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1 Introduction

In the 1950s, Moise [13] showed that any compact 3–dimensional topological
manifold can be triangulated and that any two such triangulations are combi-
natorially equivalent. This essentially means that given two triangulations of
the same manifold, either can be “straightened out” by an isotopy so as to be
piecewise linear with respect to the other. This result can be combined with
earlier work of J.W. Alexander [1] to show that any triangulation of a given
3–manifold can be obtained from any other by an isotopy and a series of star

moves that modify the triangulation locally in a well–defined manner. There
remained, however, the technical difficulty that there are an infinite number of
distinct star moves (since, for example, an edge in a triangulation can be a face
of an arbitrary number of tetrahedra), and this makes proofs of invariance of
topological properties based upon invariance under star moves difficult: there
are an infinite number of cases to test. The situation was much simplified in the
1970s by Pachner [17], who showed that two triangulations equivalent by star
moves are also equivalent by bistellar moves, and of these there are a finite num-
ber. So, every compact 3–manifold is triangulable, and any two triangulations
can be related by an isotopy and a finite number of combinatorial moves.
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In this paper, we seek to exptend these properties to compact 3–dimensional
topological pseudomanifolds. Pseudomanifolds are not quite manifolds, but
their singularities are relatively well–behaved. Such objects arise, for exam-
ple, in algebraic geometry, and they form the principal category of geometric
object on which intersection homology is defined (see [8, 9]); in fact, intersec-
tion homology was created for the purpose of extending Poincaré duality to
pseudomanifolds.

We demonstrate that all compact 3–dimensional topological pseudomanifolds
are triangulable and that they possess certain natural 0– and 1–skeletons which
will be triangulated as 0– and 1–dimensional subcomplexes in any triangula-
tion. Conversely, we show that any fixed triangulation of this natural 1–skeleton
can be extended to a triangulation of the entire pseudomanifold. The Hauptver-
mutung also holds for 3–dimensional pseudomanifolds, and, as for manifolds,
any two triangulations can be related by an isotopy and a series of Alexander
star moves. For pseudomanifolds, we cannot reduce all Alexander moves to
Pachner bistellar moves, but we will see that any two triangulations of a 3–
pseudomanifold that give equivalent triangulations on the natural 1–skeleton
can be related by an isotopy and a finite sequence of bistellar moves.

As an application of this result, we show how to extend the Turaev–Viro state-
sum invariant for 3–manifolds [20] to a family of invariants on 3–dimensional
pseudomanifolds indexed by triangulations of the natural 1–skeleton. If the
pseudomanifold X has only point singularities, we recover as a topological
pseudomanifold invariant the piecewise–linear invariant of Barrett and West-
bury [2]. We also mention how these techniques can be used to obtain knot
invariants.

2 Triangulability and combinatorial properties of 3–

pseudomanifolds

Let us begin by defining our objects of study.

Definition 2.1 Let c(Z) denote the open cone on the space Z , and let c(∅)
be a point. A topological stratified pseudomanifold X of dimension n is a
paracompact Hausdorff space X possessing a filtration

X = Xn ⊃ Xn−1 = Xn−2 ⊃ Xn−3 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅

such that
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(1) Sn−k = Xn−k − Xn−k−1 is either empty or a topological manifold of
dimension n − k (these subsets are the strata of X ),

(2) X − Xn−2 is dense in X ,

(3) for each x ∈ Sn−k there exists a distinguished neighborhood U of x in X
which is homeomorphic to the product Dn−k×cL, where Dn−k is an open
ball neighborhood of x in Sn−k and L, the link of x, is a compact topo-
logical stratified pseudomanifold of dimensions k − 1. Furthermore, the
homeomorphism h : U → Dn−k×cL is compatible with the stratification
so that is takes U ∩ Xn−j homeomorphically onto Dn−k × cLk−j−1 .

The subspace Xn−2 is often referred to as the singular locus and denoted by
Σ. Note that we do not allow Xn−1 6= Xn−2 , so, in particular, there is no
n − 1-dimensional stratum Sn−1 .

X is called a topological pseudomanifold if it can be endowed with the structure
of a topological stratified pseudomanifold via some choice of filtration.

In case X can be triangulated and is given a fixed triangulation, this definition
agrees with the traditional definition of a pseudomanifold as an n–dimensional
complex each of whose n − 1 simplices bounds exactly two n–simplices. We
will prove this below for the case n = 3. Note, however, that there need not be
a path from any n–simplex to any other that passes only through the interiors
of n– and n − 1 simplices.

It is also important to observe that the filtration of a pseudomanifold is, in
general, not unique and that the stratum in which a point lies does not give full
information about its local topology. For example, a sphere can be stratified
in many ways. On the other hand, there are certain “natural” stratifications,
which we shall discuss below.

For convenience, in what follows we will often simply write “pseudomanifold” to
mean a topological stratified pseudomanifold, particularly when the particular
choice of stratification is not relevant.

Theorem 2.2 Let X be a compact topological stratified pseudomanifold of
dimension ≤ 3. Then X is triangulable. In particular, there exists a finite
simplicial complex K and a homeomorphism h : |K| → X .

Proof Let us assume that X is connected. Otherwise, the following arguments
can be applied separately to each connected component.

The statement concerning triangulability will follow from a result of Munkres
[14] according to which any locally triangulable space of dimension ≤ 3 is
triangulable. We require a few definitions:
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Definition 2.3 Let U be an open subset of X , J a finite complex, and h a
homeomorphism from U to a subset of |J | such that |J | = h(U) and |J |−h(U)
is the polytope of a subcomplex of J . Then (U, h, J) is called a polyhedral

neighborhood on X .

Definition 2.4 A space is called locally polyhedral if it is a separable metric
space endowed with a locally polyhedral structure.

For our purposes, it is enough to know that a space has a locally polyhedral

structure if it can be covered by a set, A, of polyhedral neighborhoods such
that if x and y are two points in the neighborhood (U, h, J) ∈ A and they lie in
the same open simplex of U (meaning that h(x) and h(y) belong to the same
open simplex in J ) then

max{dim(s)|(V, k,K) ∈ A, s is an open simplex in K, and k(x) ∈ s}

=max{dim(s)|(V, k,K) ∈ A, s is an open simplex in K, and k(y) ∈ s}.

In other words, if two points share a simplex under some local triangulation of
the covering A, then they must have the same index with respect to the cover-
ing, where the index of a point (with respect to A) is the maximum dimension
of the open simplices in which it lies, taken over all polyhedral neighborhoods
in the collection A. The dimension of a polyhedral space is the highest dimen-
sion of a simplex which occurs in any of the polyhedral neighborhoods. N.B.
the index of a point is determined by the structure of the family of polyhedral
neighborhoods and not necessarily by actual local topology.

