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Abstract This work deals with Adem relations in the Dyer-Lashof algebra
from a modular invariant point of view. The main result is to provide an
algorithm which has two effects: Firstly, to calculate the hom-dual of an
element in the Dyer-Lashof algebra; and secondly, to find the image of a
non-admissible element after applying Adem relations. The advantage of
our method is that one has to deal with polynomials instead of homology
operations. A moderate explanation of the complexity of Adem relations is
given.
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1 Introduction

The relationship between the (canonical sub-co-algebras) Dyer-Lashof algebra,
R[k] and the Dickson invariants D[k] is well-known, see May’s paper in [3],
relevant parts of which will be quoted here. We provide an algorithm for calcu-
lating Adem relations in the Dyer-Lashof algebra using modular co-invariants.
Much of our work involves the calculation of the hom-duals of elements of R in
terms of the generators of the polynomial algebra D[k]. The results described
here will be applied to give an invariant theoretic description of the mod−p
cohomology of a finite loop space in [6].

We note that the idea for our algorithm was inspired by May’s theorem 3.7, page
29, in [3]. The key ingredient for relating homology operations and polynomial
invariants is the relation between the map which imposes Adem relations and
the decomposition map between certain rings of invariants. This relation was
studied by Mui for p = 2 in [8], and we extend it here for any prime. Namely:
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220 Nondas E. Kechagias

Theorem 4.15 Let ρ : T [n] → R[n] be the map which imposes Adem
relations. Let ı̂ : S(E(n))GLn ⊗ D[n] ↪→ S(E(n))Bn ⊗ B[n] be the natural
inclusion. Then ρ∗ ≡ ı̂, i.e. for any eI ∈ T [n] and dmM ε ∈ S(E(n))GLn⊗D[n],

〈dmM ε, ρ(eI)〉 = 〈̂ı(dmM ε), eI〉.

Campbell, Peterson and Selick studied self maps f of Ωm+1
0 Sm+1 and proved

that if f induces an isomorphism on H2p−3(Ωm+1
0 Sm+1,Z/pZ), then f(p) is a

homotopy equivalence for p odd and m even [2]. A key ingredient for their
proof was the calculation of

AnnPH∗(Ωm+1
0 Sm+1,Z/pZ)

They gave a convenient method for calculating the hom-dual of elements of
H∗(Ωm+1

0 Sm+1,Z/pZ) which do not involve Bockstein operations. Our algo-
rithm computes the hom-duals of elements of R[n] in terms of the generators
of the polynomial algebra D[n]. Please see Theorem 4.16.

A direct application of the last two theorems is the computation of Adem re-
lations. The main difference between the classical and our approach is that
we consider Adem relations “globally” instead of consecutive elements and it
requires fewer calculations. This algorithm is described in Proposition 4.20.

The paper is purely algebraic and its applications are deferred to [6]. There
are three sections in this paper beyond this introduction, sections 2, 3 and 4.
Section 2 recalls well known facts about the Dyer-Lashof algebra from May’s
article, cited above. In section 3, the Dickson algebra and its relation with the
ring of invariants of the Borel subgroup is examined. That relation is studied
using a certain family of matrices which suitably summarizes the expressions
for Dickson invariants in terms of the invariants of the Borel subgroup. In the
view of the author, the complexity of Adem relations is reflected in the different
ways in which the same monomial in the generators of the Borel subgroup can
show up as a term in a Dickson invariant. The ways in which this can happen
can be understood using these matrices. For p odd, the dual of the Dyer-Lashof
algebra is a subalgebra of the full ring of invariants. This subalgebra is also
discussed in full details. In the last section a great amount of work is devoted to
the proof of the analog of Mui’s result mentioned above. Then our algorithms
more or less naturally follows.

This paper has been written for odd primes with minor modifications needed
when p = 2 provided in statements in square brackets following the odd primary
statements.

For the sake of accessibility we shorten proofs. A detailed version of this work
including many examples can be found at: http://www.uoi.gr/~nondas_k
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and also at:
http://www.maths.warwick.ac.uk/agt/ftp/aux/agt-4-13/full.ps.gz

This work is dedicated to the memory of Professor F.P. Peterson.

We thank Eddy Campbell very much for his great effort regarding the presenta-
tion and organization of the present work and the referee for his encourangment
and valuable suggestions regarding the accessibility of our algorithm to the in-
terested reader. Last but not least, we thank the editor very much.

