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All integral slopes can be Seifert fibered slopes

for hyperbolic knots

Kimihiko Motegi

Hyun-Jong Song

Abstract Which slopes can or cannot appear as Seifert fibered slopes for
hyperbolic knots in the 3-sphere S3? It is conjectured that if r -surgery on
a hyperbolic knot in S3 yields a Seifert fiber space, then r is an integer.
We show that for each integer n ∈ Z, there exists a tunnel number one,
hyperbolic knot Kn in S3 such that n-surgery on Kn produces a small
Seifert fiber space.
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1 Introduction

Let K be a knot in the 3-sphere S3 with a tubular neighborhood N(K). Then
the set of slopes for K (i.e., ∂N(K)-isotopy classes of simple loops on ∂N(K))
is identified with Q ∪ {∞} using preferred meridian-longitude pair so that a
meridian corresponds to ∞. A slope γ is said to be integral if a representative
of γ intersects a meridian exactly once, in other words, γ corresponds to an
integer under the above identification. In the following, we denote by (K; γ)
the 3-manifold obtained from S3 by Dehn surgery on a knot K with slope γ ,
i.e., by attaching a solid torus to S3−intN(K) in such a way that γ bounds a
meridian disk of the filled solid torus. If γ corresponds to r ∈ Q ∪ {∞}, then
we identify γ and r and write (K; r) for (K; γ).

We denote by L the set of lens slopes {r ∈ Q | ∃ hyperbolic knot K ⊂ S3

such that (K; r) is a lens space}, where S3 and S2 × S1 are also considered
as lens spaces. Then the cyclic surgery theorem [7] implies that L ⊂ Z. A
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result of Gabai [10, Corollary 8.3] shows that 0 6∈ L, a result of Gordon and
Luecke [14] shows that ±1 6∈ L. In [19] Kronheimer and Mrowka prove that
±2 6∈ L. Furthermore, a result of Kronheimer, Mrowka, Ozsváth and Szabó
[20] implies that ±3,±4 6∈ L. Besides, Berge [4, Table of Lens Spaces] suggests
that if n ∈ L, then |n| ≥ 18 and not every integer n with |n| ≥ 18 appears in
L. Fintushel and Stern [9] had shown that 18-surgery on the (−2, 3, 7) pretzel
knot yields a lens space.

Which slope (rational number) can or cannot appear in the set of Seifert fibered

slopes S = {r ∈ Q | ∃ hyperbolic knot K ⊂ S3 such that (K; r) is Seifert

fibered}? It is conjectured that S ⊂ Z [12].

The purpose of this paper is to prove:

Theorem 1.1 For each integer n ∈ Z, there exists a tunnel number one,

hyperbolic knot Kn in S3 such that (Kn;n) is a small Seifert fiber space (i.e.,
a Seifert fiber space over S2 with exactly three exceptional fibers).

Remark Since Kn has tunnel number one, it is embedded in a genus two
Heegaard surface of S3 and strongly invertible [26, Lemma 5]. See [22, Question
3.1].

Theorem 1.1, together with the previous known results, shows:

Corollary 1.2 L $ Z ⊂ S .

Remarks

(1) For the set of reducing slopes R = {r ∈ Q | ∃ hyperbolic knot K ⊂ S3 such
that (K; r) is reducible}, Gordon and Luecke [13] have shown that R ⊂ Z. In
fact, the cabling conjecture [11] asserts that R = ∅.

(2) For the set of toroidal slopes T = {r ∈ Q | ∃ hyperbolic knot K ⊂ S3 such
that (K; r) is toroidal}, Gordon and Luecke [15] have shown that T ⊂ Z/2
(integers or half integers). In [28], Teragaito shows that Z ⊂ T and conjectures
that T $ Z/2.
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2 Hyperbolic knots with Seifert fibered surgeries

Our construction is based on an example of a longitudinal Seifert fibered surgery
given in [17].

Let k ∪ c be a 2-bridge link given in Figure 1, and let Kn be a knot obtained
from k by 1

−n+4
-surgery along c.

