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Noncommutative knot theory

Tim D. Cochran

Abstract The classical abelian invariants of a knot are the Alexander
module, which is the first homology group of the the unique infinite cyclic
covering space of S3 −K , considered as a module over the (commutative)
Laurent polynomial ring, and the Blanchfield linking pairing defined on this
module. From the perspective of the knot group, G, these invariants reflect
the structure of G(1)/G(2) as a module over G/G(1) (here G(n) is the nth

term of the derived series of G). Hence any phenomenon associated to G(2)

is invisible to abelian invariants. This paper begins the systematic study of
invariants associated to solvable covering spaces of knot exteriors, in par-
ticular the study of what we call the nth higher-order Alexander module,
G(n+1)/G(n+2) , considered as a Z[G/G(n+1)]–module. We show that these
modules share almost all of the properties of the classical Alexander module.
They are torsion modules with higher-order Alexander polynomials whose
degrees give lower bounds for the knot genus. The modules have presenta-
tion matrices derived either from a group presentation or from a Seifert sur-
face. They admit higher-order linking forms exhibiting self-duality. There
are applications to estimating knot genus and to detecting fibered, prime
and alternating knots. There are also surprising applications to detecting
symplectic structures on 4–manifolds. These modules are similar to but
different from those considered by the author, Kent Orr and Peter Teich-
ner and are special cases of the modules considered subsequently by Shelly
Harvey for arbitrary 3–manifolds.

AMS Classification 57M27; 20F14

Keywords Knot, Alexander module, Alexander polynomial, derived se-
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1 Introduction

The success of algebraic topology in classical knot theory has been largely
confined to abelian invariants, that is to say to invariants associated to the
unique regular covering space of S3\K with Z as its group of covering trans-
lations. These invariants are the classical Alexander module, which is the first
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homology group of this cover considered as a module over the commutative ring
Z[t, t−1], and the classical Blanchfield linking pairing. In turn these determine
the Alexander polynomial and Alexander ideals as well as various numerical
invariants associated to the finite cyclic covering spaces. From the perspec-
tive of the knot group, G = π1(S3\K), these invariants reflect the structure of
G(1)/G(2) as a module over G/G(1) (here G(0) = G and G(n) = [G(n−1), G(n−1)]
is the derived series of G). Hence any phenomenon associated to G(2) is in-
visible to abelian invariants. This paper attempts to remedy this deficiency
by beginning the systematic study of invariants associated to solvable covering
spaces of S3\K , in particular the study of the higher-order Alexander module,
G(n)/G(n+1) , considered as a Z[G/G(n)]–module. Certainly such modules have
been considered earlier but the difficulties of working with modules over non-
commutative, non-Noetherian, non UFD’s seems to have obstructed progress.

Surprisingly, we show that these higher-order Alexander modules share most
of the properties of the classical Alexander module. Despite the difficulties of
working with modules over non-commutative rings, there are applications to
estimating knot genus, detecting fibered, prime and alternating knots as well
as to knot concordance. Most of these properties are not restricted to the
derived series, but apply to other series. For simplicity this greater generality
is discussed only briefly herein.

Similar modules were studied in [COT1] [COT2] [CT] where important applica-
tions to knot concordance were achieved. The foundational ideas of this paper,
as well as the tools necessary to begin it, were already present in [COT1] and
for that I am greatly indebted to my co-authors Peter Teichner and Kent Orr.
Generalizing our work on knots, Shelly Harvey has studied similar modules for
arbitrary 3–manifolds and has found several striking applications: lower bounds
for the Thurston norm of a 2–dimensional homology class that are much better
than C. McMullen’s lower bound using the Alexander norm; and new alge-
braic obstructions to a 4–manifold of the form M3×S1 admitting a symplectic
structure [Ha].

Some notable earlier successes in the area of non-abelian knot invariants were
the Jones polynomial, Casson’s invariant and the Kontsevitch integral. More in
the spirit of the present approach have been the “metabelian” Casson–Gordon
invariants and the twisted Alexander polynomials of X.S. Lin and P. Kirk and
C. Livingston [KL]. Most of these detect noncommutativity by studying repre-
sentations into known matrix groups over commutative rings. The relationship
(if any) between our invariants and these others, is not clear at this time.

Our major results are as follows. For any n ≥ 0 there are torsion modules
AZn(K) and An(K), whose isomorphism types are knot invariants, generalizing
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the classical integral and “rational” Alexander module (n = 0) (Sections 2, 3,
4). An(K) is a finitely generated module over a non-commutative principal
ideal domain Kn[t±1] which is a skew Laurent polynomial ring with coefficients
in a certain skew field (division ring) Kn . There are higher-order Alexander
polynomials ∆n(t) ∈ Kn[t±1] (Section 5). If K does not have (classical) Alexan-
der polynomial 1 then all of its higher modules are non-trivial and ∆n 6= 1. The
degrees δn of these higher order Alexander polynomials are knot invariants and
(using some work of S. Harvey) we show that they give lower bounds for knot
genera which are provably sharper than the classical bound (δ0 ≤ 2 genus(K))
(see Section 7).

Theorem If K is a non-trivial knot and n ≥ 1 then δ0(K) ≤ δ1(K) + 1 ≤
δ2(K) + 1 ≤ · · · ≤ δn(K) + 1 · · · ≤ 2 genus(K).

Corollary If K is a knot whose (classical) Alexander polynomial is not 1 and
k is a positive integer then there exists a hyperbolic knot K∗ , with the same
classical Alexander module as K , for which δ0(K∗) < δ1(K∗) < · · · < δk(K∗).

There exist presentation matrices for these modules obtained by pushing loops
off of a Seifert matrix (Section 6). There also exist presentation matrices ob-
tained from any presentation of the knot group via free differential calculus
(Section 13).There are higher order bordism invariants, βn , generalizing the
Arf invariant (Section 10) and higher order signature invariants, ρn , defined
using traces on Von Neumann algebras (Section 11). These can be used to de-
tect chirality. Examples are given wherein these are used to distinguish knots
which cannot be distinguished even by the δn . There are also higher order link-
ing forms on An(K) whose non-singularity exhibits a self-duality in the An(K)
(Section 12).

The invariants AZi , δi and ρi have very special behavior on fibered knots and
hence give many new realizable algebraic obstructions to a knot’s being fibered
(Section 9). Moreover using some deep work of P. Kronheimer and T. Mrowka
[Kr2] the δi actually give new algebraic obstructions to the existence of a sym-
plectic structure on 4–manifolds of the form S1 ×MK where MK is the zero-
framed surgery on K . These obstructions can be non-trivial even when the
Seiberg–Witten invariants are inconclusive!

Theorem 9.5 Suppose K is a non-trivial knot. If K is fibered then all the
inequalities in the above Theorem are equalities. The same conclusion holds if
S1 ×MK admits a symplectic structure.
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Section 9 establishes that, given any n > 0, there exist knots with δi + 1 = δ0

for i < n but δn + 1 6= δ0 .

The modules studied herein are closely related to the modules studied in [COT1]
[COT2] [CT], but are different. In particular for n > 0 our An and δn have
no known special behavior under concordance of knots. This is because the An
reflect only the fundamental group of the knot exterior, whereas the modules
of [COT1] reflect the fundamental groups of all possible slice disk exteriors. To
further detail the properties of the higher-order modules of [COT1] (for example
their presentation in terms of a Seifert surface and their special nature for slice
knots) will require a separate paper although many of the techniques of this
paper will carry over.

2 Definitions of the higher-order Alexander modules

The classical Alexander modules of a knot or link or, more generally, of a 3–
manifold are associated to the first homology of the universal abelian cover of
the relevant 3–manifold. We investigate the homology modules of other regular
covering spaces canonically associated to the knot (or 3–manifold).

Suppose MΓ is a regular covering space of a connected CW-complex M such
that the group Γ is identified with a subgroup of the group of deck (cover-
ing) translations. Then H1(MΓ) as a ZΓ–module can be called a higher-order
Alexander module. In the important special case that MΓ is connected and Γ
is the full group of covering transformations, this can also be phrased easily
in terms of G = π1(M) as follows. If H is any normal subgroup of G then
the action of G on H by conjugation (h −→ g−1hg) induces a right Z[G/H]–
module structure on H/[H,H]. If H is a characteristic subgroup of G then
the isomorphism type (in the sense defined below) of this module depends only
on the isomorphism type of G.

The primary focus of this paper will be the case that M is a classical knot
exterior S3\K and on the modules arising from the family of characteristic
subgroups known as the derived series of G (defined in Section 1).

Definition 2.1 The nth (integral) higher-order Alexander module, AZn(K),
n ≥ 0, of a knot K is the first (integral) homology group of the covering space
of S3\K corresponding to G(n+1) , considered as a right Z[G/G(n+1)]–module,
i.e. G(n+1)/G(n+2) as a right module over Z[G/G(n+1)].
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Clearly this coincides with the classical (integral) Alexander module when n = 0
and otherwise will be called a higher-order Alexander module. It is unlikely that
these modules are finitely generated. However S. Harvey has observed that they
are the torsion submodules of the finitely presented modules obtained by taking
homology relative to the inverse image of a basepoint [Ha]. The analogues of
the classical rational Alexander module will be discussed later in Section 4.
These are finitely generated.

Note that the modules for different knots (or modules for a fixed knot with
different basepoint for π1 ) are modules over different (albeit sometimes isomor-
phic) rings. This subtlety is even an issue for the classical Alexander module. If
M is an R–module and M ′ is an R′–module, we say M is (weakly) isomorphic
to M ′ if there exists a ring isomorphism f : R→ R′ such that M is isomorphic
to M ′ as R–modules where M ′ is viewed as an R–module via f . If R and
R′ are group rings (or functorially associated to groups G, G′ ) then we say M
is isomorphic to M ′ if there is a group isomorphism g : G −→ G′ inducing a
weak isomorphism.

Proposition 2.2 If K and K ′ are equivalent knots then AZn(K) is isomorphic
to AZn(K ′) for all n ≥ 0.

Proof of 2.2 If K and K ′ are equivalent then their groups are isomorphic.
It follows that their derived modules are isomorphic.

Thus a knot, its mirror-image and its reverse have isomorphic modules. In order
to take advantage of the peripheral structure, one needs to use the presence of
this extra structure to restrict the class of allowable ring isomorphisms. This
may be taken up in a later paper. However in Section 10 and Section 11
respectively we introduce higher-order bordism and signature invariants which
do use the orientation of the knot exterior and hence can distinguish some knots
from their mirror images.

Example 2.3 If K is a knot whose classical Alexander polynomial is 1, then
it is well known that its classical Alexander module G(1)/G(2) is zero. But if
G(1) = G(2) then G(n) = G(n+1) for all n ≥ 1. Thus each of the higher-order
Alexander modules AZn is also trivial. Hence these methods do not seem to
give new information on Alexander polynomial 1 knots. However, it is shown
in Corollary 4.8 that if the classical Alexander polynomial is not 1, then all the
higher-order modules are non-trivial.
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Example 2.4 Suppose K is the right-handed trefoil, X = S3\K and G =
π1(X). Since K is a fibered knot we may assume that X is the mapping torus
of the homeomorphism f : Σ → Σ where Σ is a punctured torus and we may
assume f fixes ∂Σ pointwise. Then π1(Σ) = F 〈x, y〉. Let Xn denote the
covering space of X such that π1(Xn) ∼= G(n+1) and AZn(K) = H1(Xn) as a
Z[G/G(n+1)] module. Note that the infinite cyclic cover X0 is homeomorphic to
Σ× R so that π1(X0) ∼= G(1) ∼= F . Thus Xn is a regular covering space of X0

with deck translations G(1)/G(n+1) = F/F (n) . Since π1(Xn) = F (n) , H1(Xn) =
F (n)/F (n+1) as a module over Z[F/F (n)]. Therefore if one considers AZn(K) as
a module over the subring Z[G(1)/G(n+1)] = Z[F/F (n)] ⊆ Z[G/G(n+1)] then it
is merely F (n)/F (n+1) as a module over Z[F/F (n)] (a module which depends
only on n and the rank of the free group). More topologically we observe that
X0 is homotopy equivalent to the wedge W of 2 circles and Xn is (homotopy
equivalent to) the result of taking n iterated universal abelian covers of W .
Let us consider the case n = 1 in more detail. Here X1 is homotopy equivalent
to W∞ , as shown in Figure 1.

C

Figure 1: W∞

The action of the deck translations F/F (1) ∼= Z × Z is the obvious one where
x∗ acts by horizontal translation and y∗ acts by vertical translation. Clearly
H1(X1) is an infintely generated abelian group but as a Z[x±1, y±1]–module is
cyclic, generated by the loop C in Figure 1 which represents xyx−1y−1 under
the identification H1(X1) ∼= F (1)/F (2) . In fact H1(X1) is a free Z[x±1, y±1]–
module generated by C . But AZ1 (K) = H1(X1) is a Z[G/G(2)]–module and so
far all we have discussed is the action of the subring Z[F/F (1)] = Z[G(1)/G(2)]
because we have completely ignored the fact that X0 itself has a Z–action on it.
In fact, since 1 −→ G(1)/G(2) i−→ G/G(2) π−→ G/G(1) ≡ Z −→ 1 is exact, any
element of G/G(2) can be written as gtm for some g ∈ G(1)/G(2) and m ∈ Z
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where π(t) = 1. Thus we need only specify how t∗ acts on H1(X1) to describe
our module AZ1 (K). To see this action topologically, recall that, while X0 is
homotopy equivalent to W , a more precise description of it is as a countably
infinite number of copies of Σ× [−1, 1] where Σ×{1} ↪→ (Σ× [−1, 1])i is glued
to Σ × {−1} ↪→ (Σ × [−1, 1])i+1 by the homeomorphism f . Correspondingly,
X1 is homotopy equivalent to

∐∞
i=−∞(W∞ × [−1, 1]) glued together in just

such a fashion by lifts of f to W∞ . Hence t∗ acts as f∗ acts on H1(X1) =
F (1)/F (2) . For example if f∗(C) = f(xyx−1y−1) = w(x, y)C then AZ1 (K) is
a cyclic module, generated by C , with relation (t − w(x, y))C = 0. Since
xyx−1y−1 is represented by the circle ∂Σ, and since f fixes this circle, in this
case we have that w(x, y) = 1 and AZ1 (K) ∼= Z[G/G(2)]/(t− 1)Z[G/G(2)]. This
is interesting because it has t−1 torsion represented by the longitude, whereas
the classical Alexander module has no t− 1 torsion. This reflects the fact that
the longitude commutes with the meridian as well as the fact that the longitude,
while trivial in G/G(2) , is non-trivial in G(2)/G(3) ≡ AZ1 .

Since the figure 8 knot is also a fibered genus 1 knot, its module has a sim-
ilar form. But note that these modules are not isomorphic because they are
modules over non-isomorphic rings (since the two knots do not have isomor-
phic classical Alexander modules G(1)/G(2) ). This underscores that the higher
Alexander modules Ai should only be used to distinguish knots with isomorphic
A0, . . . ,Ai−1 .

The group of deck translations, G/G(n) of the G(n) cover of a knot complement
is solvable but actually satisfies the following slightly stronger property.