2 The Dyer-Lashof algebra

Let us briefly recall the construction of the Dyer-Lashof algebra. Let F be
the free graded associative algebra on {f i, i ≥ 0} and {βf i, i > 0} over
K := Z/pZ with |f i| = 2(p − 1)i, [|f i| = i] and |βf i| = 2i(p − 1) − 1. F
becomes a co-algebra equipped with coproduct ψ : F −→ F ⊗ F given by

ψf i =
∑

f i−j ⊗ f j and ψβf i =
∑

βf i−j ⊗ f j +
∑

f i−j ⊗ βf j.

Elements of F are of the form

f I,ε = βε1f i1 . . . βεnf in

where (I, ε) = ((i1, . . . , in), (ε1, ..., εn)) with εj = 0 or 1 and ij a non-negative

integer for j = 1, . . . , n, |f I,ε| = 2(p−1)
(

n∑
t=1

it

)
−
(

n∑
t=1

et

)
[|f I,ε| =

(
n∑
t=1

it

)
].

Let l(I, ε) = n denote the length of I, ε or f I,ε and let the excess of (I, ε) or f I,ε

be denoted exc(f I,ε) = i1− ε1−|f I2|, where (It, εt) = ((it, . . . , in), (εt, . . . , εn)).

exc(f I,ε) = i1 − ε1 − 2(p − 1)
n∑
2

it, [exc(f I) = i1 −
n∑
2

it]

The excess is defined ∞, if I = ∅ and we omit the sequence (ε1, ..., εn), if all
ei = 0. We refer to elements f I as having non-negative excess, if exc(f It) is
non-negative for all t.

It is sometimes convenient to use lower notation for elements of F and its
quotients. We define f ix = f 1

2
(2i−|x|)x [f ix = fi−|x|x]. Let I = (i1, ..., in) and

ε = (ε1, ..., εn), then the degree of QI,ε is

|fI,ε| = 2(p − 1)

(
n∑
t=1

itp
t−1

)
−
(

n∑
t=1

etp
t−1

)
, [|fI,ε| =

(
n∑
t=1

it2t−1

)
].
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222 Nondas E. Kechagias

In lower notation we see immediately that fI,ε has non-negative excess if and
only if (I, ε) is a sequence of non-negative integers: exc(I, ε) = 2i1 − e1 .

Given sequences I and I ′ we call the direct sum of I and I ′ the sequence
I ⊕ I ′ = (i1, ..., in, i′1, ..., i

′
m). Using a sequence I we use the above idea for the

appropriate decomposition. Let 0k denote the zero sequence of length k .

Remark Let 〈N, 1
2〉 be the monoid generated by N and 1

2 in the rationals.
Let 〈N, 1

2〉n be the monoid which is the n-th Cartesian product of 〈N, 1
2〉. Then

(I, ε) ∈ 〈N, 1
2〉n × (Z/2Z)n . [I ∈ Nn ]

F admits a Hopf algebra structure with unit η : K −→ F and augmentation
ε : F −→ K given by:

ε(f i) =
{

1, if i = 0
0, otherwise.

Definition 2.1 There is a natural order on the elements f(I,ε) defined as fol-
lows: for (I, ε) and (I ′, ε′) we say that (I, ε) < (I ′, ε′) if exc(Il, εl) = exc(I ′l , ε

′
l)

for 1 ≤ l ≤ t and exc(It, εt) < exc(I ′t, ε
′
t) for some 1 ≤ t ≤ n.

We define T = F/Iexc , where Iexc is the two sided ideal generated by elements
of negative excess. T inherits the structure of a Hopf algebra and if we let T [n]
denote the set of all elements of T with length n, then T [n] is a co-algebra of
finite type. We denote the image of fI,ε by eI,ε . Degree, excess and ordering
for upper or lower notation described above passes to T and T [n].

The Adem relations are given by:

eres =
∑
i

(−1)r−i
(

(p− 1)(i − s)− 1
r − i− 1

)
er+ps−piei, if r > s

and if p > 2 and r ≥ s,

erβes =
∑
i

(−1)r+i+1/2

(
(p− 1)(i − s)
r − 1/2 − i

)
βer+ps−pi−1/2ei+

∑
i

(−1)r+i−1/2

(
(p− 1)(i − s)− 1

r − 1/2 − i

)
er+ps−piβei.

Let IAdem be the two sided ideal of T generated by the Adem relations. We
denote R the quotient T/IAdem and this quotient algebra is called the Dyer-
Lashof algebra. R is a Hopf algebra and R[n] is again a co-algebra of finite
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type. We will denote the obvious epimorphism above which imposes Adem
relations by

ρ : T → R with ρ(eI) =
∑

aI,JQJ

If (I, ε) is admissible then QI,ε is the image of eI,ε .

