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Rational acyclic resolutions
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Abstract Let X be a compactum such that dimQX ≤ n , n ≥ 2. We
prove that there is a Q-acyclic resolution r : Z −→ X from a compactum
Z of dim ≤ n . This allows us to give a complete description of all the cases
when for a compactum X and an abelian group G such that dimGX ≤ n ,
n ≥ 2 there is a G-acyclic resolution r : Z −→ X from a compactum Z of
dim ≤ n .
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1 Introduction

The cohomological dimension dimGX of a separable metric space X with re-
spect to an abelian group G is the least number n such that Ȟn+1(X,A;G) = 0
for every closed subset A of X . It was known long ago that dimX = dimZX
if X is finite dimensional. Solving an outstanding problem in cohomologi-
cal dimension theory Dranishnikov constructed in 1987 an infinite dimensional
compactum (= compact metric space) with dimZ = 3. A few years earlier a
deep relation between dimZ and dim was established by the Edwards cell-like
resolution theorem [1, 10] saying that a compactum of dimZ ≤ n can be ob-
tained as the image of a cell-like map defined on a compactum of dim ≤ n. A
compactum X is cell-like if any map f : X −→ K from X to a CW-complex
K is null homotopic. A map is cell-like if its fibers are cell-like. The reduced
Čech cohomology groups of a cell-like compactum are trivial with respect to
any group G.

Acyclic resolutions are a natural generalization of the Edwards cell-like resolu-
tion. A space is G-acyclic if its reduced Čech cohomology groups modulo G
are trivial, a map is G-acyclic if every fiber is G-acyclic. As a consequence
of the Vietoris-Begle theorem a surjective G-acyclic map of compacta cannot
raise the cohomological dimension dimG .
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220 Michael Levin

Let P denote the set of prime numbers and let L ⊂ P . Recall that

Z(L) = {m/n : m ∈ Z, n ∈ N and n is not divisible by the elements of L}.

Thus Z(∅) = Q and Z(P) = Z. Dranishnikov [4, 5] proved the following:

Theorem 1.1 [4, 5] Let L ⊂ P and let X be a compactum with dimZ(L)
X ≤

n, n ≥ 2. Then there are a compactum Z with dimZ ≤ n+1 and dimZ(L)
Z ≤

n and a Z(L) -acyclic map r : Z −→ X from Z onto X .

In [7] Theorem 1.1 was generalized for arbitrary groups.

Theorem 1.2 [7] Let G be an abelian group and let X be a compactum
with dimGX ≤ n, n ≥ 2. Then there are a compactum Z with dimZ ≤ n+ 1
and dimG Z ≤ n and a G-acyclic map r : Z −→ X from Z onto X .

It is known that in general in Theorem 1.2 the dimension of Z cannot be
reduced to n [6]. However, Dranishnikov [5] showed that it can be done for
G = Zp .

Theorem 1.3 ([5], cf. [8]) Let L ⊂ P and let X be a compactum with
dimZp X ≤ n for every p ∈ L. Then there are a compactum Z with dimZ ≤ n
and a map r : Z −→ X from Z onto X such that r is Zp -acyclic for every
p ∈ L.

One of the key problems in the area of acyclic resolutions is whether the di-
mension of Z in Theorem 1.1 can be reduced to n. The main purpose of this
paper is to answer this problem affirmatively by proving:

Theorem 1.4 Let L ⊂ P and let X be a compactum with dimZ(L)
X ≤ n,

n ≥ 2. Then there are a compactum Z with dimZ ≤ n and a Z(L) -acyclic
map r : Z −→ X from Z onto X .

Theorems 1.3 and 1.4 allow us to give a complete description of all the cases
when for an abelian group G and a compactum X such that dimGX ≤ n,
n ≥ 2 there is a G-acyclic resolution r : Z −→ X from a compactum Z of
dim ≤ n.

Recall that the Bockstein basis of abelian groups is the following collection of
groups σ = {Q,Zp,Zp∞ ,Z(p) : p ∈ P}. The Bockstein basis σ(G) of an abelian
group G is a subcollection of σ defined as follows:
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Rational acyclic resolutions 221

Z(p) ∈ σ(G) if G/TorG is not divisible by p;

Zp ∈ σ(G) if TorpG is not divisible by p;

Zp∞ ∈ σ(G) if TorpG 6= 0 and TorpG is divisible by p;

Q ∈ σ(G) if G/TorG 6= 0 and G/TorG is divisible by every p ∈ P .

Let X be a compactum. The Bockstein theorem says that

dimGX = sup{dimE X : E ∈ σ(G)}.

It is known [6] that X is G-acyclic if and only if X is E -acyclic for every
E ∈ σ(G).

Following [9] define the closure σ(G) of the Bockstein basis σ(G) of G as
a collection of abelian groups containing σ(G) and possibly some additional
groups determined by:

Zp ∈ σ(G) if Zp∞ ∈ σ(G);

Zp∞ ∈ σ(G) if Zp ∈ σ(G);

Q ∈ σ(G) if Z(p) ∈ σ(G);

Z(p) ∈ σ(G) if Q and Zp∞ ∈ σ(G).