We seek then to employ Theorem 9.8 of Munkres [14], which states that any lo-
cally polyhedral space of dimension n ≤ 3 can be globally triangulated. Hence
we must show that a compact topological stratified pseudomanifold X of di-
mension ≤ 3 is a locally polyhedral space.

It will be convenient to perform an induction, so let us begin by noting that a
compact pseudomanifold of dimension 0 must be a finite collection of points.
Clearly, this has a triangulation. It follows similarly from the definitions that
a compact pseudomanifold of dimension 1 must be a disjoint union of circles,
also triangulable. So now assume inductively that we have established triangu-
lability of pseudomanifolds of all dimensions ≤ n − 1 ≤ 2.

Let B denote the covering of X given by all distinguished neighborhoods of
points of X (this is a covering since each point has a distinguished neighbor-
hood). We will show that B determines a locally polyhedral structure (al-
though B itself may only be the basis for the locally polyhedral structure; see

Algebraic & Geometric Topology, Volume 4 (2004)



Triangulations of 3–dimensional pseudomanifolds 525

[14]). First, we must show that each distinguished neighborhood determines
a polyhedral neighborhood. Let U be some distinguished neighborhood, and
recall that there is a homeomorphism h : U → Dn−k × cL. Clearly, D̄n−k

is triangulable (in fact by the n − k simplex, σ̄n−k ). We can assume that
the link L has been triangulated by induction, and this induces a triangula-
tion on the closed cone c̄L: if L is a simplicial complex such that g : L → L
is a homeomorphism, then we define the homeomorphism c̄g : c̄L → c̄L by
c̄g(y, t) = (g(y), t). Therefore, since σ̄n−k is obviously a locally finite complex,
|σ̄n−k| × |c̄L| can be triangulated by a complex J such that if σ̄ is a closed
simplex in σ̄n−k and τ̄ is a closed simplex in cL, then each |σ| × |τ | is the
polytope of a subcomplex of the triangulation of |σ̄n−k|× |c̄L| (see [16, p. 339]).
But |J | = |σ̄n−k|× |c̄L| ∼= D̄n−k × c̄L by a homeomorphism f that clearly takes
Dn−k × cL to a set whose closure is all of |J | = |σ̄n−k| × |c̄L| and such that
|J | − f(Dn−k × cL) = (|∂σ̄n−k| × |L|) ∪ (|σ̄n−k| × |L|) which is the polytope
of a subcomplex of J . Together, this shows that (U, fh, J) gives a polyhedral
neighborhood of x.

Next, we need to check the condition on the indices of points under these
coverings by distinguished neighborhoods which, a posteriori, are coverings by
polyhedral neighborhoods. In order to facilitate this discussion, let us be more
specific about our choices of local triangulations for the distinguished neighbor-
hoods in the cover (if necessary, we alter the covering to obtain a new one with
the same sets U covering X but different choices of triangulating complex and
homeomorphism). Due to our limitations in dimension, there are only three
possibilities for distinguished neighborhoods:

(1) U is a distinguished neighborhood of a point in the top stratum X−Xn−2 .
In this case, U ∼= Dn , and we can choose J = σ̄n and f : Dn → |σn| to
be any of the standard homeomorphisms induced by a homeomorphism
D̄n → |σ̄n|. Note that by the stratum compatibility conditions for dis-
tinguished neighborhoods, U ∩ Xn−2 = ∅.

(2) U is a distinguished neighborhood of a point in X1 (in which case X
must have dimension 3). Then U ∼= D1 × cL. In this case, we note that
it is possible to choose the triangulation of the polyhedron |σ̄1| × |c̄L| so
that |σ̄1| × | ∗ |, where ∗ is the cone point of c̄L, is triangulated by a
subcomplex consisting of a single closed 1–simplex (see [16, p. 104–105]).
If we form the polyhedral neighborhood using a triangulation of this type,
then D1 × ∗ will be mapped homeomorphically onto an open 1–simplex
of J . Note that by the stratum compatibility conditions for distinguished
neighborhoods, U ∩ X0 = ∅.
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(3) U is a distinguished neighborhood of a point x in X0 . In this case
U ∼= cL, where L is a pseudomanifold of dimension ≤ 2 and x = U ∩X0

will map to the cone point of the complex |c̄L|. Recall that we have
obtained a triangulation g : |L| → L by an inductive application of
Munkres’s theorem. By a more careful application of Munkres’s theo-
rem, we can assume that L0 is triangulated as a subcomplex. This is
because [14, Cor. 9.7] provides a proper triangulation of L and a proper
triangulation induces a triangulation of L0 , the set of points in L with
index 0. But with the locally polyhedral structure of L also determined
by distinguished neighborhoods, this is exactly the set L0 : any point in
L − L0 has index 1 or 2 (as dim(X) = 3 or 2) as we can see from item
1 applied to L, while points in L0 must have index 0 by the inductive
application of this item, which imposes cone–like triangulations on dis-
tinguished neighborhoods of points in L0 . Note that any point in L0

cannot lie in any distinguished neighborhood of any point in L − L0 by
the strata compatibility conditions for distinguished neighborhoods.
Thus, we are free to assume that the image of L0 is a zero dimensional
subcomplex of L. We then take the obvious triangulation of c̄L as the
complex underlying the triangulation of cL. With this choice of triangu-
lation, the stratum compatibility conditions for distinguished neighbor-
hoods ensure that U ∩ (X1 − X0) is triangulated by a disjoint union of
open 1–simplices.

With these choices of triangulations for polyhedral neighborhoods, we can now
demonstrate that this system of neighborhoods satisfies the needed index con-
dition on X . Recall that we must show that if x and y are two points in the
neighborhood (U, h, J) and they lie in the same open simplex of U then the
indices of x and y agree in X , where the index I(x) is defined as the maximum
dimension of the open simplices in which x resides in all of the local polyhedral
neighborhoods of the covering: I(x) =max{dim(s)|(V, k,K) ∈ B , s is an open
simplex in K , and k(x) ∈ s}. The proof comes down to checking cases using
the choices of local polyhedral neighborhoods we have just established:

(1) If x, y ∈ X share an open 2–simplex or 3–simplex in any polyhedral
neighborhood in B , then by the above choices of local triangulations, x
and y must lie in the top stratum X−Xn−2 . Therefore, I(x) = I(y) = n
by looking at the distinguished neighborhoods of these points.