The following lemma will be applied in section 4.

Lemma 2.2 a) ρ(epke0) = Q0Qpk−1 ; ρ(e1e0) = 0.

b) ρ(epk+1/2e1/2) = Q1/2Qpk−1+1/2 ; ρ(e3/2e1/2) = 0.

c) ρ(epk+1e1) = Q1Qpk−1+1 ; ρ(e2e1) = 0.

d) ρ(epke1) = Q0Qpk−1+1 ; ρ(epe1) = 2Q0Q2 .

e) ρ(epkβe1/2) = Q0βQpk−1+1/2 ; ρ(e1βe1/2) = βQ1/2Q1/2 .

f) ρ(epk+1/2e1/2) = 0; ρ(e3/2βe1) = βQ1Q1 .

g) ρ(epk+1βe1/2) = βQ1/2Qpk−1+1/2 ; ρ(e2βe1/2) = 0.

The passage from lower to upper notation between elements of R is given as
follows. Let Jxε and Ixε be lower and upper sequences as defined above. Then,

βε1Qj1 ...β
εnQjn ≡ βε1Qi1 ...βεnQin

up to a unit in Z/pZ, where in = jn , and

in−t =
1
2

(2jn−t + |In−t+1xεn−t+1|), jn−t =
1
2

(2in−t − |Jn−t+1xεn−t+1|)

Definition 2.3 We say that an element QI,ε is admissible, if 0 ≤ 2it−2it−1 +
et−1 for 2 ≤ t ≤ n− 1.

The ordering described above passes to R and R[n].

Since R[n] and T [n] are of finite type, they are isomorphic to their duals as
vector spaces and these duals become algebras. We shall describe these duals
giving an invariant theoretic description, namely: they are isomorphic to sub-
algebras of rings of invariants over the appropriate subgroup of GL(n,K) in
section 4.
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224 Nondas E. Kechagias

3 The Dickson algebra and a special family of ma-
trices

The Dickson algebra is a universal object in modular invariants of finite groups.
Applications involve computations of Dickson invariants of different height. We
provide formulas of this nature which will be applied in the proof of Theorem
4.16. Being very technical, those formulas can be studied easier using matrices.

Let V k denote a K -dimensional vector space generated by {e1, ..., ek} for
1 ≤ k ≤ n. Let the dual basis of V n be {x1, ..., xn} and the contragradi-
ent representation of WΣpn (V n) −→ Aut(V n) ≡ GLn induces an action of
GLn on the graded algebra E(x1, ..., xn) ⊗ P [y1, ..., yn], [P [y1, ..., yn]], where
βxi = yi . Let E(n) = E(x1, ..., xn) and S[n] = K [y1, · · · , yn]. The degree is
given by |xi| = 1 and |yi| = 2 (if p = 2, then |yi| = 1).

The following theorems are well known:

Theorem 3.1 [4] S[n]GLn := D[n] = K [dn,0, · · · , dn,n−1], the Dickson alge-
bra, is a polynomial algebra and their degrees are |dn,i| = 2

(
pn − pi

)
, [2n−2i ].

Theorem 3.2 [7] S[n] := B[n] = K [h1, · · · , hn] is a polynomial algebra and
their degrees are |hi| = 2pi−1 (p− 1), [2i−1 ].

Although relations between generators of the last two algebras can be easily
described, it is not the case between invariants of parabolic subgroups of the
general linear group.

Let fk−1 (x) =
∏

u∈V k−1

(x− u), then fk−1 (x) =
k−1∑
i=0

(−1)n−i xp
i
dk−1,i and hk =∏

u∈V k−1

(yk − u). Moreover, (see [5]),

dn,n−i =
∑

1≤j1<···<ji≤n

i∏
s=1

(hjs)
pn−i+s−js (1)

Let m = (m0, ...,mn−1) and k = (k1, ..., kn) be sequences of non-negative

integers. Let dm denote an element of D[n] given by
n−1∏
t=0

dmtn,t and hk denote

an element of B[n] given by
n∏
t=1

hktt . Let I(t) denote the t-th element of the

sequence I = (il1 , ..., iln ) from the left: i.e. I(t) := ilt .

For any non-negative matrix C with integral entries and 1 = (1, ..., 1), the
matrix product 1·C is a sequence of non-negative integers, then h1·C stands
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Adem relations in the Dyer-Lashof algebra 225

for
n∏
t=1

h
(1·C)(t)

t Let C(dn,j) = {hI ∈ B[n] and hI is a non-trivial summand in

dn,j}, then C(dn,i) ∩ C(dn,j) = ∅ for j 6= i.

