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Abstract The geography problem is usually stated for simply connected
symplectic 4–manifolds. When the first cohomology is nontrivial, however,
one can restate the problem taking into account how close the symplectic
manifold is to satisfying the conclusion of the Hard Lefschetz Theorem,
which is measured by a nonnegative integer called the degeneracy. In this
paper we include the degeneracy as an extra parameter in the geography
problem and show how to fill out the geography of symplectic 4–manifolds
with Kodaira dimension 1 for all admissible triples.
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1 Introduction

For a minimal symplectic 4–manifold M with symplectic form ω and symplectic
canonical class Kω , the Kodaira dimension of (M,ω) is defined in the following
way:

κ(M,ω) =















−∞ if K2
ω < 0 or Kω · [ω] < 0

0 if K2
ω = 0 and Kω · [ω] = 0

1 if K2
ω = 0 and Kω · [ω] > 0

2 if K2
ω > 0 and Kω · [ω] > 0.

The Kodaira dimension of a non-minimal manifold is defined to be that of any
of its minimal models (see [12], [8]).

Minimal symplectic manifolds of Kodaira dimension −∞ were classified in [10].
Such manifolds are either CP2 or an S2–bundle over a surface. Minimal sym-
plectic manifolds of Kodaira dimension zero were studied in [8]: it was specu-
lated that they are either K3, Enriques surface or a T 2–bundle over T 2 ; and it
was shown that the χ and σ are bounded if b1 is bounded by 4.
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For symplectic 4–manifolds with Kodaira dimension 1 or 2 we cannot expect
to have a classification: Gompf [6] showed that any finitely presented group is
the fundamental group of a symplectic 4–manifold either of Kodaira dimension
1 or of Kodaira dimension 2. Instead one is interested in further illustrating
the diversity of simply connected minimal symplectic 4–manifolds ([11], [6],
[5], [13]). The problem is to realize all pairs (χ(M), σ(M)) of a simply con-
nected minimal symplectic 4–manifold M subject to the Noether condition
2χ + 3σ ≡ σ (mod 8) (symplectic manifolds admit almost complex structures)
and the conjectured inequality χ ≥ 3σ (the symplectic Bogomolov-Miyaoka-
Yau inequality).

For simply connected minimal symplectic 4–manifolds with Kodaira dimension
1 this has a simple positive answer. Such a manifold has b1 = 0 and K2 = 0,
so

2χ + 3σ = 4(1 − b1 + b+) + σ = 0. (1)

Therefore σ is nonpositive and χ is determined by σ . And since M is almost
complex, b+ − b1 is odd, and hence σ(M) is divisible by 8.

The Dolgachev surfaces and Elliptic surfaces E(n) with n ≥ 2 are simply
connected minimal symplectic 4–manifolds with Kodaira dimension 1 with sig-
nature −8 and −8n respectively. Hence we have the well-known fact:

Proposition 1 Every negative integer divisible by 8 is the signature of a
simply connected minimal symplectic 4–manifold with Kodaira dimension 1.

In this paper we investigate the geography question of minimal symplectic 4–
manifolds of Kodaira dimension 1 by taking into account the first Betti number
b1 and the cup product structure on H1 (a question perhaps mostly of interest
to 4–manifold topologists). By Equation (1), the pair (χ, σ) is equivalent to
(σ, b1) when the Kodaira dimension is 1. We will use the latter pair of numbers
in what follows to make definitions and statements more transparent. The third
parameter is determined by the symplectic form and can be formulated in terms
of a Kähler-like condition called Lefschetz type.

Definition 2 Symplectic 4–manifolds (M,ω) are said to be of Lefschetz type if
[ω] ∈ H2(M ; R) satisfies the conclusion of the Hard Lefschetz Theorem, namely,
that ∪[ω] : H1(M ; R) → H3(M ; R) is an isomorphism.

Based upon that definition one gets:
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Definition 3 The degeneracy d(M,ω) is the rank of the kernel of the map

∪[ω] : H1(M ; R) → H3(M ; R).