(2) If x, y ∈ X share an open 1–simplex, then by the above choices of local
triangulations, they are either both elements of X −Xn−2 , in which case
the index of each is n as in the last item, or they are both elements of X1 ,
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in which case they each have index 1, again by our choice of triangulations
of distinguished neighborhoods.

(3) It is impossible for two distinct points x, y ∈ X to share a 0 simplex, so
there is nothing to check here.

Lastly, in order to be able to apply Munkres’s theorem and complete our proof
of triangulability, we must show that X is separable and metrizable (once it is
metrizable, we can then endow it with any allowable metric we’d like in order
to make X a separable metric space). But clearly X is locally metrizable since
we can endow the neighborhood of any point with the metric determined by
its homeomorphic image in a finite complex, which itself possesses a metric
induced from some embedding in euclidean space. Then since X is compact
and Hausdorff, it is metrizable. Furthermore, since X is metrizable, separability
is equivalent to second countability, which follows for X by compactness and
metrizability (see [15]).

We next establish that there are certain natural subsets of a 3–pseudomanifold
that will be the polytopes of subcomplexes of any triangulation. This requires
some preliminary work.

Lemma 2.5 (Classification of 2–pseudomanifolds) Any compact topological
pseudomanifold of dimension 2 consists of a collection of compact 2–manifolds
without boundary glued or self–glued along a finite number of points. More
technically: such a pseudomanifold X is the quotient space of a disjoint union
of compact 2–manifolds without boundary such that if q is the quotient map,
then all points x ∈ X satisfy #{q−1(x)} < ∞ and for all but finitely many
x ∈ X , #{q−1(x)} = 1.

Proof Let X be a compact 2–dimensional topological pseudomanifold filtered
by X ⊃ X0 . Since X is compact, the strata compatibility condition for dis-
tinguished neighborhoods in the definition of a pseudomanifold ensures that
X0 is a finite set. We also know, from the definitions, that X − X0 is an
open 2–manifold without boundary. For each x ∈ X0 , consider a distinguished
neighborhood Ux given by Ux

∼= cL, where L is a compact 1–dimensional pseu-
domanifold. It is clear from the definitions that L must be a disjoint union of
circles and so Ux

∼= c(
∐

S1). Consider the smaller distinguished neighborhoods
Vx

∼= c(
∐

S1) ⊂ Ux given by Vx = {(x, t) ∈ Ux|t < 1/2}, where we here iden-
tify cZ with the set of points (z, t) modulo the identification (z1, 0) ∼ (z2, 0).
Clearly then X − ∪x∈X0

Vx is a 2–manifold M with a collared boundary. Now
reattach the neighborhoods Vx . This can be viewed as the two step process
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of filling in the boundary of M with disks to form a compact 2–manifold and
then attaching some of these disks appropriately along the cone points. This
implies the lemma by taking the quotient.

Lemma 2.6 All distinguished neighborhoods of points in a 3–pseudomanifold
X have one of the following homeomorphism types:

(1) D3 ,

(2) D1 × c(
∐

S1),

(3) cL, where L is a compact 2–dimensional pseudomanifold; in particular
a 2–pseudomanifold as classified by the previous lemma.

Proof This is clear from the definition of pseudomanifold and the classification
of 1 and 2 dimensional pseudomanifolds.

Note that neighborhoods of type 1 of the lemma are also of type 2, and those
of type 2 are also of type 3.

Proposition 2.7 Suppose that the compact 3–pseudomanifold X is triangu-
lated by the complex K . Then K is a simplicial pseudomanifold in the sense
that K is a union of 3–simplices such that every 2–simplex in K is the face
of exactly two 3–simplices (note, however, that we do not require the classical
condition that every 3–simplex can be connected to every other 3–simplex by
a path of 3–simplices connected by 2–faces).

Proof That X is the union of 3–simplices follows from the density of the
3–manifold X − X2 in X .

Suppose now that σ̄2 is any closed 2–simplex in X . Note that if σ̄2 is the
boundary of exactly two 3–simplices, then any point of the open simplex σ2

has a neighborhood of type (1) as defined in the previous lemma. Suppose, on
the other hand that σ̄2 is the face of either one or more than two 3–simplices
(a priori it can not be the face of zero 3–simplices, since X is the union of
3–simplices). But some geometric thought shows that this is inconsistent with
any point in σ2 having a distinguished neighborhood of types (1), (2), or (3) of
the previous lemma.

Definition 2.8 Suppose X is a compact 3–pseudomanifold. We define two
natural subsets of X as follows:
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(1) Let X(1) be the subset of X consisting of points that have no neighbor-
hood in X homeomorphic to D3 (i.e. of type (1) of Lemma 2.6).

(2) Let X(0) be the subset of X(1) consisting of points which also have
no neighborhood homeomorphic to D1 × c(

∐

S1) (i.e. points with no
neighborhood of type (1) or type (2) of Lemma 2.6).

Alternatively, X(1) is the set of points of X which must be in X1 for any

choice of stratification of the space X as a pseudomanifold, while X(0) is the
set of points which must be in X0 for any choice of stratification.

Proposition 2.9 For any triangulation h : X → |K| of the 3–dimensional
compact pseudomanifold X , h(X(0)) and h(X(1)) are the polytopes of re-
spectively 0–dimensional and 1–dimensional subcomplexes of K .

Proof For convenience of notation, we use the homeomorphism h to identify
X with the polytope K and identify the images of X(0) and X(1) with subsets
(not yet necessarily subcomplexes) K(0) and K(1) of |K|. The proposition will
follow from the fact that any simplicial pseudomanifold can be given the struc-
ture of a topological pseudomanifold filtered by the polytopes of the simplicial
skeleta Ki , i.e. by |K0| ⊂ |K1| ⊂ |K| for a simplicial 3–pseudomanifold (see
[3, Chapter I]).

First, we show that K(0) ⊂ |K0|. Suppose to the contrary that x ∈ |K|, but
x /∈ |K0|. Then x will be a point in one of the pure strata |K| − |K1| or
|K1| − |K0|. But in the first case x must have a distinguished neighborhood of
type (1) and in the second it must have a neighborhood of type (2) of Lemma
2.6, and these cases would contradict x ∈ K(0). Hence K(0) ⊂ |K0|, and
clearly K(0) is the polytope of a 0–dimensional subcomplex of K .