Remark 1) Before we start considering sets of matrices, we would like to
stress the point that the zero matrix is excluded from our sets, unless otherwise
stated.

2) Until the end of this section, we number matrices beginning with (0, 0) in

the upper left corner. In this case h1·C stands for
n∏
t=1

h
(1·C)(t−1)

t .

Let 0 ≤ j ≤ n− 1. Here j corresponds to the value n− i in formula 1.

Definition 3.3 For each matrix A = (ait) such that ait is a non-negative

integer,
n−1∑
t=0

ajt = n − j and
n−1∑
t=0

ait = 0 for i 6= j , we define an n × n matrix

C(A) = (bij) =
(
b(0), · · · , b(n−1)

)
such that bit = aitp

i−1−t+ai0+···+ait . Let us
call this collection An,j .

For C ∈ An,j , 1·C is the j -th row of C which is the only non-zero row of that
matrix.

Let us also note that there is an obvious bijection between An,j and C(dn,j).

Lemma 3.4 dn,j =
∑

C∈An,j
h1·C .

Definition 3.5 Let m = (m0, · · · ,mn−1) be a sequence of zeros or powers of p.
Let Amn,j = {m ·Cj = (m0b(0), · · · ,mn−1b(n−1)) | Cj = (b(0), · · · , b(n−1)) ∈ An,j}

and Amn = {
n−1∑
j=0

m · Cj | Cj ∈ An,j}.

Note that different elements of Amn may provide the same element of B[n] and
this is the reason why Adem relations are complicated as we shall examine more
in Proposition 3.10. We shall also note that the motivation of this section was
exactly to demonstrate this difficulty using an elementary method.

The following lemma is easily deduced from formulae 1.

Lemma 3.6 Let m = (m0, · · · ,mn−1) such that mi = 0 or pki , then

dm =
n−1∏

0

dmin,i =
∑
C∈Amn

n∏
t=1

(ht)
(C(1))t−1 .
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Coefficients might appear in the last summation. Hence one needs to partition
the set Amn as the following lemma suggests.

Lemma 3.7 Let m = (m0, · · · ,mn−1) be a sequence of zeros or powers of p.

Let A = (ait) and A′ = (a′it) such that ait, a
′
it ∈ N,

n−1∑
t=0

ajt =
n−1∑
t=0

a′jt = n− j if

mi 6= 0, otherwise the last sums are zero. Suppose that 1 · A = 1 · A′ and let
{i1, ..., iq} denote their different columns. Consider only their different rows and
for each column ir partition them according to where 1’s appear: {j1, ..., js}
and {j′1, ..., j′s}. If for each jt there exists a j′` such that the number of zeros next
to air,jt and a′ir ,j′t

are equal and this is true for all ir , then 1·C(A) = 1·C(A′).

Proof We use the definition of C(A) in 3.3.

On 1xn or nx1 matrices we give the left or upper lexicographical ordering
respectively.

Definition 3.8 Let m be a non-negative integer, we denote by |An,j |(m) the
set of partitions of m in |An,j| terms. A typical element of |An,j |(m) is of the
form π = (π1, ..., π|An,j |).

For π = (π1, ..., π|An,j |) ∈|An,j | (m), let (π) denote the integer m!∏
πt!

.

Lemma 3.9 Let mj =
`j∑
α=0

mj,αp
α . Then

d
mj
nj =

∑
0≤α≤`j

π(j,α)∈|An,j |(mj,α)

`j∏
α=0

(
π(j,α)

)
h

∑
α
π

(j,α)
i

∑
Cj,i∈An,j

pα1·Cj,i

Proof First, we show the formulae above for mj,α and then we extend by
direct multiplication.

Proposition 3.10 Let m = (m0, ...,mn−1) be a sequence of non-negative
integers, then

dm =
∑

0≤j≤n−1,0≤α≤`j
π(j,α)∈|An,j |(mj,α)

n−1∏
j=0

`j∏
α=0

(
π(j,α)

)
h

∑
j

∑
α
π

(j,α)
i

∑
Cj,i∈An,j
0≤j≤n−1

pα1·Cj,i
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The following lemma which is of great importance for dealing with Adem rela-
tions involving Bockstein operations is proved using appropriate matrices.

Lemma 3.11 Each term of dk+t,s is also a term of dk,sdk+t,k . Here 0 ≤ s < k

and 1 ≤ t. Moreover, no term of dk,sdk+t,k − dk+t,s is divisible by
k+t∏
k+1

hi .

