation
complex), then X is a conjugation space (respectively a spherical conjugation
complex). In addition, we prove that the involution induced on the Borel con-
struction XT is a conjugation. The relevant isomorphism κ̄ takes the form of
a natural ring isomorphism

κ̄ : H2∗
T (X)

≈
−→ H∗T2

(Xτ ).

Examples of such Hamiltonian spaces include co-adjoint orbits of any semi-
simple compact Lie group, with the Chevalley involution, smooth toric man-
ifolds and polygon spaces. Consequently, these examples are spherical conju-
gation complexes. For the co-adjoint orbits of SU(n) this was proved earlier
by C. Schmid [24] and D. Biss, V. Guillemin and the second author [4]. The
category of conjugation spaces is closed under various operations, including di-
rect products, connected sums and, under some hypothesis, under symplectic
reduction (generalizing [9]; see Subsection 8.4). This yields more examples of
conjugation spaces.
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Over spaces with involution, it is natural to study conjugate equivariant bundles,
identical to the “real bundles” introduced by Atiyah [2]. These are complex

vector bundles η = (E
p
−→ X) together with an involution τ̂ on E , which covers

τ and is conjugate linear on each fiber. Then E τ̂ is a real bundle ητ over Xτ .
In Section 6, we prove several results on conjugate equivariant bundles, among
them that if η = (E

p
−→ X) is a conjugate equivariant bundle over a conjugation

space, then the Thom space is a conjugation space. These results are used in
the proof of the aforementioned theorems in symplectic geometry. Finally, when
the basis of a conjugate equivariant bundle is a spherical conjugation complex,
we prove that κ(c(η)) = w(ητ ), where c() denotes the (mod 2) total Chern
class and w() the total Stiefel-Whitney class.
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tion 8.3 on the Chevalley involution on coadjoint orbits. Conversations with
Matthias Franz were very helpful. The first two authors are also grateful to
Sue Tolman for pointing out a gap in an earlier stage of this project. Finally,
we thank Martin Olbermann for useful observations.

The three authors thank the Swiss National Funds for Scientific Research for
its support. The second author was supported in part by a National Science
Foundation Postdoctoral Fellowship.

2 Preliminaries

Let τ be a (continuous) involution on a space X . This gives rise to a continuous
action of the cyclic group C = {1, τ} of order 2. The real locus Xτ ⊂ X is the
subspace of X formed by the elements which are fixed by τ .

Unless otherwise specified, all the cohomology groups are taken with Z2 -coeffi-
cients. A pair (X,Y ) is an even cohomology pair if Hodd(X,Y ) = 0; a space X
is an even cohomology space if (X, ∅) is an even cohomology pair.

2.1 Let R be the graded ring R = H∗(BC) = H∗C(pt) = Z2[u], where u is in
degree 1. We denote by Rev the subring of R of elements of even degree.

As C acts trivially on the real locus Xτ , there is a natural identification EC×C

Xτ ≈
→ BC × Xτ . The Künneth formula provides a ring isomorphism R ⊗

H∗(Xτ , Y τ )
≈
→ H∗C(Xτ , Y τ ) and R ⊗ H∗(Xτ , Y τ ) is naturally isomorphic to

the polynomial ring H∗(Xτ , Y τ )[u]. We shall thus often use the “Künneth

isomorphism” K : H∗(Xτ , Y τ )[u]
≈
−→ H∗C(Xτ , Y τ ) to identify these two rings.

The naturality of K gives the following:
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Lemma 2.2 Let f : (X2, Y2) → (X1, Y1) be a continuous C -equivariant map

between pairs with involution. Let f τ : (Xτ
2 , Y τ

2 )→ (Xτ
1 , Y τ

1 ) be the restriction

of f to the fixed point sets. Then, the following diagram

H∗(Xτ
1 , Y τ

1 )[u]

K ≈
��

H∗fτ [u]// H∗(Xτ
2 , Y τ

2 )[u]

≈K
��

H∗C(Xτ
1 , Y τ

1 )
H∗

C
fτ

// H∗C(Xτ
2 , Y τ

2 )

is commutative, where H∗f τ [u] is the polynomial extension of H∗f τ .

2.3 Equivariant formality Let X be a space with an involution τ and let
Y be a τ -invariant subspace of X (i.e. τ(Y ) = Y ). Following [10], we say
that the pair (X,Y ) is equivariantly formal (over Z2 ) if the map (X,Y ) →
(EC ×C X,EC ×C Y ) is totally non-homologous to zero. That is, the restric-
tion homomorphism ρ : H∗C(X,Y ) → H∗(X,Y ) is surjective. A space X with
involution is equivariantly formal if the pair (X, ∅) is equivariantly formal.

If (X,Y ) is equivariantly formal, one can choose, for each k ∈ N, a Z2 -linear
map σ : Hk(X,Y ) → Hk

C(X,Y ) such that ρ◦σ = id. This gives an additive
section σ : H∗(X,Y )→ H∗C(X,Y ) of ρ which gives rise to a map

σ̂ : H∗(X,Y )[u]→ H∗C(X,Y ). (2.1)

As in 2.1, we use the ring isomorphism H∗(X,Y ) ⊗ R
≈
−→ H∗(X,Y )[u]. As

H∗(BC) = R, the Leray-Hirsch theorem (see e.g. [20, Theorem 5.10]) then
implies that σ̂ is an isomorphism of R-modules. But σ̂ is not in general an
isomorphism of rings. This is the case if and only if the section σ is a ring
homomorphism but such ring-sections do not usually exist.

3 Conjugation pairs and spaces

3.1 Definitions and the multiplicativity theorem

Let τ be an involution on a space X and let Y be a τ -invariant subspace of
X . Let ρ : H2∗

C (X,Y ) → H2∗(X,Y ) and r : H∗C(X,Y ) → H∗C(Xτ , Y τ ) be the
restriction homomorphisms. A cohomology frame or H∗ -frame for (X,Y ) is a
pair (κ, σ), where

(a) κ : H2∗(X,Y ) → H∗(Xτ , Y τ ) is an additive isomorphism dividing the
degrees in half; and
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(b) σ : H2∗(X,Y )→ H2∗
C (X,Y ) is an additive section of ρ.

Moreover, κ and σ must satisfy the conjugation equation

r◦σ(a) = κ(a)um + ℓtm (3.1)

for all a ∈ H2m(X) and all m ∈ N, where ℓtm denotes any polynomial in the
variable u of degree less than m.

An involution admitting a H∗ -frame is called a conjugation. An even coho-
mology pair together with a conjugation is called a conjugation pair. An even-
cohomology space X together with an involution is a conjugation space if the
pair (X, ∅) is a conjugation pair. Observe that the existence of σ is equivalent
to (X,Y ) being equivariantly formal. We shall see in Corollary 3.12 that the
H∗ -frame for a conjugation is unique.

Remark 3.1 The map κ coincides on H0(X,Y ) with the restriction homo-
morphism r̃ : H0(X,Y )→ H0(Xτ , Y τ ). Indeed, the following diagram

H0
C(X,Y )

r
��

ρ

≈
// H0(X,Y )

r̃
��

H0
C(Xτ , Y τ )

= // H0(Xτ , Y τ )[u][0]
= // H0(Xτ , Y τ )

is commutative. Therefore, using Equation (3.1), one has for a ∈ H0(X,Y )
that κ(a) = r◦σ(a) = r̃(a). As a consequence, if X is a conjugation space,
then π0(X

τ ) ≈ π0(X). This implies that τ preserves each path-connected
component of X .

Remark 3.2 Let X be an path-connected space with an involution τ . Sup-
pose that Xτ is non-empty and path-connected. Let pt ∈ Xτ . Then, X is a
conjugation space if and only if (X, pt) is a conjugation pair.

The remainder of this section is devoted to establishing the fundamental facts
about conjugation pairs and spaces, and providing several important examples.

Theorem 3.3 (The multiplicativity theorem) Let (κ, σ) be a H∗ -frame for

a conjugation τ on a pair (X,Y ). Then κ and σ are ring homomorphisms.

Proof We first prove that

σ(ab) = σ(a)σ(b) (3.2)
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for all a ∈ H2k(X,Y ) and b ∈ H2l(X,Y ). Let m = k+l . Since ρ : H0
C(X,Y )→

H0(X,Y ) is an isomorphism, Equation (3.2) holds for m = 0, and thus we
may assume that m > 0. As one has ρ◦σ(ab) = ρ(σ(a)σ(b)), Equation (3.2)
holds true modulo ker ρ which is the ideal generated by u. As H∗(X,Y ) is
concentrated in even degrees, this means that

σ(ab) = σ(a)σ(b) + σ(d2m−2)u
2 + · · ·+ σ(d0)u

2m , (3.3)

with di ∈ H i(X,Y ). We must prove that d2m−2 = · · · = d0 = 0.

Let us apply r : H∗C(X,Y ) → H∗C(Xτ , Y τ ) to Equation (3.3). The left hand
side gives

r◦σ(ab) = κ(ab)um + ℓtm (3.4)

while the right hand side gives

r◦σ(ab) = κ(a)κ(b)um+ℓtm+(κ(d2m−2)u
m−1+ℓtm−1)u

2+· · ·+κ(d0)u
2m . (3.5)

Equations (3.4) and (3.5) imply that

r◦σ(ab) = κ(d0)u
2m + ℓt2m . (3.6)

Comparing Equations (3.4) and (3.6), we deduce that d0 = 0, since κ is injec-
tive. Then Equation (3.3) implies that

r◦σ(ab) = κ(d2)u
2m−1 + ℓt2m−1 . (3.7)

Again, comparing Equations (3.4) and (3.7), we deduce that d2 = 0. This
process continues until d2m−2 , showing that each di vanishes in Equation (3.3),
which proves that σ(ab) = σ(a)σ(b).

To establish that κ(ab) = κ(a)κ(b) for a, b as above, we use the fact that
r◦σ(ab) = r◦σ(a) · r◦σ(b) together with Equation (3.1) to conclude that

κ(ab)um + ℓtm = (κ(a)uk + ℓtk) (κ(b)ul + ℓtl) = κ(a)κ(b)um + ℓtm .

Therefore, κ is multiplicative.

By the Leray-Hirsch theorem, the section σ gives rise to an isomorphism of
R-modules

σ̂ : H∗(X,Y )[u]
≈
→ H∗C(X,Y )

(see (2.3)). As σ is a ring homomorphism by Theorem 3.3, one has the following
corollary, which completely computes the ring H∗C(X,Y ) in terms of H∗(X,Y ).

Corollary 3.4 Let (κ, σ) be a H∗ -frame for a conjugation on a pair (X;Y ).

Then σ̂ : H∗(X,Y )[u]
≈
→ H∗C(X,Y ) is an isomorphism of R-algebras.

Algebraic & Geometric Topology, Volume 5 (2005)
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Finally, there is a unique map κ̂ : H2∗
C (X,Y ) → H∗C(Xτ , Y τ ) such that the

following diagram

H2∗(X,Y )⊗Rev

κ⊗α
��

σ̂

≈
// H2∗

C (X,Y )

κ̂
��

H∗(Xτ , Y τ )⊗R
K

≈
// H∗C(Xτ , Y τ )

(3.8)

is commutative, where K comes from the Künneth formula. The map κ̂ is an
isomorphism of (Rev, R)-algebras over α : Rev → R.