The first example of a symplectic 4–manifold with nonzero degeneracy occurs
when b1 = 2 and b+ = 1. A symplectic 4—manifold with b+ = 1 and κ = 1
must satisfy b1 = 0 or b1 = 2 using the fact that 2χ+3σ = 0. Examples of b1=2
4–manifolds of Lefschetz type are easy to construct and have been known for
some time, but examples of manifolds not of Lefschetz type remained unknown
until Baldridge [1]. These b+ = 1 manifolds with nonzero degeneracy are the
starting point for the examples described in this paper.

Definition 4 Any triple (a, b, c) ∈ Z
3 is called an admissible triple (or Lef-

schetz admissible) if a = 8k where k is a non-positive integer, 0 ≤ c ≤ b, b − c
even, and b ≥ max{0, 2 + a/4}.

In the above definition, a corresponds to the signature of a symplectic 4–
manifold, b is the first Betti number, and c is the degeneracy. This defini-
tion covers all triples except possible counterexamples to the conjectured BMY
inequality. The next lemma explains why b − c should be even.

Lemma 5 Let (M,ω) be a closed symplectic 4–manifold. The skew-symmetric
bilinear form QM : H1(M ; R) × H1(M ; R) → R defined by

QM (a, b) =

∫

M

a ∪ b ∪ [ω]

has rank b1(M) − d(M,ω). Furthermore, rank QM is even.

Proof Pick a compatible metric g and set

K = {α ∈ H1(M ; R) | α ∪ [ω] = 0 ∈ H3(M ; R)}.

K is a closed subspace of H1(M ; R) with rank d(M,ω). Let W be the orthogo-
nal complement of K in H1(M ; R) with respect to the L2–norm on H1(M ; R).

We claim that QM is nondegenerate on W . To see this, suppose a ∈ W satisfies
QM (a, b) = 0 for all b ∈ W . If the class a ∪ [ω] is not zero, then by Poincaré
duality there exists a 1-cocycle γ such that QM (γ, a) = 〈γ ∪ a ∪ [ω], [M ]〉 6= 0.
Therefore a ∪ [ω] = 0 and a ∈ K which implies a = 0.

Now by the same proof that symplectic forms are locally isomorphic to the
standard symplectic form on (R2n, ω0), rank QM is even dimensional.
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We can now state the main theorem of this paper:

Theorem 6 For any admissible triple (a, b, c) there exists a minimal symplec-
tic 4–manifold (M,ω) of Kodaira dimension κ(M) = 1 with

(a, b, c) = (σ(M), b1(M), d(M,ω)),

where σ(M) is the signature and b1(M) is the first Betti number.

2 An important lemma

In Section 4 we will produce examples of symplectic 4–manifolds for admissible
triples (0, b, c). We will then use these manifolds to fill out triples where a < 0
in Section 5. To build these manifolds we need a general theorem that was first
reported in [4].

Theorem 7 Let Σ be a closed, oriented, connected surface of genus g with
an orientation preserving diffeomorphism ϕ : Σ → Σ. Let Y be the mapping
torus with respect to Σ and ϕ and p : Y → S1 . Let e ∈ H2(Y ; Z) be any class
such that e|Σ = 0 and let M → Y be the S1 -bundle over Y with Euler class
e. Then M is a smooth oriented closed symplectic 4–manifold.

The advantage of the construction below over the one in [4] is that we can derive
the cohomology ring explicitly for the examples we need.

Proof We begin by constructing a basis for the cohomology H1(Y ; Z) from
smooth integral 1–forms. Let θ ∈ Ω1(Y ) be the pullback of the volume of S1 .
This is a closed, integral, nonzero 1–form.

Consider the map ϕ∗−1 on H1(Σ; Z) and let k = rank ker(ϕ∗−1). The Wang
exact sequence implies that the rank of H1(Y ) is k + 1:

H0(Σ) // H1(Y )
|Σ

// H1(Σ)
ϕ∗−1

// H1(Σ)
µ

// H2(Y )

��

Z //
Z ⊕ Z

k //
Z

k ⊕ Z
2g−2−k //

Z
2g−2−k ⊕ Z

k //
Z

k ⊕ Z.