Definition 2.5 A group Γ is poly-(torsion-free abelian) (henceforth abbrevi-
ated PTFA) if it admits a normal series 〈1〉 = Gn / Gn−1 / . . . / G0 = Γ such
that the factors Gi/Gi+1 are torsion-free abelian (Warning - in the group theory
literature only a subnormal series is required).

This is a convenient class (as we shall see) because it is contained in the class
of locally indicable groups [Str, Proposition 1.9] and hence ZΓ is an integral
domain [Hig]. Moreover it is contained in the class of amenable groups and
thus ZΓ embeds in a classical quotient (skew) field [Do, Theorem 5.4].

It is easy to see that every PTFA group is solvable and torsion-free and although
the converse is not quite true, every solvable group such that each G(n)/G(n+1)

is torsion-free, is PTFA. Every torsion-free nilpotent group is PTFA.

Consider a tower of regular covering spaces

Mn −→Mn−1 −→ . . . −→M1 −→M0 = M
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such that each Mi+1 −→ Mi has a torsion-free abelian group of deck trans-
lations and each Mi −→ M is a regular cover. Then the group Γ of deck
translations of Mn −→ M is PTFA and it is easy to see that such towers
correspond precisely to normal series for such a group.

Example 2.6 If G = π1(S3\K) and G(n) is the nth term of the derived series
then G/G(n) is PTFA since each G(i)/G(i+1) is known to be torsion free [Str].
Therefore taking iterated universal abelian covers of S3 − K yields a PTFA
tower as above. Hence the nth higher-order Alexander module generalizes the
classical Alexander module in that the latter is the case of taking a single
universal abelian covering space.

There is certainly more information to be found in modules obtained from other
Γ–covers. For most of the proofs we can consider a general Γ–cover where Γ is
PTFA. Thus there are other families of subgroups which merit scrutiny, and are
covered by most of the theorems to follow, but which will not be discussed in
this paper. Primary among these is the lower central series of the commutator
subgroup of G.

For a general 3–manifold with first Betti number equal to 1 (which we cover
since it is no more difficult than a knot exterior) it is necessary to use the
rational derived series to avoid zero divisors in the group ring:

Example 2.7 For any group G, the nth term of the rational derived series
is defined by G

(0)
Q = G and G

(n)
Q = [G(n−1)

Q , G
(n−1)
Q ] · N where N = {g ∈

G
(n−1)
Q | some non-zero power of g lies in [Gn−1

Q , Gn−1
Q ]}. It is easy to see that

G/G
(n)
Q is PTFA. This corresponds to taking iterated universal torsion-free

abelian covering spaces. For knot groups, G(n)
Q = G(n) [Str].

Definition 2.8 If M is an arbitrary connected CW-complex with fundamen-
tal group G, then the nth (integral) higher-order Alexander module, AZn(M),
n ≥ 0, of M is H1(Mn;Z) (Mn is the cover of M with π1(Mn) = G

(n+1)
Q )

considered as a right Z[G/G(n+1)
Q ]–module.

More on the relationship of AZn(K) to π1(S3\K)

We have seen that if H is any characteristic subgroup of G then the isomor-
phism type of H/[H,H], as a right module over Z[G/H], is an invariant of the
isomorphism type of G. Moreover, AZn(K) has been defined as this module in
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the case G = π1(S3\K) and H = G(n+1) . The following elementary observa-
tion clarifies this relationship. Its proof is left to the reader. One consequence
will be that for any knot there exists a hyperbolic knot with isomorphic AZn for
all n.

Proposition 2.9 Suppose f : G −→ P is an epimorphism. Then f induces
isomorphisms fn : AZn(G) −→ AZn(P ) for all n ≤ m if and only if the kernel of

f is contained in G
(m+2)
Q . Hence f induces such isomorphisms for all finite n

if and only if kernel f ⊂
⋂∞
n=1G

(n)
Q .

Corollary 2.10 For any knot K , there is a hyperbolic knot K̃ and a de-
gree one map f : S3\K̃ −→ S3\K (rel boundary) which induces isomorphisms
AZn(K̃) −→ AZn(K) for all n.

Proof of Corollary 2.10 In fact it is known that K̃ can be chosen so that the
kernel of f∗ is a perfect group (or in other words that f induces isomorphisms
on homology with Z[π1(S3\K)] coefficients). The first reference I know to this
fact is by use of the “almost identical link imitations” of Akio Kawauchi [Ka,
Theorem 2.1 and Corollary 2.2]. A more recent and elementary construction
can be adopted from [BW, Section 4]. Any perfect subgroup is contained in its
own commutator subgroup and hence, by induction, lies in every term of the
derived series. An application of Proposition 2.9 finishes the proof.

Example 2.11 If K ′ is a knot and K is a knot whose (classical) Alexander
polynomial is 1 then K ′ and K ′#K have isomorphic higher-order modules
since there is a degree one map S3\(K ′#K) → S3\K ′ which induces an epi-
morphism on π1 whose kernel is π1(S3\K)(1) . The observation then follows
from Proposition 2.9 and Example 2.3.

3 Properties of higher-order Alexander modules of

knots: Torsion

In this section we will show that higher-order Alexander modules have one
key property in common with the classical Alexander module, namely they are
torsion-modules. In Section 12 we define a linking pairing on these modules
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which generalizes the Blanchfield linking pairing on the Alexander module. All
of the results of this section follow immediately from [COT1, Section 2] but a
simpler proof of the main theorem is given here.

A right module A over a ring R is said to be a torsion module if, for any a ∈ A,
there exists a non-zero-divisor r ∈ R such that ar = 0.

Our first goal is:

Theorem 3.1 The higher-order Alexander modules AZn(K) of a knot are tor-
sion modules.

This is a consequence of the more general result which applies to any complex
X with π1(X) finitely-generated and β1(X) = 1 and any PTFA Γ [COT1,
Proposition 2.11] but we shall give a different, self-contained proof (Proposi-
tion 3.10). The more general result will be used in later chapters to study
general 3–manifolds with β1 = 1.

Suppose Γ is a PTFA group. Then ZΓ has several convenient properties — it
is an integral domain and it has a classical field of fractions. Details follow.

Recall that if A is a commutative ring and S is a subset closed under multiplica-
tion, one can construct the ring of fractions AS−1 of elements as−1 which add
and multiply as normal fractions. If S = A− {0} and A has no zero divisors,
then AS−1 is called the quotient field of A. However, if A is non-commutative
then AS−1 does not always exist (and AS−1 is not a priori isomorphic to S−1A).
It is known that if S is a right divisor set then AS−1 exists ( [P, p. 146] or
[Ste, p. 52]). If A has no zero divisors and S = A − {0} is a right divisor set
then A is called an Ore domain. In this case AS−1 is a skew field, called the
classical right ring of quotients of A. We will often refer to this merely as the
quotient field of A . A good reference for non-commutative rings of fractions
is Chapter 2 of [Ste]. In this paper we will always use right rings of fractions.

Proposition 3.2 If Γ is PTFA then QΓ (and hence ZΓ) is a right (and left)
Ore domain; i.e. QΓ embeds in its classical right ring of quotients K , which is
a skew field.

Proof For the fact (due to A.A. Bovdi) that ZΓ has no zero divisors see [P,
pp. 591–592] or [Str, p. 315]. As we have remarked, any PTFA group is solvable.
It is a result of J. Lewin [Lew] that for solvable groups such that QΓ has no
zero divisors, QΓ is an Ore domain (see Lemma 3.6 iii p. 611 of [P]). It follows
that ZΓ is also an Ore domain.
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Remark 3.3 Skew fields share many of the key features of (commutative)
fields. We shall need the following elementary facts about the right skew field
of quotients K . It is naturally a K–K–bimodule and a ZΓ–ZΓ–bimodule.

Fact 1 K is flat as a left ZΓ–module, i.e. · ⊗ZΓ K is exact [Ste, Proposi-
tion II.3.5].

Fact 2 Every module over K is a free module [Ste, Proposition I.2.3] and such
modules have a well defined rank rkK which is additive on short exact
sequences [Co2, p. 48].

If A is a module over the Ore domain R then the rank of A denotes rankK(A⊗R
K). A is a torsion module if and only if A⊗R K = 0 where K is the quotient
field of R, i.e. if and only if the rank of A is zero [Ste, II Corollary 3.3]. In
general, the set of torsion elements of A is a submodule which is characterized
as the kernel of A → A⊗RK . Note that if A ∼= Rr⊕(torsion) then rankA = r .

Fact 3 If C is a non-negative finite chain complex of finitely generated free
(right) ZΓ–modules then the equivariant Euler characteristic, χ(C), given
by
∑∞

i=0(−1)i rankCi , is defined and equal to
∑∞

i=0(−1)i rankHi(C) and∑∞
i=0(−1)i rankHi(C⊗ZΓK). This is an elementary consequence of Facts 1

and 2.

There is another especially important property of PTFA groups (more generally
of locally indicable groups) which should be viewed as a natural generalization
of properties of the free abelian group. This is an algebraic generalization of the
(non-obvious) fact that any infinite cyclic cover of a 2–complex with vanishing
H2 also has vanishing H2 (see Proposition 3.8).

Proposition 3.4 (R. Strebel [Str, p. 305]) Suppose Γ is a PTFA group and R
is a commutative ring. Any map between projective right RΓ–modules whose
image under the functor −⊗RΓ R is injective, is itself injective.

We can now offer a simple proof of Theorem 3.1.

Proof of Theorem 3.1 The knot exterior has the homotopy type of a finite
connected 2–complex Y whose Euler characteristic is 0. Let Γ = G/G(n+1)

and let C = (0 −→ C2
∂2−→ C1

∂1−→ C0 −→ 0) be the free ZΓ cellular chain
complex for YΓ (the Γ–cover of Y such that π1(Y ) = G(n+1) ) obtained by
lifting the cell structure of Y . Then χ(C) = χ(Y ) = 0. It follows from Fact 3
that rankH2(YΓ) − rankH1(YΓ) + rankH0(YΓ) = 0. Now note that (C, ∂) is
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sent, under the augmentation ε : ZΓ −→ Z, to (C ⊗ZΓ Z, ∂ ⊗ZΓ id) which can
be identified with the chain complex for the original cell structure on Y . Since
H2(Y ;Z) = 0, ∂2 ⊗ id is injective. By Proposition 3.4, it follows that ∂2 itself
is injective, and hence that H2(YΓ) = 0.

Now we claim that H0(YΓ) is a torsion module. This is easy since H0(YΓ) ∼= Z.
If H0(YΓ) were not torsion then 1 ∈ Z generates a free ZΓ submodule. Note
that Γ is not trivial since G 6= G(1) . This is a contradiction since, as an abelian
group, ZΓ is free on more than one generator and hence cannot be a subgroup
of Z.

Now that we have proved that the higher-order modules of a knot are torsion
modules, we look at the homology of covering spaces in more detail and in a
more abstract way. This point of view allows for greater generality and for
more concise notation. Viewing homology of covering spaces as homology with
twisted coefficients clarifies the calculations of the homology of induced covers
over subspaces.

Homology of PTFA covering spaces

Suppose X has the homotopy type of a connected CW-complex, Γ is any group
and φ : π1(X,x0) −→ Γ is a homomorphism. Let XΓ denote the regular Γ–
cover of X associated to φ (by pulling back the universal cover of BΓ viewed
as a principal Γ–bundle). If φ is surjective then XΓ is merely the connected
covering space X associated to Ker(φ). Then XΓ becomes a right Γ–set as
follows. Choose a point ∗ ∈ p−1(x0). Given γ ∈ Γ, choose a loop w in X
such that φ([w]) = γ . Let w̃ be a lift of w to XΓ such that w̃(0) = ∗. Let
dw be the unique covering translation such that dw(∗) = w̃(1). Then γ acts
on XΓ by dw . This merely the “usual” left action [M2, Section 81]. However,
for certain historical reasons we shall use the associated right action where γ
acts by (dw)−1 . If φ is not surjective and we set π = image(φ) then XΓ is a
disjoint union of copies of the connected cover Xπ associated to Ker(φ). The
set of copies is in bijection with the set of right cosets Γ/π . In fact it is best to
think of p−1(x0) as being identified with Γ. Then Γ acts on p−1(x0) by right
multiplication. If γ ∈ π , then γ sends ∗ to the endpoint of the path w̃ such that
w̃(0) = ∗ and φ([w]) = γ−1 . Hence ∗ and (∗)γ are in the same path component
of XΓ . If τ ∈ Γ is a non-trivial coset representative then (∗)τ lies in a different
path component than ∗. But the path w̃ , acted on by the deck translation
corresponding to τ , begins at (∗)τ and ends at (w̃(1))τ = (∗)(γ)(τ) = (∗)(γτ).
Thus (∗)τ and (∗)τ ′ lie in the same path component if and only if they lie in
the same right coset πτ of Γ/π .
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For simplicity, the following are stated for the ring Z, but also hold for Q. Let
M be a ZΓ–bimodule (for us usually ZΓ, K , or a ring R such that ZΓ ⊂
R ⊂ K, or K/R). The following are often called the equivariant homology and
cohomology of X .

Definition 3.5 Given X , φ, M as above, let

H∗(X;M) ≡ H∗(C(XΓ;Z)⊗ZΓM)

as a right ZΓ module, and H∗(X;M) ≡ H∗ (HomZΓ(C(XΓ;Z),M)) as a left
ZΓ–module.

These are also well-known to be isomorphic (respectively) to the homology (and
cohomology) of X with coefficient system induced by φ (see Theorems VI 3.4
and 3.4∗ of [W]). The advantage of this formulation is that it becomes clear
that the surjectivity of φ is irrelevant.

Remark 3.6

(1) Note that H∗(X;ZΓ) as in Definition 3.5 is merely H∗(XΓ;Z) as a right
ZΓ–module. Thus AZn ∼= H1(S3\K;ZΓ) where Γ = G/G(n+1) and G =
π1(S3\K). Moreover if M is flat as a left ZΓ–module then H∗(X;M) ∼=
H∗(XΓ;Z) ⊗ZΓ M. In particular this holds for M = K by 3.3. Thus
H∗(XΓ) = H∗(X;ZΓ) is a torsion module if and only if H∗(X;K) =
H∗(XΓ)⊗ZΓ K = 0 by the remarks below 3.3.

(2) Recall that if X is a compact, oriented n–manifold then by Poincaré
duality Hp(X;M) is isomorphic to Hn−p(X,∂X;M) which is made into
a right ZΓ–module using the obvious involution on this group ring [Wa].

(3) We also have a universal coefficient spectral sequence as in [L3, Theorem
2.3]. This collapses to the usual Universal Coefficient Theorem for coeffi-
cients in a (noncommutative) principal ideal domain (in particular for the
skew field K). Hence Hn(X;K) ∼= HomK(Hn(X;K),K). In this paper
we only need the UCSS in these special cases where it coincides with the
usual UCT.

We now restrict to the case that Γ is a PTFA group and K is its (skew) field
of quotients. We investigate H0 , H1 and H2 of spaces with coefficients in ZΓ
or K .