1
n + 4

kc

Figure 1: Kn

We shall say that a Seifert fiber space is of type S2(n1, n2, n3) if it has a Seifert
fibration over S2 with three exceptional fibers of indices n1, n2 and n3 (ni ≥ 2).
Since K4 is unknotted, (K4; 4) is a lens space L(4, 1). For the other n’s, we
have:

Lemma 2.1 (Kn;n) is a small Seifert fiber space of type S2(3, 5, |4n − 15|)
for any integer n 6= 4.

Proof Since the linking number of k and c is one (with suitable orientations),
(Kn;n) has surgery descriptions as in Figure 2.
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Figure 2: Surgery descriptions of (Kn; n)

Let us take the quotient by the strong inversion of S3 with an axis L as shown
in Figure 3.

Then we obtain a branch knot b′ which is the image of the axis L. The Mon-
tesinos trick ([25], [6]) shows that −1

2
,−1, 3n−11

−n+4
and 1-surgery on t1, t2, c and
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k in the upstairs correspond to −1

2
,−1, 3n−11

−n+4
and 1-untangle surgery on b′ in

the downstairs, where an r-untangle surgery is a replacement of 1

0
-untangle

by r-untangle. (We adopt Bleiler’s convention [5] on the parametrization of
rational tangles.) These untangle surgeries convert b′ into a link b (Figure 3).

Following the sequence of isotopies in Figures 3 and 4, we obtain a Montesinos
link M(2

5
,−2

3
, n−4

4n−15
).

Since (Kn;n) is the double branched cover of S3 branched over the Montesinos
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Figure 4: Continued from Figure 3

link M(2

5
,−2

3
, n−4

4n−15
), (Kn;n) is a Seifert fiber space of type S2(3, 5, |4n− 15|)

as desired.

Lemma 2.2 The knot Kn is hyperbolic if n 6= 3, 4, 5.

Proof Note that the 2-bridge link given in Figure 1 is not a (2, p)-torus link,
and hence by [23] it is a hyperbolic link. If n 6= 3, 4, 5, then | − n + 4| > 1 and
it follows from [1, Theorem 1] (also [3, Theorem 1.2]) that Kn is a hyperbolic
knot. See also [16, Corollary A.2], [24, Theorem 1.2] and [2, Theorem 1.1].
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Remark It follows from [21], [18] that Kn is a nontrivial knot except when
n = 4. An experiment using Weeks’ computer program “SnapPea” [31] suggests
that K3 and K5 are hyperbolic, but we will not use this experimental results.

Lemma 2.3 The knot Kn has tunnel number one for any integer n 6= 4.

Proof Since the link k ∪ c is a two-bridge link, the tunnel number of k ∪ c is
one with unknotting tunnel τ ; A regular neighborhood N(k ∪ c∪ τ) is a genus
two handlebody and S3 − intN(k ∪ c ∪ τ) is also a genus two handlebody, see
Figure 5.

kc

t unknotting
tunnel

Figure 5

Then the general fact below (in which k∪c is not necessarily a two-bridge link)
shows that the tunnel number of Kn is less than or equal to one. Since our
knot Kn (n 6= 4) is knotted in S3 , the tunnel number of Kn is one.

Claim 2.4 Let k∪ c be a two component link in S3 which has tunnel number

one. Assume that c is unknotted in S3 . Then every knot obtained from k by

twisting along c has tunnel number at most one.

Proof Let τ be an unknotting tunnel and V a regular neighborhood of k∪c∪τ
in S3 ; V is a genus two handlebody. Since τ is an unknotting tunnel for k∪ c,
by definition, W = S3 − intV is also a genus two handlebody. Take a small
tubular neighborhood N(c) ⊂ intV and perform − 1

n
-surgery on c using N(c).

Then we obtain a knot kn as the image of k and obtain a genus two handlebody
V (c;− 1

n
). Note that V (c;− 1

n
) and W define a genus two Heegaard splitting

of S3 , see Figure 6, where c∗
n

denotes the core of the filled solid torus.

Then it is easy to see that an arc τn given by Figure 6 is an unknotting tunnel
for kn as desired.