We now turn to examples of conjugation spaces and pairs.

Example 3.5 Conjugation cells Let D = D2k be the closed disk of radius
1 in R2k , equipped with an involution τ which is topologically conjugate to a
linear involution with exactly k eigenvalues equal to −1. We call such a disk
a conjugation cell of dimension 2k . Let S be the boundary of D . The fixed
point set is then homeomorphic to a disk of dimension k .

As H∗(D,S) is concentrated in degree 2k , the restriction homomorphism

ρ : H2k
C (D,S) → H2k(D,S) is an isomorphism. Set σ = ρ−1 : H2k(D,S) →

H2k
C (D,S). This shows that (D,S) is equivariantly formal. The cohomol-

ogy H∗(Dτ , Sτ ) is itself concentrated in degree k and thus H∗C(Dτ , Sτ ) =
Hk(Dτ , Sτ )[u] = Z2[u]. The isomorphism κ : H2k(D,S) → Hk(Dτ , Sτ ) is
obvious. As (D,S) is equivariantly formal, the restriction homomorphism
r : H∗C(D,S) → H∗C(Dτ , Sτ ) is injective. This is a consequence of the local-
ization theorem for singular cohomology, which holds for smooth actions on
compact manifolds. Therefore, if a is the non-zero element of H2k(D,S), the
equation rσ(a) = κ(a)uk holds trivially. Hence, (D,S) is a conjugation pair.

Example 3.6 Conjugation spheres If D is a conjugation cell of dimension
2k with boundary S , the quotient space Σ = D/S is a conjugation space
homeomorphic to the sphere S2k , while Στ is homeomorphic to Sk . For a ∈
H2k(Σ), the conjugation equation r◦σ(a) = κ(a)uk holds. We call such Σ a
conjugation sphere.

Example 3.7 Projective spaces Let us consider the complex projective space
CP k with the involution complex conjugation, having RP k as real locus. One
has H2∗(CP k) = Z2[a]/(ak+1) and and H∗(RP k) = Z2[b]/(b

k+1). The quotient
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space CP k/CP k−1 is a conjugation sphere. Hence, in the following commuta-
tive diagram,

H2k
C (CP k, CP k−1)

≈ρrel

��

î // H2k
C (CP k)

ρ
����

H2k(CP k, CP k−1)
i

≈
// H2k(CP k) ,

(3.9)

the map ρrel is an isomorphism and hence ρ is surjective. Setting σrel : = ρ−1
rel ,

one gets a section σ of ρ by σ : = î◦σrel◦i. The isomorphism

κrel : H2∗(CP k, CP k−1)
≈
−→ H∗(RP k, RP k−1)

is obvious and satisfies iτ ◦κrel = κ◦i, where κ : H2∗(CP k)
≈
−→ H∗(RP k) is

the unique ring isomorphism satisfying κ(a) = b. Moreover, using σ̂rel , we
have H∗C(CP k, CP k−1) = H2k(CP k, CP k−1)[u], and using the Künneth for-
mula, H∗(RP k, RP k−1) = Hk(RP k, RP k−1)[u]. Let c ∈ H2k(CP k, CP k−1)
and c′ ∈ Hk(RP k, RP k−1) be the non-zero elements. As CP k/CP k−1 is a
conjugation sphere, the equation r◦σrel(c) = c′uk holds, giving the formula
r◦σ(ak) = bkuk in H2k

C (RP k).

Now, if k ≤ n ≤ ∞, the restriction homomorphisms H2∗(CPn) → H2∗(CP k),
H2∗

C (CPn) → H2∗
C (CP k), H∗(RPn) → H∗(RP k) and H∗C(RPn) → H∗C(RP k)

are isomorphisms for ∗ ≤ k . Therefore, the equation r◦σ(ak) = bkuk holds
in H2k

C (RPn) modulo elements in the kernel of the restriction homomorphism
H2k

C (RPn)→ H2k
C (RP k). This kernel consists of terms of type ℓtk . Therefore,

one has r◦σ(ak) = bkuk + ℓtk = κ(ak)uk + ℓtk which shows that CPn is a

conjugation space for all n ≤ ∞.

We now show that the terms ℓtk in H2k
C (RPn) never vanish when n ≥ 2k . Let

ρτ : H∗C(RPn) → H∗(RPn) and r0 : H∗(CPn) → H∗(RPn) be the restriction
homomorphisms. One has ρτ ◦r◦σ = r0 ◦ρ◦σ and it is classical that r0(a) = b2

(a is the (mod 2) Euler class of the Hopf bundle η over CP∞ and b is the Euler
class of the real Hopf bundle ητ over RP∞ ; these bundles satisfy η|RP∞ =
ητ ⊕ ητ ). Therefore, r(a) = bu + b2 . Since r◦σ is a ring homomorphism by
Theorem 3.3, one has

r◦σ(ak) = (bu + b2)k . (3.10)

Therefore, a term b2k is always present in the right hand side of (3.10) when
n ≥ 2k . For instance, r◦σ(a2) = b2u2 + b4 , r◦σ(a3) = b3u3 + b4u2 + b5u + b6 ,
and so on.

We finish this section with two related results.
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Lemma 3.8 (Injectivity lemma) Let (X,Y ) be a conjugation pair. Then the

restriction homomorphism r : H∗C(X,Y )→ H∗C(Xτ , Y τ ) is injective.

Proof Suppose that r is not injective. Let 0 6= x = σ(y)uk+ℓtk∈H2n+k
C (X,Y )

be an element in ker r . The conjugation equation guarantees that k 6= 0. We
may assume that k is minimal. By the conjugation equation again, we have
0 = r(x) = κ(y)un+k + ℓtn+k . Since κ is an isomorphism, we get y = 0, which
is a contradiction.

Lemma 3.9 Let (X,Y ) be a conjugation pair. Assume that H2∗(X,Y ) = 0
for ∗ > m0 . Then the localization theorem holds. That is, the restriction

homomorphism r : H∗C(X,Y ) → H∗C(Xτ , Y τ ) becomes an isomorphism after

inverting u.

Proof By Lemma 3.8, it suffices to show that

H∗(Xτ , Y τ ) = H∗(Xτ , Y τ )⊗ 1 ⊂ H∗C(Xτ , Y τ )

is in the image of r localized. We show this by downward induction on the
degree of an element in H∗(Xτ , Y τ ). The statement is obvious for ∗ > m0 .
Since r◦σ(x) = κ(x)uk + ℓtk for x ∈ H2k(X,Y ), the induction step follows (by
induction hypothesis, ℓtk is in the image of r localized).

Remark 3.10 In classical equivariant cohomology theory, the injectivity lem-
ma is often deduced from the localization theorem. But, as seen in Example 3.7,
CP∞ with the complex conjugation is a conjugation space, and therefore sat-
isfies the injectivity lemma. However, rloc : H∗C(CP∞)[u−1]→ H∗C(RP∞)[u−1]
is not surjective. Indeed, H∗C(CP∞)[u−1] = Z2[a, u, u−1], H∗C(RP∞)[u−1] =
Z2[b, u, u−1] and rloc(a) = bu + b2 by Example 3.7. Therefore, rloc composed
with the epimorphism Z2[b, u, u−1]→ Z2 sending b and u to 1 is the zero map.

3.2 Equivariant maps between conjugation spaces

The purpose of this section is to show the naturality of H∗ -frames. Let (X,X0)
and (Y, Y0) be two conjugation pairs. Choose H∗ -frames (κX , σX) and (κY , σY )
for (X,X0) and (Y, Y0) respectively. Let f : (Y, Y0) → (X,X0) be a C -
equivariant map of pairs. We denote by f τ : (Y τ , Y τ

0 ) → (Xτ ,Xτ
0 ) the re-

striction of f to (Y τ , Y τ
0 ) and use the functorial notations : H∗f , H∗Cf , and

so forth.
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Proposition 3.11 The conjugation space structure of a conjugation space is

natural, i.e., one has

H∗Cf ◦σX = σY ◦H
∗f (3.11)

and

H∗f τ
◦κX = κY ◦H

∗f . (3.12)

Proof Let ρX : H∗C(X,X0) → H∗(X,X0) and ρY : H∗C(Y, Y0) → H∗(Y, Y0)
denote the restriction homomorphisms. Let a ∈ H2k(X,X0). As H∗f ◦ρX =
ρY ◦H

∗
Cf , one has

ρY ◦H
∗
Cf ◦σX(a) = H∗f ◦ρX ◦σX(a) = H∗f(a) = ρY ◦σY ◦H

∗f(a). (3.13)

This implies that Equation (3.11) holds modulo the ideal (u). As H∗(X,X0)
is concentrated in even degrees, this means that

H∗Cf ◦σX(a) = σY ◦H
∗f(a) + σY (d2k−2)u

2 + · · ·+ σY (d0)u
2k , (3.14)

where di ∈ H i(Y, Y0). Now, by Lemma 2.2,

H∗Cf τ
◦rX ◦σX(a) = H∗Cf τ (κX(a)uk + ℓtk) = H∗f τ

◦κX(a)uk + ℓtk. (3.15)

On the other hand, by equation (3.14)

rY ◦H
∗
Cf(a) = σY (d0)u

2k + ℓt2k. (3.16)

But rY ◦H
∗
Cf = H∗Cf τ ◦rX . Comparing then Equation (3.16) with Equa-

tion (3.15), we deduce that d0 = 0, since κY is an injective. Then

rY ◦H
∗
Cf(a) = κY (d2)u2k−2 + ℓt2k−2. (3.17)

Again, we deduce that d2 = 0. Continuing this process, we finally get Equa-
tion (3.11) (as in the proof of Theorem (3.3)).

As for Equation (3.12), by Lemma 2.2,

H∗Cf τ
◦rX ◦σX(a) = H∗Cf τ (κX(a)uk + ℓtk) = H∗f τ

◦κX(a)uk + ℓtk . (3.18)

On the other hand, using Equation (3.11),

rY ◦H
∗
Cf ◦σX(a) = rY ◦σY ◦H

∗f(a) = κY ◦H
∗f(a)uk + ℓtk . (3.19)

Comparing Equation (3.18) with (3.19) gives Equation (3.12).

As a corollary of Proposition 3.11, we get the uniqueness of the conjugation
space structure for a conjugation space.

Corollary 3.12 Let (κ, σ) and (κ′, σ′) be two H∗ -frames for an involution τ
on (X,X0) Then (κ, σ) = (κ′, σ′)
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Proof If two H∗ -frames (κX , σX) and (κ′X , σ′X) are given on (X,X0), Propo-
sition 3.11 with f = idX proves that κX = κ′

X
and σX = σ′

X
.

By the Leray-Hirsch Theorem, the section σX : H∗(X,X0) → H∗C(X,X0) in-

duces a map σ̂X : H∗(X,X0)[u]
≈
→ H∗C(X,X0) which is an isomorphism of

R-algebras by Corollary 3.4. We define σ̂Y : H∗(Y, Y0)[u]
≈
→ H∗C(Y, Y0) accord-

ingly. Proposition 3.11 shows that these R-algebras isomorphisms are natural
and gives the following analogue of Lemma 2.2.