Proposition 3.7 Suppose X is a connected CW complex. If φ : π1(X) −→ Γ
is a non-trivial coefficient system then H0(X;K) = 0 and H0(X;ZΓ) is a torsion
module.
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Proof By [W, p. 275] and [Br, p.34], H0(X;K) is isomorphic to the cofixed
set K/KI where I is the augmentation ideal of Zπ1(X) acting via π1(X) −→
Γ −→ K . If φ is non-zero then this composition is non-zero and hence I
contains an element which acts as a unit. Hence KI = K .

The following lemma summarizes the basic topological application of Strebel’s
result (Proposition 3.4).

Proposition 3.8 Suppose (Y,A) is a connected 2–complex with H2(Y,A;Q)
∼= 0 and suppose φ : π1(Y ) −→ Γ defines a coefficient system on Y and A where
Γ is a PTFA group. Then H2(Y,A;ZΓ) = 0, and so H1(A;ZΓ) −→ H1(Y ;ZΓ)
is injective.

Proof Let C be the free ZΓ chain complex for the cellular structure on
(YΓ, AΓ) (the Γ–cover of Y ) obtained by lifting the cell structure of (Y,A).
It suffices to show ∂2 : C2 −→ C1 is a monomorphism. By Proposition 3.4
this will follow from the injectivity of ∂2 ⊗ id : C2 ⊗ZΓ Z −→ C1 ⊗ZΓ Z. But
this map can be canonically identified with the corresponding boundary map
in the cellular chain complex of (Y,A), which is injective since H2(Y,A;Q) ∼=
H2(Y,A;Z) ∼= 0.

The following lemma generalizes the key argument of the proof of Theorem 3.1.

Lemma 3.9 Suppose Y is a connected 2–complex with H2(Y ;Z) = 0 and
φ : π1(Y ) −→ Γ is non-trivial. Then H2(Y ;K) = 0; and if Y is a finite complex
then rkKH1(Y ;K) = β1(Y )− 1.

Proof By Proposition 3.8 H2(Y ;ZΓ) = 0 and H2(Y ;K) = 0 by Remark 3.6.1.
Since φ is non-trivial, Proposition 3.7 implies that H0(Y ;K) = 0. But by
Fact 3 (as in the proof of Theorem 3.1) rankKH2(Y ;K) − rankKH1(Y ;K) +
rankKH0(Y ;K) = 1− β1(Y ) and the result follows.

Note that if β1(Y ) = 0 then any homomorphism from π1(Y ) to a PTFA group
is necessarily the zero homomorphism.

Proposition 3.10 Suppose π1(X) is finitely-generated and φ : π1(X) −→ Γ
is non-trivial. Then

rankKH1(X;ZΓ) ≤ β1(X)− 1.

In particular, if β1(X) = 1 then H1(X;ZΓ) is a torsion module.
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Proof Since the first homology of a covering space of X is functorially de-
termined by π1(X) = G, we can replace X by a K(G, 1). We will now
construct an epimorphism f : E −→ G from a group E which has a very
efficient presentation. Suppose H1(G) ∼= Zm × Zn1 × · · · × Znk . Then there is
a finite generating set {g1, . . . , gm, gm+1, . . . , gm+k, . . . |i ∈ I} for G such that
{g1, . . . , gm+k} is a “basis” for H1(G) wherein if i > m + k then gi ∈ [G,G]
and if m < i ≤ m + k then gnii ∈ [G,G]. Consider variables {xj |j ∈ I}.
Hence for each i there is a word wi(x1, . . . ) in these variables such that wi
lies in the commutator subgroup of the free group on {xj}, and such that if
i > m + k then gi = wi(g1, . . . ) and if m < i ≤ m + k then gnii = wi(g1, . . . ).
Let E have generators {xi|i ∈ I} and relations {xi = wi|i > m + k} and
{xnii = wi|m < i ≤ m + k}. The obvious epimorphism f : E −→ G given by
f(xi) = gi is an H1–isomorphism. The composition φ ◦ f defines a Γ covering
space of K(E, 1). Since f is surjective we can build K(G, 1) from K(E, 1)
by adjoining cells of dimensions at least 2. Thus H1(G,E;ZΓ) = 0 because
there are no relative 1–cells and consequently f∗ : H1(E;ZΓ) −→ H1(G;ZΓ)
is also surjective. Since K is a flat ZΓ module f∗ : H1(E;K) −→ H1(G;K) is
surjective. Thus rankKH1(X;ZΓ) = rankKH1(X;K) ≤ rankKH1(E;K). Now
note that E = π1(Y ) where Y is a connected, finite 2–complex (associated
to the presentation) which has vanishing second homology. Again since H1 is
functorially determined by π1 , H1(E;K) ∼= H1(Y ;K). Lemma 3.9 above shows
that rankKH1(Y ;K) = β1(Y ) − 1 = β1(E) − 1 = β1(X) − 1 and the result
follows.

Example 3.11 It is somewhat remarkable (and turns out to be crucially im-
portant) that the previous two results fail without the finiteness assumption.
If Proposition 3.10 were true without the finiteness assumption, all of the in-
equalities of Theorem 5.4 would be equalities. Consider E = 〈x, zi | zi =
[zi+1, x], i ∈ Z〉. This is the fundamental group of an (infinite) 2–complex with
H2 = 0. Note that β1(E) = 1. But the abelianization of E(1) has a presenta-
tion 〈zi | zi = (1 − x)zi+1〉 as a module over Z[x±1] and thus has rank 1, not
β1(E)− 1 as would be predicted by Proposition 3.10.

Corollary 3.12 Suppose M is a compact, orientable, connected 3–manifold
such that β1(M) = 1. Suppose φ : π1(M) −→ Γ is a homomorphism that is
non-trivial on abelianizations where Γ is PTFA. Then H∗(M,∂M ;K) ∼= 0 ∼=
H∗(M ;K).

Proof Propositions 3.7 and 3.10 imply H0(M ;K) ∼= H1(M ;K) ∼= 0. Since it is
well known that the image of H1(∂M ;Q) −→ H1(M ;Q) has one-half the rank of
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H1(∂M ;Q), ∂M must be either empty or a torus. Suppose the latter. Then this
inclusion-induced map is surjective. Therefore the induced coefficient system
φ ◦ i∗ : π1(∂M) −→ Γ is non-trivial since it is non-trivial on abelianizations.
Thus H0(∂M ;K) = 0 by Proposition 3.7, implying that H1(M,∂M ;K) = 0.
By Remark 3.6, H2(M ;K) ∼= H1(M,∂M ;K) ∼= Hom(H1(M,∂M ;K),K) ∼= 0.
Similarly H3(M ;K) ∼= 0. Then H∗(M ;K) ∼= 0 ⇒ H∗(M,∂M ;K) ∼= 0 by
duality and the universal coefficient theorem.

Thus we have shown that the definition of the classical Alexander module, i.e.
the torsion module associated to the first homology of the infinite cyclic cover
of the knot complement, can be extended to higher-order Alexander modules
AZΓ = H1(M ;ZΓ) which are ZΓ torsion modules associated to arbitrary PTFA
covering spaces. Indeed, by Proposition 3.10, this is true for any finite complex
with β1(M) = 1.

4 Localized higher-order modules

In studying the classical abelian invariants of knots, one usual studies not only
the “integral” Alexander module, H1(S3\K;Z[t, t−1]), but also the rational
Alexander module H1(S3\K;Q[t, t−1]). Even though some information is lost
in this localization, Q[t, t−1] is a principal ideal domain and one has a good
classification theorem for finitely generated modules over a PID. Moreover the
rational Alexander module is self-dual whereas the integral module is not [Go].
In considering the higher-order modules it is even more important to localize our
rings Z[G/G(n)] in order to define a higher-order “rational” Alexander module
over a (non-commutative) PID. Here, significant information will be lost but
this simplification is crucial to the definition of numerical invariants. Recall that
an integral domain is a right (respectively left) PID if every right (respectively
left) ideal is principal. A ring is a PID if it is both a left and right PID. The
definition of the relevant PID’s follows.

Let G be a group with β1(G) = 1 and let Γn = G/G
(n+1)
Q (which is the same

as the ordinary derived series for a knot group). Recall that the (integral)
Alexander module was defined as AZn(G) = H1(G;ZΓn) in Definition 2.1 and
Definition 2.8. Below we will describe a PID Rn such that QΓn ⊂ Rn ⊂ Kn
and such that Rn is a localization of QΓn , i.e. Rn = QΓn(S−1) where S is a
right divisor set in QΓn . Using this we define the “localized” derived modules.
These will be analyzed further in Section 5. These PID’s were crucial in our
previous work [COT1].
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Definition 4.1 The nth “localized” Alexander module of a knot K , or, simply,
the nth Alexander module of K is An(K) = H1(S3\K;Rn).

Proposition 4.2 The nth Alexander module is a finitely-generated torsion
module over the PID Rn .

Proof Let Mn denote the covering space of M = S3\K with π1(Mn) =
G(n+1) . Then An(K) is the first homology of the chain complex C∗(Mn)⊗ZΓn

Rn . This is a chain complex of finitely generated free Rn–modules since M
has the homotopy type of a finite complex and we can use the lift of this cell
structure to Mn . Since a submodule of a finitely-generated free module over a
PID is again a finitely-generated free module ([J], Theorem 17), it follows that
the homology groups are finitely generated.

Now we define the rings Rn and show that they are PID’s by proving that
they are isomorphic to skew Laurent polynomial rings Kn[t±1] over a skew field
Kn . This makes the analogy to the classical rational Alexander module even
stronger.

Before defining Rn in general, we do so in a simple example.

Example 4.3 We continue with Example 2.4 where G = π1(S3\K) and K is
a trefoil knot. We illustrate the structure of Z[G/G(2)] = ZΓ1 as a skew Lau-
rent polynomial ring in one variable with coefficients in Z[G(1)/G(2)]. Recall
that since the trefoil knot is fibered, G(1)/G(2) ∼= F/F (1) ∼= Z×Z generated by
{x, y}. Hence Z[G(1)/G(2)] is merely the (commutative) Laurent polynomial
ring Z[x±1, y±1]. If we choose, say, a meridian µ ∈ G/G(2) then G/G(2) is a
semi-direct product G(1)/G(2) o Z and any element of G/G(2) has a unique
representative µmg for some m ∈ Z and g ∈ G(1)/G(2) , i.e. µmxpyq for some
integers m, p, q . Thus any element of Z[G/G(2)] has a canonical represen-
tation of the form

∑∞
m=−∞ µ

mpm(x, y) where pm(x, y) ∈ Z[x±1, y±1]. Hence
Z[G/G(2)] can be identified with the Laurent polynomial ring in one variable µ
(or t for historical significance) with coefficients in the Laurent polynomial ring
Z[x±1, y±1]. Observe that the product of 2 elements in canonical form is not in
canonical form. However, for example, (xpyq)·µ = µ(µ−1xpyqµ) = µ((xpyq)µ∗).
Hence this is not a true polynomial ring, rather the multiplication is twisted
by the automorphism µ∗ of Z[G(1)/G(2)] induced by conjugation g → µ−1gµ
(the action of the generator t ∈ Z in the semi-direct product structure). The
action µ∗ (or t∗ ) is merely the action of t on the Alexander module of the
trefoil Z[t, t−1]/t2 − t+ 1 ∼= Z× Z with basis {x, y}.

Algebraic & Geometric Topology, Volume 4 (2004)



364 Tim D. Cochran

Moreover this skew polynomial ring Z[G(1)/G(2)][t±1] embeds in the ring R1 =
K1[t±1], where K1 is the quotient field of the coefficient ring Z[x±1, y±1] (in this
case the (commutative) field of rational functions in the 2 commuting variables
x and y). Thus Z[G/G(2)] embeds in this (noncommutative) PID R1 (this is
proved below) that also has the structure of a skew Laurent polynomial ring
over a field. Note that, under this embedding, the subring Z[G(1)/G(2)] is sent
into the subring of polynomials of degree 0, i.e. K1 and this embedding is just
the canonical embedding of a commutative ring into its quotient field (and is
thus independent of the choice of µ!).

Now we define Rn in general. Let G̃n , n ≥ 1, be the kernel of the map
π : G/G(n)

Q −→ G/G
(1)
Q (the latter is infinite cyclic by the hypothesis that

β1(G) = 1. For the important case that G is a knot group, G̃n is the com-
mutator subgroup modulo the nth derived subgroup. Since G/G

(n)
Q is PTFA

by Example 2.7, the subgroup G̃n is also PTFA. Thus Z[G̃n] is an Ore do-
main by Proposition 3.2. Let Sn = Z[G̃n+1] − {0}, n ≥ 0, a subset of
ZΓn = Z[G/G(n+1)

Q ]. By [P, p. 609] Sn is a right divisor set of ZΓn and
we set Rn = (ZΓn)(Sn)−1 . Hence ZΓn ⊆ Rn ⊆ Kn . Note that S0 = Z − {0}
so R0 = Q[J ] where J is the infinite cyclic group G/G

(1)
Q , agreeing with the

classical case. By Proposition II.3.5 [Ste] we have the following.

Proposition 4.4 Rn is a flat left ZΓn–module so An ∼= AZn⊗ZΓnRn . Moreover
Kn is a flat Rn–module so An ⊗Rn Kn = H1(M ;Kn).

Now we establish that the Rn are PID’s. Consider the short exact sequence
1 −→ G̃ −→ G/G

(n)
Q

π−→ Z −→ 1 where π is induced by abelianization and G̃ is
the kernel of π . Note that there are precisely two such epimorphisms π . If we
choose µ ∈ G/G(n)

Q which generates the torsion-free part of the abelianization
then π is canonical (take π(µ) = 1) and has a canonical splitting (1 s−→ µ).
Now note that any element of Q[G/G(n)

Q ] has a unique expression of the form
γ = µ−ma−m + · · · + a0 + · · · + µkak where ai ∈ QG̃ (a−m and ak not zero
unless γ = 0). Thus Q[G/G(n)

Q ] is canonically isomorphic to the skew Laurent
polynomial ring, QG̃[t±1], in one variable with coefficients in QG̃. Recall that
the latter is the ring consisting of expressions t−ma−m + · · · + tkak , ai ∈ QG̃
which add as ordinary polynomials but where multiplication is twisted by an
automorphism α : QG̃ −→ QG̃ so that if a ∈ QG̃ then tia · t = ti+1α(a).
The automorphism in our case is induced by the automorphism of G̃ given by
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conjugation by µ. The twisted multiplication is evident in G̃ since µia · µ =
µiµ(µ−1aµ) = µi+1α(a).

Since G̃ is a subgroup of a PTFA group, it also is PTFA and so ZG̃ admits
a (right) skew field of fractions K into which it embeds. This is also written
(ZG̃)(ZG̃)−1 meaning that all the non-zero elements of ZG̃ are inverted. It fol-
lows that Z[G/G(n)

Q ](ZG̃)−1 is canonically identified with the skew polynomial
ring K[t±1] with coefficients in the skew field K (see [COT1, Proposition 3.2]
for more details). The following is well known (see Chapter 3 of [J] or Prop.
2.1.1 of [Co1]).

Proposition 4.5 A skew polynomial ring K[t±1] over a division ring K is a
right (and left) PID.