In order to prove the main theorem in the next section, the following formula
for decomposing Dickson generators will be needed. This formula is a special
case of the lemma above. Formulas of this kind might be of interest for other
circumstances involving the Dickson algebra. One of them may be the transfer
between the Dickson algebra and the ring of invariants of parabolic subgroups.

Lemma 3.12 Let 0 ≤ s < k . Then dk,sdk+1,k − dk+1,s =
s−1∑
t=0

dp
t

k−t−1,s−td
pt+2

k−t−1,k−t−2h
pt

k−t + dp
s

k−s,0d
ps+1

k−s,k−s−1 + dp
s−1

k−s,1h
ps−1

k−s+1 .

Proof We shall use induction and the well known formula dk,s = dpk−1,s−1 +
dk−1,shk .

Lemma 3.13 Each term of dk+q,kdk+t,s is also a term of dk+q,sdk+t,k . Here
0 ≤ s < k and 0 ≤ q < t. Moreover, no term of dk+q,sdk+t,k − dk+q,kdk+t,s is

divisible by
k+t∏

k+q+1

hi .

Proof We consider (k + t)× (k + t) matrices of the following form:

s-th

k-th


k+q

|
← k + q − s→ |

|
← t | →

|

−
s-th

k-th


k+q

|
← k + t− s | →

|
← q → |

|


The last column of the matrices above is of size t− q . If this column is full of
non-zero elements in the last matrix, we require the same in the k -th row of
the first matrix. Then our matrices under consideration become:

k+q

|
← k + q − s→ |

|
← q | t−q→

|

−


k+q

|
← k + q − s | t−q→

|
← q → |

|


Algebraic & Geometric Topology, Volume 4 (2004)
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Now the assertion follows because there is no other choice for the first matrix
of this kind. For the general case, let the non-zero elements in the last column
of the second matrix be l < t− q . Then the situation is as follows:

k+q

|
← k + q − s→ |

|
← t− l | l→

|

−


k+q

|
← k + t− s− l | l→

|
← q → |

|


Hence we have to consider the following (k + q)x(k + q) matrices:

← k + q − s →

← t− l →

−

← k + t− s− l →

← q →


Here the s-th column of the second matrix and the k -th column of the first one
have been raised to the power pt−q−l . Because the exponents are of the right
form the assertion follows.

For the rest of this section we recall the ring of invariants (E(x1, ..., xn) ⊗
P [y1, ..., yn])GLn from [7]. Here p > 2.

Theorem 3.14 [7] 1) The algebra (E(n) ⊗ S[n])Bn is a tensor product be-
tween the polynomial algebra B[n] and the Z/pZ -module spanned by the set
of elements consisting of the following monomials:

Ms;s1,...,smL
p−2
s ; 1 ≤ m ≤ n, m ≤ s ≤ n, and 0 ≤ s1 < · · · < sm = s− 1.

Its algebra structure is determined by the following relations:
a) (Ms;s1L

p−2
s )2 = 0, for 1 ≤ s ≤ n, 0 ≤ s1 ≤ s− 1.

b) Ms;s1,...,smL
p−2
s (Lp−1

s )m−1 =

(−1)m(m−1)/2
∏m
q=1(

s∑
r=sq+1

Mr;r−1L
p−2
r hr+1 . . . hsdr−1,sq)

Here 1 ≤ m ≤ n, m ≤ s ≤ n, and 0 ≤ s1 < · · · < sm = s− 1.

2) The algebra (E(n)⊗ S[n])GLn is a tensor product between the polynomial
algebra D[n] and the Z/pZ -module spanned by the set of elements consisting
of the following monomials:

Mn;s1,...,smL
p−2
n ; 1 ≤ m ≤ n, and 0 ≤ s1 < · · · < sm ≤ n− 1.
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Its algebra structure is determined by the following relations:
a) (Mn;s1,...,smL

p−2
n )2 = 0 for 1 ≤ m ≤ n, and 0 ≤ s1 < · · · < sm ≤ n− 1.

b) Mn;s1,...,smL
(p−2)
n dm−1

n,n−1 = (−1)m(m−1)/2Mn;s1L
p−2
n . . .Mn;smL

p−2
n .

Here 1 ≤ m ≤ n, and 0 ≤ s1 < · · · < sm ≤ n− 1.

The elements Mn;s1,...,sm above have been defined by Mui in [7]. Their degrees
are |Mn;s1,...,sm| = m + 2((1 + · · · + pn−1) − (ps1 + · · · + psm)) and |Lp−2

n | =
2(p − 2)(1 + · · ·+ pn−1).

