
ISSN 1472-2739 (on-line) 1472-2747 (printed) 769

Algebraic & Geometric Topology

ATGVolume 5 (2005) 769–784

Published: 23 July 2005

Pinwheels and bypasses

Ko Honda

William H. Kazez

Gordana Matić
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1 Introduction

In this paper we assume that our 3-manifolds are oriented and our contact struc-
tures cooriented. Let Σ be a convex surface, i.e., it admits a [−ε, ε]-invariant
contact neighborhood Σ× [−ε, ε], where Σ = Σ×{0}. We do not assume that a
convex surface Σ is closed or compact, unless specified. According to a theorem
of Giroux [4], if Σ 6= S2 is closed or compact with Legendrian boundary, then Σ
has a tight neighborhood if and only if its dividing set ΓΣ has no homotopically
trivial closed curves. (In the case when Σ is not necessarily compact, Σ has a
tight neighborhood if ΓΣ has no homotopically trivial dividing curves, although
the converse is not always true.) In this paper we study the following:

Question 1.1 Suppose we attach a family of bypasses B = {Bα}α∈A along
a disjoint family of Legendrian arcs C = {δα}α∈A to a product tight contact
structure on Σ × [−ε, ε]. When is the resulting contact manifold tight?

A closed Legendrian arc δα , along which a bypass Bα for Σ is attached, is called
a Legendrian arc of attachment. Every arc of attachment begins and ends on ΓΣ

and has three intersection points with ΓΣ , all of which are transverse. In this
paper all bypasses are assumed to be attached “from the front”, i.e., attached
along Σ × {ε} from the exterior of Σ × [−ε, ε], and all arcs of attachment are
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770 Honda, Kazez and Matić

assumed to be embedded, i.e., there are no “singular bypasses”. Recall from
[5] that attaching Bα from the front and isotoping the surface Σ across the
bypass is locally given by Figure 1. Denote by (Σ, C) the contact manifold
(Σ × [−ε, ε]) ∪ (∪αN(Bα)), where N(Bα) is an invariant neighborhood of Bα .

We will show that the key indicator of overtwistedness in the resulting contact
manifold (Σ, C) is a polygonal region in Σ called a pinwheel. First consider an
embedded polygonal region P in Σ whose boundary consists of 2k consecutive
sides γ1, α1, γ2, α2, . . . , γk, αk in counterclockwise order, where each γi is a sub-
arc of ΓΣ and each αi is a subarc of a Legendrian arc of attachment δi ∈ C .
Here k ≥ 1. In this paper, when we refer to a “polygon”, we will tacitly assume
that it is an embedded polygonal region of the type just described. Now orient
the sides using the boundary orientation of P . A pinwheel is a special type of
polygon P , where, for each i = 1, . . . , k , δi extends past the final point of αi

(not past the initial point) and does not reintersect P . (If k > 1, then this is
equivalent to asking δi to extend past γi+1 , where i is considered modulo k .)
Figure 3 gives an example of a pinwheel.

It is easy to see that, if Σ is closed or compact with Legendrian boundary,
then the addition of bypasses along all the arcs of attachment of a pinwheel
produces an overtwisted disk manifested by a contractible curve in the resulting
dividing set. Hence, the nonexistence of pinwheels is a necessary condition
for the new contact structure to be tight. Essentially, we are asking that no
closed, homotopically trivial curves be created when some or all of the bypasses
are attached. We will prove that the nonexistence of pinwheels is a sufficient
condition as well, if Σ is a disk with Legendrian boundary.

Σ

δα
→

Figure 1: Adding a bypass

Theorem 1.2 Let Σ be a convex disk with Legendrian boundary and with a
tight neighborhood, and let C be a finite, disjoint collection of bypass arcs of
attachment on Σ. Denote by (Σ, C) the contact structure on Σ × I obtained
by attaching to the product contact neighborhood of Σ bypasses along all the
arcs in C . Then (Σ, C) is tight if and only if there are no pinwheels in Σ.