Now consider K(1). Similarly to the arguments of the last paragraph, we must
have K(1) ⊂ |K1|, else some point of K(1) would have a neighborhood of type
(1), a contradiction. Notice also that K(1) is a closed subset of |K| since clearly
its complement, the set of points which have neighborhoods homeomorphic to
D3 , is open. So it now suffices to demonstrate that K(1) contains every open
1–simplex that it intersects. But for any two points x, y in a 1–simplex σ1 ,
there is a homeomorphism |K| → |K| which takes x → y (indeed, there is the
standard piecewise linear homeomorphism on σ1 → σ1 which takes x to y and
then extends linearly to St(σ1) and is the identity outside this star). But then
clearly x and y have homeomorphic neighborhoods, so if x ∈ K(1) so must be
y . Hence, K(1) must be the polytope of the closure of a union of open 0 and
1 simplices, which must be a 1–dimensional complex.
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Given now that we can triangulate any compact 3–dimensional topological
pseudomanifold and that, for each, there exists a certain naturally occurring 1–
skeleton, X(1), which must appear as a subcomplex of any such triangulation,
we show that there always exists a triangulation of the whole pseudomanifold
that extends any given triangulation of this natural 1–skeleton.

Proposition 2.10 Given a compact topological 3–pseudomanifold X and a
triangulation of its natural 1–skeleton X(1) that is compatible with the natural
stratification (in other words, each point in the X(0) must be subpolyhedron,
i.e. a vertex), there exists a triangulation of X that extends the given triangu-
lation of X(1).

Proof From Proposition 2.9, we know that X(1) and X(0) are subpolyhedra
of X in any triangulation, so topologically X(1) must be a graph, a collection
of vertices and edges (disconnected vertices are allowed). So any triangulation
of X(1) is by a polygonal graph Γ, and we choose one such triangulation up
to isotopy in accordance with the hypothesis of the proposition. Fixing this
triangulation only up to isotopy is not a serious restriction since any isotopy
on X(1) that fixes X(0) can be extended to all of X . This will follow from
the techniques of our proof. So, in the end, we can pick any triangulation of
X(1) in the isotopy class and then isotop the remainder of the triangulation of
X we have constructed to suit it. Now, however, it is useful to have the added
flexibility of only fixing an isotopy class.

Let us choose some arbitrary triangulation |K| → X of X . For simplicity, we
can identify X with this complex in what follows. Of course in this triangulation
X(1) and X(0) are the polytopes of a 1–subcomplex and a 0–sub–subcomplex,
respectively. By an isotopy that fixes the vertices of Γ that map to X(0), we can
modify the triangulation |Γ| → X(1) to make it piecewise linear with respect
to the triangulation K . Then there exist subdivisions of Γ and K such that
this map is simplicial. Without loss of generality (since our choice of K was
arbitrary to begin with), let us replace K with this subdivision if necessary
(without changing its name). With these choices, we now see that we can
consider the triangulation of X(1) under K to be a subdivision of that by Γ.

Our goal now will be to show that given such a global triangulation, we may alter
it to obtain another triangulation of X such that X(1) is again triangulated
by Γ, itself.

To fix some notation, let us identify |Γ|, the geometric realization of the graph
Γ, with X(1) via the given triangulation, and let |Γ0| denote the images of the
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vertices of Γ in X(1). We continue to treat X as the geometric realization of
a simplicial complex K , and then |Γ| and |Γ0| are subpolyhedra triangulated
by subcomplexes of K . Let us consider the second barycentric subdivision
K ′′ of K and the relative stellar neighborhood in K ′′ of |Γ| rel |Γ0|; call this
neighborhood N(Γ,Γ0). In other words, N(Γ,Γ0) will be a relative regular
neighborhood in X of |Γ| rel |Γ0| (see [7]). In concrete terms, this neighborhood
is the union of (closed) simplices in K ′′ that intersect |Γ| − |Γ0|.

It is not hard to see that N(Γ,Γ0) is a union of 3–balls. More specifically, if
|γi| is the geometric realization of an edge of Γ and the link of |γi| in X has ni

components (note that this number will be well–defined since int(γi) must lie
in X(1)−X(0)), then the relative regular neighborhood N(γi, ∂γi) will consist
of ni 3–balls joined along γi . In fact, take K ′′ and consider the decomposition
space K ′′

∗ as defined in [14]. In this decomposition, we have simply unglued
along X(1) − X(0), so, in particular, each vertex of |Γ0| in X(0) corresponds
to exactly one vertex in K ′′

∗ and each vertex of |Γ0| that lies in X(1) lifts to
a number of points in the decomposition space corresponding to the number
of connected components in its link. We denote this set of vertices in K ′′

∗ by
|Γ0|∗ . Meanwhile, each |γi| lifts to ni 1–dimensional subpolyhedra that are
disjoint except possibly at their endpoints in |Γ0|∗ . We choose some ordering
and label these arcs γij∗ . Note that K ′′

∗ is a 3–pseudomanifold with only point
singularities.

Now consider Ǩ = K ′′
∗ − ∪int (St(|Γ0|∗)), i.e. K ′′

∗ with the stars in K ′′ of
the vertices in |Γ0|∗ removed. Ǩ is a 3–manifold with boundary. Since we
have take subdivisions, each |γij | ∩ Ǩ is an arc which meets the boundary
of Ǩ normally. We have also taken sufficient subdivisions that the stellar
neighborhoods of the |γij∗∩ Ǩ| (i.e. the neighborhoods consisting of the unions
of the simplices that intersect them) will be disjoint regular neighborhoods
of them. By standard regular neighborhood theory in a 3–manifold, these
neighborhoods are homeomorphic to 3–balls (see [11]); we use here that all
triangulations of 3–manifolds are compatible with their manifold structures
(this fact, originally due to Moise [13], also follows from a theorem of Edward
Brown quoted below as Theorem 2.13). Let’s label these balls Mij∗ . In addition,
the intersection of each neighborhood Mi,j∗ with the boundary is a regular 2–
disk neighborhood of |γij∗|∩∂Ǩ (see [11]). Now putting the stars around |Γ0|∗
back in, we see that the stellar neighborhood Nij∗ of |γij∗| rel ∂|γij | in K ′′

∗

is the union of the Mij∗ with the cones on the boundary pieces Mij∗ ∩ ∂Ǩ .
Thus each Nij∗ is also homeomorphic to a 3–ball. Now, passing back down to
K ′′ from K ′′

∗ , the triangulation is unaffected except for regluing the |γij | back
together to |γi|. Hence each N(γi, ∂γi) is homeomorphic to the union of the
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Nij∗ joined along |γi|. The entire relative neighborhood N(Γ,Γ0) is the union
of the N(γi, ∂γi), and these are joined together only at the boundary points
of the |γi|. Note that since Γ is a well–defined 1–complex, no two boundary
points of the same |γi| are ever joined together in this way.

