All integral slopes can be Seifert fibered slopes for hyperbolic knots

Kiminiko Motegi
Hyun-Jong Song

Abstract

Which slopes can or cannot appear as Seifert fibered slopes for hyperbolic knots in the 3 -sphere S^{3} ? It is conjectured that if r-surgery on a hyperbolic knot in S^{3} yields a Seifert fiber space, then r is an integer. We show that for each integer $n \in \mathbb{Z}$, there exists a tunnel number one, hyperbolic knot K_{n} in S^{3} such that n-surgery on K_{n} produces a small Seifert fiber space.

AMS Classification $57 \mathrm{M} 25,57 \mathrm{M} 50$
Keywords Dehn surgery, hyperbolic knot, Seifert fiber space, surgery slopes

This paper is dedicated to Donald M. Davis on the occasion of his 60th birthday.

1 Introduction

Let K be a knot in the 3 -sphere S^{3} with a tubular neighborhood $N(K)$. Then the set of slopes for K (i.e., $\partial N(K)$-isotopy classes of simple loops on $\partial N(K)$) is identified with $\mathbb{Q} \cup\{\infty\}$ using preferred meridian-longitude pair so that a meridian corresponds to ∞. A slope γ is said to be integral if a representative of γ intersects a meridian exactly once, in other words, γ corresponds to an integer under the above identification. In the following, we denote by $(K ; \gamma)$ the 3 -manifold obtained from S^{3} by Dehn surgery on a knot K with slope γ, i.e., by attaching a solid torus to $S^{3}-\operatorname{int} N(K)$ in such a way that γ bounds a meridian disk of the filled solid torus. If γ corresponds to $r \in \mathbb{Q} \cup\{\infty\}$, then we identify γ and r and write $(K ; r)$ for $(K ; \gamma)$.
We denote by \mathcal{L} the set of lens slopes $\left\{r \in \mathbb{Q} \mid \exists\right.$ hyperbolic knot $K \subset S^{3}$ such that ($K ; r$) is a lens space $\}$, where S^{3} and $S^{2} \times S^{1}$ are also considered as lens spaces. Then the cyclic surgery theorem [7] implies that $\mathcal{L} \subset \mathbb{Z}$. A
result of Gabai [10, Corollary 8.3] shows that $0 \notin \mathcal{L}$, a result of Gordon and Luecke [14] shows that $\pm 1 \notin \mathcal{L}$. In [19] Kronheimer and Mrowka prove that $\pm 2 \notin \mathcal{L}$. Furthermore, a result of Kronheimer, Mrowka, Ozsváth and Szabó [20] implies that $\pm 3, \pm 4 \notin \mathcal{L}$. Besides, Berge [4, Table of Lens Spaces] suggests that if $n \in \mathcal{L}$, then $|n| \geq 18$ and not every integer n with $|n| \geq 18$ appears in \mathcal{L}. Fintushel and Stern $[9]$ had shown that 18 -surgery on the $(-2,3,7)$ pretzel knot yields a lens space.
Which slope (rational number) can or cannot appear in the set of Seifert fibered slopes $\mathcal{S}=\left\{r \in \mathbb{Q} \mid \exists\right.$ hyperbolic knot $K \subset S^{3}$ such that $(K ; r)$ is Seifert fibered $\}$? It is conjectured that $\mathcal{S} \subset \mathbb{Z}[12]$.

The purpose of this paper is to prove:
Theorem 1.1 For each integer $n \in \mathbb{Z}$, there exists a tunnel number one, hyperbolic knot K_{n} in S^{3} such that $\left(K_{n} ; n\right)$ is a small Seifert fiber space (i.e., a Seifert fiber space over S^{2} with exactly three exceptional fibers).

Remark Since K_{n} has tunnel number one, it is embedded in a genus two Heegaard surface of S^{3} and strongly invertible [26, Lemma 5]. See [22, Question 3.1].

Theorem 1.1, together with the previous known results, shows:
Corollary $1.2 \quad \mathcal{L} \varsubsetneqq \mathbb{Z} \subset \mathcal{S}$.