If a compact convex surface Σ has π1(Σ) 6= 0, then Theorem 1.2 is modified to
allow virtual pinwheels – a virtual pinwheel is an embedded polygon P which
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becomes a pinwheel in some finite cover of Σ. In other words, since the fun-
damental group of every compact surface is residually finite, a virtual pinwheel
P is either already a pinwheel or the arcs of attachment δi which comprise its
sides may extend beyond the polygon, encircle a nontrivial element in π1(Σ, P )
and return to the polygon. Figure 2 gives examples of arcs of attachment which
we will show result in overtwisted contact structures. The figure to the left is
a pinwheel, the one to the right is an example of a virtual pinwheel.

Figure 2: A pinwheel and a virtual pinwheel

Theorem 1.3 Let Σ 6= S2 be a convex surface which is closed or compact with
Legendrian boundary and which has a tight neighborhood, and let C be a finite
disjoint collection of arcs of attachment. Then the following are equivalent:

(1) (Σ, C) is universally tight.

(2) There are no virtual pinwheels in Σ.

Remark 1.4 A pinwheel P may nontrivially intersect arcs of C in its interior.
Any such arc δ′ would cut P into two polygons, and one of the two polygons
P ′ will satisfy the definition of a pinwheel, with the possible exception of the
condition that δ′ not reintersect P ′ . (If δ′ does not reintersect P ′ , then we
can shrink P to P ′ .)

2 Proof of Theorem 1.2

Let C be the collection of arcs of attachment and Bδ be the bypass correspond-
ing to δ ∈ C .

The “only if” direction is immediate. If there is a pinwheel P , then let αi ,
i = 1, . . . , k , be the sides of P which are subarcs of δi ∈ C . Then attaching
all the bypasses Bδi

creates a closed homotopically trivial curve, and hence an
overtwisted disk. We can think of this disk as living at some intermediate level
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→

Figure 3: Attaching the bypasses around a pinwheel

Σ×{t} in the contact structure on Σ×I obtained by attaching all the bypasses
determined by arcs in C . See Figure 3.

Remark 2.1 The arcs of attachment may be trivial arcs of attachment. For
example, if only one of them is attached, ΓΣ does not change. However, a
“trivial arc” δj , after it is attached, may affect the positions of the other arcs of
attachment, if they intersect the subarc γ ⊂ ΓΣ which forms a polygon together
with a subarc of δj . Therefore, “trivial” arcs are not necessarily genuinely trivial
as part of a family.

Remark 2.2 It is crucial that an arc δi in the definition of a pinwheel not
return to P . For example, if some δj returns to γj+1 , then no overtwisted
disk appears in a neighborhood of the original P , after all the bypasses Bδi

are
attached.

We now prove the “if” part, namely if there are no pinwheels, then the at-
tachment of C onto the convex disk Σ is tight. In fact, we prove the following
stronger result:

Theorem 2.3 Let Σ be a convex plane whose dividing set ΓΣ has no con-
nected components which are closed curves. If C is a locally finite, disjoint
collection of bypass arcs of attachment on Σ, and Σ has no pinwheels, then
(Σ, C) is tight.

Reduction of Theorem 2.3 to Theorem 1.2 Since any overtwisted disk
will live in a compact region of Σ × [−ε, ε], we use an exhaustion argument
to reduce to the situation where we have a closed disk D with Legendrian
boundary, and C is a finite collection of arcs of attachment which avoid ∂D .
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There is actually one subtlety here when we try to use the Legendrian Real-
ization Principle (LeRP) on a noncompact Σ to obtain Legendrian boundary
for D – it is that there is no bound on the distance (with respect to any com-
plete metric on Σ) traveled by ∂D during the isotopy given in the proof of
the Giroux Flexibility Theorem. Hence we take a different approach, namely
exhausting Σ by convex disks Di where ∂Di is not necessarily Legendrian, and
then extending Di to a convex disk D′

i with Legendrian boundary and without
pinwheels.