Corollary 3.13 For any C -equivariant map f : Y → X between conjugation

spaces, the diagram

H∗(X,X0)[u]
σ̂X

≈
//

H∗f [u]
��

H∗C(X,X0)

H∗

C
f

��

H∗(Y, Y0)[u]
σ̂Y

≈
// H∗C(Y, Y0)

is commutative, where H∗f [u] is the polynomial extension of H∗f .

Finally, Proposition 3.11 and Corollary 3.13 give the naturality of the algebra
isomorphism κ̂ of Equation (3.8).

Proposition 3.14 For any C -equivariant map f : Y → X between conjuga-

tion spaces, the diagram

H2∗
C (X,X0)

H2∗

C
f

−→ H2∗
C (Y, Y0)

↓ κ̂X ↓ κ̂Y

H∗C(Xτ ,Xτ
0 )

H∗

C
fτ

−→ H∗C(Y τ , Y τ
0 )

is commutative.

4 Extension properties

4.1 Triples

Proposition 4.1 Let X be a space with an involution τ and let Z ⊂ Y be

τ -invariant subspaces of X . Suppose that (X,Y ) and (Y,Z) are conjugation

pairs. Then (X,Z) is a conjugation pair.
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Proof The subscript “X,Y ” is used for the relevant homomorphism for the
pair (X,Y ), like κX,Y , rX,Y , etc. In order to simplify the notation, we use the
subscripts “X ” or “Y ” for the pairs (X,Z) and (Y,Z), as if Z were empty.
Thus, we must construct a H∗ -frame (κX , σX) for the pair (X,Z), using those
(κY , σY ) and (κX,Y , σX,Y ) for the conjugation pairs (Y,Z) and (X,Y ).

We first prove that the restriction homomorphisms ĵ : H∗C(X,Z) → H∗C(Y,Z)
and jτ : H∗(Xτ , Zτ ) → H∗(Y τ , Zτ ) are surjective. Let us consider the follow-
ing commutative diagram

H∗C(Y,Z)
��

rY

��

δC // H∗+1
C (X,Y )

��
rX

��

H∗C(Y τ , Zτ )
δτ
C // H∗+1

C (Xτ , Y τ )

(4.1)

in which δC and δτ
C are the connecting homomorphisms for the long exact se-

quences in equivariant cohomology of the triples (X,Y,Z) and (Xτ , Y τ , Zτ ) re-
spectively. The vertical restriction homomorphisms are injective by Lemma 3.8.
Clearly, δC = 0 if and only if ĵ is surjective. As δτ

C
is the polynomial extension

of δτ , one also has

δτ
C = 0 ⇐⇒ δτ = 0 ⇐⇒ jτ is surjective .

As (X,Y ) is an even cohomology pair, for y ∈ H2k(Y,Z), one can write

δC ◦σY (y) =
k

∑

i=0

σX(x2k−2i)u
2i+1 , (4.2)

with x2k−2i ∈ H2k−2i(X,Y ). Using that rY ◦σY (y) = κY (y)uk + ℓtk , the com-
mutativity of Diagram (4.1) and that δτ

C
= δτ [u], we get

δτ ◦κY (y)uk + ℓtk = δτ
C
(κY (y)uk + ℓtk)

= rX

(

k
∑

i=0

σX(x2k−2i)u
2i+1

)

=
k

∑

i=0

(

κX(x2k−2i)u
k+i+1 + ℓtk+i+1

)

.

(4.3)

As in the proof of Theorem 3.3, we compare the coefficients of powers of u,
in both sides of Equation 4.3. Starting with u2k+1 and going downwards, we
get inductively that κX(x2k−2i) = 0 for i = 0, . . . , k . Hence x2k−2i = 0 for
i = 0, . . . , k and the right side of Equation 4.3 vanishes for all y ∈ H2k(Y,Z).
As κY is bijective, we deduce that δτ = 0 and δτ

C
= 0. As rX is injective by
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Lemma 3.8, the commutativity of Diagram (4.1) implies that δC = 0. We have
thus proven that the restriction homomorphisms ĵ : H∗C(X,Z) → H∗C(Y,Z)
and jτ : H∗(Xτ , Zτ )→ H∗(Y τ , Zτ ) are surjective.

As ρY is onto, the cohomology exact sequence of (X,Y,Z) decomposes into
short exact sequences and one has the following commutative diagram:

0 // H2∗
C (X,Y )

î //

ρX,Y
����

H2∗
C (X,Z)

ĵ //

ρX

��

H2∗
C (Y,Z)

ρY����

//

µ̂
nn

// 0

0 // H2∗(X,Y )
i // H2∗(X,Z)

j // H2∗(Y,Z) //
µ

nn
// 0

(4.4)

Sections µ̂ and µ can be constructed as follows. Let B be a basis of the Z2 -
vector space H2∗(Y,Z). The set σY (B) is a Rev -module basis for H2∗

C (Y,Z).
For each b ∈ B , choose b̃ ∈ H2∗

C (X,Z) such that ĵ(b̃) = σY (b). The corre-
spondence σY (b) → b̃ induces a section µ̂ : H2∗

C (Y,Z) → H2∗
C (X,Z) of ĵ . One

has j◦ρX ◦ µ̂◦σY (b) = b; therefore µ : = ρX ◦µ̂◦σY is an additive section of the
epimorphism j .

Using that additively, H2∗(X,Z) = i(H2∗(X,Y )) ⊕ µ(H2∗(Y,Z)), one defines
σ0

X : H2∗(X,Z)→ H2∗
C (X,Z) by:

{

σ0
X
(i(a)) := î◦σX,Y (a) for all a ∈ H2∗(X,Y )

σ0
X
(µ(b)) := µ̂◦σY (b) for all b ∈ H2∗(Y,Z)

(4.5)

The map σ0
X

is an additive section of ρX and the following diagram is commu-
tative:

0 // H2∗(X,Y )
i //

��
σX,Y

��

H2∗(X,Z)
j //

��
σ0

X��

H2∗(Y,Z)
��
σY

��

// 0

0 // H2∗
C (X,Y )

î // H2∗
C (X,Z)

ĵ // H2∗
C (Y,Z) //// 0

(4.6)

We define an additive map κ0
X

: H2∗(X,Z)→ H∗(Xτ , Zτ ) by

{

κ0
X(i(a)) := iτ ◦κX,Y (a) for all a ∈ H2∗(X,Y )

κ0
X(µ(b)) := µτ ◦κY (b) for all b ∈ H2∗(Y,Z) ,

(4.7)

where µτ : H∗(Y τ , Zτ ) → H∗(Xτ , Zτ ) is any additive section of jτ . The fol-
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lowing diagram is then commutative:

0 // H2∗(X,Y )
i //

κX,Y ≈
��

H2∗(X,Z)
j //

κ0

X
��

H2∗(Y,Z)

κY≈
��

// 0

0 // H∗(Xτ , Y τ )
iτ // H∗(Xτ , Zτ )

jτ

// H∗(Y τ , Zτ ) //// 0

(4.8)

By construction, the equality rX ◦σ
0
X
(i(a)) = κ0

X
(i(a))uk + ℓtk holds for all

a ∈ H2k(X,Y ) and all k . On the other hand, for b ∈ H2k(Y,Z), we only have
that jτ ◦rX ◦σ

0
X(µ(b)) = jτ

(

κ0
X(µ(b))uk + ℓtk), which implies that

rX ◦σ
0
X
(µ(b)) = îτ (D) + κ0

X
(µ(b))uk + ℓtk (4.9)

for some D ∈ H∗C(Y τ , Zτ ). As îτ is injective (since δτ
C is onto), the element D

in Equation (4.9) is unique if chosen free of terms ℓtk . Such a D is of the form

D = κX,Y (d2k)u
k +

k
∑

s=1

κX,Y (d2(k−s))u
k+s , (4.10)

where di ∈ H i(X,Y ). Define σX : H2∗(X,Z)→H2∗
C (X,Z) and κX : H2∗(X,Z)

→ H∗(Xτ , Zτ ) by

σX(i(a)) := σ0
X(i(a)) and κX(i(a)) = κ0

X(i(a)) for all a ∈ H2∗(X,Y ),

and, for b ∈ H2∗(Y,Z), by
{

σX(µ(b)) := σ0
X(µ(b)) +

∑k
s=1 i(d2(k−s))u

2s

κX(µ(b)) := κ0
X(µ(b)) + iτ (d2k)

.

We may check that rX ◦σX(c) = κX(c)uk + ℓtk for all c ∈ H2k(X,Z). As
σX(c) − σ0

X
(c) ∈ H∗(X,Z) · u = ker ρX , the homomorphism σX is a section of

ρX . Diagram (4.8) still commutes with κX instead of κ0
X

. As κX,Y and κY are
bijective, κX is bijective by the five-lemma.

Proposition 4.2 Let X be a space with an involution τ and let Z ⊂ Y be

τ -invariant subsets of X . Suppose that

(i) (X,Z) and (X,Y ) are conjugation pairs.

(ii) the restriction homomorphisms i : H∗(X,Y )→ H∗(X,Z) is injective.

Then (Y,Z) is a conjugation pair.

Remark 4.3 Assuming condition (i), condition (ii) is necessary for (Y,Z) to
be a conjugation pair, since the three pairs will then have cohomology only in
even degrees.

Algebraic & Geometric Topology, Volume 5 (2005)



938 Hausmann, Holm and Puppe

Proof of Proposition 4.2 We have the following commutative diagram

H2∗
C (X,Y )

î //

ρX,Y

��

H2∗
C (X,Z)

ĵ //

ρX����

H2∗
C (Y,Z)

ρY

��

0 // H2∗(X,Y )
i //

σX,Y

KK

H2∗(X,Z)
j //

σX

KK

H2∗(Y,Z) //
µ

nn
// 0

(4.11)

where µ is an additive section of j . Define an additive section σY of ρY by
σY := ĵ◦σX ◦µ and κY : H2∗(Y,Z) → H∗(Y τ , Zτ ) by κY := ĵτ ◦κX ◦µ. This
guarantees that rY σY (a) = κY (a)uk + ℓtk for all a ∈ H2k(Y,Z). It then just
remains to prove that κY is bijective.

As i is injective, the equation iτ ◦κX,Y = κX ◦i, guaranteed by Proposition 3.11,
implies that iτ is injective. The same equation implies that jτ ◦κX = κY ◦j ,
since jτ ◦κX ◦i = 0. Therefore, one has a commutative diagram

0 // H2∗(X,Y )
i //

κX,Y≈
��

H2∗(X,Z)
j //

κX≈
��

H2∗(Y,Z)

κY

��

// 0

0 // H∗(Xτ , Y τ )
iτ // H∗(Xτ , Zτ )

jτ

// H∗(Y τ , Zτ ) //// 0

(4.12)

which shows that κY is bijective.

The same kind of argument will prove Proposition 4.4 below. As this proposi-
tion is not used elsewhere in this paper, we leave the proof to the reader.

Proposition 4.4 Let X be a space with an involution τ and let Z ⊂ Y be

τ -invariant subsets of X . Suppose that

(i) (X,Z) and (Y,Z) are conjugation pairs.

(ii) the restriction homomorphisms j : H∗(X,Z)→ H∗(Y,Z) is surjective.

Then (X,Y ) is a conjugation pair.