Proof One first checks that there is a well-defined degree function on any skew
Laurent polynomial ring (over a domain) where deg(t−ma−m+· · ·+tkak) = m+
k and that this degree function is additive under multiplication of polynomials.
Then one verifies that there is a division algorithm such that if deg(q(t)) ≥
deg(p(t)) then q(t) = p(t)s(t) + r(t) where deg(r(t)) < deg(p(t)). Finally, if
I is any non-zero right ideal, choose p ∈ I of minimal degree. For any q ∈ I ,
q = ps + r where, by minimality, r = 0. Hence I is principal. Thus K[t±1] is
a right PID. The proof that it is a left PID is identical.

Proposition 4.6 For n ≥ 0 let Rn denote the ring Z[G/G(n+1)](ZG̃)−1 . This
can be identified with the PID Kn[t±1] where Kn is the quotient field of ZG̃
(1 −→ G̃ −→ G/G(n+1) π−→ Z −→ 1).

Of course the isomorphism type of An(K) is still purely a function of the
isomorphism type of the group G of the knot since An(K) = G(n+1)/G(n+2) ⊗
Rn . However, when viewed as a module over Kn[t±1], it is also dependent on
a choice of the meridional element µ.

Non-triviality

We now show that the higher-order Alexander modules are never trivial except
when K is a knot with Alexander polynomial 1. The following results generalize
Proposition 3.10 and Lemma 3.9.

Corollary 4.7 If X is a (possibly infinite) 2–complex with H2(X;Q) = 0
and φ : π1(X) −→ Γ is a PTFA coefficient system then rank(H1(X;ZΓ)) ≥
β1(X)− 1.
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Corollary 4.8 If K is a knot whose Alexander polynomial ∆0 is not 1,
then the derived series of G = π1(S3\K) does not stabilize at finite n, i.e.
G(n)/G(n+1) 6= 0. Hence the derived module AZn(K) is non-trivial for any n.
Moreover, if n > 0, An(K) (viewed as a Kn[t±1] module) has rank at least
deg(∆0(K))− 1 as a Kn–module and hence is an infinite dimensional Q vector
space.

The first part of the Corollary has been independently established by S.K.
Roushon [Ru].

Proposition 3.8 ⇒ Corollary 4.7 First consider the case that β1(X) is
finite. Consider the case of Proposition 3.8 where A is a wedge of β1(X)
circles and i : A −→ X is chosen to be a monomorphism on H1( ;Q). Then
rank(H1(X;ZΓ)) is at least rank(H1(A;ZΓ)) which is β1(X)−1 by Lemma 3.9.
Now if β1(X) is infinite, apply the above argument for a wedge of n circles
where n is arbitrary.

Proposition 3.8 ⇒ Corollary 4.8 Let X be the infinite cyclic cover of
S3\K , and let G̃ = π1(X)/π1(X)(n) = G(1)/G(n+1) as in Proposition 4.6. If
∆0 6= 1 then deg(∆0) = β1(X) ≥ 2. Applying Corollary 4.7 we get that
H1(X;ZG̃) has rank at least β1(X)− 1. But H1(X;ZG̃) can be interpreted as
the first homology of the G̃–cover of X , as a ZG̃ module. This covering space
has π1 equal to G(n+1) . Since the G̃ cover of X is the same as the cover of S3\K
induced by G −→ G/G(n+1) , H1(X;ZG̃) ∼= H1(S3\K;Z[G/G(n+1)]) ≡ AZn(K)
as ZG̃–modules. Now, since AZn has rank at least β1(X)− 1 as a ZG̃–module,
An has rank at least β1(X)−1 as a Kn module since the latter is the definition
of the former. It follows that G(n+1)/G(n+2) is non-trivial (and hence infinite)
for n ≥ 0. If n > 0 it follows that G̃ is an infinite group. In this case QG̃ and
hence Kn are infinitely generated vector spaces.

5 Higher order Alexander polynomials

In this section we further analyze the localized Alexander modules An(K) that
were defined in Section 4 as right modules over the skew Laurent polynomial
rings Rn ∼= Kn[t±1]. We define higher-order “Alexander polynomials” ∆n(K)
and show that their degrees δn(K) are integral invariants of the knot. We prove
that δ0 , δ1 + 1, δ2 + 1, . . . is a non-decreasing sequence for any knot. In later
sections we will see that the δn are powerful knot invariants with applications
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to genus and fibering questions. The higher-order Alexander polynomials bear
further study.

Recall that it has already been established that An(K) is a finitely-generated
torsion right Rn module where Rn is a PID. The following generalization of
the standard theorem for commutative PIDs is well known (see Theorem 2.4 p.
494 of [Co2]).

Theorem 5.1 Let R be a principal ideal domain. Then any finitely generated
torsion right R–module M is a direct sum of cyclic modules

M ∼= R/e1R⊕ · · · ⊕R/erR

where ei is a total divisor of ei+1 and this condition determines the ei up to
similarity.

Here a is similar to b if R/aR ∼= R/bR (p. 27 [Co1]). For the definition of
total divisor, the reader is referred to Chapter 8 of [Co2]. This complication is
usually unnecessary because a finitely generated torsion module over a simple
PID is cyclic (pp. 495–496 [Co2])!! For n > 0, Rn is almost always a simple
ring, but since this fact will not be used in this paper, we do not justify it.

Definition 5.2 For any knot K and any integer n ≥ 0, {e1(K), . . . , er(K)}
are the elements of the PID Rn , well-defined up to similarity, associated to
the canonical decomposition of An(K). Let ∆n(K), the nth order Alexander
polynomial of K , be the product of these elements, viewed as an element of
Kn[t±1] (for n = 0 this is the classical Alexander polynomial).

The polynomial ∆n(K), as an element of Rn , is also well-defined up to similar-
ity (a non-obvious fact that we will not use). However as an element of Kn[t±1]
it acquires additional ambiguity because a splitting of G � Z was used to
choose an isomorphism between Rn and Kn[t±1]. Alternatively, using a square
presentation matrix for An(K) (see the next section), one can associate an el-
ement of K1(Rn) and, using the Dieudonné determinant, recover ∆n(K) as an
element of U/[U,U ] where U is the group of units of the quotient field of Rn .
Since similarity is not well-understood in a noncommutative ring (being much
more difficult than merely identifying when elements differ by units), we have
not yet been able to make effective use of the higher-order Alexander polynomi-
als except for their degrees, which turn out to be perfectly well-defined integral
invariants, as we now explain.
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Definition 5.3 For any knot K and any integer n ≥ 0, the degree of the nth

order Alexander polynomial, denoted δn(K) is an invariant of K . It can be
defined in any of the following equivalent ways:

1) the degree of ∆n(K)

2) the sum of the degrees of ei(K) ∈ Rn ∼= Kn[t±1]

3) the rank of An(K) as a module over Kn
4) the rank of G(n+1)/G(n+2) ⊗ZΓn Rn as a module over the subring ZG̃ ⊆

ZΓn
5) the rank of G(n+1)/G(n+2) as a module over the subring Z[G(1)/G(n+1)] ⊂

Z[G/G(n+1)].

Proof of Definition 5.3 Definitions 4 and 5 are independent of choices since
there Rn has not been specifically identified with the polynomial ring Kn .
To see that Definition 3 is the same as 4, consider Definition 2.1 and Proposi-
tion 4.4. Also note that the identification of Z[G/G(n+1)] with the skew polyno-
mial ring ZG̃[t±1], carries the subring ZG̃ (independent of splitting) to the ring
of elements of degree zero. Thus under any identification of Rn = Z[G/G(n+1)]
(ZG̃− {0})−1 with Kn[t±1], the quotient field ZG̃(ZG̃− {0})−1 is carried (in-
dependent of splitting) to Kn , viewed as the subfield of elements of degree zero.
From Definition 3 and Theorem 5.1, one sees that these ranks are finite be-
cause the rank of Kn[t±1]/p(t)Kn[t±1] is easily seen to be the degree of p(t).
The equivalence of Definitions 1 and 2 then follows trivially. To see that 4 and
5 are equivalent, one must show that AZn ⊗Z[G/G(n+1)] Kn[t±1] as a Kn–module
is merely AZn ⊗ZG̃ Kn . This is left to the reader.

We can establish one interesting property of the δn , namely that for any K
they form a non-decreasing sequence. This theorem says that the derived series
of the fundamental group of a knot complement (more generally of certain 2–
complexes) cannot stabilize unless δ0 = 1 (see Corollary 4.8). Moreover in some
sense the “size” of the successive quotients G(n)/G(n+1) is non-decreasing.

Theorem 5.4 If K is a knot then δ0(K) ≤ δ1(K) + 1 ≤ δ2(K) + 1 ≤ · · · ≤
δn(K) + 1.

Proof First we show δ1 ≥ δ0 − 1. Let X be the infinite cyclic cover of S3\K
and G = π1(S3\K). Note that β1(X) = rankQH1(S3\K;Q[t, t−1]) = δ0 , and
δ1 = rankK1 H1(S3\K;K1[t±1]) = rankH1(X;Z[G(1)/G(2)]) by Definition 5.3.
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The latter, by Corollary 4.7 is at least β1(X)− 1 (since H2(X;Q) = 0) and we
are done.

Now it will suffice to show δn ≥ δn−1 if n ≥ 2. Let Xn be the covering
space of S3\K with fundamental group G(n+1) so X0 = X . Then Xn−1 is
a covering space of X with G(1)/G(n) as deck translations. Choose a wedge
of δ0 circles A0 → X giving an isomorphism on H1( ;Q). Let Ã0

i−→ Xn−1

be the induced cover and corresponding inclusion. By Proposition 3.8, i∗ is a
monomorphism on H1 . Since n ≥ 2, rankZ[G(1)/G(n)]H1(A0;Z[G(1)/G(n)]) is
precisely β1(A0) − 1 = δ0 − 1 by Lemma 3.9 (here we assume δ0 > 0 since
if δ0 = 0 then δi = 0 and the theorem holds). Choose a subset of image i∗
with cardinality δ0−1 that is Z[G(1)/G(n)]–linearly independent in H1(Xn−1).
It is not difficult to show that, in a module over an Ore domain, any linearly
independent set can be extended to a maximal linearly independent set, i.e.
whose cardinality is equal to the rank of the module. Hence if δn−1 (which
equals the Z[G(1)/G(n)]–rank of H1(Xn−1)) exceeds δ0 − 1, then there is a set
of e = δn−1− (δ0− 1) circles and a map f̃ : Ae → Xn−1 of a wedge of e circles,
such that the free submodule generated by these circles captures the “excess
rank.” Let f = π ◦ f̃ : Ae → X . Then the map A = A0 ∨Ae −→ X induces a
monomorphism on H1( ;Z[G(1)/G(n)]) by construction. Another way of saying
this is that the induced map on G(1)/G(n) –covers An−1 → Xn−1 is injective on
H1( ;Z) where An−1 is the induced cover of A. Since H2(X;Z) = 0, it follows
from Lemma 3.9 that H2(Xn−1;Z) = 0. Hence (Xn−1, An−1) is a relative 2–
complex that satisfies the conditions of Proposition 3.8, with Γ = G(n)/G(n+1) .
It follows that H1(An−1;ZΓ) i∗−→ H1(Xn−1;ZΓ) is injective. But this is the
same as the map induced by i : A→ X on H1( ;Z[G(1)/G(n+1)]). Thus δn =
rankH1(X;Z[G(1)/G(n+1)]) is at least the rank of H1(A;Z[G(1)/G(n+1)]). Since
A is a wedge of e+ δ0 = δn−1 + 1 circles and n ≥ 2, this latter rank is precisely
δn−1 by Lemma 3.9. Hence δn ≥ δn−1 as claimed.

Question Is there a knot K and some n > 0 for which δn(K) is a non-zero
even integer?

If not then a complete realization theorem for the δi can be derived from the
techniques of Section 7.

6 Presentation of An from a Seifert surface

Suppose M is a knot exterior, or more generally a compact, connected, ori-
ented 3–manifold with β1 = 1 that is either closed or whose boundary is a
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torus. Suppose ±V is a compact, connected, oriented surface which generates
H2(M,∂M). In the case of a knot exterior, the orientation on the knot can be
used to fix the orientation of V , and V can be chosen to be a Seifert surface of
K . The classical Alexander module of K can be calculated from a presentation
matrix which is obtained by pushing certain loops in V into S3 \ V . Here we
show that there is a finite presentation of An(K) obtained in a similar fashion
from V .

Let Y = M − (V × (−1, 1)) and denote by i+ and i− the two inclusions
V −→ V × {±1} −→ ∂Y ⊂ Y . Recall from Definition 4.1 and Proposition 4.6
that An(M) ∼= H1(M ;Kn[t±1]) where an isomorphism is fixed by choosing a
circle u dual to V (an oriented meridian in the case that M = S3\K ). The
derivation of a presentation for An(M) follows the classical case (see page 122–
123 of [Hi2])but is complicated by basepoint concerns. The following overlaps
with work of S. Harvey [Ha].

Proposition 6.1 The following sequence is exact.

H1(V ;Kn)⊗Kn Kn[t±1] d−→ H1(Y ;Kn)⊗Kn Kn[t±1] −→ An(M) −→ 0

where d(α ⊗ 1) = (i+)∗α⊗ t− (i−)∗α⊗ 1.

Proof (see [Ha] for a more detailed proof) For simplicity let Γn stand for
G/G

(n+1)
Q so there is an exact sequence 1 −→ G̃ −→ Γn

π−→ Z −→ 1 where
π(u) = 1 and Kn is the quotient (skew) field of ZG̃. Let U = V × [−1, 1] and
consider a Mayer–Vietoris sequence for homology with ZΓn coefficients using
the decomposition M = Y ∪U . Or, more naively, consider an ordinary Mayer–
Vietoris sequence for the integral homology of MΓn , the Γn cover, using the
decomposition MΓn = p−1(Y )∪p−1(U) = YΓn ∪UΓn and note that all the maps
are ZΓn–module homomorphisms. After the usual simplification one arrives at
the exact sequence:

−→ H1(V ;ZΓn) d−→ H1(Y ;ZΓn)
j∗−→ AZn(M) ∂∗−→ H0(V ;ZΓn).

Localizing yields a similar sequence with Kn[t±1] coefficients where An(M) re-
places AZn(M). Since π1(V ) and π1(Y ) are contained in G̃, one can consider
H∗(V ;Kn) and H∗(Y ;Kn), which are free Kn–modules. Moreover Kn[t±1] is
free and hence flat as a left Kn module. Thus H∗(V ;Kn[t±1]) ∼= H∗(V ;Kn)⊗Kn
Kn[t±1] and H∗(Y ;Kn[t±1]) ∼= H∗(Y ;Kn)⊗Kn Kn[t±1], showing that these ho-
mology groups are finitely-generated free Kn[t±1] modules. Since An(M) is a
torsion module by Proposition 4.2 and H0(V ;Kn[t±1]) is free, ∂∗ is the zero
map. This concludes our sketch of the proof of the proposition.
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Corollary 6.2 If the (classical) Alexander polynomial of M is not 1 then
An(M), n > 0, has a square presentation matrix of size r = max{0,−χ(V )}
each entry of which is a Laurent polynomial of degree at most 1. Specifically,
we have the presentation

(Kn[t±1])r ∂−→ (Kn[t±1])r −→ An(M) −→ 0

where ∂ arises from the above proposition. If n = 0 then the same holds with
r replaced by β1(V ).