Theorem 1.5 Let G be an abelian group, let X be a compactum and let
n ≥ 2. Then there exist a compactum Z of dim ≤ n and a G-acyclic map
r : Z −→ X from Z onto X if and only if dimE X ≤ n for every E ∈ σ(G) .

Proof Assume that there exist a compactum Z of dim ≤ n and a G-acyclic
map r : Z −→ X from Z onto X . Then r is E -acyclic for every E ∈ σ(G).
Consider the exact sequences:

0 −→ Zp −→ Zp∞ −→ Zp∞ −→ 0;

0 −→ Zpk −→ Zpk+1 −→ Zp −→ 0;

0 −→ Z(p) −→ Z(p) −→ Zp −→ 0;

0 −→ Z(p) −→ Q −→ Zp∞ −→ 0.

Then it follows from the Bockstein sequences generated by the above exact
sequences that in the class of compacta:

the Zp∞ -acyclicity implies the Zp -acyclicity;

the Zp -acyclicity implies the Zpk -acyclicity for every k and since Zp∞ =

lim
→ Zpk the Zp -acyclicity implies the Zp∞ -acyclicity;
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the Z(p) -acyclicity implies the Zp -acyclicity;

the Z(p) -acyclicity implies the Q-acyclicity;

the Q-acyclicity together with the Zp∞ -acyclicity imply the Z(p) -acyclicity.

From these properties we obtain that r is E -acyclic for every E ∈ σ(G) and
therefore by the Vietoris-Begle theorem dimE X ≤ n for every E ∈ σ(G).

Now assume that dimE X ≤ n for every E ∈ σ(G).

Consider first the case when G is torsion. Let L = {p ∈ P : TorpG 6= 0}.
Then dimZp X ≤ n for every p ∈ L and the existence of the required resolution
follows from Theorem 1.3 and the above properties of acyclicity.

Assume that G is not torsion. Then Q ∈ σ(G). Define L = {p ∈ P : Z(p) ∈

σ(G)}. By the Bockstein theorem dimZ(L)
X ≤ n and therefore by Theorem

1.4 there exists a Z(L) -acyclic resolution r : Z −→ X from a compactum Z
of dim ≤ n onto X . Clearly r is Q-acyclic if L = ∅. If L 6= ∅ then r is
Z(p) -acyclic for every Z(p) ∈ σ(G) and by the above properties r is Q-acyclic
as well.

Let Z(p) ∈ σ(G). Then Z(p) ∈ σ(G) and therefore r is Z(p) -acyclic.

Let Zp or Zp∞ ∈ σ(G). Then Zp∞ ∈ σ(G) and since Q ∈ σ(G) we have that

Z(p) ∈ σ(G). Hence r is Z(p) -acyclic and by the above properties r is also
Zp -acyclic and Zp∞ -acyclic.

Thus we have shown that r is E -acyclic for every E ∈ σ(G) and hence r is
G-acyclic. The theorem is proved.

Theorem 1.2 was generalized in [9] as follows.

Theorem 1.6 [9] Let X be a compactum. Then for every integer n ≥ 2
there are a compactum Z of dim ≤ n + 1 and a surjective map r : Z −→ X
having the property that for every abelian group G and every integer k ≥ 2
such that dimGX ≤ k ≤ n we have that dimG Z ≤ k and r is G-acyclic.

Theorem 1.6 resulted in the following conjecture posed in [9].

Conjecture 1.7 [9] Let G be a collection of abelian groups, let X be a
compactum X and let n ≥ 2. Then there exist a compactum Z of dim ≤ n
and a surjective map r : Z −→ X such that dimG Z ≤ max{dimGX, 2} and r
is G-acyclic for every G ∈ G if and only if dimE X ≤ n for every E ∈ σ(G) =
∪{σ(G) : G ∈ G}.
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It is easy to derive from the proof of Theorem 1.5 that the condition dimE X ≤ n
for every E ∈ σ(G) is necessary for the existence of a resolution required in the
conjecture. Theorem 1.5 seems to be an important step toward proving that
this condition is also sufficient.

Note that neither the restriction k ≥ 2 in Theorem 1.6 nor the restriction
dimG Z ≤ max{dimGX, 2} in Conjecture 1.7 can be replaced by k ≥ 1 and
dimG Z ≤ dimGX respectively.

Indeed, let a compactum Y be Q-acyclic and dimQ Y ≤ 1. Then for every
closed subset A of Y the exact sequence of the pair (Y,A) implies that Ȟ1(A; Q)
= 0 and by Universal Coefficient Theorem Ȟ1(A) = 0. Hence Ȟ1(Y ) = 0 and
dimY ≤ 1 since every map from A to S1 = K(Z, 1) is null-homotopic and
therefore extends over Y . Then Y is Z-acyclic. Thus we obtain that a Q-
acyclic map from a compactum of dimQ ≤ 1 is Z-acyclic and hence there is
no Q-acyclic resolution r : Z −→ X for a compactum X of dimZ = ∞ and
dimQ = 1 from a finite dimensional compactum Z of dimQ ≤ 1.

The last observation also shows that the restriction n ≥ 2 in Theorem 1.4
cannot be omitted.