Our goal now is to modify the triangulations of the neighborhoods N(γi, ∂γi) so
that, within each, each |γi| is triangulated by a single 1–simplex. With suitable
modifications to the triangulation of X off |Γ|, we will obtain our desired
triangulation. Notice that, topologically, each N(γi, ∂γi) is homeomorphic to a
union of standard 3–balls, Bij , joined along their north–south axes (this follows
by an application of isotopy extension from the axis of a ball to the entire ball
rel boundary). Let Ωi denote the subcomplex of N(γi, ∂γi) consisting of all
simplices in K ′′ in the boundaries ∂Bij except for those that intersect the south
pole. So Ωi is a collection of 2–disks Dij joined together at a single point of
each. If we then take the closed cone c̄Ωi , we obtain a space homeomorphic
to N(γi, ∂γi). Furthermore, the triangulations of c̄Ωi and N(γi, ∂γi) agree on
∪∂Bij since the open cone c∂Dij is exactly what we removed from ∪∂Bij to
form Ωi . Lastly, of course, c̄Ωi has exactly one 1–simplex that runs through
its interior as the north–south axis |γi|.

We perform this procedure for all i and so we can remove all N(γi, ∂γi) from the
triangulation K ′′ and replace them with the c̄Ωi by gluing along the matching
boundaries. This creates a ∆–complex in the sense of [10], i.e. a quotient space
of simplices joined along their faces. It remains to see that we can turn this into
a true triangulation without further modifying |Γ| which is now triangulated
as we want it. It is clear from the construction that each simplex uniquely
determines a full set of distinct vertices, but it is necessary also that each set
of vertices spans a distinct (possibly empty) simplex. In other words, we must
ensure that no set of vertices spans multiple simplices. One way to ensure
this would be to take another subdivision of our current complex, but that
would ruin what we have achieved as far as triangulating |Γ| goes. So instead,
we perform a generalized stellar subdivision rel |Γ|, a subdivision built on the
current set of vertices along with the barycenters of all simplices not in |Γ|
(see [16]). Let us call the resulting “complex” L; we show that L is in fact a
legitimate simplicial complex and not just a ∆–complex.

Clearly, there is no trouble with 0–simplices of L. Nor is there any ambiguity
with simplices that have a vertex either in the interior of some |c̄Ωi| (by which
we mean the union of the interiors of the corresponding Bij ) or on the com-
plement of the interior of ∪|c̄Ωi|, since the restriction of L to |c̄Ωi| and the
complement of its interior must each be simplicial complexes (as subdivisions
of simplicial complexes) and there are clearly no simplices in L with vertices
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both interior and exterior to any one |c̄Ωi|. So we need only worry about sim-
plices whose vertices all lie on some |∂c̄Ωi| (by which we mean the union of
the corresponding |∂Bij |). In fact, we need only be concerned if they all lie
on the same |∂Bij | since any two vertices that lie only on distinct ∂Bij (thus
excluding the north and south poles) cannot span any 1–simplex either within
|c̄Ωi|, by construction, or on the complement of its interior, because of the extra
generalized subdivision we have made to obtain L (there can be no 1–simplices
left which touch multiple |Bij| except possibly at the north or south poles).

So, let us consider 1–simplices whose vertices all lie on the same |∂Bij |. Due to
the generalized subdivision, the only possibilities for such a 1–simplex, σ , are
for it to lie in some |∂Bij | or for it to be |γi|: in order for σ not to be a γi and
still intersect the interior of some |Bij |, it would have to include a vertex also
in the interior of |Bij |; similarly it cannot lie in the complement of the interior
of |c̄Ωi|. If σ = γi , its vertices are the north and south poles of the |Bij |.
By assumption that Γ is properly triangulated by the γi , these vertices cannot
span any other 1–simplex in |Γ|, and since the |c̄Ωi| only possibly intersect in
their various north and south poles, ∂γi cannot span any other 1–simplices in
the restriction of L to ∪|c̄Ωi|. On the other hand, these vertices again cannot
span any 1–simplex in the complement of ∪|c̄Ωi| because of the generalized
subdivision we performed there to obtain L since any such spanning 1–simplex
would have been subdivided at that time (of course the subdivision could not
have created an extra 1–simplex connecting the two vertices). If σ 6= γi , then
σ lies in some |∂Bij |. But since L restricts to a triangulation of |∂Bij |, which
is a subcomplex of ∪|c̄Ωi|, ∂σ can not span any other simplices in |∂Bij |. Thus
we have ruled out any other possible simplices for ∂σ to span except for σ .

Next, let us consider 2– or 3–simplices whose vertices all lie on the same |∂Bij |.
Once again because of the generalized subdivision, any such simplex must lie
entirely in |∂Bij |, using the observation we have already made that any pair of
vertices of any such simplex must uniquely determine its spanning 1–simplex.
In this case, none of these 1–simplices can be γi , since the north and south
poles of |Bij | are not connected by any path with two edges in |∂Bij |. It then
follows that any such simplex is uniquely determined in |∂Bij | by using that
the complement of the interior of ∪|c̄Ωi| is properly triangulated.

Thus, we have shown that L is a legitimate simplicial complex that triangulates
X and imposes the desired triangulation on X(1). The promised ability to
extend isotopies on X(1) rel X(0) comes from continuing to view the |γi| as
axes of balls and the ability to extend such isotopies rel the boundaries of the
balls.
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Now that we have determined that any compact 3–pseudomanifold X can be
triangulated and studied both the limitations and allowable possibilities for such
triangulations, let us look at relations between these various triangulations.

Definition 2.11 An Alexander star move on an open simplex E in a poly-
hedron triangulated by a simplicial complex T consists of replacing the closed
star St(E) (the union of the closed simplices in T which contain E ) with the
cone to some b ∈ E over the “boundary” bd(E), which consists of all simplices
in St(E) which do not contain E .

Theorem 2.12 Let X be a compact topological stratified 3–pseudomanifold.
Any two triangulations of X are equivalent in the sense that any triangulation of
X can be obtained from any other by an ambient isotopy and a finite sequence
of Alexander star moves and their inverses.

Proof We first claim that any two triangulations of X are combinatorially
equivalent. In other words, give any two triangulations k : X → |K| and
ℓ : X → |L|, there exists an isotopy ht : X → X such that h0 : X → X is the
identity and ℓh1k

−1 is piecewise linear. In particular, there exist subdivisions
K ′ of K and L′ of L such that the induced map ℓh1k

−1 : K ′ → L′ is simplicial
[18, Theorem 2.14]. This claim follows from a theorem of Edward Brown [4]:

Theorem 2.13 (Brown) Let K and L be complexes of dimension ≤ 3, and
let f : |K| → |L| be a homeomorphism. Let ǫ(x) be a positive continuous
function on K , and let ρ be a metric on |L|. Suppose f is piecewise linear on a
possibly empty subcomplex M of K . Then there exists an isotopy ft : |K| →
|L| so that

(1) f0 = f ; f1 is piecewise linear,

(2) ft||M | = f ||M | ,

(3) ρ(ft(x), f(x)) < ǫ(x) for all x ∈ |K|.