Proof The Corollary will follow immediately from the Proposition if we es-
tablish that H1(V ;Kn) ∼= H1(Y ;Kn) ∼= Krn . Note that both V and Y have
the homotopy type of finite connected 2–complexes. Consider the coefficient
systems ψ : π1(V ) −→ G̃ and ψ′ : π1(Y ) −→ G̃ obtained by restriction of
π1(M) −→ Γn . Letting bi stand for the rank of Hi( ;ZG̃) or equivalently the
rank of Hi( ;Kn), we have that χ(V ) = b0(V )− b1(V ) + b2(V ) as in Fact 3.

Suppose that ψ is non-trivial. Then b0(V ) = 0 by Proposition 3.7. Since G̃
is PTFA, it is torsion free and hence the image of ψ is infinite. It follows that
the G̃–cover of V is a non-compact 2–manifold and thus b2(V ) = 0. Therefore
b1(V ) = r as desired. It also follows that ψ′ is non-trivial and so b0(Y ) = 0.
Since χ(M) = 0 it follows that χ(Y ) = χ(V ). Thus b2(Y ) − b1(Y ) = χ(Y ) =
χ(V ) = −b1(V ) so b1(Y ) = b1(V ) + b2(Y ). By Proposition 6.1 An has a
presentation of deficiency b1(Y ) − b1(V ). If b2(Y ) > 0 then An(M) has a
presentation of positive deficiency, contradicting the fact that it is a Kn[t±1]–
torsion module. Therefore b2(Y ) = 0 and b1(Y ) = b1(V ) = r as required. This
completes the case that ψ is non-trivial, after noting that if n = 0 then ψ is
certainly trivial since G̃ = 1.

Now suppose ψ is trivial. If n = 0 then this is the case of the classical (rational)
Alexander module and the result is well-known. If n ≥ 1 then the triviality of
ψ implies that π1(V ) ⊆ G

(2)
Q . Consider a map f : M −→ S1 such that V is

the inverse image of a regular value. Then G
(1)
Q = ker f∗ and it follows that

G
(1)
Q is the normal subgroup generated by π1(Y ) and so, for any γ ∈ π1(Y ),

there exists a non-zero integer m such that mγ bounds an orientable surface
S . Hence G

(1)
Q /G

(2)
Q is generated by π1(V ) and thus is zero. It follows that

A0(M) = 0 and that classical Alexander polynomial is 1. Since this case was
excluded by hypothesis, the proof is complete.

Example 6.3 Suppose K is a fibered knot of genus g with fiber surface V
and π1–monodromy f . If n > 0 and F is the free group of rank 2g − 1
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then H1(V ;Kn) ∼= H1(Y ;Kn) ∼= H1(F ;Kn) ∼= K2g−1
n by Lemma 3.9. By the

above results, An has a (2g − 1) by (2g − 1) presentation matrix given by
It− fn where fn is an automorphism of the vector space K2g−1

n derived from
the induced action of f on F/F (n+1) .

7 The δn give lower bounds for knot genus

The previous section can now be used to show that the degrees of the higher
order Alexander polynomials give lower bounds for genus(K). In the last part
of this section we show that there are knots such that δ0 < δn + 1 so that these
invariants yield sharper estimates of knot genus than that given by the Alexan-
der polynomial, deg(∆0) ≤ 2 genus(K). S. Harvey has established analagous
results for any 3–manifold, finding lower-bounds for the Thurston norm [Ha].

Theorem 7.1 If K is a (null-homologous) non-trivial knot in a rational ho-
mology sphere and δn is the degree of the nth order Alexander polynomial then
δ0 ≤ 2 genus(K) and δn + 1 ≤ 2 genus(K) if n > 0.

Proof. We may assume n > 0 since the result for n = 0 is well known. If the
classical Alexander polynomial is 1 then δ0 = δn = 0 and the theorem holds.
Otherwise suppose V is a Seifert surface of minimal genus. By Corollary 6.2
An(K) has a square presentation matrix of size 2 genus(K) − 1. Since δn
is defined as rankKn An , it remains only to show that the latter is at most
2 genus(K)− 1. This is accomplished by the following lemma of Harvey.

Lemma 7.2 [Ha] Suppose A is a torsion module over a skew Laurent poly-
nomial ring K[t±1] where K is a division ring. If A is presented by an m×m
matrix θ each of whose entries is of the form ta + b with a, b ∈ K, then the
rank of A as a K–module is at most m.

Theorem 7.3 For any knot K whose (classical) Alexander polynomial is not
1 and any positive integer k , there exists a knot K∗ such that

a) An(K∗) ∼= An(K) for all n < k .

b) δn(K∗) = δn(K) for all n < k .

c) δk(K∗) > δk(K).

d) K∗ can be taken to be hyperbolic or to be concordant to K .
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Corollary 7.4 Under the hypotheses of the theorem above, there exists a
hyperbolic knot K∗ , with the same classical Alexander module as K , for which
δ0(K∗) < δ1(K∗) < · · · < δk(K∗).

Proof of Theorem 7.3 Let P = π1(S3\K) and let α be an element of P (k)

which does not lie in P (k+1) . By Corollary 4.8 such α are plentiful. We now
describe how to construct a knot K∗ = K(α, k) which differs from K by a
single “ribbon move,” i.e. K∗ is obtained by adjoining a trivial circle J to K
and then fusing K to this circle by a band as shown in Figure 2. Thus K∗ is
concordant to K . From a group theory perspective, what is going on is simple.
It is possible to add one generator and one relation that precisely kills that
generator if one “looks” modulo nth order commutators, but does not kill that
generator if one “looks” modulo (n+ 1)st order commutators. Details follow.

K K

K∗

J

t z

α

Figure 2: K∗ is obtained from K by a ribbon move

Choose meridians t and z as shown. Choose an embedded band which follows
an arc in the homotopy class of the word η = t[α−1, t−1z]t−1 . There are
many such bands. For simplicity choose one which pierces the disk bounded
by J precisely twice corresponding to the occurrences of z and z−1 in η . Let
G = π1(S3−K∗) and let γ denote a small circle which links the band. A Seifert
Van–Kampen argument yields that the group E ≡ G/〈γ〉 has a presentation
obtained from a presentation of P by adding a single generator z (corresponding
to the meridian of the trivial component) and a single relation z = ηtη−1 . We
symbolize this by E = 〈P, z | z = ηtη−1〉. First we analyze the relationship
between P and E .

Lemma 7.5 Given P , α, k , t, z , E as above:

a) P/P (n) ∼= E/E(n) for all n ≤ k + 1 implying that for all n < k , AZn(P ) ∼=
AZn(E) and δn(P ) = δn(E);

b) δk(E) = δk(P ) + 1.

Algebraic & Geometric Topology, Volume 4 (2004)



374 Tim D. Cochran

Proof of Lemma 7.5 Let w = t−1z so E = 〈P,w | w = [t−1, η]〉 and
η = t[α−1, w]t−1 . Since α ∈ P (k) , η ∈ E(k) and hence w ∈ E(k) . But
then η ∈ E(k+1) so w ∈ E(k+1) . Part a) of the Lemma follows immedi-
ately: the epimorphism E −→ P obtained by killing w induces an isomor-
phism E/E(k+1) −→ P/P (k+1) , and hence AZn(P ) ∼= AZn(E) for n < k by
Definition 2.8. Here we use the fact that both E and P are E –groups in the
sense of R. Strebel (being fundamental groups of 2–complexes with H2 = 0
and H1 torsion-free). Consequently any term of their derived series is also an
E –group and it follows that their derived series is identical to their rational
derived series [Str].

Now we consider the subgroup E(k+1) of E . To justify the following group-
theoretic statements, consider a 2–complex X whose fundamental group is P
and define a 2–complex Y by adjoining a 1–cell and a 2–cell so that π1(Y ) ∼= E
corresponding to the presentation 〈P,w | w = [t−1, η]〉. The subgroup E(k+1)

is thus obtained by taking the infinite cyclic cover Y∞ of Y (so π1(Y∞) = E(1) )
followed by taking the E(1)/E(k+1) –cover Ỹ of Y∞ (so π1(Ỹ ) = E(k+1) ). Since
the inclusion map X −→ Y induces an isomorphism P/P (k+1) −→ E/E(k+1) ,
the induced cover of the subspace X ⊂ Y is the cover X̃ of X with π1(X) ∼=
P (k+1) . Therefore a cell structure for Ỹ relative to X̃ contains only the lifts of
the 1–cell w and the 2–cell corresponding to the single relation. This allows
for an elementary analysis of E(k+1) as follows. By analyzing X∞ and Y∞ we
see that

E(1) = 〈P (1), wi i ∈ Z | wi = t−i[t−1, η]ti〉

where wi stands for t−iwti as an element of π1(Y ). If we rewrite the relation
using β−1 = t−iα−1ti and r−1 = t−i+1α−1ti−1 we get

E(1) = 〈P (1), wi | wi = β−1wiβw
−1
i wi−1r

−1w−1
i−1r〉.

This is a convenient form because what we want to do now is “forget the
t action” because δk is defined as the rank of the abelianization of E(k+1)

as a module over Z[E(1)/E(k+1)] (or equivalently over its quotient field Kk ).
Therefore we now think of Y∞ as being obtained from X∞ by adding an infinite
number of 1–cells wi and a correspondingly infinite number of 2–cells. Thus Ỹ
is obtained from X̃ by adding 1–cells {wsi | i ∈ Z, s ∈ E(1)/E(k+1)}, where wsi
descends to s−1t−iwtis in E , and 2–cells corresponding to the relations {wsi =
wβsi (wsi )

−1wsi−1(wrsi−1)−1 | i ∈ Z, s ∈ E(1)/E(k+1)} where, for example, wβsi is
the image of a fixed 1–cell wi under the deck translation βs ∈ E(1)/E(k+1) and
descends to s−1β−1t−iwtiβs in E . The abelianization, E(k+1)/E(k+2) , as a
right Z[E(1)/E(k+1)] ∼= Z[P (1)/P (k+1)] module is obtained from P (k+1)/P (k+2)

by adjoining a generator wi and a relation for each i ∈ Z. Upon rewriting the
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relations above as wi(2s − βs)∗ = wi−1(s− rs)∗ where (2s − βs)∗ denotes the
(right) action of 2s − βs ∈ Z[P (1)/P (k+1)], and then again as wi(2 − β)∗s∗ =
wi−1(1− r)∗s∗ we see that the relations are generated as a module by {wi(2−
β)∗ = wi−1(1−r)∗ | i ∈ Z}. Note that neither 2−β nor 1−r is zero since their
augmentations are non-zero. Hence in Kk these elements are invertible and each
wi , i 6= 0 can be equated uniquely to a multiple of w0 . Thus E(k+1)/E(k+2) ∼=
P (k+1)/P (k+2) ⊕ Kk as a Kk–module. It follows immediately that δk(E) =
δk(P ) + 1. This concludes the proof of Lemma 7.5.

Returning to the proof of the theorem, it will suffice to show γ ∈ G(k+1) since if
so then the epimorphism G −→ E induces an isomorphism G/G(n) ∼= E/E(n)

for all n ≤ k+1 and hence an isomorphism AZn(G) −→ AZn(E) for n < k . More-
over the epimorphism G(k+1) −→ E(k+1) induces an epimorphism AZk (G) −→
AZk (E) of G/G(k+1) (∼= E/E(k+1) ) modules. Thus δk(K∗) = δk(G) ≥ δk(E).
By Lemma 7.5 the map P −→ E induces isomorphisms AZn(P ) −→ AZn(E) for
n < k and δk(E) = δk(P ) + 1 = δk(K) + 1. Combining these results will finish
the proof.

γ z∗

`z

Figure 3: γ = [z∗, `z]

ᾱ

γ∗

`z

Figure 4: `z = [γ∗, ᾱ]
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To see that γ ∈ G(k+1) , first note that γ bounds an embedded disk which is
punctured twice by the knot. By tubing along the knot in the direction of
J , one sees that γ bounds an embedded (punctured) torus in S3\K∗ as in
Figure 3. This illustrates the group-theoretic fact that γ = [z∗, `z] where `z is
a longitude of J and z∗ is a conjugate of z . It suffices to show `z ∈ G(k+1) .
But, since η = tα−1t−1zαz−1 contains 2 occurrences of z (with opposite sign)
and we chose our band to pass precisely 2 times through J , `z bounds a twice
punctured disk and hence a punctured torus as in Figure 4. This illustrates
that `z = [γ∗, ᾱ] where γ∗ is a conjugate of γ since it is another meridian of
the band, and ᾱ is the word α separating the occurrences of z and z−1 in the
word η . Clearly γ ∈ G(1) . Suppose γ , and hence γ∗ , lies in G(j) for some
1 ≤ j ≤ k . Thus G/G(j) ∼= E/E(j) . Let α′ denote the image of ᾱ under the
map G → E . Then α′ is the image of α under the map P → E since all the
elements α, α′ and ᾱ are represented by the “same” path. Since α ∈ P (k) (by
hypothesis), α′ ∈ E(k) and hence ᾱ ∈ G(j) . But then `z ∈ G(j+1) and hence
γ ∈ G(j+1) . Continuing in this way shows that γ ∈ G(k+1) and concludes the
proof of Theorem 7.3.

Proof of Corollary 7.4 By induction and Theorem 7.3 there exists a knot
Kk−1 with the same classical Alexander module as K and δ0(Kk−1) < ... <
δk−1(Kk−1) Apply Theorem 7.3 to Kk−1 produce a new knot K∗ . One easily
checks that K∗ satisfies the required properties by Theorem 7.3, Theorem 5.4
and Corollary 2.10.

8 Genetic infection: A technique for constructing
knots

We discuss a satellite construction, which we call genetic modification or infec-
tion, by which a given knot K is subtly modified, or infected using an auxiliary
knot or link J (see also of [COT1, Section 6] [COT2] [CT]). If, by analogy,
we think of the group G of K as its strand of DNA, then, by Corollary 4.8,
this “strand” is infinitely long as measured by the derived series. Thus, as
we shall see, it is possible to locate a spot on the “strand” which corresponds
to an element of G(n) − G(n+1) , excise a “small piece of DNA” and replace it
with “DNA associated to the knot J ”, with the effect that G/G(n+1) is not al-
tered but G/G(n+2) is changed in a predictable fashion. The infection is subtle
enough so that it is not detected by the localized modules An (hence not by
δn ). The effect on the (integral) modules AZn can be measured numerically by
the higher-order signatures of Section 11.
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Suppose K and J are fixed knots and η is an embedded oriented circle in S3\K
which is itself unknotted in S3 . Note that any class [η] ∈ G has a (non-unique)
representative η which is unknotted in S3 . Then (K, η) is isotopic to part a of
Figure 5 below, where some undetermined number m of strands of K pierce the
disk bounded by η . Let K0 = K(η, J) be the knot obtained by replacing the
m trivial strands of K by m strands “tied into the knot J ”. More precisely,
replace them with m untwisted parallels of a knotted arc with oriented knot
type J as in Figure 5. We call K0 the result of infecting K by J along η .