2 Preliminaries

The extensional dimension of a compactum X is said not to exceed a CW-
complex K , written e− dimX ≤ K , if for every closed subset A of X and
every map f : A −→ K there is an extension of f over X . It is well-known
that dimX ≤ n is equivalent to e− dimX ≤ Sn and dimGX ≤ n is equivalent
to e− dimX ≤ K(G,n), where K(G,n) is an Eilenberg-Mac Lane complex
of type (G,n). Also note that if dimX ≤ n + 1, n ≥ 2 then dimGX ≤ n
is equivalent to e− dimX ≤ M(G,n), where M(G,n) is a simply-connected
Moore complex of type (G,n) (the condition dimX ≤ n+ 1 can be relaxed to
dimX <∞ [3]).

A map between CW-complexes is said to be combinatorial if the preimage of
every subcomplex of the range is a subcomplex of the domain.

Let M be a CW-complex. We say that a triangulation of M is compatible with
the CW-structure if every cell is a simplicial subcomplex.

Let L ⊂ P . We will call a simplicial complex M an n-dimensional L-sphere if
the following conditions are satisfied:

M is a finite n-dimensional simplicial complex;
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H̃i(M ; Z(L)) = 0 if i 6= n and H̃n(M ; Z(L)) = Z(L) ;

for every n-simplex ∆ of M , the subcomplex B = (M \∆)∪ ∂∆ is Z(L) -
acyclic. (Note that by Universal Coefficient Theorem the Z(L) -acyclicity

of B is equivalent to H̃∗(B; Z(L)) = 0.)

It is easy to verify that if M is an n-dimensional L-sphere with respect to a
given triangulation then M is also an n-dimensional L-sphere with respect to
any barycentric subdivision of the triangulation.

By an n-dimensional L-ball B we mean an n-dimensional L-sphere without
the interior of one of its n-simplexes. The boundary of the simplex whose
interior is removed is said to be the boundary of the L-ball B and it is denoted
by ∂B .

Saying that an n-dimensional simplicial complex N is obtained from an n-
dimensional simplicial complex M by replacing an n-simplex ∆ of M by an
n-dimensional L-ball B we mean that the interior of ∆ is removed from M
and B is attached to the boundary of ∆ by a simplicial homeomorphism of
∂∆ and ∂B . We regard N as a simplicial complex with respect to the natural
triangulation induced by the triangulations of M and B .

It is clear that replacing an n-simplex of an n-dimensional L-sphere by an n-
dimensional L-ball we obtain again an n-dimensional L-sphere and replacing
an n-simplex of an n-dimensional L-ball by an n-dimensional L-ball we obtain
again an n-dimensional L-ball.

Proposition 2.1 Let L ⊂ P , let X be an compactum with dimZ(L)
X ≤ n

and dimX ≤ n + 1, n ≥ 2 and let f : X −→ K be a map from X to an
(n + 1)-dimensional finite simplicial complex K . Then for every ǫ > 0 there
exist an (n + 1)-dimensional finite CW-complex M and maps φ : X −→ M ,
ψ : M −→ K such that:

(i) f and ψ◦φ are ǫ-close, that is ρ(f(x), ψ(φ(x))) < ǫ for every x ∈ X where
ρ is a metric in K ;

(ii) ψ is combinatorial; ψ is 1-to-1 over every simplex of K which is not
contained in an (n + 1)-simplex of K ; the (n + 1)-cells of M are exactly the
preimages of the (n+ 1)-simplexes of K under ψ such that the interior points
of the (n+ 1)-cells of M are sent to the interior of the corresponding (n+ 1)-
simplexes of K ;

(iii) each (n+ 1)-cell C of M has a point b ∈ ∂C such that b is sent by ψ to
the interior of the corresponding (n + 1)-simplex of K . We will call b a free
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boundary point of C . It is clear from (ii) that C is the only (n+ 1)-cell of M
containing b;

(iv) M admits a compatible triangulation with respect to which the boundary
of every (n + 1)-cell of M is an n-dimensional L-sphere. Moreover: by (iii)
such a triangulation of M can be chosen such that for each cell C of M there
is an n-simplex contained in ∂C and consiting only of free boundary points of
C .

Proof Fix an n-simplex ∆ of K contained in at least one (n+1)-simplex and
let ∆1,∆2, ...,∆k , k ≥ 1 be the (n + 1)-simplexes of L containing ∆. Take a
small closed n-dimensional ball B contained in ∆ such that B does not touch
the boundary of ∆ and B is centered at the barycenter c of ∆. For every
i = 1, 2, .., k take a point pi sufficiently close to B and contained in the interior
of ∆i . Denote P = {p1, ..., pk}. Consider the join B ∗ pi as the subset of ∆i

which is the cone over B with the vertex at pi . Thus we regard B ∗P = ∪B ∗pi
as a subset of ∪∆i . Let the (n− 1)-dimensional sphere S be the boundary ∂B
of B . Denote F = f−1(B ∗ P ) and A = f−1(S ∗ P ).