We can then apply this theorem to the homeomorphism ℓh0k
−1 = ℓk−1 : |K| →

|L| to obtain an isotopy ft : |K| → |L| from ℓk−1 to a piecewise linear map. To
obtain an isotopy on X , define ht = ℓ−1ftk . Then h0 = ℓ−1f0k = ℓ−1ℓk−1k =
idX and ℓh1k

−1 = ℓℓ−1f1kk−1 = f1 .

In particular, from now on it will be convenient, with no loss of topolog-
ical generality, to identify X with a fixed triangulation, say L, and take
ℓ = id: X → |L|. Then perhaps the best way to think about this theorem
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is to consider k−1|K| as giving a “curvy” triangulation of X = |L| with respect
to the piecewise linear structure induced on X by L. Then the theorem can
be interpreted as saying that there is an arbitrarily small isotopy of X that
straightens out the curvy triangulation given by K to one that is compatible
with the PL structure given by L. Technically, this new “linearized” triangu-
lation by K is given by a new pair (K, k̄), where k̄ : X → K is given by k
precomposed with an isotopy of X , but it is more convenient to do without
explicit use of the maps and now to imagine K and L as different complexes in
some euclidean space which have the same polytope |K| = |L| = X . Piecewise
linear topology then tells us that X must be the polytope of a complex, say J ,
which is a subdivision of both L and this straightened out K .

The next step is to see that, in this context, we can transform K to L by a
finite sequence of Alexander star moves.

This is the content of Theorem 3.1.A of [20]:

Theorem 2.14 (Turaev–Viro) For any polyhedron P which is dimensionally
homogeneous (i.e. it is a union of some collection of closed simplices of the same
dimension) and with subpolyhedron Q, any two triangulations of P that coin-
cide on Q can be transformed one to another by a finite sequence of Alexander
star moves and their inverses, which do not change the triangulation of Q.

Note that in the statement of this theorem, “triangulation” is being used solely
in terms of triangulations already compatible with the PL structure. We have
observed that any 3–pseudomanifold is dimensionally homogeneous in Propo-
sition 2.7.

Putting the above results together, we see that if we are given two, possibly
piecewise linearly incompatible, triangulations of the pseudomanifold X , then
there is first an isotopy which makes the first triangulation piecewise linearly
compatible with the second (establishing combinatorial equivalence) and then
a finite sequence of Alexander star moves and their inverses which transforms
the isotope of the first triangulation to the second.

Next we define Pachner’s bistellar moves, which have a certain technical advan-
tage over Alexander moves. Although these moves can be defined in arbitrary
dimensions, we limit ourselves to the 3–dimensional cases.

Definition 2.15 A bistellar move on a tetrahedron ABCD in an (abstract)
simplicial complex adds a vertex O at the center of ABCD and replaces ABCD
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with the four tetrahedra OABC , OABD , OACD and OBCD . A bistellar

move on a triangle BCD that is a face of exactly two tetrahedra ABCD
and A′BCD replaces these two tetrahedra with the three tetrahedra AA′BC ,
AA′BD , and AA′CD . This move adds no new vertices but forms the new
edge AA′ . This must be viewed as a move on the abstract simplicial complex,
as it may not be possible to perform this move on a complex embedded in a
euclidean space. Two simplicial complexes that can be joined by a series of
these two bistellar moves and their inverses are called bistellar equivalent.

Proposition 2.16 Any two triangulations of a 3–pseudomanifold which are
equivalent on X(1) are bistellar equivalent.

Proof By two triangulations being “equivalent on X(1)”, we mean that the
induced triangulations on X(1) differ by an isotopy. This will, of course, be the
case if corresponding components of X(1) − X(0) contain the same numbers
of vertices. These isotopies can always be extended to X as in the proof of
Proposition 2.10. So we can assume that the two triangulations actually agree
on X(1). By Theorem 2.14, any two such triangulations are equivalent (after
a further isotopy) by a sequence of Alexander star moves and inverses which
do not change the triangulation of X(1). This implies, in particular, that they
are related by star moves (and their inverses) on simplices with interiors in
X − X(1). So, it suffices to show that K and σA(K) are bistellar equivalent,
where K is a triangulation of X respecting the given triangulation of X(1) and
σA(K) is the result of a star move on a simplex A with interior in X − X(1).
But neither star moves nor bistellar moves affect the triangulation on ∂St(A)
or exterior to St(A). So consider St(A) in K . Since A is not in X(1), it
follows that St(A) ∼= D3 . But now by [6], St(A) and σASt(A) are bistellar
equivalent, since this is a manifold with boundary pair. Replacing this star
back into the whole complex, we see that the complexes K and σA(K) are
bistellar equivalent.

3 Quantum invariants

We now show how the triangulability properties of 3–pseudomanifolds, as stud-
ied above, can be used to obtain a generalization of the state-sum invariants of
Turaev and Viro on 3–manifolds to families of invariants of 3–pseudomanifolds,
indexed by the triangulations of the natural 1–skeleton X(1). Since the natural
1–skeleton is a compact graph, its triangulations are countable, so we obtain a
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countable family of invariants for each pseudomanifold. If a 3–pseudomanifold
has only point singularities, we obtain a single topological invariant.

The definition of our invariants will follow the general version given by Turaev
in his monograph [19]. We refer the reader to this very accessible source for the
necessary definitions in the language of modular categories [19]. In particular,
we will assume a fixed unimodular category V with ground ring K , braiding c,
twist θ , duality ∗, simple objects Vi , i in the indexing set I , a fixed rank D such
that D2 =

∑

i∈I(dim(Vi))
2 , and two families of elements of K , {dim′(i)}i∈I and

{v′i}i∈I such that dim′(0) = 1, (dim′(i))2 = dim(Vi), (v′i)
2 = vi , and v′i∗ = v′i ,

where vi corresponds to θ : Vi → Vi under the bijection Hom(Vi, Vi) ∼= K that
defines Vi as a simple object.