4.2 Products

Proposition 4.5 Let (X,X0) and (Y, Y0) be conjugation pairs. Suppose that

Hq(X,X0) is finite dimensional for each q . Assume that {X × Y0,X0 × Y }
is an excisive couple in X × Y and that {Xτ × Y τ

0 ,Xτ
0 × Y τ} is an excisive

couple in Xτ × Y τ . Then, the product pair (X × Y, (X0 × Y ) ∪ (X × Y0)) is a

conjugation pair.
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Proof To simplify the notations, we give the proof when X0 = Y0 = ∅; the
general case is identical. By of our hypotheses, the two projections X×Y → X
and X × Y → Y give rise to the Künneth isomorphism

K : H∗(X)⊗H∗(Y )
≈
−→ H∗(X × Y ) .

The same holds for the fixed point sets, producing

Kτ : H∗(Xτ )⊗H∗(Y τ )
≈
−→ H∗(Xτ × Y τ ) = H∗((X × Y )τ ) .

The Borel construction applied to the projections gives rise to maps (X×Y )C →
XC and (X × Y )C → YC . This produces a ring homomorphism

KC : H∗(XC)⊗H∗(YC) −→ H∗((X × Y )C) .

We now want to define κX×Y and σX×Y . We set κX×Y := Kτ ◦(κX ⊗ κY )◦K−1 .
Then, κX×Y is an isomorphism and one has the following commutative diagram:

H2∗(X) ⊗H2∗(Y )

κX⊗κY ≈
��

K

≈
// H2∗(X × Y )

κX×Y

��

H∗(Xτ )⊗H∗(Y τ )
Kτ

≈
// H∗((X × Y )τ )

Now, setting σX×Y := KC ◦(σX ⊗ σY )◦K−1 , we have:

H2∗
C (X)⊗H2∗

C (Y )

ρX⊗ρY

��

KC // H2∗
C (X × Y )

ρX×Y

��

H2∗(X)⊗H2∗(Y )

σX⊗σY

SS

K

≈
// H2∗(X ×X)

σX×Y

SS

With these definitions, one verifies the conjugation equation by direct compu-
tation.

4.3 Direct limits

Proposition 4.6 Let (Xi, fij) be a directed system of conjugation spaces and

τ -equivariant inclusions, indexed by a direct set I . Suppose that each space

Xi is T1 . Then X = lim
→

Xi is a conjugation space.

Proof As the maps fij are inclusion between and each Xi is T1 , the image
of a compact set K under a continuous map to X is contained in some Xi
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(otherwise K would contain an infinite closed discrete subspace). Therefore,
H∗(X) = lim→H∗(Xi) (singular homology with Z2 as coefficients). Then

H∗(X) = Hom(H∗(X); Z2) = Hom
(

lim
→

H∗(Xi); Z2)

= lim
←

Hom(H∗(Xi); Z2)

= lim
←

H∗(Xi) .

(4.13)

One has Xτ = lim→Xτ
i and XC = lim→(Xi)C and, as in (4.13), one has

H∗(Xτ ) = lim←H∗(Xτ
i ) and H∗C(X) = lim←H∗C(Xi). By Proposition 3.11,

the isomorphisms κi : H2∗(Xi) → H∗(Xτ
i ) is an isomorphism of inverse sys-

tems; we can thus define κ = lim← κi , and κ is an isomorphism. The same
can be done for σ : H2∗(X)→ H2∗

C (X), defined, using Proposition 3.11, as the
inverse limit of σi : H2∗(Xi) → H2∗

C (Xi), and σ is a section of ρ : H2∗
C (X) →

H2∗(X). The conjugation equation for (σ, κ) comes directly from that for
(σi, κi).

4.4 Equivariant connected sums

Let M be a smooth oriented closed manifold of dimension 2k together with a
smooth involution τ that is a conjugation. Then M τ is a non-empty closed
submanifold of M of dimension k . Pick a point p ∈ M τ . There is a τ -
invariant disk ∆ of dimension 2k in M around p on which τ is conjugate to
a linear action: there is a diffeomorphism h : D(Rk × Rk) → ∆ preserving the
orientation such that τ ◦h = h◦τ0 , where τ0(x, y) = (x,−y).

Let (Mi, τi), i = 1, 2, be two smooth conjugation spaces, as above. Choosing
conjugation cells (see Example 3.5) hi : D(Rk × Rk) → ∆i as above, one can
form the connected sum

M := M1♯M2 = (M1 \ int∆1) ∪h2◦h
−1

1

(M2 \ int∆2)

which inherits an involution τ . We do not know whether the equivariant dif-
feomorphism type of M1♯M2 depends on the choice of the diffeomorphism hi ,
which is unique only up to pre-composition by elements of S(O(k)×O(k)).

Proposition 4.7 M1♯M2 is a conjugation space.

Proof Let M = M1♯M2 and let Ni = Mi \ int∆i . By excision, one has ring
isomorphisms

H∗(M,N1)
≈
→ H∗(N2, ∂N2)

≈
← H∗(M2,∆2)

≈
→ H∗(M2, p2) . (4.14)
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The same isomorphisms hold for the C -equivariant cohomology and for the
cohomology of the fixed point sets. As M2 is a conjugation space, the pair
(M2, p2) is a conjugation pair by Remark 3.2. Therefore, (M,N1) is a conju-
gation pair.

Proposition 4.2 applied to X = M1 , Y = N1 and Z = ∅ shows that N1 is a
conjugation space. Applying then Proposition 4.1 to X = M , Y = N1 and
Z = ∅ proves that M is a conjugation space.

5 Conjugation complexes

5.1 Attaching conjugation cells

Let D2k be the closed disk of radius 1 in R2k , equipped with an involution τ
which is topologically conjugate to a linear involution with exactly k eigenval-
ues equal to −1. As seen in Example 3.5, we call such a disk a conjugation

cell of dimension 2k . The fixed point set is then homeomorphic to a disk of
dimension k . Observe that a product of two conjugation cells is a conjugation
cell.

Let Y be a topological space with an involution τ . Let α : S2k−1 → Y be an
equivariant map. Then the involutions on Y and on D2k induce an involution
on the quotient space

X = Y ∪α D2k = Y
`

D2k

/

{u = α(u) | x ∈ S2k−1}.

We say that X is obtained from Y by attaching a conjugation cell of dimen-
sion 2k . Note that the real locus Xτ is obtained from Y τ by adjunction of a
k -cell. Attaching a conjugation cell of dimension 0 is making the disjoint union
with a point.

More generally, one can attach to Y a set Λ of 2k -conjugation cells, via an
equivariant map α :

`
ΛS2k−1

λ → Y . The resulting space X is equipped with
an involution and its real locus Xτ is obtained from Y τ by adjunction of a
collection of k -cells labeled by the same set Λ.

The main result of this section is the following:

Proposition 5.1 Let (Y,Z) be a conjugation pair and let X be obtained from

Y by attaching a collection of conjugation cells of dimension 2k . Then (X,Z)
is a conjugation pair.
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Proof Without loss of generality, we may assume that Y and X are path-
connected. We may also suppose that Z and Zτ are not empty. Indeed, if
Z 6= ∅ then Zτ 6= ∅ since H0(Y,Z) ≈ H0(Y τ , Zτ ). If Z = ∅, we replace Z
by a point pt ∈ Y τ (Y τ is not empty if Y is a conjugation space) and use
Remark 3.2.

We shall now apply Proposition 4.1. The pair (Y,Z) being a conjugation pair
by hypothesis, we must check that (X,Y ) is a conjugation pair. By excision,
H∗(X,Y ) = H∗(D,S), where D =

`
ΛD2k

λ and S =
`

ΛS2k−1
λ . One also has

H∗C(X,Y ) = H∗C(D,S) and H∗(Xτ , Y τ ) = H∗(Dτ , Sτ ), with Dτ =
`

ΛDk
λ

and Sτ =
`

ΛSk−1
λ .

Suppose first that Λ = {λ} has one element, so D = Dλ and S = Sλ . As seen
in Example 3.5, we get here a H∗ -frame (κλ, σλ) such that, if a is the non-zero
element of H2k(D,S), the equation rλσλ(a) = κλ(a)uk holds. For the general
case, one has H∗(D,S) =

∏

λ∈Λ H∗(Dλ, Sλ), H∗C(D,S) =
∏

λ∈Λ H∗C(Dλ, Sλ),
etc, and ρ =

∏

λ∈Λ ρλ , r =
∏

λ∈Λ rλ . The homomorphisms σ =
∏

λ∈Λ σλ and
κ =

∏

λ∈Λ κλ satisfy rσ(a) = κ(a)uk for all a ∈ H2k(D,S) = H∗(D,S). This
shows that (D,S) and then (X,Y ) is a conjugation pair.

We then know that (X,Y ) and (Y,Z) are conjugation pairs. By Proposi-
tion 4.1, (X,Z) is a conjugation pair.

5.2 Conjugation complexes

Let Y be a space with an involution τ . A space X is a spherical conjugation

complex relative to Y if it is equipped with a filtration

Y = X−1 ⊂ X0 ⊂ X1 ⊂ · · ·X =
S

∞

k=−1
Xk

where Xk is obtained from Xk−1 by the adjunction of a collection of conjugation
cells (indexed by a set Λk(X)). The topology on X is the direct limit topology
of the Xk ’s. If Y is empty, we say that X is a spherical conjugation complex. As
in [11], the adjective “spherical” emphasizes that the collections of conjugation
cells need not occur in increasing dimensions.

The involution τ on Y extends naturally to an involution on X , still called τ .
The following result is a direct consequence of Proposition 5.1 and Proposi-
tion 4.6.

Proposition 5.2 Let X be a spherical conjugation complex relative to Y .

Then the pair (X,Y ) is a conjugation pair.

Algebraic & Geometric Topology, Volume 5 (2005)



Conjugation spaces 943

5.3 Remarks and Examples

5.3.1 Many topological properties of CW-complexes remain true for spherical
conjugation complexes, using minor adaptations of the standard techniques
(see e.g. [18]). For instance, a spherical conjugation complex is paracompact,
by the same proof as in [18, Theorem4.2]. Also, the product X × Y of two
conjugation spaces admits a spherical conjugation complex-structure provided
X contains finitely many conjugation cells, or both X and Y contain countably
many conjugation cells. For instance, one can order the elements (p, q) ∈ N×N

by the lexicographic ordering in (p + q, p) and construct a conjugation space
X ⊗ Y by setting (X × Y )(p,q) = Xp ×Xq . If (p′, q′) is the successor of (p, q),
then using that the product of a conjugation cell is a conjugation cell, one
shows that (X × Y )(p′,q′) is obtained from (X × Y )(p,q) by adjunction of a
collection of conjugation cells indexed by Λ(p′,q′)(X × Y ) = Λp′(X) × Λq′(Y ).
There is then a τ -equivariant continuous bijection θ : X ⊗ Y → X × Y . As
in [18, II.5, Theorem 5.2], one shows that, under the above hypotheses, θ is an
homeomorphism.

5.3.2 The usual cell decomposition of CPn (n ≤ ∞) makes the latter a spher-
ical conjugation complex. The product of finitely many copies of CP∞ is also
a spherical conjugation complex. Here, we do not even need the preceeding
remark since we are just dealing with the product of countable CW-complexes.

Let T be a torus (compact abelian group) of dimension r . The involution
g 7→ g−1 induces an involution on the Milnor classifying space BT . The latter
is equivariantly homotopy equivalent to a product of r copies of CP∞ and
therefore is a conjugation space. The isomorphism κT of the H∗ -frame for BT
can be interpreted as follows.