Write down a basis for H1(Y ; Z) as follows. Let 〈γ1, · · · , γk〉 be a basis of
closed integral 1–forms on Σ for the subspace of H1(Σ; Z) which is preserved
by ϕ∗ . Extend this to a basis of H1(Σ; Z) by closed 1–forms:

〈[γ1], . . . , [γk], [ǫk+1], . . . , [ǫ2g]〉.
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Because [γi] is invariant under ϕ∗ there is a function fi ∈ Ω0(Σ) such that
ϕ∗(γi) = γi + dfi point-wise. To construct a closed 1–form on Y which is
non-trivial in cohomology, choose a smooth function ρ : [0, 1] → [0, 1] which
is identically 0 near 0 and identically 1 near 1 and extend γi to Σ × [0, 1] by
defining

γ̄i(x, t) = ρ(t)γi(x) +
(

1 − ρ(t)
)(

ϕ∗(γi(x))
)

−
( d

dt
ρ(t)

)

fi(x)dt.

Since γ̄i can be identified on the boundary of Σ × [0, 1] using ϕ∗ , and

dn

dtn
ϕ∗(γ̄i)|Σ×{0} =

dn

dtn
γ̄i|Σ×{1}

for all whole numbers n, γ̄i is a closed smooth 1–form on Y . Hence,

H1(Y ; R) = 〈[θ], [γ̄1], . . . , [γ̄k]〉.

Next we construct a basis of H2(Y ). First, there is a smooth closed integral
2–form ΩΣ ∈ Ω2(Y ) which restricts to the volume form of Σ on each fiber of
p : Y → S1 . Writing down a basis which spans Im(µ : H1(Σ) → H2(Y )) in the
Wang sequence is crucial to understanding what symplectic 4–manifolds can be
built from Y . Note that

ϕ∗(PD(γi)) = ϕ∗(γi ∩ [Σ]) = ϕ∗(ϕ
∗(γi)) ∩ [Σ]) = γi ∩ ϕ∗[Σ] = PD(γi),

where PD is the Poincaré dual. Hence PD(γi) is ϕ-invariant in homology and
〈t, PD(γ1), . . . , PD(γk)〉 is a basis for H1(Y ) where t is the loop pt × [0, 1] in
Σ × [0, 1] for some fixed point of ϕ.

Let ξi be a 1–form which is the Hom-dual of PD(γi). Extend the linearly
independent set 〈[ξ1], . . . , [ξk]〉 to a basis of H1(Σ) given by

〈[ξ1], . . . , [ξk], [ζk+1], . . . [ζ2g]〉.

The classes [ξi] are not necessarily ϕ∗ -invariant. Nevertheless, since

〈ϕ∗(ξi), PD(γj)〉 = 〈ξi, ϕ∗(PD(γj))〉 = 〈ξi, PD(γj)〉 = δij ,

there exists functions gi ∈ Ω0(Σ) and integers cj such that

ϕ∗(ξi) = ξi +

2g
∑

j=k+1

cjζj + dgi (2)

point-wise. Using ξi and gi , construct a smooth 1–form on Y by specifying

ξ̄i(x, t) = ρ(t)ξi(x) +
(

1 − ρ(t)
)(

ϕ∗(ξi(x))
)

−
( d

dt
ρ(t)

)

gi(x)dt.
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This 1–form is not necessarily closed, in fact,

dξ̄i =
(

∑

cjζj

)

∧
( d

dt
ρ
)

θ.

However ξ̄i ∧ θ is a smooth closed integral 2–form and

〈[ΩΣ], [ξ̄1 ∧ θ], . . . , [ξ̄k ∧ θ]〉

is a basis for H2(Y ; Z).

We can now complete the proof of Theorem 7. If e ∈ H2(Y ; Z) such that
e|Σ = 0, then

e =

k
∑

i=1

pi[ξ̄i ∧ θ]

where pi ∈ Z. Let M be the S1 -bundle over Y with Euler class e and connec-
tion 1-form η given by dη =

∑k
i=1 piπ

∗(ξ̄i ∧ θ) point-wise. Then

ω = π∗(Ω) + π∗(θ) ∧ η

is an everywhere nondegenerate 2–form on M such that

dω = −π∗(θ) ∧ dη = −π∗(θ) ∧

k
∑

i=1

piπ
∗(ξ̄i ∧ θ) = 0.

This ends the proof of the theorem.

McDuff and Salamon [12] raised the question whether there is a free symplectic
circle action on symplectic 4–manifold with contractible orbits. They pointed
out that null-homologous orbits exists on certain T 2–bundles over T 2 . Here we
show that there cannot be any contractible orbits.