Represent a Moore space of type (Z(L), n − 1) as an infinite telescope T of a
sequence of (n−1)-dimensional spheres with bonding maps of non-zero degrees
which are not divisible by the elements of L. By a finite subtelescope of T
we mean a subspace of T which is the telescope of finitely many consecutive
spheres in the sequence. Define the group G as G = 0 if k = 1 and G = the
direct sum ⊕Z(L) of k−1 copies of Z(L) if k ≥ 2. Let D = {d1, d2, ..., dk} be a
discrete space of k singletons. Then T ∗D is a simply connected Moore space
of type (G,n). Let τ : S −→ T be an embedding of S as the first sphere of the
telescope T and let δ : P −→ D be the map sending pi to di .

Consider the map α = (τ ∗ δ) ◦ f |... : A −→ T ∗ D . By Bockstein Theorem
dimGX ≤ n and since dimX ≤ n + 1 we have that e− dimX ≤ T ∗D . Then
α : A −→ T ∗D extends to β : F −→ T ∗ D . Since β(F ) is compact take a
finite subtelescope Tβ of T starting at the first sphere and ending at a sphere
Sβ such that β(F ) is contained in Tβ ∗D and let γ : Tβ −→ Sβ be the natural
retraction sending Tβ to the last sphere of Tβ .

Define a CW-complex M∆ as the quotient space of L = (K \ (B ∗P ))∪ (S ∗P )
obtained by identifying the points of S ∗ P with Sβ ∗D according to the map
(γ ◦ τ) ∗ δ : S ∗ P −→ Sβ ∗ D . Denote by π : L −→ M∆ the projection and
consider Sβ ∗D as the subset π(S ∗P ) of M∆ . We will also consider L\(B ∗P )
as a subset of M∆ . Note that since the identifications on Sβ ∗D are induced
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by the join (γ ◦ τ) ∗ δ we have that π−1(π(S ∗ pi)) = π−1(Sβ ∗ di) = S ∗ pi ,
π−1(π(pi)) = π−1(di) = pi and π−1(π(S)) = π−1(Sβ) = S .

It is easy to see that (γ ∗ idD)(α(x)) = π(f(x)) ∈ Sβ ∗ D for x ∈ A where
idD : D −→ D is the identity map. Then the map π◦f |... : (X \F )∪A −→M∆

extends to the map φ∆ : X −→ M∆ defined by φ∆(x) = (γ ∗ idD)(β(x)) for
x ∈ F .

Define a map ψ∆ : M∆ −→ K such that:

every simplex of K not intersecting B ∗ P and considered as a subset of
M∆ is sent by ψ∆ to itself by the identity map;

ψ∆ sends π(∆∩L) onto ∆ such that π(S) = Sβ is sent to the barycenter
c of ∆;

ψ∆ sends π(∆i ∩ L) onto ∆i such that π((∆i \ ∂∆i) ∩ L) is sent into
∆i \ ∂∆i ;

ψ∆ ◦ φ is sufficiently close to f provided that the ball B and the points
pi ∈ ∆i were chosen to be sufficiently close to the barycenter c of ∆.

Then for every ∆i , ψ
−1
∆ (∆i) = π(∆i ∩K) and since ∆i ∩K = (∆i \ (B ∗ pi))∪

(S ∗ pi) is homeomorphic to an (n+ 1)-dimensional Euclidean ball in which π
makes identifications only on the boundary we may endow M∆ with a CW-
structure so that ψ∆ becomes a combinatorial map and the (n+1)-cells of M∆

are exactly the preimages of the (n + 1)-simplexes of K . Moreover, since the
identifications on S ∗ pi are induced by the map γ : S −→ Sβ of degree not
divisible by the elements of L one can define a compatible triangulation of M∆

so that the boundary of each cell Ci = ψ−1
∆ (∆i) becomes an L-sphere. Finally

note that π(pi) is a free boundary point of the cell Ci and if a triangulation of
Mi is chosen to be sufficiently small then for every i there will be an n-simplex
contained in ∂Ci consisting of free boundary points of Ci .

It is easy to see that the procedure of constructing M∆ and ψ∆ : M∆ −→ K
described above can be carried out independently for all n-simplexes ∆ of
L contained in some (n + 1)-simplexes of K . This way we can construct a
CW-complex M and a map ψ : M −→ K satisfying the conclusions of the
proposition.

Let K ′ be a simplicial complex and let κ : K −→ K ′ , λ : L −→ L′ , α : L −→ K
and α′ : L′ −→ K ′ be maps.

L
α

−−−−→ K

λ





y

κ





y

L′ α′

−−−−→ K ′
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We say that κ, λ, α and α′ combinatorially commute if for every simplex ∆ of
K ′ we have that (α′ ◦ λ)((κ ◦ α)−1(∆)) ⊂ ∆. (The direction in which we want
the maps κ, λ, α and α′ to combinatorially commute is indicated by the first
map in the list. Thus saying that α′, κ, λ and α combinatorially commute we
would mean that (κ ◦ α)((α′ ◦ λ)−1(∆)) ⊂ ∆ for every simplex ∆ of K ′ .)