Let D1 ⊂ D2 ⊂ . . . be such an exhaustion of Σ, with the additional property
that ∂Di ⋔ ΓΣ and moreover at each intersection point x the characteristic
foliation and ∂Di agree on some small interval around x. Consider a rectangle
R = [0, n] × [0, 1] with coordinates (x, y). Let s be an arc on ∂Di between
two consecutive intersections of ΓΣ ∩ ∂Di . Take a diffeomorphism which takes
s to x = 0; let ξ be the induced contact structure in a neighborhood of x = 0.
It is easy to extend ξ to (a neighborhood of) y = 0 and y = 1 so that they
become dividing curves. Now the question is to extend ξ to all of R so that
x = n is Legendrian. Let R′ = [0, n] × [ε′, 1 − ε′] ⊂ R be a slightly smaller
rectangle. We write the sought-after invariant contact form on R′ × [−ε, ε] as
α = dt + β , where t is the coordinate for [−ε, ε], β is a form on R′ which does
not depend on t, and dβ is an area form on R′ . Provided n is sufficiently large,∫
∂R′ β will be positive, regardless of β on x = 0. Let ω be an area form on

R′ which agrees with dβ on ∂R′ and satisfies
∫
R′ ω =

∫
∂R′ β . Extend β|∂R′ to

any 1-form β′ on R′ (not necessarily the primitive of an area form). Since dβ′

agrees with ω on ∂R′ , consider ω − dβ′ .
∫
R′

ω − dβ′ = 0 and ω − dβ′ = 0 on
∂R′ , so by the Poincaré lemma there is a 1-form β′′ with β′′|∂R′ = 0, so that
ω − dβ′ = dβ′′ . Therefore, the desired β on R′ is β′ + β′′ . Since there are only
finitely many components of ΓΣ ∩Di , we obtain D′

i by attaching finitely many
rectangles of the type described above.

Let us now consider the pair (D, C) consisting of a convex disk D with Legen-
drian boundary (and dividing set ΓD ) and a finite collection C of Legendrian
arcs of attachment for D . We now prove the following:

Proposition 2.4 If (D, C) has no pinwheels, then (D, C) is tight.

Proof The idea is to induct on the complexity of the situation. Here, the
complexity c(D, C) of (D, C) is given by c(D, C) = #ΓD + #C , where #ΓD is
the number of connected components of ΓD and #C is the number of bypass
arcs in C . Given (D, C) we will find a pair (D′, C′) of lower complexity, where
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(D, C) is tight if (D′, C′) is tight, and (D′, C′) has no pinwheels if (D, C) has
no pinwheels.

The proof will proceed by showing that there are three operations, which we
call A, B, and C, one of which can always be performed to reduce the com-
plexity until there are no bypasses left. Operation A removes (unnecessary)
isolated ∂ -parallel arcs. If isolated ∂ -parallel arcs do not exist, we apply one of
Operations B and C. If there is a trivial bypass in C , Operation B removes an
“innermost” trivial bypass, i.e., we show that performing the bypass attachment
gives a configuration with lower complexity which is tight if and only if the orig-
inal configuration was tight. Otherwise, Operation C removes an “outermost”
nontrivial bypass by embedding the configuration into one of lower complexity.
Since each step is strictly complexity-decreasing, and we can always do at least
one of them, we can always perform the inductive step. This will prove the
proposition and the theorem.

2.1 Operation A: isolated ∂ -parallel arc

Suppose ΓD has a ∂ -parallel arc γ which does not intersect any component
of C . (Recall that arcs of attachment are assumed to be closed and hence no
component of C begins or ends on γ .) We then extend D to D′ so that tb(D′) =
tb(D) + 1 and ΓD′ is obtained from ΓD by connecting one of the endpoints of
γ to a neighboring endpoint of another arc in ΓD . (See Figure 4.) It is clear
that since the configuration (D, C) can be embedded into the configuration
(D′, C′ = C), and vice versa, (D, C) tight is equivalent to (D′, C′) tight, and
(D, C) having no pinwheels is equivalent to (D′, C′) with no pinwheels.

D

D′

γ

Figure 4: The new D′
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2.2 Operation B: trivial bypasses

Suppose there is a trivial arc of attachment δ in C . Let γ be the connected
component of ΓD that δ intersects at least twice, and let R be a closed half-disk
(polygon) whose two sides are a subarc of δ and a subarc γ0 of γ . As shown
in Figure 5, we choose R to be such that, with respect to the orientation of δ

induced by ∂R, the subarc of δ contained in ∂R starts at an interior point of δ .
If C −{δ} nontrivially intersects int(R), then let δ′ be an arc of C −{δ} which
is outermost in R, i.e., cuts off a subpolygon of R which does not intersect
C −{δ} in its interior. Define R′ and γ′