Now we are ready to prove Theorem 1.1. Lemmas 2.1, 2.2 and 2.3 show that
our knots Kn enjoy the required properties, except for n = 3, 4, 5. To prove
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Figure 6

Theorem 1.1, we find hyperbolic knots K ′

n so that (K ′

n;n) is Seifert fibered for
n = 3, 4, 5 (instead of showing that K3 , K5 are hyperbolic). As the simplest
way, let K ′

3 , K ′

4 and K ′

5 be the mirror image of K−3 , K−4 and K−5 , respec-
tively. Since K−3 , K−4 and K−5 are tunnel number one, hyperbolic knots
by Lemmas 2.2 and 2.3, their mirror images K ′

3 , K ′

4 and K ′

5 are also tunnel
number one, hyperbolic knots. It is easy to observe that (K ′

3; 3) (resp. (K ′

4; 4),
(K ′

5; 5)) is the mirror image of (K−3;−3) (resp. (K−4;−4), (K−5;−5)). By
Lemma 2.1, (K−3;−3), (K−4;−4) and (K−5;−5) are Seifert fibered, and hence
(K ′

3; 3), (K ′

4; 4) and (K ′

5; 5) are also Seifert fibered. Putting Kn as K ′

n for
n = 3, 4, 5, we finish a proof of Theorem 1.1.

3 Identifying exceptional fibers

In [24], Miyazaki and Motegi conjectured that if K admits a Seifert fibered
surgery, then there is a trivial knot c ⊂ S3 disjoint from K which becomes
a Seifert fiber in the resulting Seifert fiber space, and verified the conjecture
for several Seifert fibered surgeries [24, Section 6], see also [8]. Furthermore,
computer experiments via “SnapPea” [31] suggest that such a knot c is realized
by a short closed geodesic in the hyperbolic manifold S3 − K , for details see
[24, Section 9], [27].

In this section, we verify the conjecture for Seifert fibered surgeries given in
Theorem 1.1.

Recall that Kn is obtained from k by 1

−n+4
-surgery on the trivial knot c (i.e.,

(n − 4)-twist along c), see Figure 1. Denote by cn the core of the filled solid
torus. Then Kn ∪ cn is a link in S3 such that cn is a trivial knot.

Lemma 3.1 After n-surgery on Kn , cn becomes an exceptional fiber of index

|4n − 15| in the resulting Seifert fiber space (Kn;n).
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Proof Following the sequences given by Figures 3 and 4, we have a Montesinos
link with three arcs γ , τ1 and τ2 as in Figure 7, where n = 1 in the final
Montesinos link, and γ , τ1 , τ2 and κ are the images of c, t1 , t2 and k ,
respectively.

1k
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- 1

L

b’

t

g

tk
1 2

quotient

untangle surgeries
and isotopies given in
Figures 3 and 4

c

t1 t2

g

- 1
2

3n   11
n + 4-
-

1
n + 4

k

c 4

Figure 7: Positions of exceptional fibers

From Figure 7 we recognize that t1, t2 and c become exceptional fibers of indices
5, 3 and |4n − 15|, respectively in (Kn;n).

For n 6= 3, 4, 5, cn becomes an exceptional fiber of index |4n − 15|, which is
the unique maximal index, in (Kn;n). Experiments via “SnapPea” [31] suggest
that cn is a shortest closed geodesic in S3 − Kn (n 6= 3, 4, 5). For sufficiently
large |n|, hyperbolic Dehn surgery theorem [29], [30] shows that cn is the unique
shortest closed geodesic in S3 − Kn .

Let us assume that n = 3, 4, 5. Then we have put Kn as the mirror image of
K−n in the proof of Theorem 1.1. Let k′∪c′ be the mirror image of the link k∪c.
Then Kn is obtained also from k′ by 1

−n−4
-surgery on c′ (i.e., (n + 4)-twist

along c′ ); we denote the core of the filled solid torus by c′n . Note that there
is an orientation reversing diffeomorphism from (K−n;−n) to (Kn;n) sending
c−n (regarded as a fiber in (K−n;−n)) to c′

n
(regarded as a fiber in (Kn;n)).

Thus the above observation implies that c′
n

becomes an exceptional fiber of
index |4n + 15|, which is the unique maximal index, in (Kn;n) (n = 3, 4, 5).
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