We note that examples of such unimodular categories exist. In fact, more
generally, modular and ribbon categories by now have a rather rich history.
The most well–known unimodular categories seem to be categories of certain
finite dimensional representations of quantum groups. Such categories can also
be defined geometrically via tangle categories, skein relations, and Temperley–
Lieb algebras (in particular, see [19], [12], and [5]). We refer the reader to [19]
and the references contained therein for further exposition on this subject.

Within a strict unimodular category V , Turaev constructs a certain normalized
version of the 6j–symbols. In fact, he provides two alternative constructions.
For the detailed construction, the reader is again referred to [19]. We will

suffice to note that the normalized 6j–symbol

∣

∣

∣

∣

i j k
l m n

∣

∣

∣

∣

is an element of

H(j∗, l∗,m)⊗K H(i∗, j∗, k)⊗K H(i,m∗, n)⊗K H(j, l, n∗), where each H(i, j, k)
is a symmetrized multiplicity module, i.e. a symmetrized version of the module
H ijk = Hom(1, Vi⊗Vj⊗Vk), where Vi, Vj , Vk are simple objects of V . A symbol
such as i∗ signifies the dual object V ∗

i . We also note that these normalized 6j–
symbols satisfy versions of the classical identities for 6j–symbols, such as the
Biedenharn–Elliott identity.

The 6j–symbols can be computed explicitly in a number of cases, for example
if V is the purification of the category of representations of the quantum group
Uq(sl2(C)) with q = −a2 , a a primitive 4r-th root of unity in C, r ≥ 2.
Formulae are provided in, e.g. [19] and [5].

Now, let us return to pseudomanifolds. We define our invariant following Tu-
raev’s for manifolds, but we must make a few generalizations. Let X be a
compact triangulated 3–pseudomanifold, and let Γ be a triangulation (up to
isotopy) of the natural 1–skeleton X(1) of X . Each edge e of X that does not
lie in X(1) possesses two normal orientations. We can think of these as the two
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opposite orientations of the link circle of e in X (or, equivalently, as Turaev
does, as the two orientations of the trivial normal vector bundle to the interior
of e in X ). If e is an edge in X(1), then the link of e is a disjoint union of
circles, and we can define a local system of orientations for e by specifying an
orientation on each circle. If the link of e consists of n circles, then there are 2n

local systems of orientations for e. Let us define the set of oriented link circles

of X to be the set of oriented circles each of which is a component of a link
of an edge of X . So each edge whose link has n connected components makes
a contribution of 2n elements to the set of oriented link circles (two possible
orientations for each circle). To each oriented link circle S , there corresponds
the link circle S∗ with the reverse orientation.

Now, we define a coloring φ of X as an assignment from the set of oriented
link circles of X to the index set I of V such that if φ(S) = i, then φ(S∗) = i∗ ,
and such that if S1 and S2 are both links of the same edge then φ(S1) equals
either φ(S2) or φ(S2)

∗ . Let col(X) denote the set of coloring of X . If X is a
manifold, then this set of colorings is equivalent to the set of normally oriented
edge colorings of [19].

For each edge e of X with link S , let dimφ(e) = dim(φ(S)) = dim(φ(S∗)).
This is well–defined by our definition of φ.

Suppose that T is a 3–simplex of X and that we are given a coloring φ of
X . Let us arbitrarily label the vertices of T by A, B , C , and D . Then for
each edge e of T , there is a unique (non–oriented) link circle ST,e of e that
intersects T for a small enough choice of distinguished neighborhood of a point
in e. Let i be the color of ST,AB under φ with orientation determined to agree

with the direction from ~AD to ~AC within T . Similarly, let j, k, l,m, n be the
colors associated by φ to the links ST,BC , ST,AC , ST,CD , ST,AD , and ST,BD

with orientations determined by the pairs ( ~BD, ~BA), ( ~AB, ~AD), ( ~CB, ~CA),

( ~AC, ~AB), and ( ~BA, ~BC). We then define |T φ| =

∣

∣

∣

∣

i j k
l m n

∣

∣

∣

∣

.

Now, given a coloring φ ∈col(X), let

|X|Γφ = D−2a(
∏

e

dimφ(e))cntr(⊗T |T
φ|),

where a is the number of vertices in the triangulation of X , e runs over all
(non-oriented) edges of X , T runs over all 3–simplices of X , and cntr indicates
tensor contraction. This contraction is well–defined since wherever two tetra-
hedra share a face in the triangulation, the corresponding |T |’s will have tensor
factors of the respective forms H(i, j, k) and H(i∗, j∗, k∗) (note that for two
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such neighboring tetrahedra T and T ′ , the link determined for any common
edge e is the same for each tetrahedron, i.e. ST,e = ST ′,e). These modules
have a non–degenerate bilinear pairing to K induced by the trace, and we use
this pairing to contract. Since all pairs of faces contract this way, |X|φ is an
element of K .

Finally, we define the state sum

|X|Γ = |X|ΓV =
∑

φ∈col(X)

|X|Γφ ∈ K.

Theorem 3.1 Let X be a compact 3–pseudomanifold and V a strict unimod-
ular category. The state sum |X|ΓV is independent of the triangulation of X
modulo the given isotopy class of the fixed triangulation Γ of X(1). In partic-
ular, for fixed V , we obtain a family of topological invariants of X indexed by
the (countable) triangulations up to isotopy of the natural 1–skeleton X(1).

Proof By Proposition 2.16, any two triangulations of X that agree on X(1)
are bistellar equivalent, i.e. we can pass from one to the other by a series
of isotopies and bistellar moves. Furthermore, none of these bistellar moves
add or remove any edges in X(1). Clearly, |X|Γ is unchanged by isotopy,
so we must see that it is unchanged by bistellar moves. But we now refer
the reader to Turaev’s proof in [19] that the corresponding state sum is an
invariant for (closed) manifolds. This is proven by applying locally identities
on the normalized 6j–symbols that generalize more classical identities on 6j–
symbols including the Biedenharn–Elliott identity. Since the edges in X(1)
with their more complicated colorings remain fixed under the bistellar moves,
Turaev’s proof applies directly.

If X has only point singularities, we obtain a topological invariant:

Corollary 3.2 Let X be a compact 3–pseudomanifold with only point singu-
larities. Then |X|V is a topological invariant of X .

This is essentially the invariant of Barrett and Westbury [2], though they work
in a slightly different category system.

This corollary also allows us to obtain an invariant of manifolds with boundary
by coning off the boundary pieces. If a manifold has multiple boundary pieces,
there will be multiple ways to cone, as noted in the statement of the next
corollary. However, as we will see in the following corollary, the various ways
of coning give fundamentally the same result.
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Corollary 3.3 Let M be a 3–manifold with n boundary components. Let
p(n) denote the number of ways to partition n objects into groups. Then there
exist p(n) topological invariants |M |iV , where i denotes the ith partition (in
some given fixed ordering). These are defined by |M |iV = |Xi|V , where Xi is
the 3–pseudomanifold obtained from M by adding one cone on each group of
boundaries as determined by the partition. (Some of the invariants may be
redundant, dependent upon the symmetries of the manifold.)