Proposition 8 Suppose S1 acts freely (fixed point free) on (M,ω) preserving
ω . Then the orbits are essential in π1(M).1

Proof Let Y = M/S1 . Then it is known that Y fibers over S1 . When the
fiber is of genus at least one, Y is a K(π, 1) space from the homotopy exact
sequence associated to this fibration, in particular it has trivial π2 . Consider
the homotopy exact sequence associated to the fibration S1 −→ M −→ Y ,

· · · −→ π2(Y ) −→ π1(S
1) −→ π1(M) −→ · · · .

The orbits are contractible implies that π2(Y ) surjects onto π1(S
1) = Z. This

is a contradiction.
1Added in proof: We have learned that this is a special case of a result of Kotschick

[7, Theorem 1], where the action is not assumed to preserve the symplectic structure
in dimension 4. Moreover examples of symplectic free actions with contractible orbits
in every dimension at least 6 are constructed in [7, Theorem 2].
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3 Bundle manifolds

In this section we describe symplectic 4–manifolds which are special S1 -bundles
over a base which is itself a surface bundle over S1 , which we will call bundle
manifolds. They are uniquely specified by four whole numbers: three weights
g, d, k where 0 ≤ d ≤ k ≤ g and a number e = 0, 1, 2 based upon the Euler
class of the S1 -bundle. We denote these manifolds by B(d, k, g; e).

Construct a bundle manifold as follows. Let Σ be a surface of genus g > 0. Let
〈a1, b1, . . . ag, bg〉 be smooth loops which represent the usual symplectic basis of
H1(Σ) such that ai · bj = δij and zero otherwise.

Similarly, let 〈α1, β1, . . . αg, βg〉 be closed integral 1–forms which represent a
dual basis with respect to the ai ’s and bi ’s:

αi(aj) = δij , βi(bj) = δij , and zero otherwise.

Consider the diffeomorphism given by the following sequence of Dehn twists
acting on the left,

ϕ = (Tbg
T−1

ag
) · · · (Tbk+1

T−1
ak+1

) · Tad
· · ·Ta1

.

This diffeomorphism has the following properties:

• For each 1 ≤ i ≤ d when d 6= 0, the subspace spanned by 〈αi, βi〉 has a
1–dimensional subspace preserved by ϕ∗ ,

ϕ∗αi = αi + βi and ϕ∗βi = βi

as cohomology classes.

• For each d < i ≤ k when d 6= k , the subspace spanned by 〈αi, βi〉 is
preserved by ϕ∗ : H1(Σ; Z) → H1(Σ; Z).

• The subspace spanned by 〈αk+1, βk+1, . . . αg, βg〉 contains no subspace
which is preserved by ϕ∗ .

The mapping torus

Y = (Σ × [0, 1]) / ((x, 1) ∼ (ϕ(x), 0))

is a smooth, closed, 3–dimensional manifold which, by the proof of Theorem 7,
has the following basis in cohomology:

H1(Y ) = 〈θ, β̄1, . . . , β̄d, ᾱd+1, β̄d+1, . . . , ᾱk, β̄k〉 (3)

H2(Y ) = 〈Ω, ᾱ1 ∧ θ, . . . , ᾱd ∧ θ,

ᾱd+1 ∧ θ, β̄d+1 ∧ θ, . . . , ᾱk ∧ θ, β̄k ∧ θ〉.
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Also by Theorem 7, any S1 -bundle over Y is symplectic as long as the Euler
class e ∈ H2(Y ; Z) is zero when restricted to a fiber Σ. Therefore we can specify
a symplectic 4–manifold B(d, k, g; e) using the diffeomorphism ϕ by choosing
four whole numbers g, d, k, e such that 0 ≤ d ≤ k ≤ g and

e =







0 e = 0,
1 e = [ᾱi ∧ θ] for some 0 < i ≤ d, d 6= 0
2 e ∈ span〈[ᾱd+1 ∧ θ], [β̄d+1 ∧ θ], . . . , [β̄k ∧ θ]〉, e primitive, and d 6= k.

Remark 9 The manifolds described in [1] are just the bundle manifolds given
by B(1, 1, g; 1) for all genera g > 1.