K

η J

Figure 5: Infecting K by J along η

The more general procedure of replacing the m strands by a more complicated
string link will be discussed briefly in Section 10. Note that this is just a satel-
lite construction and as such is not new. The emphasis here is on choosing the
loop or loops η to be very subtle with respect to some measure. Note that this
construction is, in a sense, orthogonal to techniques used by Casson–Gordon,
Litherland, Gilmer, T.Stanford, and K.Habiro wherein the loop η is arbitrary
but the analogue of the infection parameter J is increasingly subtle (for exam-
ple, in Stanford’s case, J must lie in the nth term of the lower central series of
the pure braid group; and, in the claspers that Habiro associated to Vassiliev
theory, the analogue of η is a meridian of K [Hb]). However, infection can
certainly be viewed as the result of modifying K by a certain clasper (depend-
ing on J ) all of whose leaves are parallels of η (see [CT][GL][GR]). Moreover
all of these procedures are special cases of the classical technique, used by J.
Levine and others, of modifying a knot by Dehn surgeries that leave the ambient
manifold unchanged.

We now give an alternate description of genetic infection that is better suited
to analysis by Mayer–Vietoris and Seifert–Van Kampen techniques. Beginning
with the exterior of K , E(K), delete the interior of a tubular neighborhood N
of η and replace it with the exterior of J , E(J), identifying the meridian µη of
η with the longitude `J of J , and the longitude `η of η with the meridian µJ
of J . It is well-known and is a good exercise for the reader to show that the
resulting space is E(K0) as described above. Note that this replaces the exterior
of a unknot with the exterior of the knot J in a fashion that preserves homology.
Since there is a degree one map (rel boundary) from E(J) to E (unknot), there
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is a degree one map (rel boundary) f from E(K0) to E(K) which is the identity
outside E(J).

Theorem 8.1 If η ∈ G(n) then the map f (above) induces an isomorphism
f : π1(E(K0))/π1(E(K0))(n+1) → π1(E(K))/π1(E(K))(n+1) and hence induces
isomorphisms between the ith (integral and localized) modules of K0 and K
for 0 ≤ i < n.

Proof Let E(η) denote E(K) with the interior of an open tubular neighbor-
hood of η deleted. Then, by the Seifert–VanKampen theorem, G = π1(E(K)) ∼=
〈π1(E(η)), t | µη=1, `η=t〉. Similarly, G0 = π1(E(K0)) ∼= 〈π1(E(η)), π1(E(J))
|`η = µJ , µη = `J〉 where this denotes the obvious “free product with amalga-
mation”. The map f induces the identity on π1(E(η)) and is the Hurewicz map
on π1(E(J)) → Z = 〈t〉 which sends `J → 1 and µJ → t. Hence the kernel of
f : G0 → G is precisely the normal closure in G0 of [P,P ] where P = π1(E(J)).
Thus it suffices to show that P ⊂ G(n)

0 . Since P is normally generated by µJ ,
it suffices to show by induction that µJ ∈ G(n)

0 . This is clearly true for n = 0.
Suppose µJ ∈ G

(k)
0 k < n. Then P ⊂ G

(k)
0 so µη = `J ⊂ [P,P ] ⊂ G

(k+1)
0 .

By hypothesis η ∈ G(n) . Therefore η bounds in E(K), a map of a symmetric
n–stage grope [CTe]. Thus `η bounds such a grope in E(K) and we may as-
sume that the grope stages meet η transversely. Hence `η bounds a punctured
n–stage grope in E(η) and the boundaries of these punctures are copies of µη .
Therefore, in G0 , `η =

∏m
i=1 ξiµ

ni
η ξ
−1
i

∏r
j=1[aj, bj ] where each aj and bj bound

maps of punctured (n − 1)–stage gropes in E(η). We claim `η ∈ G(k+1)
0 . It

suffices to show the aj and bj lie in G
(k)
0 . But each of these, modulo conjugates

of µ±1
η , is given by a similar expression as `η above. Continuing in this fashion,

we see that `η ∈ G(n)
0 modulo the punctures µη ∈ G(k+1)

0 . Since n ≥ k + 1,
`η ∈ G(k+1)

0 and hence µJ ∈ G(k+1)
0 , completing our induction.

Theorem 8.2 Let K0 = K(η, J) be the result of genetic infection of K by
J along η ∈ G(n) (as described above). Then the nth (integral) Alexander
module of K0 , AZn(K0), is isomorphic to AZn(K)⊕(AZ0 (J)⊗Z[t,t−1]Z[G/G(n+1)])
where Z[G/G(n+1)] is a left Z[t, t−1] module via the homomorphism 〈t〉 = Z→
G/G(n+1) sending t→ η . Thus, if n ≥ 1, Ai(K0) ∼= Ai(K) for all i ≤ n.

Proof Note that since η ∈ G(n) , AZn(K0) and AZn(K) are modules over isomor-
phic rings since G/G(n+1) ∼= G0/(G0)(n+1) by the previous theorem. Therefore
we can take the point of view that the map E(K0) → E(K) induces on both
spaces a local coefficient system with G/G(n+1) coefficients.
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Lemma 8.3 The inclusion i : ∂E(J) → E(J) induces an isomorphism on
H0( ;Z[G/G(n+1)]) and induces either the 0 map or an epimorphism on
H1( ;Z[G/G(n+1)] according as η /∈ G(n+1) or η ∈ G(n+1) respectively, whose
kernel is generated by 〈`J 〉.

Proof of Lemma 8.3 The Lemma refers to the coefficient system on E(J) in-
duced by E(J) ⊆ E(K0)→ E(K). Note that the kernel of the map π1(E(J))→
G contains [π1(E(J)), π1(E(J))] and thus its image in G/G(n+1) is cyclic, gen-
erated by the image of µJ = η . Since G/G(n+1) is torsion-free (see Example
2.4), this image is either zero or Z according as η ∈ G(n+1) or not. This also
shows that the image of π1(∂E(J)) in G/G(n+1) is the same as the image of
π1(E(J)). The first claim of the Lemma now follows immediately from the
proof of Proposition 3.7. Alternatively, since H0( ;Z[G/G(n+1)]) is free on
the path components of the induced cover, and since the cardinality of such
is the index of the image of π1 in G/G(n+1) , i induces an isomorphism on
H0( ;Z[G/G(n+1)]). If η ∈ G(n+1) then the induced local coefficient systems
on ∂E(J) and E(J) are trivial, i.e. untwisted and thus i induces an epimor-
phism on H1( ;Z[G/G(n+1)]) whose kernel is 〈`J 〉 because it does so with
ordinary Z coefficients. If η /∈ G(n+1) then the induced cover of ∂E(J) is a
disjoint union of copies of the Z–cover which “unwinds” µJ , i.e. the ordinary
infinite cyclic cover. Thus H1 of this cover is generated by a lift of `J . But `J
bounds a surface in E(J) and this surface lifts to the induced cover since every
loop on a Seifert surface lies in [π1(E(J)), π1(E(J))]. Therefore i induces the
zero map on H1 in this case. This concludes the proof of the Lemma.

We return to the proof of Theorem 8.2. Consider the Mayer–Vietoris sequence
with Z[G/G(n+1)] coefficients for E(K0) viewed as E(J) ∪E(η) with intersec-
tion ∂E(J). By Lemma 8.3 this simplifies to

H1(∂E(J))
(ψ1,ψ2)−→ H1(E(J)) ⊕H1(E(η)) −→ H1(E(K0)) −→ 0.

Note first that E(K) is obtained from E(η) by adding a solid torus, i.e. a 2-cell
and then a 3-cell, so that it is clear that H1(E(K)) is the quotient of H1(E(η))
by the submodule generated by µη (or `J ). If η /∈ G(n+1) then ψ1 is zero by
Lemma 8.3 so H1(E(K0)) ∼= H1(E(J)) ⊕ (H1(E(η))/〈ψ2〉). But in the proof
of Lemma 8.3 we saw that H1(∂E(J)) was generated by `J and so the image
of ψ2 is generated by `J . Hence H1(E(K0)) ∼= H1(E(J)) ⊕ (H1(E(K)). This
concludes the proof of the theorem in the case η /∈ G(n+1) once we identify
H1(E(J)) as AZ0 (J) ⊗Z[t,t−1] Z[G/G(n+1)]. But since the map from π1(E(J))
to its image in G/G(n+1) has already been observed to be the abelianization,
this is clear.
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In case η ∈ G(n+1) , ψ1 is an epimorphism whose kernel is generated by `J and
so H1(E(K0)) ∼= H1(E(η))/〈`J 〉 ∼= H1(E(K)). On the other hand, in this case
AZ0 (J)⊗Z[t,t−1] Z[G/G(n+1)] factors through the augmentation of AZ0 (J), which
is zero since the classical Alexander polynomial of a knot augments to 1.

If n ≥ 1, η ∈ G̃. Let ∆(t) be the classical Alexander polynomial of J . Then
∆(η) ∈ ZG̃ − {0}. Recall that ZG̃ − {0} is a right divisor set of regular
elements of Z[G/G(n+1)] by [P, p. 609]. Thus for any r ∈ Z[G/G(n+1)], there
exist r1 ∈ Z[G/G(n+1)] and t1 ∈ ZG̃− {0} such that ∆(η)r1 = rt1 [P, p. 427].
Hence any element x⊗ r ∈ AZ0 (J)⊗Z[G/G(n+1)] is annihilated by t1 , showing
that this is a ZG̃–torsion module. Hence An(K0) ∼= An(K).

9 Applications to detecting fibered and alternating

knots and symplectic structures on 4–manifolds

In this section we show that the higher-order Alexander modules of fibered knots
and alternating knots have special properties. Therefore noncommutative knot
theory gives algebraic invariants which can be used to tell when a knot is not
fibered or not alternating, even in situations where the Alexander module yields
inconclusive evidence. In the case of fibered knots, examples of this type were
obtained independently by J.C. Cha using the twisted Alexander invariant [Ch].
Remarkably, for 4–manifolds of the form MK × S1 (MK is the 0–surgery on
K ), our invariants also obstruct the existence of a symplectic structure (using
work of P. Kronheimer [Kr]). We also establish that δi − δj are not Vassiliev
invariants of finite type.

Proposition 9.1 If K is a non-trivial fibered or alternating knot then δ0 =
δ1 + 1 = · · · = δn + 1 = 2 genus(K).

Proof It is well known that for a fibered or alternating knot, δ0 = 2 genus(K).
The result now follows immediately from Theorem 5.4.

Corollary 9.2 For any non-trivial fibered or alternating knot K , and any
positive integer n, there exists a hyperbolic knot K∗ such that

a) Ak(K∗) ∼= Ak(K) for all k < n

b) δk(K∗) = δk(K) for all k < n

c) δn(K∗) > δn(K)
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d) K∗ is neither fibered nor alternating.

Proof Apply Theorem 7.3 and Corollary 2.10 to produce K∗ . Suppose n ≥ 2.
Since K is fibered or alternating, δn(K) = δn−1(K) by Proposition 9.1. It
follows that δn(K∗) > δn−1(K∗) so K∗ is not fibered. A similar argument
works for n = 1.

There are more subtle obstructions to fibering that cannot be detected by the
localized modules, but can be detected by the integral modules.

Proposition 9.3 If K is a fibered knot then the following equivalent condi-
tions hold:

1) AZn(K) −→ An(K) is injective

2) AZn(K) is torsion-free as a ZG̃–module (recall that G̃ is G(1)/G(n+1) ).

Proof Recall AZn(K) = G(n+1)/G(n+2) = F (n)/F (n+1) where G(1) = F is free
since K is a fibered knot. Since G̃ = G(1)/G(n+1) = F/F (n) , AZn as a ZG̃–
module is merely F (n)/F (n+1) as a Z[F/F (n)]–module (i.e. H1(F ;Z[F/F (n)])).
Since F is the fundamental group of a 1–complex, this is a submodule of a free
module and hence is torsion-free.

Theorem 9.4 For any non-trivial fibered knot K and any positive integer n
there exists a family of hyperbolic knots K∗ = K∗(J, n), parametrized by an
auxiliary knot J , such that

1) G/G(n+1) ∼= G∗/G
(n+1)
∗ meaning that all knots in the family share (with

K ) the same AZi for 0 ≤ i ≤ n− 1;

2) An(K) ∼= An(K∗)

3) δ0 = δ1 + 1 = · · · = δn + 1 for each K∗ and K

4) if P∗ is the commutator subgroup of G∗ then P∗/(P∗)j ∼= F/Fj for each
term of the lower central series (F is free of rank equal to 2 genus(K)).

5) If J has non-trivial classical Alexander polynomial then K∗ is not fibered
and hence is distinct from K .

6) If J has non-trivial classical Alexander polynomial then G/G(n+2) 6∼=
G∗/G

(n+2)
∗ and AZn(K∗) 6∼= AZn(K).

7) K∗(J, n) and K∗(J ′, n) are distinct if the integrals of the classical Levine
signature functions of J and J ′ are distinct.
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Proof Since K is a non-trivial fibered knot, it does not have Alexander poly-
nomial 1. By Corollary 4.8 (or more simply since G(n) is free if n ≥ 1), for
any n, we can choose a class η ∈ G(n) − G(n+1) which can be represented by
a loop in the complement of a fiber surface for K and which is also unknotted
in S3 . Construct K0 = K(η, J) by genetic infection as in Section 8. It follows
that genus(K0) = genus(K) so if we drop the claim of hyperbolicity we can
retain this. By Corollary 2.10 there is a hyperbolic knot, K∗ , whose funda-
mental group differs from that of K0 by a perfect group. Thus K0 and K∗
have isomorphic AZi for any i and have isomorphic groups modulo any term
of the derived series (see Proposition 2.9). Thus, by Theorem 8.1, part 1) of
Theorem 9.4 follows. Part 2) follows from Theorem 8.2. Part 3) holds for K by
Proposition 9.1 and hence for K∗ by the second part of Theorem 8.2. Part 4) is
true for any knot for which AZ0 ∼= Z2 genus(K) since one can then define a homo-
morphism from the free group of rank 2 genus(K) to the commutator subgroup
which induces an isomorphism on H1 and an epimorphism on H2 . Stallings’
theorem [St] then guarantees an isomorphism modulo any term of the lower
central series.

By Theorem 8.2, AZn(K∗) is AZn(K) direct sum AZ0 (J) ⊗Z[t,t−1] Z[G/G(n+1)].
But An(K∗) ∼= An(K). By Proposition 9.3, if K∗ were fibered then this second
direct summand would be zero. But even after tensoring with Q[G/G(n+1)]
this module is not zero because it is cyclic of order ∆(η) where ∆(t) is the
classical Alexander polynomial of J . Thus the module is zero if and only if
∆(η) is a unit in Q[G/G(n+1)]. Since G/G(n+1) is PTFA it is right orderable
by [P, p. 587] hence has only trivial units by [P, p. 588,590]. Since ∆(η) is an
integral polynomial in η , this can only happen if ∆(t) has degree zero which
was excluding by hypothesis. Thus Part 5 is established. Part 6 follows from
the discussion above. The proof of Part 7) must be postponed to Theorem 11.1
of Section 11.