Let K and K ′ be simplicial complexes and let κ : K −→ K ′ κ′ : K −→ K ′ .
We say that κ′ is a simplicial approximation of κ if κ′ is a simplicial map
and for every simplex ∆ of K ′ , κ′(κ−1(∆)) ⊂ ∆. Thus if κ′ is a simplicial
approximation of κ then for every subcomplex N of K ′ and for every A ⊂ K
such that κ(A) ⊂ N we also have κ′(A) ⊂ N .

For a simplicial complex K and a ∈ K , st(a) (the star of a) denotes the union
of all the simplexes of K containing a.

The following proposition whose proof is left to the reader is a collection of
simple combinatorial properties of maps.

Proposition 2.2

(i) Let κ : K −→ K ′ be a combinatorial map of simplicial complexes K and
K ′ . Then κ admits a simplicial approximation.

(ii) Let κ : K −→ K ′ be a map of simplicial complexes K and K ′ . Then
there is a sufficiently small barycentric subdivision of the triangulation of K
with respect to which κ admits a simplicial approximation.

(iii) Let K and K ′ be simplicial complexes, let maps κ : K −→ K ′ , λ : L −→
L′ , α : L −→ K and α′ : L′ −→ K ′ combinatorially commute and let κ be
combinatorial. Then

λ(α−1(st(a))) ⊂ α′−1(st(κ(a))) and κ(st((α(b))) ⊂ st((α′ ◦ λ)(b))

for every a ∈ K and b ∈ L.

3 Proof of Theorem 1.4

By the Vietoris-Begle theorem the composition of Z(L) -acyclic maps of com-
pacta is again a Z(L) -acyclic map. Then by virtue of Theorem 1.1 we may
assume without loss of generality that dimX = n+ 1.
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For every i = 1, 2, ... we will construct spaces Li,Wi, Si,Mi,Ki , maps repre-
sented in the diagram

Li+1
βi+1
−−−−→ Wi+1⊂ Si+1 ⊂Mi+1

ψi+1
−−−−→ Ki+1

λi+1





y

ωi+1





y

µi+1





y

κi+1





y

Li
βi−−−−→ Wi ⊂ Si ⊂ Mi

ψi−−−−→ Ki

and some additional maps including φi : X −→ Mi and fi : X −→ Ki having
the following properties.

Remark Since the list of properties (steps of the construction) is rather long
we would like to outline a way to get the main idea of the construction omitting
some details. The property (9) is the heart of the construction. The fastest
way to get to (9) is to skip (8) and to omit all metric estimates in (1), (2), (6).
Also note that the main purpose of (8), ( 11), (12) is to show that the maps
κi+1, αi+1, λi+1 and αi combinatorially commute where αi = ψi◦βi : Li −→ Ki .

(1) Ki is a finite simplicial complex of dim ≤ n+ 1. We fix a metric di in Ki

such that the distance between any two points of Ki lying in non-intersecting
simplexes of Ki is bigger than 1. We also fix a metric in X .

(2) Define ǫi to be so small that for every j ≤ i and every x, y ∈ Ki with
di(x, y) < ǫi we have that dj(κ

j
i (x), κ

j
i (y)) < 1/4i where κii = idKi

and κji =
κj+1 ◦ ... ◦ κi : Ki −→ Kj for j < i. By Proposition 2.1 we choose a CW-
complex Mi and maps ψi : Mi −→ Ki and φi : X −→ Mi such that the
conclusions of Proposition 2.1 are satisfied with K , M , φ, ψ , f , ρ and ǫ
replaced by Ki , Mi , φi , ψi , fi , di and ǫi/2 respectively. Thus Mi is a finite
CW-complex of dim ≤ n + 1 admitting a compatible triangulation. We fix a
compatible triangulation of Mi and consider Mi as both a CW-complex and
a simplicial complex. Note that the CW-structure of Mi is different from the
simplicial structure of Mi and therefore the cells of Mi and simplexes of Mi

are not the same. The spaces Mi are the only spaces in which we will consider
simultaneously two structures.

(3) Let Wi = the n-skeleton of Mi with respect to the CW-structure of Mi .

Consider Wi as a simplicial complex with a triangulation of Wi to be a suffi-
ciently small barycentric subdivision of the triangulation induced by the trian-
gulation of Mi . We refer to this triangulation of Wi considering simplexes of
Wi . Thus the simplexes of Wi and the simplexes of Mi contained in Wi are
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not the same. However each simplicial subcomplex of Mi contained in Wi will
be also a subcomplex of Wi .

(4) Let Si = the n-skeleton of Mi with respect to the triangulation of Mi .

Clearly Wi ⊂ Si . Consider Si as a simplicial complex with the triangulation
induced by the triangulation of Mi .

Let γi : Si −→Wi be a natural retraction built by picking up in each (n+1)-cell
of Mi an interior point not belonging to Si and retracting the complement of
the point inside the cell to the boundary of the cell. Then by (ii) of Proposition
2.1

γ(ψ−1
i (∆) ∩ Si) ⊂ ψ

−1
i (∆) for every simplex ∆ of Ki.

Indeed, it is obvious if ∆ is an (n+1)-simplex since then ψ−1
i (∆) is an (n+1)-

cell of Mi . If ∆ is of dim ≤ n then ψ−1
i (∆) ⊂ Wi and we simply have

γ(ψ−1
i (∆)) = ψ−1

i (∆).