Corollary 3.4 Suppose that the compact 3–pseudomanifold Y is obtained
from the compact 3–pseudomanifold X by a quotient map p that is injective
on the complement of a finite set S of n points and takes this set of n points
to a set of m < n points in Y . Let Γ be a triangulation of X(1) such that each
point x ∈ S ∩ X(1) with #{p−1(p(x))} > 1 is a vertex of Γ. Then for any V ,
|Y |ΓV = D2(n−m)|X|ΓV .

Proof We can find triangulations of X and Y such that the triangulation
of Y is formed from the triangulation of X by identifying certain vertices.
In fact, our assumption on Γ ensures that all points of S in X(1) are vertices
already, and any other point in S can be made a vertex without disturbing Γ by
employing a generalized stellar subdivision. Then we need only identify vertices
as prescribed by p to obtain a triangulation of Y . The formula now follows
from the definitions, since these triangulations of X and Y give equivalent
combinatorial data for the computation of | · |ΓV , except for the number of
vertices, which comes in only as the multiplicative factor D−2a .

So we see that the various invariants of Corollary 3.3 really only differ by a well–
controlled factor of D . In fact, each of these invariants must be a contraction
of the vector obtained from the manifold with boundary by considering the
topological quantum field theory version of the Turaev–Viro theory.

Finally, we indicate how our state sum invariants of pseudomanifolds can be
used to yield invariants of tame knots and links. This is done by assigning to
knots and links certain pseudomanifolds.

The simplest such construction is the following: Given a knot or link in S3 ,
we can consider the complement of an open regular or tubular neighborhood of
the knot or link. This complement is a 3–manifolds whose boundary consists
of tori. We can then cone off collections of these boundary tori to obtain
pseudomanifolds as in Corollary 3.3. By the same method, we can obtain
invariants of links in any 3–manifold (if the manifold is not orientable, we may
have to replace cones on tori with cones on Klein bottles). We can even apply
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this process to links in a 3–pseudomanifold X since, for a PL link, its regular
neighborhood will remain well–defined, thinking of X as a PL space. Again,
we can remove an open regular neighborhood and then cone off the collection
of free 2–simplices. Most generally, this method also provides invariants of
pairs (X,A), where X is any dimensionally homogeneous 3–complex and A is
a subcomplex.

We can also create from knots and links pseudomanifolds with 1–dimensional
singularities: If N̄ = S1 × D2 represents the closed regular neighborhood of a
knot in an orientable 3–manifold M , N its interior, and ∂N̄ = S1 × S1 its
boundary, define fk : S1 × S1 → S1 by (θ, φ) → kθ . Let Ck be the mapping
cylinder of fk . Then (M−N)∪∂N̄ Ck is a pseudomanifold with a 1–dimensional
singular set. For links, we can either perform this construction for each compo-
nent individually or, for n–component sublinks, adjoin the mapping cylinders
of the maps f(k1,...,kn) :

∐n
i=1 S1 × S1 → S1 , where f(k1,...,kn) restricted to the

boundary of the neighborhood of the ith component of the link is fki
. If M

is not orientable, we can still perform this procedure after replacing some of
the tori with Klein bottles; the maps fk can still be defined since they factor
through the projection to the base of the circle bundle.

Finally, we can, of course, employ the constructions of the previous two para-
graphs in combinations. Hence, for links, we obtain several families of associated
pseudomanifolds and thus several families of invariants.
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[17] U Pachner, Bistellare Äquivalenz kombinatorischer Mannigfaltigkeiten, Arch.
Math 30 (1978) 89–98, MathReview, Zbl 0375.57007

[18] C P Rourke, B J Sanderson, Introduction to Piecewise-Linear Topology,
Springer Study Edition, Springer-Verlag, Berlin-Heidelberg-New York (1982)
MathReview, Zbl 0477.57003

[19] VG Turaev, Quantum Invariants of Knots and 3-Manifolds, de Gruyter
Studies in Mathematics 18, Walter de Gruyter, Berlin-New York (1994)
MathReview, Zbl 0812.57003

[20] VG Turaev, OY Viro, State sum invariants of 3-manifolds and quantum

6j-symbols, Topology 31 (1992) 865–902, MathReview, Zbl 0779.57009

Mathematisches Institut, Universität Heidelberg
D-69120 Heidelberg, Germany
and
Department of Mathematics, Yale University
New Haven, CT 06520, USA

Email: banagl@mathi.uni-heidelberg.de and friedman@math.yale.edu

Received: 10 May 2004

Algebraic & Geometric Topology, Volume 4 (2004)

http://links.jstor.org/sici?sici=0002-9947%28196902%29136%3C189%3AAGTORR%3E2.0.CO%3B2-E
http://www.ams.org/mathscinet-getitem?mr=40:2052
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0182.57602
http://dx.doi.org/10.1016/0040-9383(80)90003-8
http://www.ams.org/mathscinet-getitem?mr=82b:57010
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0448.55004
http://www.ams.org/mathscinet-getitem?mr=84i:57012
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0529.55007
http://www.math.cornell.edu/~hatcher/AT/AT.pdf
http://www.ams.org/mathscinet-getitem?mr=40:2094
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0189.54507
http://www.ams.org/mathscinet-getitem?mr=95c:57027
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0821.57003
http://links.jstor.org/sici?sici=0003-486X(195207)2:56:1%3C96:ASI3VT%3E2.0.CO%3B2-2
http://www.ams.org/mathscinet-getitem?mr=19,437b
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0080.16801
http://www.ams.org/mathscinet-getitem?mr=57:4063
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0306.54001
http://www.ams.org/mathscinet-getitem?mr=85m:55001
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0673.55001
http://www.ams.org/mathscinet-getitem?mr=58:7641
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0375.57007
http://www.ams.org/mathscinet-getitem?mr=83g:57009
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0477.57003
http://www.ams.org/mathscinet-getitem?mr=95k:57014
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0812.57003
http://www.ams.org/mathscinet-getitem?mr=94d:57044
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0779.57009
mailto:banagl@mathi.uni-heidelberg.de
mailto:friedman@math.yale.edu

	1 Introduction
	2 Triangulability and combinatorial properties of 3--pseudomanifolds
	3 Quantum invariants
	Bibliography