0 analogously for δ′ . (Note that R′ may
or may not be a subset of R.) We rename δ′ , R′ and γ′

0 by omitting primes.
Therefore, we may assume that δ , γ , and R satisfy the property that int(R)
does not intersect any arc of C , although there may be endpoints of arcs of
C − {δ} along γ0 . By the very definition of R, the third point of intersection
between δ and ΓD cannot be in γ0 .

p

γ
γ0

δ

R

Figure 5: A trivial arc of attachment

Now, let D = D′ and let ΓD′ be the dividing set obtained from ΓD by attaching
the bypass δ (the dividing set is modified in a neighborhood of δ). The isotopy
type of ΓD and ΓD′ are the same. However, C′ is identical to C − {δ} with
the following exception: arcs δi ∈ C − {δ} which ended on γ0 ⊂ γ now end on
(what we may think of as) a small interval of ΓD′ = ΓD around p. See Figures
6 and 7, which both depict what happens locally near δ . We emphasize that
in Figures 6 and 7 the two dividing curves may be part of the same dividing
curve.

Claim If (D, C) has no pinwheels then neither does (D′, C′).

Proof For an arc δi in C − {δ} with an endpoint q on γ0 , let δ′i be its image
in C′ . If a pinwheel P ′ of D′ has a subarc of δ′i as a side and q as a vertex, it is
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clear that there was a pinwheel P of D which had subarcs of δi and δ as sides.
The pinwheels P and P ′ are basically the same region of D – all the sides are
the same except that P has two extra vertices, p and r , and two extra sides.
Here r is the middle intersection point of δ with ΓD as in Figure 6.

δi δ′i

p

γ q r

δ

P P ′

Figure 6: Pinwheels in D and D′

On the other hand, suppose P ′ is a pinwheel of D′ which does not involve any
subarcs which used to intersect γ0 . Then P ′ must either completely contain
or be disjoint from the region K ′ given in Figure 7. However, apart from K ′

(and the corresponding region K in D), (D, C−{δ}) and (D′, C′) are identical.
Hence P ′ must have descended from a pinwheel for D .

K ′K

Figure 7: Pinwheels in D and D′

2.3 Operation C: outermost nontrivial bypass

Suppose all the arcs of C are nontrivial and there are no isolated ∂ -parallel
arcs. Then we have the following:
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Claim There exists an “outermost” arc δ with the following property: there
exists an orientation/parametrization of δ so it intersects distinct arcs γ3 , γ2 ,
γ1 of ΓD in that order, and if R ⊂ D is the closed region cut off by the subarc α

of δ from γ3 to γ2 and subarcs of γ2 and γ3 so that the boundary orientation
on α induced from R and the orientation from δ are opposite, then int(R)
does not intersect any other arcs of C .

δ

R

γ3

γ2 γ1

γ3

γ2 γ1

R′

γ2,3

Figure 8: An outermost bypass arc

Proof Let γ be a ∂ -parallel arc of ΓD . Since there are no isolated ∂ -parallel
arcs or trivial bypasses, γ contains an endpoint of at least one arc of attachment
in C . Of all such arcs of attachment ending on γ , choose the “rightmost” one
δ , if we represent D as the unit disk, γ is in the x-axis, and the half-disk cut
off by γ with no other intersections with ΓD is in the lower half-plane. Now
orient δ so that γ3 = γ and denote by γ2 the next arc in ΓD that δ intersects.
Let R be the region bounded by γ3 , δ , γ2 and an arc in the boundary of D ,
so that the boundary orientation of R and the orientation of δ are opposite.
There are no endpoints of arcs of C−{δ} along ∂R∩γ3 , but there may certainly
be arcs which intersect int(R) and ∂R ∩ γ2 . If there are no ∂ -parallel arcs in
int(R), then we are done. Otherwise, take the clockwisemost ∂ -parallel arc
γ′ of ΓD (along ∂D) in int(R), and let δ′ be the rightmost arc of C starting
from γ′ . Its corresponding region R′ is strictly contained in R; hence if we
rename everything by removing primes and reapply the same procedure, then
eventually we obtain γ , δ , and R so that no arc of C intersects int(R).
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Let δ be an outermost bypass (in the sense of the previous claim). Then there
exists an extension D′ of D , where tb(D′) = tb(D)+1 and ΓD′ is obtained from
ΓD by connecting the endpoints of γ2 and γ3 (those which are corners of R)
by an arc. If γ2,3 is the resulting connected component of ΓD′ which contains
γ2 and γ3 , then γ2,3 and δ cobound a disk region R′ ⊂ D′ that contains R.
Observe that D′ has a tight neighborhood, i.e., ΓD′ contains no closed loops,
because γ2 and γ3 were distinct arcs of ΓD . Now set C′ = C . Then (D′, C′)
has lower complexity than (D, C). It is clear that (D′, C′) has no pinwheels:
any pinwheel P ′ of (D′, C′) is either already a pinwheel in (D, C) or contains
R′ . However, any pinwheel that contains R′ must extend beyond δ , and hence
must contain a sub-pinwheel P with a side δ inherited from (D, C).