It is also easy to see that assuming that the triangulation of Mi is sufficiently
small γi can be constructed such that for every c ∈ Wi there exists a con-
tractible subcomplex N of Mi contained in Wi such that

γi(st(c,Mi) ∩ Si) ⊂ N ⊂ ψ
−1
i (st(ψi(c)))

where st(c,Mi) is the star of c with respect to the triangulation of Mi .

As we already noted in (3), N is also a subcomplex of Wi .

(5) Li and βi : Li −→ Wi are constructed as follows. Li is a simplicial
complex of dim ≤ n obtained from Wi by replacing some n-simplexes of Wi

by n-dimensional L-balls. Then βi is a projection of Li to Wi such that βi
takes the L-balls to the corresponding replaced simplexes such that the non-
boundary points of the L-balls are sent to the interior of the replaced simplexes
and βi is 1-to-1 over all the simplexes of Wi which are not replaced;

Let i = 1. Set ǫ1 = 1. Let K1 be any (n + 1)-dimensional simplicial complex
with any map f1 : X −→ K1 . Applying Proposition 2.1 define for i = 1 all
needed spaces and maps satisfying the relevant properties of (2-4). Define L1

as W1 with no simplexes replaced by L-balls. We proceed from i to i + 1 as
follows.

(6) Based on φi : X −→ Mi find a finite simplicial complex Ki+1 and maps
fi+1 : X −→ Ki+1 and νi+1 : Ki+1 −→Mi such that:

di((ψi ◦νi+1 ◦fi+1)(x), (ψi ◦φi)(x)) < ǫi/2 for every x ∈ X with ǫi defined
in (1);
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f−1
i+1(∆) is of diam ≤ 1/(i + 1) for every simplex ∆ of Ki+1 ;

νi+1 is a combinatorial map with respect to the triangulation of Mi .

Define κi+1 = ψi ◦ νi+1 : Ki+1 −→ Ki and suppose that the triangulation of
Ki+1 is so small that

κji+1(∆) is of diam≤ 1/(i+ 1) for every simplex ∆ of Ki+1 and j ≤ i.

(7) Let Mi+1, Si+1 , Wi+1 and the corresponding maps be defined as described
in (2-4). Since νi+1 ◦ ψi+1 : Mi+1 −→ Mi is combinatorial with respect to
the simplicial structures of Mi+1 and Mi , by (i) of Proposition 2.2 there is a
simplicial approximation µi+1 : Mi+1 −→Mi of νi+1◦ψi+1 . Then µi+1(Si+1) ⊂
Si . By (ii) of Proposition 2.2 assume that that the triangulation of Wi+1 is
chosen to be so small that the map γi◦µi+1|... : Wi+1 −→ Wi admits a simplicial
approximation ωi+1 : Wi+1 −→ Wi .

(8) Now we will verify a technical property which will be used later. Namely
we will show that κi+1, ψi+1|Wi+1, ωi+1 and ψi|Wi

combinatorially commute.
This property is equivalent to

ωi+1((κi+1 ◦ ψi+1)
−1(∆) ∩Wi+1) ⊂ ψ

−1
i (∆) for every simplex ∆ of Ki.

Let ∆ be a simplex of Ki . Note that ψ−1
i (∆) is a subcomplex of Mi with

respect to both the CW and the simplicial structures of Mi . Then since µi+1 is
a simplicial approximation of νi+1◦ψi+1 and ψ−1

i (∆) is a simplicial subcomplex
of Mi we have

µi+1((νi+1 ◦ ψi+1)
−1(ψ−1

i (∆))) ⊂ (νi+1 ◦ ψi+1)((νi+1 ◦ ψi+1)
−1(ψ−1

i (∆)))

= ψ−1
i (∆)

and therefore

µi+1((νi+1 ◦ ψi+1)
−1(ψ−1

i (∆)) ∩Wi+1) ⊂ ψ
−1
i (∆) ∩ Si.

thus (γi ◦ µi+1)((νi+1 ◦ ψi+1)
−1(ψ−1

i (∆)) ∩Wi+1) ⊂ γi(ψ
−1
i (∆) ∩ Si).

By (4) γi(ψ
−1
i (∆)∩Si) ⊂ ψ

−1
i (∆)∩Wi and since ψ−1

i (∆)∩Wi is a subcomplex
of Wi and ωi+1 is a simplicial approximation of γi ◦ µi+1|... : Wi+1 −→ Wi we
get

ωi+1((νi+1 ◦ ψi+1)
−1(ψ−1

i (∆)) ∩Wi+1) ⊂ ψ
−1
i (∆) ∩Wi ⊂ ψ

−1
i (∆).

Recall that κi+1 = ψi ◦ νi+1 and finally get that

ωi+1((κi+1 ◦ ψi+1)
−1(∆) ∩Wi+1) ⊂ ψ

−1
i (∆) for every simplex ∆ of Ki.
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(9) Li+1 is constructed as follows. Let C be an (n+1)-cell of Mi+1 . By (ii) of
Proposition 2.1 there is an (n+ 1)-simplex ∆ of Ki+1 such that C = ψ−1

i+1(∆).
By (iv) of Proposition 2.1 there is an n-simplex ∆C of Wi+1 contained in ∂C
which is sent by ψi+1 to the interior of ∆. Thus for every (n + 1)-cell C of
Mi+1 we choose an n-simplex ∆C of Wi+1 which consisits of free boundary
points of C .