Definition 3.15 Let S(E(n))Bn be the subspace of (E(n)⊗S[n])Bn generated
by:
i) Ms;s−1(Ls)p−2 for 1 ≤ s ≤ n,

ii)
∏̀
t=1

(
Ms2t−1+1;s2t−1(Ls2t−1+1)p−2Ms2t+1;s2t(Ls2t+1)p−2

)
/ds2t−1+1,0

for 0 ≤ s1 < ... < s2` ≤ n− 1,
iii) Ms1+1;s1(Ls)p−2∏̀

t=1

(
Ms2t+1;s2t(Ls2t+1)p−2Ms2t+1+1;s2t+1(Ls2t+1+1)p−2

)
/ds2t+1,0

for 0 ≤ s1 < ... < s2`+1 ≤ n;

and S(E(n))GLn be the subspace of (E(n) ⊗ S[n])GLn generated by:

Mn;s(Ln)p−2 for 0 ≤ s ≤ n− 1 ,∏̀
t=1

Mn;s2t−1,s2t(Ln)p−2 for 0 ≤ s1 < ... < s2` ≤ n− 1,

Mn;s1−1(Ln)p−2
∏̀
t=1

Mn;s2t,s2t+1(Ln)p−2 for 0 ≤ s1 < ... < s2`+1 < n.

The following lemmata provide the decomposition of Mn;s,m(Ln)p−2 in
S(E(n))Bn ⊗B[n] and relations between them.

Lemma 3.16 Let s < `, then Ms;s−1L
p−2
s M`;`−1L

p−2
` can be written with

respect to basis elements of B[k]⊗ S(Ek)Bk .

Lemma 3.17 Let m < s− 1, then Ms;`,s−1L
p−2
s Mm;m−1L

p−2
m can be written

with respect to basis elements of S(E(k))Bk ⊗B[k].

Lemma 3.18 Mn;s,m(Ln)p−2 =∑
s≤q<t

m≤t≤n−1

Mq+1;q(Lq+1)p−2Mt+1;t(Lt+1)p−2ht+2...hn(dq,sdt,m − dq,mdt,s)/dq+1,0 .

Here di,i = 1 and di,j = 0 if i < j .
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Corollary 3.19 Let κ = [n+1
2 ] and ε = (ε1, ..., εn) ∈ (Z/2Z)n , then

S(E(n))GLn is spanned by at most κ monomials:

M ε :=

 M
[
ε1+ε2

2
]

n;s1,s2 L
p−2
n ...M

[
εn−1+εn

2
]

n;sn−1,sn L
p−2
n , if n is even

M ε1
n;s1L

p−2
n M

[
ε2+ε3

2
]

n;s2,s3 L
p−2
n ...M

[
εn−1+εn

2
]

n;sn−1,sn L
p−2
n , if n is odd

The analogue corollary holds for S(E(n))Bn .

The Steenrod algebra acts naturally on S(E(n))GLn ⊗D[n] and S(E(n))Bn ⊗
B[n].

Let ı̂ : S(E(n))GLn⊗D[n] ↪→ S(E(n))Bn⊗B[n] be the inclusion, then ı̂(dmM ε)
means the decomposition of dmM ε in S(E(n))Bn ⊗B[n].

Lemma 3.20 Let 0 ≤ s1(s′1) < k1(k′1) < ... < sl′(s′l′) < kl′(k′l′) ≤ n − 1. If
n−1∑

0
mi(pn − pi) +

l′∑
1

(pn − psi − pki) =
n−1∑

0
m′i(p

n − pi) +
l′∑
1

(pn − ps
′
i − pk

′
i),

then si = s′i and ki = k′i . Moreover, if in addition 0 ≤ k0(k′0) < s1(s′1) and
n−1∑

0
mi(pn−pi)+ (pn−pk0)+

l′∑
1

(pn−psi−pki) =
n−1∑

0
m′i(p

n−pi)+ (pn−pk′0)+

l′∑
1

(pn − ps′i − pk′i), then si = s′i and kj = k′j .

4 Calculating the hom-duals and Adem relations

We start this section by recalling the description of R[n]∗ as an algebra, for
p odd please see May [3] Theorem 3.7 page 29. The analogue Theorem for
p = 2 was given by Madsen who expressed the connection between R[n]∗ and
Dickson invariants back in 1975, [9].

For convenience we shall write I instead of (I, ε).

Let In,i = (0, ..., 0︸ ︷︷ ︸
i

, 1, ..., 1︸ ︷︷ ︸
n−i

). Here 0 ≤ i ≤ n−1 and n− i denotes the number of

p-th powers. The degree |QIn,i | = 2pi(pn−i − 1) [2n − 2i ] and the exc(QIn,i) =
0, if i < n, and 1 if i = 0.