Let T̂ = Hom (T, S1) be the group of characters of T . We have identifications

T̂ ≈ [BT, CP∞] ≈ H2(BT ; Z) . (5.1)

Recall that T̂ is a free abelian group of rank the dimension of T . Hence H2(BT )
is isomorphic to T̂ ⊗ Z2 . For the 2-torus subgroup T2 of T , defined to be the
elements of T of order 2, one has in the same way

Hom (T2, S
0) ≈ [BT2, RP∞] ≈ H1(BT2), (5.2)

where we think of S0 = {±1} as the 2-torus of S1 . The homomorphism
T̂ → Hom (T2, S

0), which sends χ ∈ T̂ to the restriction χ2 of χ to T2 ,
produces an isomorphism κT : H2(BT ) → H1(BT2). Now the cohomology
ring H2∗(BT ) = S(H2(BT )) is the symmetric algebra over H2(BT ), and
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H∗(BT2) = S(H1(BT2)). Therefore, the above isomorphism κT extends to
a ring isomorphism κT : H2∗(BT ) → H∗(BT2) that is functorial in T . Now,
BT2 = BT τ , and κT is the isomorphism in the H∗ -frame of BT . This can be
checked by choosing an isomorphism between T and (S1)r , which induces a C -
equivariant homotopy equivalence between BT and (CP∞)r and a homotopy
equivalence between BT τ and (RP∞)r .

5.3.3 Example 5.3.2 generalizes to complex Grassmannians, with the com-
plex conjugation. The classical Schubert cells give the spherical conjugation
complex-structure. This generalizes to the coadjoint orbits of compact semi-
simple Lie groups with the Chevalley involution (see Subsection 8.3), using the
Bruhat-Schubert cells.

5.3.4 Conjugation complexes with 3 conjugation cells. Let X be a spherical
conjugation complex with three conjugation cells, in dimension 0, 2k and 2l ≥
2k . Then, X is obtained by attaching a conjugation cell D2l to the conjugation
sphere Σ2k (see Example 3.6). The C -equivariant homotopy type of X is
determined by the class of the attaching map α ∈ πτ

2l−1(Σ
2k), the equivariant

homotopy group of Σ2k (the homotopy classes of equivariant maps from Σ2l−1

to Σ2k ). We note X = Xα . Forgetting the C -equivariance and restricting to
the fixed point sets gives a homomorphism

Φl,k : πτ
2l−1(Σ

2k)→ π2l−1(S
2k)× πl−1(S

k).

In the case k = 1 and l = 2, this gives

Φ := Φ2,1 : πτ
3 (Σ2)→ π3(S

2)× π1(S
1) = Z× Z.

Observe that the equivariant homotopy type of Xα and of Xβ are distinct if
Φ(α) 6= Φ(β). Indeed, let Φ(α) = (p, q). If a ∈ H2(X; Z) and b ∈ H4(X; Z)
are the natural generators, then a2 = pb (see, e.g. [25, § 9.5, Theorem 3]).
Moreover H1(Xτ ; Z) = Zq . Note that since X is a conjugation space, one has
H1(Xτ ) = Z2 , which shows that q must be even.

Now, it is easy to see that the Hopf map h : Σ3 → Σ2 is C -equivariant; as
Φ(h) = (1, 2) is of infinite order, this shows that there are infinitely many
C -equivariant homotopy types of spherical conjugation complexes with three
conjugation cells, in dimension 0, 2 and 4.

5.4 Equivariant fiber bundles over spherical conjugation com-

plexes

Let G be a topological group together with an involution σ which is an auto-
morphism of G. Let (B, τ) be a space with involution. By a (σ,G)-principal
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bundle we mean a (locally trivial) G-principal bundle p : E → B together with
an involution τ̃ on E satisfying p◦ τ̃ = τ ◦p and τ̃(z · g) = τ̃(z) · σ(g) for all
z ∈ E and g ∈ G. Following the terminology of [26, p. 56], a (σ,G)-principal
bundle is a (C, σ̌,G)-bundle, where σ̌ : C → G is the homomorphism sending
the generator of C to σ .

Let F be a space together with an involution τ and a left G-action. We say
that the involution τ and the G-action are compatible if τ(gy) = σ(g) τ(y).
This means that the G-action extends to an action of the semi-direct product
G× = G ⋊ C .

Let p : E → B be a (σ,G)-principal bundle. Let (F, τ) be a space with in-
volution together with a compatible G-action. The space E ×G F inherits an
involution (also called τ ) and the associated bundle E ×G F → B , with fiber
F , is a τ -equivariant locally trivial bundle.

Proposition 5.3 Suppose that G is a compact Lie group, that F is a conju-

gation space and that B is a spherical conjugation complex. Then E ×G F is

a conjugation space.

Proof Suppose first that B = D is a conjugation cell, with boundary S .
Then E is compact and, by [26, Ch. 1, Proposition 8.10], p is a locally trivial

(C, σ̃,G)-bundle. This means that there exists an open covering U of B by
C -invariant sets such that for each U ∈ U the bundle p−1(U) → U is induced
by a (σ,G)-principal bundle over a C -orbit (namely one point or two points).
Since the quotient space C\D is compact, the coverings U admits a partition
of unity by C -invariant maps. Together these imply that the (σ,G)-bundle p
is induced from a universal (C, σ̃,G)-bundle by a C -equivariant map from D
to some classifying space and C -homotopic maps induce isomorphic (C, σ̃,G)-
bundles [26, Ch. 1, Theorem 8.12 and 8.15]. The cell D is C -contractible, which
implies that E = D × G and E ×G F = D × F , with the product involution.
By Proposition 4.5, the pair (E,E|S) is a conjugation pair.

This enables us to prove Proposition 5.3 by induction on the n-stage Bn of the
construction of B as a spherical conjugation complex. Let Zn = p−1(Bn)×GF .
As B0 is discrete, Z0 is the disjoint union of copies of F and is then a conjuga-
tion space. Suppose by induction that Zn−1 is a conjugation space. The above
argument shows that (Zn, Zn−1) is a conjugation pair. Using Proposition 4.1,
one deduces that Zn is a conjugation space. Therefore, Zn is a conjugation
space for all n ∈ N. By Proposition 4.6, this implies that E ×G F = lim→ Zn

is a conjugation space.
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Remark 5.4 An analogous argument also gives a relative version of Proposi-
tion 5.3 for pairs of bundles over X , with a conjugation pair of fibers (F,F0).
The same remains true for a bundle over a relative spherical conjugation com-
plex.

6 Conjugate-equivariant complex bundles

6.1 Definitions

Let (X, τ) be a space with an involution. A τ -conjugate-equivariant bundle

(or, briefly, a τ -bundle) over X is a complex vector bundle η , with total space
E = E(η) and bundle projection p : E → X , together with an involution
τ̂ : E → E such that p◦ τ̂ = τ ◦p and τ̂ is conjugate-linear on each fiber:
τ̂(λx) = λ̄τ̂(x) for all λ ∈ C and x ∈ E . Atiyah was the first to study
τ -bundles [2]. He called them “real bundles” and used them to define KR-
theory.

Let P → X be a (σ,U(r))-principal bundle in the sense of Subsection 5.4, with
σ : U(r) → U(r) being the complex conjugation. Then, the associated bundle
P ×U(r) Cr , with Cr equipped with the complex conjugation, is a τ -bundle and
any τ -bundle is of this form. It follows that if p : E → X be a τ -bundle η of
rank r and if E τ̂ is the fixed point set of τ̂ , then p : E τ̂ → Xτ is a real vector
bundle ητ of rank r over Xτ .

Examples of τ -bundle include the canonical complex vector bundle over BU(r)
or over the complex Grassmannians. Note that a bundle induced from a τ -
bundle by a C -equivariant map is a τ -bundle.

Proposition 6.1 Let η be a τ -bundle of rank r over a space with involution

(X, τ). If X is paracompact, then η is induced from the universal bundle by

a C -equivariant map from X into BU(r). Moreover, two C -equivariant map

which are C -homotopic induce isomorphic τ -bundles.

Proof It is equivalent to prove the corresponding statement of Proposition 6.1
for (σ,U(r))-bundles. Let p : P → X be a (σ,U(r))-bundle. As X is para-
compact and U(r) is compact, the total space P is paracompact. Therefore,
by [26, Ch. 1, Proposition 8.10], p is a locally trivial (σ,U(r))-bundle, meaning
that there exists an open covering V of X by C -invariant sets such that for
each V ∈ V the bundle p−1(V ) → V is induced by a (σ,G)-principal bundle
q : qO → O over a C -orbit O . When O consists of one point a, one can identify
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QO with U(r) such τ̃ (γ) = γ̄ . For a free orbit O = {a, b}, one can identify QO
with O×U(r) such that τ̃(a, γ) = (b, γ̄) and τ̃(b, γ) = (a, γ̄). Using these, one
gets a family of U(r)-equivariant maps {ϕV : p−1(V ) → U(r) | V ∈ V} such
that

ϕV ◦τ(z) = ϕV (z) , (6.1)

for all V ∈ V . The quotient space C\X is also paracompact. Therefore, the
coverings V admits a locally finite partition of the unity µV , V ∈ V , by C -
invariant maps. Using {ϕV , µV | V ∈ V}, we can perform the classical Milnor
construction of a map f : X → BU(r) inducing p. Because of Equation (6.1), f
is C -equivariant. The last statement of Proposition 6.1 is a direct consequence
of [26, Ch. 1, Theorem 8.12 and 8.15].

Corollary 6.2 Let η be a τ -bundle over a conjugation cell. Then, the total

space of disk bundle D(η) is a conjugation cell.

Proof As a conjugation cell is C -contractible, Proposition 6.1 implies that η
is a product bundle. We then use that the product of two conjugation cells is
a conjugation cell.

Remark 6.3 Pursuing in the way of Proposition 6.1, one can prove that the
set of isomorphism classes of τ -bundles of rank r over a paracompact space X
is in bijection with the set of C -equivariant homotopy classes of C -equivariant
maps from X to BU(r).

6.2 Thom spaces

Proposition 6.4 Let η be a τ -bundle over a conjugation space X . Then the

total space D(η) of the disk bundle of η and the total space S(η) of the sphere

bundle of η form a conjugation pair (D(η), S(η)).

Proof Let E(η) → X be the bundle projection and let r be the rank of η .
Performing the Borel construction E(η)C → XC gives a complex bundle ηC of
rank r over XC and η is induced from ηC by the map X → XC . The following
diagrams, in which the letters T denote the Thom isomorphisms, show how to
define σ and κ.

H2∗−2r
C (X)

ρ

��

TC

≈
// H2∗

C (D(η), S(η))

ρ

��

H2∗−2r(X)

σ

SS

T

≈
// H2∗(D(η), S(η))

σ̄ : =TC ◦σ◦T
−1

SS
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H2∗−2r(X)

κ
��

T

≈
// H2∗(D(η), S(η))

κ̄ : =T τ ◦κ◦T −1

��

H∗−r(Xτ )
T τ

≈
// H∗(D(ητ ), S(ητ ))

Consider also the following commutative diagram, where the vertical arrows are
restriction to a fiber.