We say that an n-simplex ∆i+1 of Wi+1 is marked (for replacement) if ∆i+1

is not among the chosen simplexes ∆C and ∆i+1 is mapped by ωi+1 onto an
n-simplex ∆i of Wi such that ∆i was replaced by an n-dimensional L-ball
B∆i

= β−1
i (∆i) while constructing Li , see (5).

Replace each marked simplex ∆i+1 by an n-dimensional L-ball B∆i+1 which
is a copy of B∆i

attached by the simplicial map of the boundaries of ∆i+1 and
B∆i+1 induced by ωi+1 and βi . Such a replacement induces the natural map
λ∆i+1 : B∆i+1 −→ B∆i

= β−1
i (∆i) ⊂ Li .

Let C be an (n+ 1)-cell of Mi+1 and let TC be the union of all the simplexes
of Wi+1 which are contained in C and different from ∆C . Then after the
replacement of all marked simplexes of Wi+1 we will obtain from TC an n-
dimensional L-ball BC and the map λC : BC −→ Li induced by ωi+1 and βi
for the simplexes of TC which were not replaced and by the maps λ∆i+1 for the
replaced simplexes. Now replace ∆C by an L-ball B∆C

which is a copy of BC
attached by the identity map of the boundaries and extend λC over B∆C

first
sending the points of B∆C

to the corresponding points of BC and from there to
Li using the map λC . Thus we construct Li+1 and the map λi+1 : Li+1 −→ Li
having the property that for every (n+ 1)-cell C of Mi+1 the map

λi+1|... : β
−1
i+1(∂C) −→ λi+1(β

−1
i+1(∂C))

factors through an n-dimensional L-ball (namely through BC).

(10) Define αi = ψi ◦ βi : Li −→ Ki .

Then the last property of (9) says that for every (n + 1)-simplex ∆ of Ki+1

the map λi+1|... : α−1
i+1(∆) −→ λi+1(α

−1
i+1(∆)) factors through a Z(L) - acyclic

space.

(11) It follows from (9) that if a ∈ ∆C then (βi ◦ λi+1)(β
−1
i+1(a)) ⊂ ωi+1(∂C)

and if a ∈ Wi+1 does not belong to any of the simplexes ∆C then simply
βi ◦ λi+1(β

−1
i+1(a)) = ωi+1(a).

Thus we obtain that for every simplex ∆ of Ki+1

(βi ◦ λi+1)(β
−1
i+1(ψ

−1
i+1(∆)) = (βi ◦ λi+1)(α

−1
i+1(∆)) ⊂ ωi+1(ψ

−1
i+1(∆) ∩Wi+1).
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(12) Now we will show that the maps κi+1, αi+1, λi+1 and αi combinatorially
commute. Let ∆ be a simplex of Ki . Then κ−1

i+1(∆) is a subcomplex of Ki

and by (11) and (8) we get that

(βi ◦ λi+1)((κi+1 ◦ αi+1)
−1(∆)) = (βi ◦ λi+1)(α

−1
i+1(κ

−1
i+1(∆))

⊂ ωi+1(ψ
−1
i+1(κ

−1
i+1(∆)) ∩Wi+1) ⊂ ψ

−1
i (∆).

Thus we get that

(αi ◦ λi+1)((κi+1 ◦ αi+1)
−1(∆)) ⊂ ∆ for every simplex ∆ of Ki

and hence the maps κi+1, αi+1, λi+1 and αi combinatorially commute.

Then by (iii) of Proposition 2.2 for every a ∈ Ki+1 and b ∈ Li+1

λi+1(α
−1
i+1(st(a))) ⊂ α

−1
i (st(κi+1(a)))

and κi+1(st((αi+1(b))) ⊂ st((αi ◦ λi+1)(b)).

(13) Let a ∈ Ki+1 be such that κi+1(a) is not contained in the interior of
any of the (n+ 1)-simplexes of Ki . Then νi+1(a) ∈ Wi . Let us show that the
map λi+1|... : α

−1
i+1(st(a))) −→ α−1

i (st(κi+1(a))) factors through a Z(L) - acyclic
space.

By (4) there is a contractible subcomplex N of Wi such that

γi(st(νi+1(a)) ∩ Si) ⊂ N ⊂ ψ
−1
i (st(κi+1(a))

where st(νi+1(a)) is the star of νi+1(a) with respect to the triangulation of Mi .

Since νi+1 is combinatorial with respect to the triangulation of Mi we have

νi+1(st(a)) ⊂ st(νi+1(a))

and therefore

νi+1(ψi+1(ψ
−1
i+1(st(a)))) = νi+1(st(a)) ⊂ st(νi+1(a)).

Since µi+1 is a simplicial approximation of νi+1 ◦ ψi+1 and st(νi+1(a)) is a
simplicial subcomplex of Mi we have

µi+1(ψ
−1
i+1(st(a))) ⊂ st(νi+1(a))

and therefore

γi(µi+1(ψ
−1
i+1(st(a)) ∩ Si) ⊂ γi(st(νi+1(a)) ∩ Si) ⊂ N.