Let Jn;i = (
1
2
, ...,

1
2︸ ︷︷ ︸

i

, 1, ..., 1︸ ︷︷ ︸
n−i

)x(0, ..., 0, 1︸ ︷︷ ︸
i+1

, 0, ..., 0︸ ︷︷ ︸
n−i−1

). Here ε = (0, ..., 0︸ ︷︷ ︸
i

, 1, 0, ..., 0︸ ︷︷ ︸
n−i−1

)

and 0 ≤ i ≤ n−1. The degree |QJn;i | = 2pi(pn−i−1)−1 and the exc(QJn;i) = 1.
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Let Kn;s,i = (0, ..., 0︸ ︷︷ ︸
s

,
1
2
, ...,

1
2︸ ︷︷ ︸

i−s

, 1, ..., 1︸ ︷︷ ︸
n−i

)x(0, ..., 0︸ ︷︷ ︸
s

, 1, 0, ..., 0, 1︸ ︷︷ ︸
i−s+1

, 0, ..., 0︸ ︷︷ ︸
n−i

). Here ε =

(0, ..., 0︸ ︷︷ ︸
s

, 1, 0, ..., 0, 1︸ ︷︷ ︸
i−s

, 0, ..., 0︸ ︷︷ ︸
n−i

) and 0 ≤ s < i ≤ n − 1. There are two Bockstein

operations in this element: at the s-th and i-th position from the left. The
degree |QKn;s,i | = 2(pi(pn−i − 1)− ps) and the exc(QKn;s,i) = 0.

Let On,i = (0, ..., 0, 1, 0, ..., 0), where there are n−i zeros. Its degree is |eOn,i | =
2pi−1(p − 1) [2i−1 ] and exc(eOn,i) = 0. Here 1 ≤ i ≤ n.

Let Jn,i;i−1 = (
1
2
, ...,

1
2︸ ︷︷ ︸

i

, 0, ..., 0︸ ︷︷ ︸
n−i

)x(0, ..., 0, 1︸ ︷︷ ︸
i

, 0, ..., 0︸ ︷︷ ︸
n−i

). Here ε = (0, ..., 0︸ ︷︷ ︸
i−1

, 1, 0, ..., 0︸ ︷︷ ︸
n−i

)

and 1 ≤ i ≤ n. Its degree |QJn,i;i−1| = 2pi−1(p−1)−1 and the exc(QJn,i;i−1) =
1.

Let Kn,i;s,i−1 = (0, ..., 0︸ ︷︷ ︸
s

,
1
2
, ...,

1
2
, 1︸ ︷︷ ︸

i−s

, 0, ..., 0︸ ︷︷ ︸
n−i

)x(0, ..., 0︸ ︷︷ ︸
s

, 1, 0, ..., 0, 1︸ ︷︷ ︸
i−s

, 0, ..., 0︸ ︷︷ ︸
n−i

). Here

ε = (0, ..., 0︸ ︷︷ ︸
s

, 1, 0, ..., 0, 1︸ ︷︷ ︸
i−s

, 0, ..., 0︸ ︷︷ ︸
n−i

) and 0 ≤ s < i − 1 ≤ n − 1. Its degree

|QKn,i;s,i−1| = 2(pi − ps − pi−1) and the exc(QKn,i;s,i−1) = 0.

Let ξn,0 = ((Q0)n)∗ = ((Q0)n)∗ ;
ξn,i = (QIn,i)

∗ = (Q(pi−1(pn−i−1),...,(pn−i−1),pn−i−1,...,p,1))∗ , 0 ≤ i ≤ n− 1;
τn;i = (QJn;i)

∗ = (Q(pi−1(pn−i−1),...,(pn−i−1),pn−i−1,...,p,1,)xε)∗ , 0 ≤ i ≤ n− 1;
σn;s,i = (QKn;s,i)

∗=(Q(pi−1(pn−i−1)−ps−1,...,pi−s−1(pn−i−1),..., pn−i−1,pn−i−1,...,p,1)xε)∗ ,
0 ≤ s < i ≤ n− 1;
ζn,i =

(
e
On,i

)∗
= (e(pi−2(p−1),...,(p−1),1,0,...,0))∗ , 1 ≤ i ≤ n;

νn,i;i−1 = (eJn,i;i−1)∗ = (e(pi−2(p−1),...,(p−1),1,0,...,0)xε)∗ , 1 ≤ i ≤ n;
υn,i;s,i−1 = (eKn,i;s,i−1)∗ =
(e(pi−1(pn−i−1)−ps−1,...,pi−s−1(pn−i−1),...,pn−i−1,pn−i−1,...,p,1,0,...,0)xε)∗ ,
0 ≤ s < i− 1 ≤ n− 1.