H2r(D(η), S(η))
σ̄ //

j

��

H2r
C (D(η), S(η))

r //

j̄

��

H2r
C (D(η)τ , S(η)τ )

jτ

��
H2r(D2r, S2r−1)

σD // H2r
C (D2r, S2r−1)

rD // H2r
C (Dr, Sr−1)

It remains to prove the conjugation equation. Let Thom(η) ∈ H2r(D(η), S(η))
be the Thom class of η . By definition of σ̄ , one has σ̄(Thom(η)) = Thom(ηC).
Observe that D2r is a conjugation cell and j̄(Thom(ηC)) = σD([D2r, S2r−1]).
Therefore

r◦σD ◦j(Thom(η)) = κD2r([D2r, S2r−1])ur = [Dr, Sr−1]ur . (6.2)

But r◦σD ◦j = jτ ◦ r̄◦σ̄ and the preimage under jτ of [(Dr, Sr−1)] is Thom(ητ ).
By Lemma 2.2, the kernel of jτH2r

C (D(η)τ , S(η)τ ) → H2r
C (Dr, Sr−1) is of type

ℓtr . Therefore, one has

r̄◦σ̄(Thom(η)) = r̄(Thom(ηC)) = Thom(ητ )ur + ℓtr . (6.3)

Using Equation (6.3), one has, for x ∈ H2k+2r(D(η), S(η)):

r̄◦ σ̄(x) = r̄◦TC ◦σ◦T
−1(x) = r̄

(

Thom(ηC) · σ◦T −1(x)
)

= r̄
(

Thom(ηC) · r◦σ◦T −1(x)
)

= (Thom(ητ )ur + ℓtr) (κ(T −1(x))uk + ℓtk)

= Thom(ητ )κ(T −1(x))uk+r + ℓtk+r = κ̄(x)uk+r + ℓtk+r .

Remark 6.5 The pair (D(η), S(η)) is cohomologically equivalent to the pair
(D(η)/S(η), pt) and D(η)/S(η) is the Thom space of η . Using Remark 3.2,
Proposition 6.4 says that if η is a τ -bundle over a conjugation space, then the
Thom space of η is a conjugation space.

Remark 6.6 By the definition of κ̄ : H2∗(D(η), S(η)) → H∗(D(ητ ), S(ητ )),
one has κ̄(Thom(η)) = Thom(ητ )). The inclusion (D(η), ∅) ⊂ (D(η), S(η)) is a
C -equivariant map between conjugation pairs and D(η) is C -homotopy equiva-
lent to X . The induced homomorphisms on cohomology i : H2r(D(η), S(η)) →
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H2r(X) and iτ : Hr(D(ητ ), S(ητ ))→ Hr(Xτ ) send the Thom classes Thom(η)
and Thom(ητ ) to the Euler classes e(η) and e(ητ ). By naturality of the H∗ -
frames, we deduce that, for any conjugate equivariant bundle η over a conju-
gation space X , one has κ(e(η)) = e(ητ ). This will be generalized in Proposi-
tion 6.8.

We finish this subsection with the analogue of Proposition 6.4 for spherical
conjugation complexes.

Proposition 6.7 Let η be a τ -bundle over a spherical conjugation complex

X . Then, D(η) is a spherical conjugation complex relative to S(η).

Proof Let X be obtained from Y by attaching a collection of conjugation cells
of dimension 2k , indexed by a set Λ. Let D =

`
ΛD2k

λ and S =
`

ΛS2k−1
λ

(λ ∈ Λ). Let π = πD

`
πY : D

`
Y → X be the natural projection. Then

D(η) is obtained from D(π∗
Y
η) ∪ S(η) by attaching D(π∗

D
η). By Corollary 6.2,

D(π∗
Dλ

η) is a conjugation cell of dimension 2k+2r , where r is the complex rank
of η . Therefore, D(η) is obtained from D(π∗Y η)∪ S(η) by attaching a collection
of conjugation cells of dimension 2k + 2r . This proves Proposition 6.7.

6.3 Characteristic classes

If η be a τ -bundle over a space with involution X , we denote by c(η) ∈ H2∗(X)
the (mod 2) total Chern class of η and by w(ητ ) ∈ H∗(Xτ ) the total Stiefel-
Whitney class of ητ . The aim of this section is to prove the following:

Proposition 6.8 Let η be a τ -bundle over a spherical conjugation complex

X . Then κ(c(η)) = w(ητ ).

Proof Let q : P(η) → X be the projective bundle associated to η , with fiber
CP r−1 . The conjugate-linear involution τ̂ on E(η) descends to an involution τ̃
on P(η) for which the projection q is equivariant. One has P(η)τ̃ = P(ητ ), the
projective bundle associated to ητ , with fiber RP r−1 . We also call q : P(ητ )→
Xτ the restriction of q to P(ητ ).

As q is equivariant, the induced complex vector bundle q∗η is a τ̃ -bundle with
E(q∗η)τ = E(q∗ητ ). Recall that q∗η admits a canonical line subbundle λη :
a point of E(λη) is a couple (L, v) ∈ P(η) × E(η) with v ∈ L. The same
formula holds for ητ , giving a real line subbundle λητ of q∗ητ . Moreover,
τ̂(v) ∈ τ(L) and thus λη is a τ̃ -conjugate-equivariant line bundle over P(η).
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Again, E(λη)
τ = E(λητ ). The quotient bundle η1 of η by λη is also a τ̃ -bundle

over P(η) and q∗η is isomorphic to the equivariant Whitney sum of λη and η1 .

By Proposition 5.3, P(η) is a conjugation space. Denote by (κ̃, σ̃) its H∗ -frame.
By Remark 6.6, one has κ̃(c1(λη)) = w1(λητ ). As κ̃ is a ring isomorphism, one
has κ̃(c1(λη)

k) = w1(λητ )k for each integer k .

By [15, Chapter 16,2.6], we have in H2∗(P(η)) the equation

c1(λη)
r =

r
∑

i=1

q∗(ci(η)) c1(λη)
r−i. (6.4)

and, in H∗(P(ητ )),

w1(λητ )r =

r
∑

i=1

q∗(wi(η
τ ))w1(λητ )r−i . (6.5)

As κ̃(c1(λη)) = w1(λητ ) and κ̃◦q∗ = q∗ ◦κ, applying κ̃ to Equation (6.4) and
using Equation (6.5) gives

r
∑

i=1

q∗(κ(ci(η)))w1(λητ )r−i =

r
∑

i=1

q∗(wi(η
τ ))w1(λητ )r−i . (6.6)

By the Leray-Hirsch theorem, H∗(P(ητ )) is a free H∗(Xτ )-module with basis
w1(λη)

k for k = 1, . . . , r − 1, and q∗ is injective. Therefore, Equation (6.6)
implies Proposition 6.8.

Remark 6.9 By Proposition 6.1, it would be enough to prove Proposition 6.8
for the canonical bundle over the Grassmannian. This can be done via the
Schubert calculus (see [21, Problem 4-D, p. 171, and § 6]). Such an argument
proves Proposition 6.8 for X a paracompact conjugation space.

7 Compatible torus actions

Let X be a space together with an involution τ . Suppose that a torus T acts
continuously on X . We say that the involution τ is compatible with this torus
action if τ(g ·x) = g−1 ·τ(x) for all g ∈ T and x ∈ X . It follows that τ induces
an involution on on the fixed point set XT . Moreover, the 2-torus subgroup T2

of T , defined to be the elements of T of order 2, acts on Xτ . The involution
and the T -action extend to an action of the semi-direct product T× = T ⋊ C ,
where C acts on T by τ · g = g−1 .
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When a group H acts on X , we denote by XH the Borel construction of X .
Observe that if T× as above acts on X , then the diagonal action of C on
ET ×X descends to an action of C on XT .

Lemma 7.1 Let X be a space together with a continuous action of T× . Then

XT× has the homotopy type of (XT )C .

Proof XT has the C -equivariant homotopy type of the quotient T\ET××X ,
where T acts on ET××X by g · (w, x) = (wg−1, gx). The formula τ · (w, x) =
(wτ, τ(x)) then induces a C -action on XT which is free. Therefore, (XT )T× =
C\XT = XT× .

The particular case of X = pt in Lemma 7.1 gives the following:

Corollary 7.2 BT× ≃ BTC .

Lemma 7.3 (XT )τ = (Xτ )T2
.

Proof Let H be a group acting continuously on a space Y . Recall that
elements of the infinite joint EH are represented by sequences (tihi) (i ∈ N)
with hi ∈ H and ti ∈ [0, 1], almost all vanishing, with

∑

ti = 1. Under the
right diagonal action of H on EH , each (tihi) is equivalent to a unique element
(tih̃i) for which h̃j = I , the unit element of H , where j is the minimal integer
k for which tk 6= 0. Therefore, each class in BH = EH/H has a unique such
representative which we call minimal. In the same way, each class in YH has a
unique minimal representative (w, y) ∈ EH × Y for which w is minimal.

One easily check that there is a commutative diagram:

(Xτ )T2

β ))S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

// // XT2
// // XT

(XT )τ
OO

OO
(7.1)

Working with minimal representatives in (Xτ )T2
, we see that the natural map

(Xτ )T2
→ XT is injective. Hence, β is injective. Let (w, x) ∈ ET × X with

w = (tizi) minimal. Then, τ(w, x) is also a minimal representative. If τ(w, x) =
(w, x) in XT , this implies that τ(x) = x and z−1

i = zi , that is zi ∈ T2 (when
ti 6= 0). This proves that β is surjective.
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Example 7.4 Let X = S1 ⊂ C with the complex conjugation as involution,
and T = S1 acting on X by g · z = g2z . Then, Xτ = S0 on which T2

acts trivially, so (Xτ )T2
= BT2 × S0 . On the other hand, X is a T -orbit so

XT = ET/T2 . The space ET/T2 has the homotopy type of BT2 but (ET/T2)
τ

has two connected components, both homeomorphic to BT2 . One is the image
of (ET )τ = ET2 and is equal to β(BT2 × {1}). The other is the image of
{(tjhj) | hj = ±i} and is equal to β(BT2 × {−1}).

The main result of this section is the following:

Theorem 7.5 Let (X,Y ) be a conjugation pair together with a compatible

action of a torus T . Then, the involution induced on (XT , YT ) is a conjugation.

Proof Assume first that Y = ∅. The universal bundle p : ET → BT is a
(T, σ)-principal bundle in the sense of Subsection 5.4, with σ(g) = g−1 , and
XT → BT is the associated bundle with fiber X . As BT is a conjugation space
(see Remark 5.3.2 in Subsection 5.3), the space XT is a conjugation space by
Proposition 5.3. When Y is not empty, we use Remark 5.4.

Using Lemma 7.3, one gets the following corollary of Theorem 7.5.

Corollary 7.6 Let X be a space together with an involution and a compatible

T -action. Then, there is a ring isomorphism

κ̄ : H2∗
T (X)

≈
−→ H∗T2

(Xτ ).

We end this section with a result that will be used in Section 8. Let η be a
T -equivariant τ -bundle over a space with involution X . Precisely, η is a τ -
bundle over X and there is a τ̂ -compatible T -action on E(η), over the identity
of X , which is C-linear on each fiber. Let r be the complex rank of η . The
T -Borel construction on E(η) → X produces a complex vector bundle ηT of
rank r over XT . One checks that the involution induced on E(ηT ) = E(η)T

makes ηT a τ -bundle (the letter τ also denotes here the involution induced on
XT = BT ×X ). For a T× -invariant Riemannian metric on η , the spaces D(η)
and S(η) are T× -invariant.