3 Proof of Theorem 1.3

(1) ⇒ (2) is clear. Namely, if there is a virtual pinwheel in Σ, there is a
pinwheel in some finite cover, and hence that cover is overtwisted.

(2) ⇒ (1) Assume that, on the contrary, (Σ, C) is not universally tight. Let
D be a disk in the universal cover such that restriction to D × I contains the
overtwisted disk. We can find a finite cover Σ̃ of Σ that contains that disk,
and by modifying the characteristic foliation using LeRP if necessary, we can
assume that the disk has Legendrian boundary. Then by Theorem 1.2 there is
a pinwheel P in Σ̃. We will show that this implies the existence of a virtual
pinwheel in Σ.

Let π : Σ̃ → Σ be the projection map and P be the set of polygons R of Σ
which are minimal in the sense that they do not contain smaller subpolygons.
Then we can define the weight function w : P → Z, which assigns to each R ∈ P
the degree of π−1(R)∩P over R. We illustrate this definition in Figure 9. The
shaded area in the left half of the picture is the pinwheel P in Σ̃. The polygonal
regions in Σ are labeled by integers 0, 1 and 2 according to the value that w

takes on them. Our sought-after virtual pinwheel P ′ ⊂ Σ is then one connected
component of the union of all R ∈ P which attain the maximal value of w . (In
the figure there is only one component.)

First observe that w cannot be locally constant, since P is strictly contained in
either the positive region R+(ΓeΣ) or the negative region R−(ΓeΣ) – for conve-
nience let us suppose it is R+ . Next we show that the values of w are different
for any two polygonal regions R1 and R2 inside R+(ΓΣ) which are adjacent
along a subarc of an arc δ ∈ C that lifts to a boundary arc δ̃ of P . More
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1 2 2 1

0

δa
P R1

R2

→
δ̃2 δ̃1ã2 ã1

Figure 9: Construction of a virtual pinwheel

precisely, orient δ so that it starts in R+ , and denote by R1 the region to the
left of it and by R2 the region to the right (see Figure 9). Then we claim that
w(R1) > w(R2).

To prove the claim, first note that R1 6= R2 . If, on the contrary, R1 = R2 = R,
then there is an oriented closed curve α such that α\δ ⊂ int(R) which is “dual”
to the arc δ in the sense that they intersect transversely and 〈δ, α〉 = +1.
Observe that any connected component α̃ of π−1(α)∩P must enter and exit P

along components (say δ̃1 and δ̃k ) of π−1(δ). Now, the orientation of δ induces
an orientation on the arcs in π−1(δ), and the induced orientation on δ̃1 and δ̃k

(as seen by intersecting with α̃) is inconsistent with the chirality involved in
the definition of a pinwheel.

To see what value w takes on R1 and R2 , let us look at the components
δ̃i , i = 1, . . . , n, of π−1(δ), and denote by o(δ), i(δ) and b(δ) the number
of components that are respectively on the outside, in the interior, or on the
boundary of P . Every time a component δ̃i of π−1(δ) appears on the boundary
of P , the minimal subpolygon of P adjacent to δ̃i must project to the region R1 .
Hence w(R1) = i(δ) + b(δ) and w(R2) = i(δ), and therefore w(R1) > w(R2).