Remarks

(1) For the set of reducing slopes $\mathcal{R}=\left\{r \in \mathbb{Q} \mid \exists\right.$ hyperbolic knot $K \subset S^{3}$ such that $(K ; r)$ is reducible $\}$, Gordon and Luecke [13] have shown that $\mathcal{R} \subset \mathbb{Z}$. In fact, the cabling conjecture [11] asserts that $\mathcal{R}=\emptyset$.
(2) For the set of toroidal slopes $\mathcal{T}=\left\{r \in \mathbb{Q} \mid \exists\right.$ hyperbolic knot $K \subset S^{3}$ such that $(K ; r)$ is toroidal $\}$, Gordon and Luecke [15] have shown that $\mathcal{T} \subset \mathbb{Z} / 2$ (integers or half integers). In [28], Teragaito shows that $\mathbb{Z} \subset \mathcal{T}$ and conjectures that $\mathcal{T} \varsubsetneqq \mathbb{Z} / 2$.

Acknowledgements We would like to thank the referee for careful reading and useful comments.
The first author was partially supported by Grant-in-Aid for Scientific Research (No. 15540095), The Ministry of Education, Culture, Sports, Science and Technology, Japan.

2 Hyperbolic knots with Seifert fibered surgeries

Our construction is based on an example of a longitudinal Seifert fibered surgery given in [17].

Let $k \cup c$ be a 2-bridge link given in Figure 1, and let K_{n} be a knot obtained from k by $\frac{1}{-n+4}$-surgery along c.

Figure 1: K_{n}
We shall say that a Seifert fiber space is of type $S^{2}\left(n_{1}, n_{2}, n_{3}\right)$ if it has a Seifert fibration over S^{2} with three exceptional fibers of indices n_{1}, n_{2} and $n_{3}\left(n_{i} \geq 2\right)$. Since K_{4} is unknotted, $\left(K_{4} ; 4\right)$ is a lens space $L(4,1)$. For the other n 's, we have:

Lemma $2.1\left(K_{n} ; n\right)$ is a small Seifert fiber space of type $S^{2}(3,5,|4 n-15|)$ for any integer $n \neq 4$.

Proof Since the linking number of k and c is one (with suitable orientations), ($K_{n} ; n$) has surgery descriptions as in Figure 2.

Figure 2: Surgery descriptions of $\left(K_{n} ; n\right)$

Let us take the quotient by the strong inversion of S^{3} with an axis L as shown in Figure 3.

Then we obtain a branch knot b^{\prime} which is the image of the axis L. The Montesinos trick ([25], [6]) shows that $-\frac{1}{2},-1, \frac{3 n-11}{-n+4}$ and 1 -surgery on t_{1}, t_{2}, c and

Figure 3
k in the upstairs correspond to $-\frac{1}{2},-1, \frac{3 n-11}{-n+4}$ and 1 -untangle surgery on b^{\prime} in the downstairs, where an r-untangle surgery is a replacement of $\frac{1}{0}$-untangle by r-untangle. (We adopt Bleiler's convention [5] on the parametrization of rational tangles.) These untangle surgeries convert b^{\prime} into a link b (Figure 3).

Following the sequence of isotopies in Figures 3 and 4, we obtain a Montesinos link $M\left(\frac{2}{5},-\frac{2}{3}, \frac{n-4}{4 n-15}\right)$.

Since ($K_{n} ; n$) is the double branched cover of S^{3} branched over the Montesinos

Figure 4: Continued from Figure 3
link $M\left(\frac{2}{5},-\frac{2}{3}, \frac{n-4}{4 n-15}\right),\left(K_{n} ; n\right)$ is a Seifert fiber space of type $S^{2}(3,5,|4 n-15|)$ as desired.

Lemma 2.2 The knot K_{n} is hyperbolic if $n \neq 3,4,5$.

Proof Note that the 2 -bridge link given in Figure 1 is not a $(2, p)$-torus link, and hence by [23] it is a hyperbolic link. If $n \neq 3,4,5$, then $|-n+4|>1$ and it follows from [1, Theorem 1] (also [3, Theorem 1.2]) that K_{n} is a hyperbolic knot. See also [16, Corollary A.2], [24, Theorem 1.2] and [2, Theorem 1.1].