Proposition 7.7 Let η be a T -equivariant τ -bundle over a conjugation space

X . Then the pair (D(η)T , S(η)T ) is a conjugation space.

Proof As the Riemannian metric is T× -invariant, one has D(η)T = D(ηT ) and
S(η)T = S(ηT ). By Theorem 7.5, the base space BT ×X of ηT is a conjugation
space. Proposition 7.7 then follows from Proposition 6.4.
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8 Hamiltonian manifolds with anti-symplectic invo-

lutions

8.1 Preliminaries

Let M be a compact symplectic manifold equipped with a Hamiltonian action
of a torus T . Let τ be a smooth anti-symplectic involution on M compatible
with the action of T (see Section 7). Thus, the semi-direct group T× := T ⋊ C
acts on M . Moreover, if it is non-empty, M τ is a Lagrangian submanifold,
called the real locus of M . For general work on such involutions together with
a Hamiltonian group action, see [8] and [22].

We know that the symplectic manifold (M,ω) admits an almost Kaehler struc-
ture calibrated by ω . That is, there is an almost complex structure J ∈
EndTM together with a Hermitian metric h whose imaginary part is ω (see
[3, § 1.5]; J and h determine each other). These structures form a convex set
and by averaging, we can find an almost complex structure whose Hermitian
metric h̃ is T -invariant. Now, the Hermitian metric

h(v,w) :=
1

2

(

h̃(v,w) + h̃((Tτ(v), T τ(w))
)

(8.1)

is still T -invariant and satisfies h(Tτ(v), T τ(w)) = h(v,w). We suppose that
the symplectic manifold (M,ω) is equipped with such an almost Kaehler struc-
ture (J, h) calibrated by ω , which we call a T× -invariant almost Kaehler struc-

ture.

Let Φ: M → t∗ be a moment map for the Hamiltonian torus action, where t

denotes the Lie algebra of T and t∗ denotes its vector space dual. Evaluating Φ
on a generic element ξ of t yields a real Morse-Bott function Φξ(x) = Φ(x)(ξ)
whose critical point set is MT . Suppose F is a connected component of MT .
By [3, § III.1.2], F is an almost Kaehler (in particular symplectic) submanifold
of M . If F τ 6= ∅, then F is preserved by τ : τ(F ) = F .

Let ν(F ) be the normal bundle to F , seen as the orthogonal complement of TF .
The bundle ν(F ) is then a complex vector bundle. By T× -invariance of the
Hermitian metric, ν(F ) admits a C-linear T -action and τ : F → F is covered
by an R-linear involution τ̂ of the total space E(ν(F )) which is compatible with
the T -action. Moreover, ν(F ) inherits a Hermitian metric h whose imaginary
part is the symplectic form ω . Let x ∈ F . For v ∈ Ex(ν(F )), w ∈ Eτ(x)(ν(F ))
and λ ∈ C, one has

h(τ̂ (λv), w) = h(λv, τ̂ (w)) = λ̄ h(v, τ̂ (w))
= λ̄ h(τ̂(v), w) = h(λ̄τ̂(v), w).

(8.2)
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This shows that ν(F ) is a τ -bundle.

Let us decompose ν(F ) into a Whitney sum of χ-weight bundles νχ(F ) for
χ ∈ T̂ , the group of smooth homomorphisms from T to S1 . Recall that the
latter is free abelian of rank the dimension of T . We call νχ(F ) an isotropy

weight bundle. Since the T -action on ν(MT ) is compatible with τ̂ , the isotropy
weight bundles are preserved by τ̂ and are thus τ -bundles. Consequently, the
negative normal bundle ν−(F ), which is the Whitney sum of those νχ(F ) for
which Φξ(χ) < 0, is a τ -bundle.

Of course MT ⊂ MT2 . The case where this inclusion is an equality will be of
interest.

Lemma 8.1 The following conditions are equivalent:

(i) MT = MT2 .

(ii) M τ ∩MT = (M τ )T2 .

(iii) for each x ∈ MT , there is no non-zero weight χ ∈ T̂ of the isotropy

representation of T at x such that χ ∈ 2 · T̂ .

Proof If (ii) is true, then

M τ ∩MT ⊂ (M τ )T2 = M τ ∩MT2 = M τ ∩MT , (8.3)

which implies (i).

Each x ∈MT has a T× -equivariant neighborhood Ux on which the T× -action
is conjugate to a linear action. The three conditions are clearly equivalent for
a linear action, so Condition (i) or (ii) implies (iii).

We now show by contradiction that (iii) implies (ii). Suppose that (ii) does

not hold: that is, there exists x ∈MT2 with x /∈ MT . Let Φξ
t be the gradient

flow of Φξ . Then Φξ
t is a T+ -equivariant diffeomorphism of M . Thus, Φξ

t (x)

has the same property of x but, if t is large enough, Φξ
t (x) will belong to Ux

for some x ∈MT . This contradicts (iii).

Lemma 8.2 Let M be a compact symplectic manifold equipped with a Hamil-

tonian action of a torus T . Let τ be a smooth anti-symplectic involution on

M compatible with the action of T . Suppose that MT = MT2 and that

π0(M
T ∩M τ ) → π0(M

T ) is a bijection. Then M τ is T2 -equivariantly formal

over Z2 .

Proof As π0(M
T ∩M τ )→ π0(M

T ) is a bijection, by [8, Lemma2.1 and The-
orem 3.1], we know that B(M τ ) = B(M τ ∩MT ). By Lemma 8.1, M τ ∩MT =
(M τ )T2 so B(M τ ) = B((M τ )T2). This implies that M τ is T2 -equivariantly
formal over Z2 (see, e.g. [1, Proposition 1.3.14]).
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8.2 The main theorems

Theorem 8.3 Let M be a compact symplectic manifold equipped with a

Hamiltonian action of a torus T and with a compatible smooth anti-symplectic

involution τ . If MT is a conjugation space, then M is a conjugation space.

Proof Choose a generic ξ ∈ t so that Φξ : M → R is a Morse-Bott function
with critical set MT . Let c0 < c1 < · · · < cN be the critical values of Φξ , and
let Fi = (Φξ)−1(ci)∩MT be the critical sets. Let ε > 0 be less than any of the
differences ci − ci−1 , and define Mi = (Φξ)−1((−∞, ci + ε]). We will prove by
induction that Mi is a conjugation space. This is true for i = 0 since M0 is
C -homotopy equivalent to F0 , which is a conjugation space by hypothesis. By
induction, suppose that Mi−1 is a conjugation space.

We saw in Subsection 8.1 that the negative normal bundle νi to Fi is a τ -bundle.
The pair (Mi,Mi−1) is C -homotopy equivalent to the pair (D(νi), S(νi)). Since
Fi is a conjugation space by hypothesis, the pair (Mi,Mi−1) is conjugation pair
by Proposition 6.4. Therefore, Mi is a conjugation space by Proposition 4.1.
We have thus proven that each Mi is a conjugation space, including MN = M .

Remark 8.4 The proof of Theorem 8.3 shows that the compactness assump-
tion on M can be replaced by the assumptions that MT consists of finitely
many connected components, and that some generic component of the mo-
ment map Φ: M → t∗ is proper and bounded below. That MT has finitely
many connected components ensures that H∗T (M) is a finite rank module over
H∗T (pt). That some component of the moment map is proper and bounded be-
low ensures that that component of the moment map is a Morse-Bott function
on M . Examples of this more general situation include hypertoric manifolds
(see [12]).

Using Theorem 7.5 and Corollary 7.5, we get the following corollary of Theo-
rem 8.3.

Corollary 8.5 Let M be a compact symplectic manifold equipped with a

Hamiltonian action of a torus T and a compatible smooth anti-symplectic in-

volution τ . If MT is a conjugation space, then MT is a conjugation space. In

particular, there is a ring isomorphism

κ̄ : H2∗
T (M)

≈
−→ H∗T2

(M τ ).
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Finally, the same proof as for Theorem 8.3, using Proposition 6.7 instead of
Proposition 6.4, gives the following:

Theorem 8.6 Let M be a compact symplectic manifold equipped with a

Hamiltonian action of a torus T and with a compatible smooth anti-symplectic

involution τ . If MT is a spherical conjugation complex, then M is a spherical

conjugation complex.

Examples 8.7 The theorems of this subsection apply to toric manifolds (MT

is discrete). They also apply to spatial polygon spaces Pol(a) of m edges,
with lengths a = (a1, . . . , am) (see, e.g. [13]), the involution being given by a
mirror reflection [13, §,9]. One proceeds by induction m (for m ≤ 3, Pol(a)
is either empty or a point). The induction step uses that Pol(a) generically
admits compatible Hamiltonian circle action, called bending flows, introduced
by Klyachko ([19], see, e.g. [14]), for which the connected component of the
fixed point set are polygon spaces with fewer edges [14, Lemma 2.3].

Therefore, toric manifolds and polygon spaces are spherical conjugation com-
plexes. The isomorphism κ were discovered in [7] and [13, § 9].

8.3 The Chevalley involution on co-adjoint orbits of semi-simple

compact Lie groups

The goal of this section is to show that coadjoint orbits of compact semi-simple
Lie groups are equipped with a natural involution which makes them conju-
gation spaces. Let l be a semi-simple complex Lie algebra, and h a Cartan
sub-algebra with roots ∆. Multiplication by −1 on ∆ induces, by the isomor-
phism theorem [23, Corollary C,§ 2.9], a Lie algebra involution σ on l called
the Chevalley involution [23, Example p. 51]. Then σ(h) = −h for h ∈ h and
σ(Xα) = −X−α , if Xα is the weight vector occurring in a Chevalley normal
form [23, Theorem A,§ 2.9 ]. By construction of the compact form l0 of l [23,
§ 2.10], the involution σ induces a Lie algebra involution on the real Lie al-
gebra l0 , still called the Chevalley involution and denoted by σ . This shows
that any semi-simple compact real Lie algebra admits a Chevalley involution.
For instance, if l = sl(n, C), then σ(X) = −XT and the induced Chevalley
involution on l0 = su(n) is complex conjugation.

Let G be a compact semi-simple Lie group with Lie algebra g and a maxi-
mal torus T . Recall that the dual g∗ of g is endowed with a Poisson struc-
ture characterized by the fact that g∗∗ is a Lie sub-algebra of C∞(g) and the
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canonical map g
≈
−→ g∗∗ is a Lie algebra isomorphism. Therefore, the map

τ = −σ∗ : g∗ → g∗ is an anti-Poisson involution, called again the Chevalley

involution on g∗ .

Theorem 8.8 The Chevalley involution τ preserves each coadjoint orbit O ,

and induces an anti-symplectic involution τ : O → O with respect to which O
is a conjugation space. One also has an ring-isomorphism

κ̄ : H2∗
T (O)

≈
−→ H∗T2

(Oτ ).