We will now prove that P ′ is a polygon. We first claim that

π : π−1(P ′) ∩ P → P ′

is a covering map. Indeed, any subpolygon of P ′ lifts to max(w) subpolygons
of P . Moreover, if a is a subarc of an arc δ′ ∈ C , and a is in int(P ′), then
no component ãi of the lift of a can be a side of P , since two regions adjacent
to it have equal values of w . If U is a neighborhood of a point on a in P ′ ,
then π−1(U) ∩ P consists of max(w) copies of U . Now that we know that
π−1(P ′) ∩ P covers P ′ , P ′ must be simply connected, since π−1(P ′) ∩ P must
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be a union of subpolygons of P ′ (hence simply connected), and the cover is a
finite cover.

Finally, δ ∈ C which is a side of P ′ and returns to P ′ must enclose a nontrivial
element of π1(Σ, P ′) ≃ π1(Σ); otherwise it cobounds a disk together with P ′ ,
and no cover of Σ will extricate the relevant endpoint of δ from P ′ (and hence
P ).

Question 3.1 Can we generalize Theorem 1.2 to the case where we have nested
bypasses? What’s the analogous object to the pinwheel in this case?

4 Virtual Pinwheels and Tightness

In this section we will discuss the following question:

Question 4.1 Can we give a necessary and sufficient condition for (Σ, C) to be
tight, if Σ is a convex surface which is either closed or compact with Legendrian
boundary?

We will present a partial answer to this question. Before we proceed, we first
discuss a useful technique called Bypass Rotation. Let Σ be a convex boundary
component of a tight contact 3-manifold (M, ξ), and let δ1 and δ2 be disjoint
arcs of attachment on Σ. The bypasses are to be attached from the exterior of
M , and attached from the front in the figures. Suppose there is an embedded
rectangular polygon R, where two of the sides are subarcs of δ1 and δ2 and
the other two sides are subarcs γ1 and γ2 of ΓΣ . Assume δ1 and δ2 both
extend beyond γ1 and do not reintersect ∂R. If we position R, δ1 , and δ2 as
in Figure 10, so that, with the orientation induced from R, γ1 starts on δ2 and
ends on δ1 , then we say that δ1 lies to the left of δ2 .

δ1 δ2
γ1

γ2

R

Figure 10: δ1 is to the left of δ2
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The next lemma shows that the arc of attachment of a bypass can be “rotated
to the left” and still preserve tightness. For convenience, let M(δ1, . . . , δk) be a
contact manifold obtained by attaching k disjoint bypasses from the exterior,
along arcs of attachment δ1, . . . , δk .

Lemma 4.2 (Bypass Rotation) Let (M, ξ) be a contact 3-manifold, and δ1, δ2

be arcs of attachment on a boundary component Σ of M . If δ1 is to the left
of δ2 and M(δ2) is tight, then M(δ1) is also tight.

Proof If M(δ2), is tight, then M(δ1, δ2) = (M(δ2))(δ1) is also tight, since
attaching δ2 makes δ1 a trivial arc of attachment. Now, M(δ1, δ2) is also
(M(δ1))(δ2), so M(δ1) must be tight.

δ δ

κ

β

Σ (Σ, {κ})

Figure 11: Creating extra dividing curves

It is clear that if there is an actual pinwheel P in Σ, then (Σ, C) is not tight.
It is often possible to make the same conclusion in the presence of a virtual
pinwheel P by using the technique of Bypass Rotation. In fact, assume that
there is a virtual pinwheel P in Σ and let δ be an arc of attachment which
encircles a nontrivial element of π1(Σ, P ). Suppose δ has been oriented so that
its orientation coincides with the orientation on ∂P . If δ can be rotated to
the left so that the final point of δ is shifted away from P , then the newly
obtained configuration contains a pinwheel, and hence (Σ, C) is overtwisted by
Lemma 4.2. Even if there are no arcs of ΓΣ − ∂P to which we can rotate δ