Remark It follows from [21], [18] that K_{n} is a nontrivial knot except when $n=4$. An experiment using Weeks' computer program "SnapPea" [31] suggests that K_{3} and K_{5} are hyperbolic, but we will not use this experimental results.

Lemma 2.3 The knot K_{n} has tunnel number one for any integer $n \neq 4$.

Proof Since the link $k \cup c$ is a two-bridge link, the tunnel number of $k \cup c$ is one with unknotting tunnel τ; A regular neighborhood $N(k \cup c \cup \tau)$ is a genus two handlebody and $S^{3}-\operatorname{int} N(k \cup c \cup \tau)$ is also a genus two handlebody, see Figure 5.

Figure 5

Then the general fact below (in which $k \cup c$ is not necessarily a two-bridge link) shows that the tunnel number of K_{n} is less than or equal to one. Since our knot $K_{n}(n \neq 4)$ is knotted in S^{3}, the tunnel number of K_{n} is one.

Claim 2.4 Let $k \cup c$ be a two component link in S^{3} which has tunnel number one. Assume that c is unknotted in S^{3}. Then every knot obtained from k by twisting along c has tunnel number at most one.

Proof Let τ be an unknotting tunnel and V a regular neighborhood of $k \cup c \cup \tau$ in $S^{3} ; V$ is a genus two handlebody. Since τ is an unknotting tunnel for $k \cup c$, by definition, $W=S^{3}-\operatorname{int} V$ is also a genus two handlebody. Take a small tubular neighborhood $N(c) \subset \operatorname{int} V$ and perform $-\frac{1}{n}$-surgery on c using $N(c)$. Then we obtain a knot k_{n} as the image of k and obtain a genus two handlebody $V\left(c ;-\frac{1}{n}\right)$. Note that $V\left(c ;-\frac{1}{n}\right)$ and W define a genus two Heegaard splitting of S^{3}, see Figure 6, where c_{n}^{*} denotes the core of the filled solid torus.

Then it is easy to see that an arc τ_{n} given by Figure 6 is an unknotting tunnel for k_{n} as desired.

Now we are ready to prove Theorem 1.1. Lemmas 2.1, 2.2 and 2.3 show that our knots K_{n} enjoy the required properties, except for $n=3,4,5$. To prove

Figure 6

Theorem 1.1, we find hyperbolic knots K_{n}^{\prime} so that $\left(K_{n}^{\prime} ; n\right)$ is Seifert fibered for $n=3,4,5$ (instead of showing that K_{3}, K_{5} are hyperbolic). As the simplest way, let $K_{3}^{\prime}, K_{4}^{\prime}$ and K_{5}^{\prime} be the mirror image of K_{-3}, K_{-4} and K_{-5}, respectively. Since K_{-3}, K_{-4} and K_{-5} are tunnel number one, hyperbolic knots by Lemmas 2.2 and 2.3, their mirror images $K_{3}^{\prime}, K_{4}^{\prime}$ and K_{5}^{\prime} are also tunnel number one, hyperbolic knots. It is easy to observe that $\left(K_{3}^{\prime} ; 3\right)$ (resp. $\left(K_{4}^{\prime} ; 4\right)$, $\left.\left(K_{5}^{\prime} ; 5\right)\right)$ is the mirror image of $\left(K_{-3} ;-3\right)$ (resp. $\left.\left(K_{-4} ;-4\right),\left(K_{-5} ;-5\right)\right)$. By Lemma 2.1, $\left(K_{-3} ;-3\right),\left(K_{-4} ;-4\right)$ and $\left(K_{-5} ;-5\right)$ are Seifert fibered, and hence $\left(K_{3}^{\prime} ; 3\right),\left(K_{4}^{\prime} ; 4\right)$ and $\left(K_{5}^{\prime} ; 5\right)$ are also Seifert fibered. Putting K_{n} as K_{n}^{\prime} for $n=3,4,5$, we finish a proof of Theorem 1.1.