Some of these new obstructions to fibering can be used to show that certain
4-manifolds of the form S1 ×MK admit no symplectic structure. If K is a
fibered knot then MK also fibers over the circle and it is known that S1 ×
MK is then symplectic. C. Taubes conjectured the converse. The Seiberg-
Witten invariants provide evidence for this conjecture. If S1 ×MK admits a
symplectic structure then the Alexander polynomial of K must be monic. This
is precisely the fibering obstruction on the classical Alexander polynomial of K .
Peter Kronheimer provided more evidence for the conjecture by proving that if
S1 ×MK admits a symplectic structure then δ0 = 2 genus(K) [Kr2] [Kr]. As
a consequence of his work, we see that the δi constitute algebraic invariants
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which can obstruct a symplectic structure on S1 ×MK even when the Seiberg
Witten invariants give inconclusive information.

Theorem 9.5 Suppose K is a non-trivial knot. If S1 ×MK admits a sym-
plectic structure then the invariants δi(K)− δ0(K) + 1 are zero for all i > 0.

Proof By Kronheimer’s theorem, δ0(K) = 2 genus(K). The result then fol-
lows from Theorem 5.4.

Corollary 9.6 If K∗ is any one of the examples of Corollary 9.2, then S1×MK

admits no symplectic structure although the Alexander polynomial of K is
monic.

Now consider δn as a rational valued invariant on knot types.

Proposition 9.7 None of the invariants δi − δj (i 6= j ) or δi − 2 genus(K) is
determined by any finite number of finite type (Vassilliev) invariants.

Proof Let φ be one of the mentioned invariants. Suppose φ were determined
by the finite type invariants v1, . . . , vm . We have shown in Theorem 7.3 that φ
is not constant. But on fibered knots φ is constant, say C , by Proposition 9.1.
Again using Theorem 7.3 choose a knot K∗ such that φ(K∗) = C ′ 6= C . By a
result of A. Stoimenow [Sti], there exists a fibered knot K such that vi(K) =
vi(K∗) for 1 ≤ i ≤ m. Thus φ(K) = φ(K∗) a contradiction.

10 Bordism invariants generalizing the Arf invariant

In this section we define higher-order bordism invariants for knots which (in a
certain sense) generalize the Arf invariant. The reader is warned that these are
not the same as the generalizations of the Arf invariant defined in Section 4 of
[COT1]. The invariants about to be defined are almost certainly not concor-
dance invariants. If K is a knot, G its group, let MK be the result of 0–framed
surgery on K and P = π1(MK). Recall that the Arf invariant of K may be
defined as the class in ΩSpin

3 (S1) ∼= Z2 represented by MK with the map to S1

induced by the abelianization homomorphism P −→ P/P (1) ∼= G/G(1) ∼= Z.
Equivalently one could consider spin bordism (rel boundary) over S1 of 3–
manifolds with a toral boundary component, in which case the Arf invariant of
K is zero if and only if S3\K is bordant to the exterior of the unknot. Note
that S1 = K(P/P (1), 1) = K(G/G(1), 1).

More generally,

Algebraic & Geometric Topology, Volume 4 (2004)



384 Tim D. Cochran

Definition 10.1 The nth (reduced) bordism invariant of K , βn(K), is the

class in ΩSpin
3 (K(P/P (n+1), 1))/Aut(P/P (n+1)) represented by MK

fn−→
K(P/P (n+1), 1) where fn is induced by the quotient map fn : P −→ P/P (n+1) .

Obviously then β0(K) is the Arf invariant of K , and equivalent knots (here
we need an orientation-preserving homeomorphism) have identical bordism in-
variants. Note also that βn(−K) = −βn(K), so that a ±–amphichiral knot
satisfies 2βn = 0. We also have the following purer but uglier version. The
purest (and ugliest) version would fix the peripheral structure in G/G(n+1) and
effectively only consider pairs of knots with isomorphic G/G(n+1) preserving
peripheral structure.

Definition 10.2 The nth unreduced bordism invariant of K , β̃n(K), is the
equivalence class of (S3\K,∂(S3\K), fn : S3\K −→ K(G/G(n+1), 1)) in the
set of spin bordism classes rel boundary of spin 3–manifolds and maps to
K(G/G(n+1), 1) modulo the action of Aut(G/G(n+1), 1).

Conjecture For each n ≥ 0 there exist knots K , K∗ such that Ai(K) ∼=
Ai(K∗), 0 ≤ i < n but βn(K) 6= βn(K∗).

We give a construction which should produce K∗ for any n but are only able
to verify this in the first case n = 0.

Theorem 10.3 There exist knots K , K∗ with identical classical Alexander
module and Blanchfield form but which are distinguished by β1 . Moreover we
can choose K to be amphichiral and K∗ to be chiral.

The knot K∗ in this case will be constructed from K by choosing 3 “bands”
of a Seifert surface for K and tying them into the shape of a Borromean rings,
with a restriction on the 3 bands that they are “essential” (in a sense to be
made precise) in the Alexander module. This then becomes very interesting in
light of previous work of S. Naik and T. Stanford who showed that any two
knots with isomorphic classical Alexander modules and isomorphic classical
Blanchfield forms are related by a sequence of such replacements (without the
restriction) [NS]; and work of S. Garoufalidis and L. Rozansky, who define a
“finite type” isotopy invariant of knots that is affected by precisely this same
construction. Their invariant gives information even for Alexander polynomial
one knots [GR]. The work of Naik-Stanford can be interpreted as saying that the
construction by which we prove Theorem 10.3 is the only construction necessary
(for n = 0) to achieve the full range of values of the triple (A0(K), B`0(K),
β1(K)).
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Infection by a string link

We discuss an instance of genetic infection of a fixed knot K using an auxil-
iary string link. This was perhaps first discussed in [CO] in the case that the
auxiliary link is a boundary link. For our examples it suffices to consider the
case where the auxiliary link is the Borromean Rings. This type of Borromean
modification has been considered by many other authors including Matveev,
Habiro, Goussarov and those mentioned above. Let ∆ be a 2-disk with 3 dis-
joint open subdisks ∆1 , ∆2 , ∆3 , deleted. Consider an embedding of ∆ in
S3\K which extends to an embedding ∆+ of D2 into S3 . An example is
shown in Figure 6. The trivial braid K∩ (∆+× [0, 1]) ↪→ ∆+× [0, 1] is obtained
from the trivial 3-string braid by forming {m1,m2,m3} parallel strands (and
perhaps altering some orientations) where mi is the number of components
of K ∩ ∆i . From the Borromean rings (written as a 3-string braid) form the
{m1,m2,m3} cable of the Borromean rings and alter orientations consistent
with the above. Then replace the trivial braid with this cable of the Bor-
romean Rings. We denote the modified knot by K∗ = K(η) where η denotes
the triple (η1, η2, η3) = (∂∆1, ∂∆2, ∂∆3) of conjugacy classes of elements of
G = π1(E(K)) as shown in Figure 6.

∆

η1
η2 η3

Figure 6: The data required to infect K by a string link along (η1, η2, η3)

Once again this is the same as replacing the solid handlebody ∆ × [0, 1] with
the exterior of a 3-string braid that represents the Borromean Rings.

The Seifert Van-Kampen proof of the following Lemma is left to the reader, it
being entirely analogous to that of Theorem 8.1.

Lemma 10.4 If ηi ∈ G(n) , i = 1, 2, 3 then π1(E(K∗))/(π1(E(K∗)))(n+1) is
isomorphic to π1(E(K))/(π1(E(K)))(n+1) preserving peripheral structure. In
particular AZi (K∗) ∼= AZi (K) for 0 ≤ i < n.
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Now consider the difference βn(K∗) − βn(K) projected onto Ω3(P/P (n+1)) ∼=
H3(P/P (n+1)), forgetting the spin structure. We claim that this element is
equal to the image of a generator of H3(S1×S1×S1) under the map induced by

Z3 (η1,η2,η3)−→ P (n)/P (n+1) −→ P/P (n+1) . To establish this, we describe a cobor-
dism, over P/P (n+1) , from (MK qS1×S1×S1, fnq (η1, η2, η3)) to (MK∗ , (f∗)n).
First add a 1-handle to ∂+ of (MKq(S1×S1×S1))×[0, 1]). A framed link picture
of the new ∂+ is shown in Figure 7. Since the meridians of the components
of the pictured Borromean rings map to (η1, η2, η3) in P/P (n+1) we can add
three 2-handles {h1, h2, h3} as shown in Figure 8 and still have a cobordism
over P/P (n+1) . But now the knot in Figure 8 is well known to be equivalent
to K(η) by first sliding the strands of K which link the attaching circles of hi
over the corresponding component of the Borromean Rings until the attaching
circles of the hi bound disks intersecting only the Borromean rings and then
sliding the strands of K over the hi as needed until completely free.

0 0

0

η1

η2

η3

Figure 7

Proof of Theorem 10.3 Let K be a knot with classical Alexander module
cyclic of order p(t)p(t−1) where p(t) = t3 + t− 1. Since p(t) is irreducible and
coprime to p(t−1) there is a unique direct summand B of A0(K) isomorphic
to Z[t, t−1]/〈p(t)〉. Since B is a free abelian group of rank 3, 1 ∧ t ∧ t2 is a
basis of H3(B) and also represents an element α of H3(G/G(2)) ∼= H3(P/P (2))
under the inclusions. Choose a trivial link {η1, η2, η3} in S3 , avoiding K ,
representing {1, t, t2} in G/G(2) and perform a Borromean modification to K
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0 0

0

0

0

0

Figure 8

along {η1, η2, η3} as above to arrive at a knot K∗ that has isomorphic A0 .
Using the cobordism above we see that β1(K∗) − β1(K) = α. However we
must take into account the ambiguity in the definition of β1(K). Suppose f
is an automorphism of the group G/G(2) . Assuming β1(K∗) − f∗β1(K) = 0
for some f , we shall derive a contradiction. Here we are viewing both β1(K∗)
and β1(K) as elements of H3(G/G(2)). Let r be the canonical retract from
Z[t, t−1]/〈p(t)p(t−1)〉 to B , inducing a map r from G/G(2) (which is A0oZ to
π = B oZ). The automorphism f induces an automorphism g of π such that
g◦r = r◦f . Combining the two equations above we see that f∗β1(K)−β1(K) =
α and hence r∗(α) = r∗f∗β1(K)− r∗β1(K) = (g∗− id)(r∗β1(K)). Consider the
Wang sequence

H3(B) t∗−id−→ H3(B)
j∗−→ H3(π) ∂−→ H2(B) t∗−id−→ H2(B).

Since H2(B) is free abelian on {1∧ t, 1∧ t2, t∧ t2} one can easily calculate that
(t∗− id) is injective on H2(B). Hence ∂ is the zero map and r∗(β1(K)) = j∗(β)
for some β ∈ H3(B). Recall that, by definition, r∗(α) = j∗(1∧ t∧ t2). It follows
that (1 ∧ t ∧ t2) − (g∗ − id)(β) lies in the kernel of j∗ and hence in the image
of (t∗ − id). But H3(B) is Z generated by 1 ∧ t ∧ t2 so it is easy to calculate
that t∗ − id is zero on H3(B). Moreover since g∗ is an automorphism of an
infinite cyclic group, it equals ± id. Hence 1 ∧ t ∧ t2 = 0 or 1 ∧ t ∧ t2 = −2β ,
both contradictions. Therefore β1(K∗) and β1(K) are distinct. Alternatively,
we could choose the amphichiral knot K#−K and form K∗ by infecting “the

Algebraic & Geometric Topology, Volume 4 (2004)



388 Tim D. Cochran

K part” as above. Then K∗ is not amphichiral.

11 Von Neumann higher-order signatures of knots

One can define higher-order signatures ρn , n ≥ 0, for knots using the Von
Neumann ρ–invariant of J. Cheeger and M. Gromov. In this section these are
defined and used to distinguish among knots which have isomorphic localized
Alexander modules. These can also be used to detect chirality of knots. Similar
signatures were crucial in the work of Cochran-Orr-Teichner [COT1] [COT2]
[CT].

If K is a knot and G its group, let MK denote the result of zero framed surgery
on K and let P = π1(MK). To the P (n+1) covering space of MK , Cheeger and
Gromov associate a real-valued Von Neumann ρ–invariant, which we denote
ρn(K) [ChG]. If −K denotes the mirror-image of K then M−K ∼= −MK so
ρn(−K) = −ρn(K) [ChG]. If K and K ′ are equivalent knots, then MK and
MK ′ are (orientation-preserving) homeomorphic so ρn(K) = ρn(K ′). Hence if
K is plus or minus amphichiral then ρn(K) = 0 for each n. In general it is
not known how to compute ρn . However relative signatures ρn(K0) − ρn(K1)
are often easy to compute. Suppose K0 , K1 are knots such that P0/P

(n+1)
0

∼=
P1/P

(n+1)
1 where Pi = π1(MKi) as above. Moreover suppose MK0 and MK1

are bordant over P/P (n+1) , as in the previous section, that is there exists a
compact oriented 4-manifold (W , ψ : π1(W ) −→ P/P (n+1) ) whose boundary
is (MK0 , φ0 : π1(MK0) −→ P/P (n+1) ) q(−MK1, φ1 : π1(MK1) −→ P/P (n+1))
where φi is a composition of the projection Pi −→ Pi/P

(n+1)
i with an arbi-

trary identification of Pi/P
(n+1)
i with a standard copy called P/P (n+1) . Then

the relative signature ρn(K0)− ρn(K1) is equal to the (reduced) L2–signature
σ

(2)
n (W )−σ(W ) associated to ψ (see [COT1, Section 5]. This is often calculable.

For example, if n = 0 and K is an Arf invariant zero knot, then P/P (1) ∼= Z
and it is known that (MK , φ0 : P −→ Z) is null-bordant, i.e. that MK bounds
(V,ψ), and that σ(2)

0 (K) is the integral of the Levine signature function of K
and σ(V ) is the ordinary knot signature [COT2]. In this sense the ρn generalize
“ordinary” Levine-Tristram signatures associated to the Z–cover of S3\K .

The technique of genetic infection may be used to modify a given knot K
so subtly that the two have isomorphic ith localized modules for i ≤ n and
have isomorphic (integral) modules for i < n. The difference in the (integral)
modules at the nth stage can (in many cases) be detected by the nth relative
signature.
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Theorem 11.1 Let K∗ = K(η, J) be the result of genetic infection of K by
J along η ∈ G(n) (G = π1(E(K))) as in Section 8. Then

1) AZi (K∗) ∼= AZi (K) for i < n,

2) If n > 0, Ai(K∗) ∼= Ai(K) and δi(K∗) = δi(K) for i ≤ n,

3) If Arf J = 0 then βi(K∗) = βi(K) and β̃i(K∗) = β̃i(K) for i ≤ n,

4) ρi(K∗) = ρi(K) for i < n,

5) If η /∈ P (n+1) then ρn(K∗) − ρn(K) is the integral of the normalized
Levine signature function of J . If this real number is non-zero then K∗
is distinct from K and distinct from the mirror image of K∗ .