Then since N is a subcomplex of Wi and ωi+1 is a simplicial approximation of
γi ◦ µi+1|... : Wi+1 −→Wi we have

ωi+1(ψ
−1
i+1(st(a)) ∩Wi) ⊂ N

Algebraic & Geometric Topology, Volume 5 (2005)



Rational acyclic resolutions 233

and hence

ωi+1(ψ
−1
i+1(st(a)) ∩Wi) ⊂ N ⊂ ψ

−1
i (st(κi+1(a)).

By (11)

βi(λi+1(α
−1
i+1(st(a)))) ⊂ ωi+1(ψ

−1
i+1(st(a)) ∩Wi)

and therefore

λi+1(α
−1
i+1(st(a))) ⊂ β

−1
i (N) ⊂ β−1(ψ−1

i (st(κi+1(a))) = α−1
i (st(κi+1(a))).

By (5) the preimage under βi of every simplex of Wi is Z(L) - acyclic and

therefore by the combinatorial Vietoris-Begle theorem β−1
i (N) is Z(L) - acyclic.

Thus the map λi+1|... : α−1
i+1(st(a))) −→ α−1

i (st(κi+1(a))) factors through a
Z(L) - acyclic space.

(14) Let a ∈ Ki+2 . By (12) consider the following maps

λi+2|... : α
−1
i+2(st(a)) ⊂ α

−1
i+1(st(κi+2(a))) and

λi+1|... : α
−1
i+1(st(κi+2(a)) ⊂ α

−1
i (st(κi+1(κi+2(a))).

If κi+2(a) is in the interior of an (n+1)-simplex ∆ of Ki+1 then st(κi+2(a)) =
∆ and by (10) λi+2|... factors through a Z(L) - acyclic space.

If κi+2(a) is not in the interior of any of the (n+1)-simplexes of Ki+1 then by
(13) λi+1|... factors through a Z(L) - acyclic space.

Thus we get that the map

λi+1 ◦ λi+2|... : α
−1
i+2(st(a)) −→ α−1

i (st(κi+1(κi+2(a)))

always factors through a Z(L) - acyclic space.

(15) Define

L = lim
← (Li, λi) and K = lim

← (Ki, κi) with the projections

πLi : L −→ Li and πKi : K −→ Ki .

It is clear that dimL ≤ n. For every b = (bi) ∈ L, bi ∈ Li define the set
π(b) = ∩{(πKi )−1(st(αi(bi))) : i = 1, 2, 3...} ⊂ K . By (12) π(b) 6= ∅. Recall

that by (6) diam(κji (∆)) < 1/i for every simplex ∆ of Ki and j < i. Then
π(b) is a singleton and by (12) one can check that the function

π : L −→ K defined by b −→ π(b) is continuous with

π−1(a) = lim
← (α−1

i (st(ai)), λi|...) for every a = (ai) ∈ K .
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It is easy to see that for every simplex ∆ of Ki , α
−1
i (∆) 6= ∅. Then we have

that for every a ∈ K , π−1(a) is not empty and by (14) we get that π−1(a) is
Z(L) -acyclic.

Thus π is a Z(L) -acyclic surjective map.

(16) Let x ∈ X and j ≤ i. Define f ji = κji ◦ fi : X −→ Kj .

Then f ii+1 = κi+1 ◦ fi+1 = ψi ◦ νi+1 ◦ fi+1 and by (6) di(fi+1(x), (ψi ◦φi)(x)) <
ǫi/2.

By (2) and (i) of Proposition 2.1 we have

di(fi(x), (ψi ◦ φi)(x))) < ǫi/2 and hence di(fi(x), f
i
i+1(x)) < ǫi.

Then, since f ji+1 = κji ◦ fi+1 , (2) implies that dj(f
j
i (x), f

j
i+1(x)) < 1/4i .

Now define hj : X −→ Kj as hj = limi→∞ f ji .

Then dj(hj(x), fj(x)) < 1/2. Let a = hj(x) and let y ∈ X be such that
hj(y) = hj(x). Then dj(fj(y), fj(x)) < 1 and hence by (1) fj(y) ∈ st2(a)
where st2(a) is the union of all simplexes of Kj intersecting st(a).

Thus h−1
j (hj(x)) ⊂ f

−1
j (st2(a)) and hence by (6) h−1

j (hj(x)) is of diam ≤ 4/j .

It is clear that hj = κj+1 ◦ hj+1 . Then we have that h : X −→ K defined by
h(x) = (hj(x)) ∈ K is an embedding of X in K .

Identify X with h(X). Then r = π|... : Z = π−1(X) −→ X is the required
resolution.

Remark If n ≥ 3 then in (9) BC is simply connected and one can use the
Hurewicz theorem to replace each simplex ∆C by an n-cell attached to the
boundary by a map of degree not divisible by the elements of L such that there
is a map from the replacing cell to BC . In our construction we used an exact
copy of BC for replacing ∆C in order to guarantee that such a map exists for
the non-simply connected case n = 2.
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