without hitting other bypass arcs of attachment, we can often perform a folding
operation. This operation can be described in two equivalent ways (see [8] for
details): Either add a bypass along the arc κ as in Figure 11 to obtain the
contact structure (Σ, C ∪ {κ}), or fold along a Legendrian divide to create a
pair of parallel dividing curves “along” δ . Since both operations can be done
inside an invariant neighborhood of Σ, (Σ, C ∪ {κ}) is tight if (Σ, C) is. Now,
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rotating δ to the left, we can move the endpoint of δ to be on one of the newly
created parallel dividing curves – this yields the bypass β pictured in Figure 11.
The configuration (Σ, C′) obtained from (Σ, C ∪ {κ}) by replacing δ by β is
tight if (Σ, C) is tight. However, by repeated application of this procedure
if necessary, we will often be able to eventually obtain a genuine pinwheel P ,
hence showing that (Σ, C) is overtwisted. More precisely, we have the following:

Proposition 4.3 Let P be a virtual pinwheel in Σ and δ ∈ C be an arc of
attachment on ∂P which returns to P . Decompose δ = δ0 ∪ δ1 , where δi ,
i = 0, 1, have endpoints on ΓΣ and δ0 ⊂ ∂P . Orient δ to agree with the
orientation on ∂P . Let Q be a connected component of Σ \ (ΓΣ ∪ (∪β∈Cβ)) so
that δ1 ⊂ ∂Q and the orientation on δ1 agrees with the orientation on ∂Q. If
one of the following is true for each δ , then (Σ, C) is overtwisted:

(1) Q is not a polygon.

(2) Q is a polygon but has sides in ΓΣ which are not in ∂P .

We now consider the situation in which the Bypass Rotation technique just
described fails. Let P be a minimal pinwheel, i.e., a pinwheel whose interior
does not intersect any arc of attachment in C . Let δ be an attaching arc of P

that returns to P that we cannot “unhook”. Then the region Q described in
Proposition 4.3 must be polygonal and all of the edges of Q that are coming
from the dividing set must be sub-edges of the boundary of P . The minimality
of P forces edges of Q that are attaching arcs to also be edges of P . Thus Q

is an anti-pinwheel, that is, a polygon whose edges which are arcs of attach-
ment are oriented in the direction opposite to that of a pinwheel. Two such
pinwheel/anti-pinwheel pairs are illustrated in Figure 12.

Q

P

Q

P

Figure 12: Examples of anti-pinwheels
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Since there is a virtual pinwheel P in the situation described above, (Σ, C)
is not universally tight by Theorem 1.3. To show that there are cases when
(Σ, C) is tight but virtually overtwisted, we will analyze the situation indicated
in the left portion of Figure 13. Here Σ = T 2 , and we think of Σ × I as a
neighborhood of the boundary of the solid torus. First, we cut the solid torus
along a convex disk D such that its boundary is the curve γ that cuts P ∪ Q

and intersects the dividing set at two points. Next, round the corners that are
shown in Figure 13, and we obtain a tight convex ball. In reverse, we can think
of the solid torus as obtained by gluing two disks D1 and D2 on the boundary
of B3 . The bypasses in the picture correspond to adding trivial bypasses to the
ball. By applying the basic gluing theorem for gluing across a convex surface
with ∂ -parallel dividing set (see for example Theorem 1.6 in [7]), we see that
(Σ, C) is tight.

γ

D1 D2

Figure 13: Cutting the pinwheel

Attempts at generalizing the above technique quickly run into some difficulties.
Suppose we want to iteratively split Σ along a closed curve γ and glue in disks
D1 and D2 . One difficulty (although not the only one) is that at some step in
the iteration we could get an overtwisted structure on (Σ′, C). (Σ′ could form
contractible dividing curves.) On the other hand, this does not necessarily
prove that (Σ, C) is overtwisted; it merely occurs as a subset of a space with an
overtwisted contact structure.

Acknowledgements KH wholeheartedly thanks the University of Tokyo, the
Tokyo Institute of Technology, and especially Prof. Takashi Tsuboi for their
hospitality during his stay in Tokyo during Summer-Fall 2003. He was sup-
ported by an Alfred P. Sloan Fellowship and an NSF CAREER Award. GM
was supported by NSF grants DMS-0072853 and DMS-0410066 and WHK was
supported by NSF grants DMS-0073029 and DMS-0406158. The authors also
thank the referee for helpful comments.

Algebraic & Geometric Topology, Volume 5 (2005)



784 Honda, Kazez and Matić
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