Proof Since 1) and 2) were shown in Theorem 8.1 and Theorem 8.2 we begin
with 3). Consider the map f : MJ −→ S1 induced by the abelianization of
π1(E(J)). Since Ω3(S1) ∼= 0 and ΩSpin

3 (S1) ∼= Z2 as detected by the Arf
invariant of J , it can be shown that MJ is the boundary of a 4–manifold V
with π1(V ) ∼= Z generated by the meridian of J and such that V extends the
usual spin structure on MJ if Arf J = 0. We may also assume signature(V ) = 0
by connected summing with ±CP (2)’s. The boundary of V decomposes into
E(J) ∪ (S1 ×D2). We form a cobordism W from MK to MK∗ (or E(K) to
E(K∗)) as follows. Let W be the 4–manifold obtained from MK × [0, 1] by
identifying S1×D2 ↪→ ∂V with the solid torus neighborhood of η in MK ×{1}
in such a way that ∂+W = MK∗ . Since π1(MK) −→ π1(W ) is an isomorphism,
W is a cobordism “over” π1(MK)/(π1(MK))(i+1) for any i. By Theorem 8.1,
this quotient is isomorphic to that of K∗ if i ≤ n (since the longitudes are
preserved under the map f of Theorem 8.1) and so βi and β̃i agree for K∗
and K if i ≤ n. Then ρn(K∗) − ρn(K) is equal to the L2–signature of W
associated the homomorphism π1(W ) ∼= P −→ P/P (n+1) . By additivity of
signature [COT1, Lemma 5.9], this is equal to the L2 signature of V associated
to the map π1(V ) −→ π1(W ) −→ P/P (n+1) . Since π1(V ) ∼= Z generated by
η(= µJ), if η /∈ P (n+1) , this map is injective. It follows that the L2 signature
associated to P/P (n+1) is equal to that associated to the map π1(V ) −→ Z (its
image) [COT1, Proposition 5.13]. But this is the integral of the classical Levine
signature function of J over the circle as remarked above [COT2, Appendix].
Note that ρi(K∗) = ρi(K) for i < n because in this case the map π1(V ) −→
P/P (i+1) is zero and the L2–signature of V is equal to its usual signature
(which is zero).

Remarks If n ≥ 1, it is easy to get genus(K∗) = genus(K) by choosing η
in the complement of a minimal genus Seifert surface for K . Then K and K∗
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also have identical Seifert form. This shows that ρn is determined neither by
the localized modules or δi for i ≤ n, nor by the bordism invariants βi for
i ≤ n, nor by the genus. Note that the above proof also establishes part 7) of
Theorem 9.4

Question Is ρn(K) determined by An(K) and the nth linking form B`n dis-
cussed in the next section?

12 Higher order Blanchfield linking forms, duality,

and the behavior of the longitude

We will now show that the Blanchfield linking form defined on the classical
Alexander module generalizes to linking forms B`n on the localized higher-
order Alexander modules An . We see that if n 6= 1, we can get a non-singular
linking form. If n = 1 the form is non-singular after killing the longitude.
Hence the An are self-dual if n 6= 1. Recall that (A, λ) is a symmetric linking
form if A is a torsion R–module and

λ : A −→ HomR(A,K/R) ≡ A#

is an R–module map such that λ(x)(y) = λ(y)(x) (here K is the field of
fractions of R and Hom, which is naturally a left module, is made into a right
R–module using the involution of R). The linking form is non-singular if λ is
an isomorphism.

Theorem 12.1 [COT1] Suppose M is a compact, oriented, connected 3–
manifold with β1(M) = 1 and φ : π1(M) −→ Γ a non-trivial PTFA coefficient
system. Suppose R is a ring such that ZΓ ⊆ R ⊆ K . Then there is a symmetric
linking form

B` : H1(M ;R) −→ H1(M ;R)#

defined on the higher-order Alexander module A := H1(M ;R).

Proof Note that A is a torsion R–module by Proposition 3.10, since K is
also the quotient field of the Ore domain R. Define B` as the composition
of the following maps: the natural map π : H1(M ;R) −→ H1(M,∂M ;R), the
Poincaré duality isomorphism to H2(M ;R), the inverse of the Bockstein to
H1(M ;K/R), and the usual Kronecker evaluation map to A# . The Bockstein

B : H1(M ;K/R) −→ H2(M ;R)
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associated to the short exact sequence

0 −→ R −→ K −→ K/R −→ 0

is an isomorphism since H∗(M ;K) ∼= H∗(M,∂M ;K) ∼= 0 by Corollary 3.12.

We also need to show that B` is “conjugate symmetric”. The diagram below
commutes up to a sign (see, for example, [M, p. 410]), where B′ is the homology
Bockstein

H1(M ;R)yπ
H2(M,∂M ;K/R) B′−−−−→ H1(M,∂M ;R)

∼=
yP.D. ∼=

yP.D.
H1(M ;K/R) B−−−−→ H2(M ;R)yκ

(1)

HomR(H1(M ;R),K/R)

and the two vertical homomorphisms are Poincaré duality. Thus our map B`
agrees with that obtained by going counter-clockwise around the square and
thus agrees with the Blanchfield form defined by J. Duval in a non commutative
setting [D, p. 623–624]. The argument given there for symmetry is written in
sufficient generality to cover the present situation and the reader is referred to
it.

Definition 12.2 The nth –order linking form for the knot K , B`n : An(K)→
An(K)# , is the linking form above with R = Rn (as in Section 4).

Proposition 12.3 The linking form B` : An(K) −→ An(K)# is non-singular
if n 6= 1. If n = 1 the kernel of B` is the submodule generated by the longitude,
and there is a non-singular linking form induced on the “reduced” (quotient)
module A∗1(K), obtained by killing the longitude.

Corollary 12.4 The localized modules An(K) (if n = 1 use A∗1(K)) are self-
dual. It follows that the higher-order Alexander polynomials eni and ∆n of
Theorem 5.1 are self-dual (an element ∆ of R is self-dual if it is similar to ∆).
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Proof of Corollary 12.4 Note that for a finite cyclic module, A = R/eR,
Hom(A,K/R) ∼= R/Re and A# ∼= R/ēR. The result then follows from the
uniqueness in Theorem 5.1.

Proof of Proposition 12.3 The Kronecker map H1(S3\K;Rn) −→
HomRn(An(K),K/Rn) is an isomorphism since, over the PID Rn , the usual
Universal Coefficient Theorem holds (Remark 3.6.3) and ExtRn(H0(S3\K;Rn),
Kn/Rn) = 0 since K/Rn is clearly a divisible Rn–module and hence an injective
Rn–module by [Ste, I Prop. 6.10]. Thus B` is a isomorphism if and only if the
map π : H1(S3\K;Rn) −→ H1(S3\K,∂(S3\K);Rn) is an isomorphism. When
n = 0, the map H0(∂(S3\K);Q[t, t−1]) −→ H0(S3\K;Q[t, t−1]) is an isomor-
phism, implying π is onto. Moreover H1(∂(S3\K);Q[t±1]) has zero image in
H1(S3\K;Q[t±1]) since any Seifert surface for K lifts to the Γ0 (∞–cyclic)
covering space, in other words the longitude ` ∈ G(2) . Thus π is an isomor-
phism when n = 0. Now suppose n ≥ 2. If K has Alexander polynomial
1 then G(1) is a perfect group so G(1) = G(n) for all n and thus Γ0 = Γn
for all n and An = A0 for all n. The non-singularity then follows from the
n = 0 case. Thus we may assume that G(1)/G(2) 6= 0. Below it will be shown
that the longitude is non-trivial in G(2)/G(3) . In particular the longitude is
non-trivial in Γn = G/G(n+1) if n ≥ 2. Since ` ∈ G(1) , it follows that `
is a non-trivial element of G̃n+1 . Therefore ` − 1 is a non-zero element of
ZG̃n+1 and thus is invertible in Rn . Thus, by (the proof of) Proposition 3.7,
H0(∂(S3\K);Rn) = Rn/RnI = 0, and so π is surjective. Moreover since ` is
non-trivial in Γn if n ≥ 2, π1(∂(S3\K)) embeds in Γn and the induced Γn
cover is a union of planes so H1(∂(S3\K);Rn) = 0 and π is also injective. This
finishes the proof of the proposition in the case n 6= 1, modulo the proof that
` /∈ G(3) (assuming G(1)/G(2) 6= 0).

If n = 1, the situation is more complicated. Let E = S3\K and consider
the commutative diagram below where all groups have coefficients in R1 unless
specified.

H1(E) P.D.−−→ H2(E, ∂E) B−1

−−−→ H1(E, ∂E;K1/R1) κ−→ Hom(H1(E, ∂E),K1/R1)yπ1

yπ2

yπ3

yπ#
1

H1(E, ∂E) P.D.−−→ H2(E) B−1

−−−→ H1(E;K1/R1) κ−−→ Hom(H1(E),K1/R1)

All of the horizontal maps are isomorphisms. Let f (respectively g) denote the
composition of all the maps in the top (bottom) row. Then B` = g ◦π1 and its
kernel is precisely the kernel of π1 which equals the image of i∗ : H1(∂E) −→

Algebraic & Geometric Topology, Volume 4 (2004)



Noncommutative knot theory 393

H1(E). This image is clearly generated by the longitude since the infinite
cyclic cover of ∂E is an annulus homotopy equivalent to a circle representing
a lift of the longitude. Moreover the induced map B`∗ is thus injective on
A∗1 ∼= H1(E)/i∗(H1(∂E)). It remains only to show that the image of g ◦ π1 is
naturally isomorphic to (A∗1)# , i.e. Hom(H1(E)/H1(∂E),K1/R1). The image
of g ◦ π1 equals the image of π#

1 since f is an isomorphism. Consider the
commutative diagram below. Since π1 : H1(E)/H1(∂E) −→ H1(E, ∂E)

Hom(H1(E, ∂E),K1/R1)
π#

1−−→ Hom(H1(E)/H1(∂E),K1/R1)

↘ π#
1

yπ#

Hom(H1(E),K1/R1)yi#∗
Hom(H1(∂E),K1/R1)

is injective, its dual map π#
1 (the horizontal map above) is surjective since

ExtR1( ,K1/R1) = 0 as remarked earlier in the proof. Therefore the image of
π# is contained in the image of g ◦ π1 . Note that the image of (the diagonal
π#

1 is contained in the kernel of i#∗ . But the vertical sequence is exact and
π# is injective since Hom is right exact. Thus image(B∗`) = image(π#

1 ) =
image π# , and π# induces an isomorphism between (A∗1)# and image(g ◦π1).
Therefore, with this identification, B` induces an isomorphism B`∗ between
A∗1 ≡ A1/ kerB` and (A∗1)# .

Proposition 12.5 If the (classical) Alexander polynomial of K is not 1, then
the longitude of K represents a non-zero class in G(2)/G(3) ⊗Z[G/G(2)] R1 . In

particular ` /∈ G(3) .

Proof Consider the coefficient system φ : G −→ G/G(2) ≡ Γ1 . Let M be
the result of zero framed surgery on K so M = (S3\K) ∪ e2 ∪ e3 where the
attaching circle of e2 is the longitude. Since ` ∈ G(2) for any knot, φ extends
to π1(M). We may then consider the commutative diagram of exact sequences
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below:

K1[t±1]y∂′
H2((S3\K) ∪ e2;K1[t±1]) π−−−−→ K1[t±1] ∂−−−−→ H1(S3\K;K1[t±1])yi∗
H2(M ;K1[t±1]) = 0y

0

The horizontal sequence is that of the pair (S3\K ∪ e2, S3\K) and the gen-
erator of the K1[t±1] may be thought of as e2 and its boundary as the class
represented by the longitude in A1 . Suppose ` ∈ A1 ≡ G(2)/G(3) ⊗Z[G/G(2)] R1

is zero. Then the map π would be a surjection. Now consider the vertical
exact sequence of the pair (M,S3\K ∪ e2). Here the generator of K1[t±1] may
be thought of as the 3–cell e3 . We have H2(M ;K1[t±1]) ∼= H1(M ;K1[t±1]) ∼=
Ext(H0(M ;K1[t±1]),K1[t±1]). If the Alexander polynomial of K is not 1 then
the Alexander module G(1)/G(2) contains some x 6= e. Thus x− 1 lies in the
augmentation ideal of ZG and φ(x − 1) is invertible in K1[t±1] ≡ R1 since
x ∈ G̃ (see Proposition 4.6). Thus H0(M ;K1[t±1]) vanishes by (the proof of)
Proposition 3.7 and hence H2(M ;K1[t±1]) = 0. Therefore ∂′ and π ◦ ∂′ are
epimorphisms. We claim that the diagonal map (π ◦ ∂′) sends 1→ 1− t. This
claim is seen by analyzing how the 3–cell goes over the 2–cell twice. This map is
clearly not surjective since 1− t is not a unit. This contradicts our assumption
that the longitude vanished.

13 Calculation from a presentation of the knot group

A presentation matrix for An(K) can be derived from any finite presentation
of G = π1(S3\K).

It is known that, for any regular Γ covering space XΓ → X of a finite com-
plex, the free differential calculus can be used to give a presentation matrix
for H1(XΓ, x̃0) as a ZΓ–module where x̃0 is the inverse image of a basepoint
(see, for example [H]). The torsion submodule of H1(XΓ, x̃0) can easily seem
to be isomorphic to H1(XΓ). Thus a presentation matrix can be computed
for a module whose torsion submodule is AZn(K). The same holds for An(K).
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Over a PID, it is theoretically possible to simplify a presentation matrix by
appropriate row and column operations until it is diagonal, thus calculating the
δn (see[Ha]). This necessitates deciding whether or not a given element of the
solvable group G(n)/G(n+1) is trivial. Sometimes this is difficult. However note
that for n = 1 this quotient group is merely the classical Alexander module of
the knot. Hence there exists a practical algorithm to compute A1(K). We hope
to soon implement this. Details and some sample calculations can be found in
[Ha].

14 Questions and open directions

(1) Find invariants of the higher-order modules which can detect the periph-
eral structure of a knot.

(2) Find other invariants of the integral modules that are not simply invari-
ants of the localized modules.

(3) Develop effective invariants of the higher-order Alexander polynomials or
find ways to reduce their indeterminacy.

(4) Is there a higher-order Seifert form? (The existence of (t−1)–torsion has
thwarted our efforts on this question.)

(5) Is there a knot K and some n > 0 for which δn(K) is a non-zero even
integer? If not then a complete realization theorem for the δi can be
derived from the techniques of Section 7.

(6) Find higher-order Seiberg-Witten invariants of 3–manifolds that reflect
these higher-order modules.

(7) Are the invariants δi of finite type?

(8) Prove that for each n ≥ 0 there exist knots K and K∗ such that Ai(K) ∼=
Ai(K∗) for 0 ≤ i < n but βn(K∗) 6= βn(K).

(9) The Arf invariant of a knot is determined by its Alexander polynomial
which is in turn determined by its Alexander module which is in turn de-
termined by any Seifert matrix. Similarly the Levine-Tristram signatures
of a knot are determined by the Alexander module and its Blanchfield
form which are in turn determined by a Seifert matrix. Can any such
statements be made for the higher-order bordism invariants βn , modules
AZn , signatures ρn and presentation matrices from Section 6?

(10) Find knots with the same higher-order modules but different linking
forms.
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(11) Find ways to compute the ρn .

(12) Apply these ideas to links, string links, braids and mapping class groups.

(13) Do these invariants have any special behavior on other special classes
of knots? (for example connected-sums of knots have non-longitudinal
(t− 1)–torsion in A1 ).

(14) Find applications to contact structures on 3–manifolds (which seem to
be closely related to fibering questions).
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