The bundle manifold B(d, k, g; e) does not depend on the choice of an Euler
class e ∈ H2(Y ); two bundle manifolds with different Euler classes but with
the same data g, d, k, e are diffeomorphic.

The following lemmas will be helpful in the next section.

Lemma 10 The Kodaira dimension of a bundle manifold B(d, k, g; e) is κ = 0
if g = 1 and κ = 1 if g > 1.

Proof This theorem follows using similar arguments as in [1].

Lemma 11 The signature of B(d, k, g; e) is zero.

Proof This is an easy computation given the existence of a free circle action
on bundle manifolds.

Lemma 12 The first Betti number of the bundle manifold B(d, k, g; e) is:

b1 =

{

2k − d + 2 e = 0
2k − d + 1 e 6= 0.

Proof The Gysin Sequence,

0 // H1(Y )
π∗

// H1(B(d, k, g; e)) // H0(Y )
∪e

// H2(Y ),

implies that

H1(B(d, k, g; e), Z) ∼=

{

H1(Y, Z) ⊕ Z, e = 0
H1(Y ; Z), e 6= 0.

The first Betti number can then be calculated using the basis constructed in
Equation (3).
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Lemma 13 The degeneracy d((B(d, k, g; e), ω) is

d(B(d, k, g; e), ω)) =

{

d e = 0
d + 1 e 6= 0.

Proof We prove the case when e = 0, i.e., B(d, k, g; 0) = Y ×S1 , noting that
the case when e 6= 0 is similar. Let t be a section of the fibration Y → S1 such
that 〈θ, [t]〉 = 1. A basis for H3(Y × S1; Z) can be described as follows. By
construction, ϕ∗(ai) = ai for 1 ≤ i ≤ d. While ai is null-homologous due to
the relation created by ϕ∗(bi) = ai + bi , the 2-cycle ai × t is not, and the space
generated by {ai × t×S1 | 1 ≤ i ≤ d} forms a linearly independent subspace of
H3(Y ×S1; Z). For d < i ≤ k , ϕ∗ is identity on ai ’s and bi ’s, and so the space
generated by {ai × t× S1, bi × t× S1 | d < i ≤ k} is also a linearly independent
subspace. Altogether, a basis for homology 3-cycles of Y × S1 is

H3(Y × S1; Z) = 〈[Y ],Σ × S1, a1×t×S1, . . . , ad×t×S1,

ad+1×t×S1, bd+1×t×S1, . . . , bk×t×S1〉.

Using the basis described in Equation (3) we can determine the kernel of ∪ω :
H1(Y × S1; R) → H3(Y × S1; R). Clearly θ ∧ ω = π∗(θ ∧Ω) evaluates nonzero
on [Y ], so θ is not in the kernel. Similarly, η (the connection 1-form for the S1

factor of Y ×S1 ) is not in the kernel because η∧ω = η∧π∗Ω evaluates nonzero
on Σ×S1 . Observe that 〈αi ∧ω, ai×t×S1〉 6= 0 and 〈βi ∧ω, bi×t×S1〉 6= 0 for
d < i ≤ k . Finally, βi ∧ ω ’s for 1 ≤ i ≤ d evaluates zero on all 3–cycles except
possibly ai×t×S1 . However 〈βi ∧ ω, ai×t×S1〉 = ±〈βi, ai〉 = 0. Therefore
the subspace generated by βi ’s for 1 ≤ i ≤ d is the kernel of ∪ω implying that
d(B(d, k, g; 0) = d.

4 Examples of admissible triples with a = 0

We first prove Theorem 6 for admissible triples (a, b, c) when a = 0 (i.e. where
the signature of the manifold is zero). In the next section we use these manifolds
to construct new manifolds for admissible triples when a < 0.

The case where a = 0 and b is even Fix b = 2l for some whole number l >
0. We are looking for symplectic 4–manifolds (M,ω) with Kodaira dimension 1
and σ(M) = 0, b1(M) = 2l , and even d(M,ω) where 0 ≤ d(M,ω) ≤ 2l . When
we restrict to bundle manifolds with e = 0, we get by Lemma 12 that

d = 2(k − l + 1).
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Since 0 ≤ d ≤ k , the possible bundle manifolds occur when k = l−1, · · · , 2l−2.
This, together with Lemma 13, implies that the infinite collection of symplectic
4–manifolds

{B0(i) := B(2i, l − 1 + i, g; 0) | i = 0, 1, . . . , l − 1 and g ≥ max(l − 1 + i, 2)}

satisfy

b1(B0(i)) = 2l = b and

d(B0(i), ω) = 2i.