3 Identifying exceptional fibers

In [24], Miyazaki and Motegi conjectured that if K admits a Seifert fibered surgery, then there is a trivial knot $c \subset S^{3}$ disjoint from K which becomes a Seifert fiber in the resulting Seifert fiber space, and verified the conjecture for several Seifert fibered surgeries [24, Section 6], see also [8]. Furthermore, computer experiments via "SnapPea" [31] suggest that such a knot c is realized by a short closed geodesic in the hyperbolic manifold $S^{3}-K$, for details see [24, Section 9], [27].

In this section, we verify the conjecture for Seifert fibered surgeries given in Theorem 1.1.

Recall that K_{n} is obtained from k by $\frac{1}{-n+4}$-surgery on the trivial knot c (i.e., $(n-4)$-twist along c), see Figure 1. Denote by c_{n} the core of the filled solid torus. Then $K_{n} \cup c_{n}$ is a link in S^{3} such that c_{n} is a trivial knot.

Lemma 3.1 After n-surgery on K_{n}, c_{n} becomes an exceptional fiber of index $|4 n-15|$ in the resulting Seifert fiber space $\left(K_{n} ; n\right)$.

Proof Following the sequences given by Figures 3 and 4, we have a Montesinos link with three arcs γ, τ_{1} and τ_{2} as in Figure 7, where $n=1$ in the final Montesinos link, and $\gamma, \tau_{1}, \tau_{2}$ and κ are the images of c, t_{1}, t_{2} and k, respectively.

Figure 7: Positions of exceptional fibers

From Figure 7 we recognize that t_{1}, t_{2} and c become exceptional fibers of indices 5,3 and $|4 n-15|$, respectively in $\left(K_{n} ; n\right)$.

For $n \neq 3,4,5, c_{n}$ becomes an exceptional fiber of index $|4 n-15|$, which is the unique maximal index, in $\left(K_{n} ; n\right)$. Experiments via "SnapPea" [31] suggest that c_{n} is a shortest closed geodesic in $S^{3}-K_{n}(n \neq 3,4,5)$. For sufficiently large $|n|$, hyperbolic Dehn surgery theorem [29], [30] shows that c_{n} is the unique shortest closed geodesic in $S^{3}-K_{n}$.
Let us assume that $n=3,4,5$. Then we have put K_{n} as the mirror image of K_{-n} in the proof of Theorem 1.1. Let $k^{\prime} \cup c^{\prime}$ be the mirror image of the link $k \cup c$. Then K_{n} is obtained also from k^{\prime} by $\frac{1}{-n-4}$-surgery on c^{\prime} (i.e., $(n+4)$-twist along c^{\prime}); we denote the core of the filled solid torus by c_{n}^{\prime}. Note that there is an orientation reversing diffeomorphism from $\left(K_{-n} ;-n\right)$ to $\left(K_{n} ; n\right)$ sending c_{-n} (regarded as a fiber in $\left.\left(K_{-n} ;-n\right)\right)$ to c_{n}^{\prime} (regarded as a fiber in $\left(K_{n} ; n\right)$). Thus the above observation implies that c_{n}^{\prime} becomes an exceptional fiber of index $|4 n+15|$, which is the unique maximal index, in $\left(K_{n} ; n\right)(n=3,4,5)$.