Proof The coadjoint orbits are the symplectic leaves of the Poisson structure
on g∗ . As τ is anti-Poisson, the image τ(O) of a coadjoint orbit O is also
a coadjoint orbit O′ . We will show that O′ = O . Since G is semi-simple,
the Killing form 〈, 〉 is negative definite. Thus, the map K : g → g∗ given by
K(x)(−) = 〈x,−〉 is an isomorphism. It intertwines the adjoint action with the
coadjoint action and satisfies τ ◦K = −K ◦σ .

Now, to show O′ = O , if O is a coadjoint orbit, the adjoint orbit K−1(O)
contains an element t ∈ t. Thus, τ(K(t)) = −K(σ(t)) = K(t). Therefore O′ =
τ(O) = O . As τ is anti-Poisson on g∗ , its restriction to O is anti-symplectic.
Moreover, since σ is −1 on t, the involution τ is compatible with the coadjoint
action of T on O . Finally, OT is discrete, and O ∩ K(t) = OT ⊂ Oτ . It is
clear, then, that OT is a conjugation space. The theorem now follows from
Theorem 8.3 and Corollary 8.5.

Remark 8.9 The conjugation cells used to build O as a conjugation space
are precisely the Bruhat cells of the coadjoint orbit. The Bruhat decomposition
is τ -invariant.

In type A, the Chevalley involution is complex conjugation on su(n). In this
case, Theorem 8.8 has been proven in [24] and [4]. In those papers, the authors
use the fact that the isotropy weights at each fixed point are pairwise indepen-
dent over F2 . This condition is not satisfied in general for the coadjoint orbits
of other types. Indeed, for the generic orbits, these weights are a set of positive
roots and the other types have strings of roots of length at least 2. This can
be seen already in the moment polytopes for generic coadjoint orbits of B2 and
G2 , shown in Figure 8.1.

In [24] and [4], the isomorphism

κ̄ : H2∗
T (O)

≈
−→ H∗T2

(Oτ )
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(a) (b) (c)

α
β β + 2α

Figure 8.1: The moment polytopes for the generic coadjoint orbits of simple Lie
groups of rank 2: we show types (a) A2 , (b) B2 and (c) G2 . As shown in (b),
for type B2 , at a T -fixed point, we can see that β , α and β + 2α are isotropy
weights. There is a similar occurrence for type G2 .

is proved by giving a combinatorial description of each of these rings, and noting
that these descriptions are identical. This combinatorial description does not
generally apply in the other types precisely because the isotropy weights the
fixed points are not pairwise independent over F2 . Nevertheless, we still have
the isomorphism on the equivariant cohomology rings.

8.4 Symplectic reductions

Let M be a compact symplectic manifold equipped with a Hamiltonian action
of a torus T and a compatible smooth anti-symplectic involution τ . We saw in
Theorem 8.3 that if MT is a conjugation space, then M is a conjugation space.
Using this, we extend results of Goldin and the second author [9] to show that
in certain cases, the symplectic reduction is again a conjugation space. To do
this, we must construct a ring isomorphism

κred : H2∗(M//T (µ))→ H∗((M//T (µ))τred ),

and a section

σred : H2∗(M//T (µ))→ H2∗
C (M//T (µ))

that satisfy the conjugation equation.

Let Φ: M → t∗ be the moment map for M . When µ ∈ t∗ is a regular value of
Φ, and when T acts on Φ−1(µ) freely, we define the symplectic reduction

M//T (µ) = Φ−1(µ)/T.
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Kirwan [16] proved that the inclusion map Φ−1(µ) →֒ M induces a surjection
in equivariant cohomology with rational coefficients:

H∗T (M ; Q) K // // H∗T (Φ−1(µ); Q) = H∗(M//T (µ); Q). (8.4)

The map K is called the Kirwan map. Under additional assumptions on the
torsion of the fixed point sets and the group action, this map is surjective over
the integers or Z2 as well. There are several ways to compute the kernel of K .
Tolman and Weitsman [27] did so in the way that is most suited to our needs.

Goldin and the second author extend these two results to the real locus, when
the the torus action has suitable 2-torsion.

Definition 8.10 Let x ∈M , and suppose H is the identity component of the
stabilizer of x. Then we say x is a 2-torsion point if there is a weight α of the
isotropy action of H on the normal bundle νxM

H that satisfies α ≡ 0 mod 2.

The necessary assumption is that M τ have no 2-torsion points. This hypothesis
is reasonably strong. Real loci of toric varieties and coadjoint orbits in type
An satisfy this hypothesis, for example, but the real loci of maximal coadjoint
orbits in type B2 do not.

We now define reduction in the context of real loci. Fix µ a regular value
of Φ satisfying the condition that T acts freely on Φ−1(µ). Then Mred =
M//T (µ) is again a symplectic manifold with a canonical symplectic form ωred .
Moreover, there is an induced involution τred on Mred , and this involution is
anti-symplectic. Thus, the fixed point set of this involution (M//T (µ))τred is a
Lagrangian submanifold of M . We now define

M τ//T2(µ) := ((Φ|Mτ )−1(µ))/T2.

When T acts freely on the level set, Goldin and the second author [9] show
that

(M//T (µ))τred = M τ//T2(µ).

We can now start proving that, under certain hypotheses, the quotient M//T (µ)
is a conjugation space. We begin by constructing the isomorphism κred .

Proposition 8.11 Suppose M is a compact symplectic manifold equipped

with a Hamiltonian action of a torus T and a compatible smooth anti-symplectic

involution τ . Suppose further that MT is a conjugation space, and that M
contains no 2-torsion points. Then there is an isomorphism

κred : H2∗(M//T (µ))
≈
−→ H∗(M τ//T (µ)) = H∗((M//T (µ))τred ),

induced by κ.
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Proof The first main theorem of [9] states that when M τ contains no 2-torsion
points, the real Kirwan map in equivariant cohomology

Kτ : H∗T2
(M τ )→ H∗T2

(Φ|−1
Mτ (µ)) = H∗(M τ//T (µ)),

induced by inclusion, is a surjection. The proof of surjectivity makes use of
the function ||Φ − µ||2 as a Morse-Kirwan function on M τ . The critical sets
of this function are possibly singular, but the hypothesis that the real locus
have no 2-torsion points allows enough control over these critical sets to prove
surjectivity.

Let x ∈ MT . By assumption x is not a 2-torsion point, so Condition (3) of
Lemma 8.1 is satisfied. Lemma 8.1 then implies that MT = MT2 . We now
show that there is a commutative diagram

H2∗
T (M)

κ̄ ≈
��

// i // H2∗
T (MT )

≈κ
��

H∗T2
(M τ ) // iτ // H∗T2

((M τ )T2)

(8.5)

where the horizontal arrows are induced by inclusions. To see this, we first
note that because MT is a conjugation space, then MT is a conjugation space
by Corollary 8.5, which also gives the left isomorphism κ̄. The trivial T -
action on MT is also compatible with τ . By Theorem 7.5, one have a ring
isomorphism κ : H2∗

T (MT )
≈
−→ H∗T2

(M τ∩MT ). As MT = MT2 , we deduce that

M τ ∩MT = (M τ )T2 by Lemma 8.1, whence the the right vertical isomorphism
κ.

Diagram (8.5) is commutative by the naturality of H∗ -frames (Proposition
3.14). Finally, M τ is T2 -equivariantly formal over Z2 by Lemma 8.2. Therefore
iτ is injective by, e.g. [1, Proposition 1.3.14]. It follows that i is also injective.

Note that Kirwan showed that i is injective when the coefficient ring is Q.
However, an additional assumption on MT is needed to extend her proof to the
coefficient ring Z2 , so we may not conclude that directly.

We denote the restriction of a class α ∈ H∗T (M τ ) to the fixed points by
α|(Mτ )T2

∈ H∗T2
((M τ )T2). The second main result of [9] computes the kernel of

Kτ . For every ξ ∈ t, let

M τ
ξ = {p ∈M τ | 〈Φ(p), ξ〉 ≤ 0} ⊆M τ .

Let F = MT denote the fixed point set, and let

Kτ
ξ =

{

α ∈ H∗T (M τ )

∣

∣

∣

∣

α|F∩Mτ
ξ

= 0

}

.
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Finally, let Kτ be the ideal generated by the ideals Kτ
ξ for all ξ ∈ t. Then

there is a short exact sequence, in cohomology with Z2 coefficients,

0→ Kτ → H∗T (M τ )→ H∗(M τ//T (µ))→ 0.

The important thing to notice is that this description of the kernel is identical

to the description of the kernel for M , given by Tolman and Weitsman, when
M contains no 2-torsion points. The fact that Diagram 8.5 commutes implies
that the support of a class κ(α) is the real locus of the support of α. Therefore,
there is a natural isomorphism between K and Kτ induced by κ. Thus, we
have a commutative diagram:

0 // K //

≈

��

H2∗
T (M)

K //

κ ≈

��

H2∗(M//T (µ)) //

���
�

�

0

0 // Kτ // H∗T (M τ )
Kτ

// H∗(M τ//T (µ)) // 0

Therefore, the vertical dashed arrow represents an induced isomorphism

κred : H2∗(M//T (µ))
≈
−→ H∗(M τ//T (µ)), (8.6)

as rings.

Now that we have established the isomorphism κred between the cohomology
of the symplectic reduction and the cohomology of its real points, we must
find the map σred and prove the conjugation relation. We have the following
commutative diagram:

H2∗(MT )

K
����

σ --
H2∗

C (MT )

KC

��

ρ
oooo

H2∗(M//T ) H2∗
C (M//T )

ρredoo

As the diagram commutes, we see that ρred is a surjection. Moreover, because K
is a surjection, we may choose an additive section s : H2∗(M//T )→ H2∗(MT )
and then define a section σred := KC ◦ σ ◦ s of ρred . Adding the restriction
maps into the diagram, we have:

H2∗(MT )

K
����

σ --
H2∗

C (MT )

KC

��

ρ
oooo r // H2∗

C (M τ
T ) ≈ H2∗(M τ

T )[u]

Kτ⊗1
��

H2∗(M//T )

s

TT

σred

00 H
2∗
C (M//T )

ρredoooo
rred

// H2∗
C ((M//T )τ ) ≈ H∗((M//T )τ )[u]

(8.7)
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Now we check, for a ∈ H2m(M//T ),

rred(σred(a)) = rred(KC ◦ σ ◦ s(a))

= Kτ ⊗ 1(r(σ(s(a))))

= Kτ ⊗ 1(κ(s(a))um + ℓtm)

= κred(a)um + ℓtm.

Thus, by the commutativity of diagram (8.7), we have proved the conjugation
equation, and hence the following theorem.

Theorem 8.12 Let M be compact symplectic manifold equipped with a

Hamiltonian action of a torus T , with moment map Φ, and with a compatible

smooth anti-symplectic involution τ . Suppose that MT is a conjugation space

and that M contains no 2-torsion points. Let µ be a regular value of Φ such

that T acts freely on Φ−1(µ). Then, M//T (µ) is a conjugation space.

Remark 8.13 When T = S1 in Theorem 8.12, the symplectic cuts C± at
µ introduced by E. Lerman [17] also inherit an Hamiltonian S1 -action and a
compatible anti-symplectic involution. The connected components of CT

± are
those of MT plus a copy of M//T (µ). By Theorem 8.12, CT

± are conjugation
spaces. Therefore, using Theorems 8.3 and Corollary 8.5, we deduce that C±
and (C±)T are conjugation spaces.
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