This leaves only the case of an admissible triple (0, b, c) where c = b. For that
we investigate the case when e = 1. Then by Lemma 12, bundle manifolds with
e = 1 exist, and satisfy

d = 2(k − l) + 1

when 1 ≤ d ≤ k . Hence possible values of k = l, l+1, . . . , 2l−1 and the infinite
set of bundle manifolds

{B1(i) := B(2i + 1, l + i, g; 1) | i = 0, 1, . . . , l − 1 and g ≥ max(l + i, 2)}

satisfy

b1(B1(i)) = 2(l + i) − (2i + 1) + 1 = b and

d(B1(i), ω) = (2i + 1) + 1 = 2(i + 1)

by Lemma 12 and Lemma 13. Therefore the manifold B1(l − 1) is an example
of an admissible triple (0, b, b). This ends the case when b is even.

The case when a = 0 and b is odd Fix b = 2l+1 where l > 0. We restrict
to bundle manifolds where e 6= 0. Lemma 12 implies that d is a function of k ,

d = 2(k − l),

where k can equal l only if e = 2, k = 2l only if e = 1, and k = l+1, . . . , 2l−1
for e = 1 or 2. The infinite set of bundle manifolds

B1(i) := B(2i, l + i, g; 1) i = 1, . . . , l and g ≥ max(l + i, 2),

B2(i) := B(2i, l + i, g; 2) i = 0, 1, . . . , l − 1 and g ≥ max(l + i, 2),

satisfies

b1(Be(i)) = 2(l + i) − 2i + 1 = b and

d(Be(i), ω) = 2i + 1

for e = 1 or 2 by Lemma 12 and Lemma 13. This completes the proof of
Theorem 6 for the case when a = 0.

Remark 14 We could have generated examples for b odd by looking at bundle
manifolds with e = 0. In that case there are examples for b− c even and b 6= 1
except for the admissible triple (0, b, c) where b = c.
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5 Proof of Theorem 6

To fill out all admissible triples (a, b, c) for a < 0 and divisible by 8, we fibersum
E(n) with bundle manifolds. This turns out to be much easier than the a = 0
case since we need only work with B(d, k, g; e) where e = 0.

Inside B(d, k, g; 0) we can find a symplectic torus T with T ·T = 0, constructed
as follows. Since B(d, k, g; 0) = Y × S1 , recall the definition of Y and let t be
a section of p : Y → S1 . Then T = π−1(t) is a nontrivial torus in B(d, k, g; 0)
which clearly has T ·T = 0. Letting s be the loop generated by the S1 factor of
Y ×S1 , we can write T = t×s ∈ H2(B(d, k, g; 0); Z). Since ω|T 6= 0 point-wise,
T is a symplectic submanifold.

Next let T ′ be a generic torus fiber of E(n) in the neighborhood of a cusp fiber.
Consider the fibersum

E(n, d, k, g) = E(n)#T ′=T B(d, k, g; 0)

where n ≥ 2. Since we are fibering along two symplectic surfaces, E(n, d, k, g)
is symplectic with symplectic form ω̃ . It was proved in [9] that fiber-sums of
minimal manifolds are minimal. Therefore all the manifolds above are minimal.

Clearly the two loops t and s become null-homologous in H1(E(n, d, k, g); Z)
after identifying along the boundary, making b1(E(n, d, k, g) = 2k−d by Lemma
12. Also by the Novikov Signature Theorem,

σ(E(n, d, k, g)) = σ(E(n)) + σ(B(d, k, g; 0)) = −8n.

We need to check that κ(E(n, d, k, g)) = 1. Since the Poincaré dual of the
canonical bundle PD(KE(n)) = (n−2)T ′ and the Poincaré dual of the canonical
bundle PD(KB(d,k,g,0)) = (2g − 2)T , the fiber sum E(n, d, k, g) has canonical
class PD(K) = (n− 2 + 2g)T . Therefore K2 = 0 and K · [ω̃] = n− 2 + 2g > 0
when n > 1 and g > 0.