References

[1] M Aït Nouh, D Matignon, K Motegi; Twisted unknots, C. R. Acad. Sci. Paris, Ser. I 337 (2003), 321-326.
[2] M Aït Nouh, D Matignon, K Motegi; Obtaining graph knots by twisting unknots, Topology Appl. 146-147 (2005), 105-121.
[3] M Aït Nouh, D Matignon, K Motegi; Geometric types of twisted knots, preprint.
[4] J Berge; Some knots with surgeries yielding lens spaces, unpublished manuscript.
[5] S A Bleiler; Knots prime on many strings, Trans. Amer. Math. Soc. 282 (1984), 385-401.
[6] S A Bleiler; Prime tangles and composite knots, in: Knot theory and manifolds (Vancouver, B.C. 1983), Lect. Notes in Math. vol. 1144, Springer-Verlag, 1985, pp. 1-13.
[7] M Culler, C McA Gordon, J Luecke, P B Shalen; Dehn surgery on knots, Ann. Math. 125 (1987), 237-300.
[8] M Eudave-Muñoz; On hyperbolic knots with Seifert fibered Dehn surgeries, Topology Appl. 121 (2002), 119-141.
[9] R Fintushel, R J Stern; Constructing lens spaces by surgery on knots, Math. Z. 175 (1980), 33-51.
[10] D Gabai; Foliations and the topology of 3-manifolds. III, J. Differential Geom. 26 (1987), 479-536.
[11] F González-Acuña, H Short; Knot surgery and primeness, Math. Proc. Cambridge Philos. Soc. 99 (1986), 89-102.
[12] C McA Gordon; Dehn Filling; a survey, Proc. Mini Semester in Knot Theory, Banach Center, Warsaw, Poland, 1995.
[13] C McA Gordon, J Luecke; Only integral surgeries can yield reducible manifolds, Math. Proc. Cambridge Philos. Soc. 102 (1987), 97-101.
[14] C McA Gordon, J Luecke; Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989), 371-415.
[15] C McA Gordon, J Luecke; Dehn surgeries on knots creating essential tori, I, Comm. Anal. Geom. 4 (1995), 597-644.
[16] C McA Gordon, J Luecke; Non-integral toroidal Dehn surgeries, Comm. Anal. Geom. 12 (2004), 417-485.
[17] K Ichihara, K Motegi, H-J Song; Longitudinal Seifert fibered surgeries on hyperbolic knots, preprint.
[18] M Kouno, K Motegi, T Shibuya; Twisting and knot types, J. Math. Soc. Japan 44 (1992), 199-216.
[19] P Kronheimer, T Mrowka; Dehn surgery, the fundamental group and $\mathrm{SU}(2)$. arXiv:math.GT/0312322
[20] P Kronheimer, T Mrowka, P Ozsváth, Z Szabó; Monopoles and lens space surgeries. arXiv:math.GT/0310164
[21] Y Mathieu, Unknotting, knotting by twists on disks and property (P) for knots in S^{3}, Knots 90 (ed. by Kawauchi), Proc. 1990 Osaka Conf. on Knot Theory and Related Topics, de Gruyter, 1992, 93-102
[22] T Mattman, K Miyazaki, K Motegi; Seifert fibered surgeries which do not arise from primitive/Seifert-fibered constructions, Trans. Amer. Math. Soc. (to appear).
[23] W Menasco; Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984), 37-44.
[24] K Miyazaki, K Motegi; Seifert fibered manifolds and Dehn surgery III, Comm. Anal. Geom. 7 (1999), 551-582.
[25] J M Montesinos; Surgery on links and double branched coverings of S^{3}, in: Knots, groups, and 3-manifolds (Papers dedicated to the memory of R H Fox), Ann. Math. Studies 84 (1975), 227-260.
[26] K Morimoto; There are knots whose tunnel numbers go down under connected sum, Proc. Amer. Math. Soc. 123 (1995), 3527-3532.
[27] K Motegi; An experimental study of Seifert fibered Dehn surgery via SnapPea, in: Proceedings of the Winter Workshop of Topology/Workshop of Topology and Computer (Sendai, 2002/Nara, 2001), Interdisc. Inform. Sci. 9 (2003), 95-125.
[28] M Teragaito; Toroidal surgeries on hyperbolic knots, Proc. Amer. Math. Soc. 130 (2002), 2803-2808.
[29] W P Thurston; The geometry and topology of 3-manifolds, Lecture notes, Princeton University, 1979.
http://www.msri.org/publications/books/gt3m/
[30] W P Thurston; Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.
[31] J Weeks; SnapPea: a computer program for creating and studying hyperbolic 3-manifolds, freely available from http://geometrygames.org/SnapPea/

Department of Mathematics, Nihon University
Tokyo 156-8550, Japan
and
Division of Mathematical Sciences, Pukyong National University
599-1 Daeyondong, Namgu, Pusan 608-737, Korea
Email: motegi@math.chs.nihon-u.ac.jp and hjsong@pknu.ac.kr
Received: 10 March 2005 Revised: 25 March 2005