To finish the proof of Theorem 6 we need a symplectic 4–manifold with κ = 1
for the admissible triple (a, b, c), where a < 0. Since 0 ≤ c ≤ b with b− c even,
set k = (b + c)/2 and note that 0 ≤ c ≤ k by the fact that 0 ≤ 2c ≤ b + c.
Then E(−a/8, c, k, g) is the desired manifold for g ≥ k , after observing the
next lemma.

Lemma 15 The degeneracy of E(n, d, k, g) is d.

Proof It is straight forward to compute the ring structure of B(d, k, g, 0) given
that it is a product of a three manifold with S1 (See Lemma 13 for an example
of such calculations).
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For symplectic manifolds with signature −8, we fibersum with Dolgachev sur-
faces E(1)p,q instead of E(1) to get a minimal symplectic 4–manifold.

6 Null admissible triples

We do not know how much the degeneracy of a symplectic manifold (M,ω)
depends on the symplectic form ω . It may be true that d(M,ω) 6= d(M,ω′)
for two different symplectic forms ω and ω′ on the same manifold. One could
look at another invariant, called the nullity of M , which only depends on the
ring structure of M and not on the particular symplectic form chosen.

Definition 16 For any α ∈ H1(M ;R), and i = 1, 2, consider the map

iα = ∪α : H i(M ;R) −→ H i+1(M ;R).

The dimension of the linear space {α|iα = 0} is called the i–nullity of M ,
denoted ni(M).

Lemma 17 n1(M) = n2(M).

Proof If 1α = 0, then we claim that 2α = 0. Otherwise there is a γ ∈
H2(M ;R) such that α ∪ γ is nonzero in H3(M ;R). By the Poincaré Duality,
there is a class β ∈ H1(M ;R) such that (α ∪ γ) ∪ β 6= 0. This implies that
1α(β) = α∪β 6= 0, which is a contradiction. Similarly we can prove that 2α = 0
implies that 1α = 0.

Thus we can speak simply of nullity of M , n(M).

It follows from Lemma 17 that the nullity is a lower bound for the degeneracy
of M , i.e., d(M,ω) ≥ n(M). From Hodge theory we get that Kähler surfaces
are of Lefschetz type, and hence have nullity zero.

One can also talk about triples (a, b, c) where c is the nullity of a Kodaira
dimension 1 symplectic manifold (or for a symplectic manifold in general).

Definition 18 Any triple (a, b, c) ∈ Z
3 is called null admissible if a = 8k

where k is a non-positive number, 0 ≤ c ≤ b, c 6= b−1, and b ≥ max{0, 2+a/4}.

Observe that we require that c 6= b − 1, for if the nullity of a manifold M was
b1(M) − 1, there would be an element in H1(M ; Z) whose cup product square
would not be zero. Note that we no longer have a reason to require that b − c
be even. In fact, the next lemma shows that b − c may be even or odd.
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Lemma 19 The nullity n(B(d, k, g; e)) is

n(B(d, k, g; e)) =







0 e = 0
d e 6= 0, d 6= k

d + 1 e 6= 0, d = k

Proof Compute the ring structure for cup products on H1(B(d, k, g; e); R)
using the explicit basis given in Equation (3) and in the proof of Lemma 13.

We can use Lemma 19 to find null admissible triples for Kodaira dimension 1.
For example, when a = 0 and b = 2 (recall that b can not equal 1), the lemma
shows that B(0, 0, g; 0) has nullity zero and that B(1, 1, g; 1) has nullity 2; the
triple (0, 2, 1) is not a null admissible triple.

For the case when a = 0 and b = 3, we can recognize the null admissible
triples (0, 3, 0) and (0, 3, 3) using bundle manifolds B(1, 1, g; 0) and B(2, 2, g; 1)
respectively. Lemma 19 does not give an example for the null admissible triple
(0, 3, 1). The ring multiplication for such a manifold would have to look like

a b c

a 0 a ∪ b 0
b b ∪ a 0 0
c 0 0 0

for a basis 〈a, b, c〉 of H1(M ; Z) where a ∪ b 6= 0. We end this report with the
following question.

Question 20 Does there exist a symplectic 4–manifold (M,ω) with σ(M) =
0, b1(M) = 3, and nullity n(M) = 1?
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