Theorem 4.1 (Madsen p = 2, May p > 2) As an A algebra R[n]∗ ∼= free
associative commutative algebra generated by {ξn,i, τn;i , and σn;s,i | 0 ≤ i ≤
n− 1, and 0 ≤ s < i}, [{ξn,i | 0 ≤ i ≤ n− 1}], modulo the following relations:
a) τn;i τn;i = 0.
b) τn;sτn;i = σn;s,iξn,0 . Here 0 ≤ s < i ≤ n− 1.
c) τn;sτn;iτn;j = τn;sσn;i,jξn,0. Here 0 ≤ s < i < j ≤ n− 1.
d) τn;sτn;iτn;jτn;k = σn;s,iσn;j,kξ

2
n,0. Here 0 ≤ s < i < j < k ≤ n− 1.
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Theorem 4.2 [5] R[n]∗ u S(E(n))GLn ⊗D[n] [R[n]∗ u D[n]] and T [n]∗ u
S(E(n))Bn⊗B[n] [T [n]∗ u B[n]] as algebras over the Steenrod algebra and the
isomorphism Φ is given by Φ (ξn,i = (QIn,i)

∗) = dn,n−i , Φ (τn;i = (QJn;i)
∗) =

Mn;i(Ln)p−2 , Φ (σn;s,i = (QKn;s,i)
∗) = Mn;s,i(Ln)p−2 . Here 0 ≤ i ≤ n − 1 and

0 ≤ s < i.
Φ (ζn,i =

(
eOn,i

)∗) = hi , Φ (νn,i;i−1 = (eJn,i;i−1)∗) = Mi;i−1(Li)p−2 ,
Φ (υn,i;s,i−1 = (eKn,i;s,i−1)∗) = (Ms+1;s(Ls+1)p−2Mi;i−1(Li)p−2)/ds+1,0 . Here
1 ≤ i ≤ n and 0 ≤ s < i− 1.

Under isomorphism Φ in Theorem 4.2 we identify R[n]∗ with S(E(n))GLn ⊗
D[n] and B[n]∗ with S(E(n))Bn ⊗B[n].

The set Ţ[n] and Ŗ[n] of admissible monomials in T [n] and R[n] provide vector
space bases respectively. Let θ : Ŗ[n]�Ţ[n] be the map given by

θ(QI) = eI

The image of the dual of these bases are denoted by Ţ[n]∗ in Φ(T [n])∗ =
S(E(n))Bn ⊗ B[n] and Ŗ[n]∗ in Φ(R[n])∗ = S(E(n))GLn ⊗ D[n]. Of
course there are also the bases of monomials which are denoted by
ßn(S(E(n))Bn ⊗B[n]) and ßn(S(E(n))GLn ⊗D[n]) respectively. We shall note
that Ţ[n]∗ =ßn(S(E(n))Bn ⊗B[n]).

The decomposition relations between the other two bases are not obvious and
this is the first topic of this section. Campbell, Peterson and Selick provided
a method to pass from ßn(D[n]) to Ŗ[n]∗ in [2]. We shall establish some
machinery to work with those bases.

Definition 4.3 Let χmin and χmax be the set functions from ß(S(E(n))GLn ⊗
D[n]) (ß(B[n]⊗ S(En)Bn) ) to the monoid 〈N, 1

2〉n × (Z/2Z)n given by
1) χmin(dn,i) = In,i , χmax(dn,i) = (pn−i, ..., pn−i, 0, ..., 0)x(0, ..., 0);
2) χmin(Mn;sL

(p−2)
n ) = Jn;s ,

χmax(Mn;sL
(p−2)
n ) = (

1
2
, ...,

1
2︸ ︷︷ ︸

s

, 1
1
2
, ..., 1

1
2︸ ︷︷ ︸

n−s−1

, 1)x(0, ..., 0, 1);

3) χmin(Mn;s,mL
(p−2)
n ) = Kn;s,m and

χmax(Mn;s,mL
(p−2)
n ) = (0, ..., 0︸ ︷︷ ︸

m

, 1
1
2
, ..., 1

1
2︸ ︷︷ ︸

n−m−1

, 1)x(0, ..., 0︸ ︷︷ ︸
m

, 1, 0, ..., 0, 1︸ ︷︷ ︸
n−m

);

and the rule χmin(dd′MM ′) = χmin(d) +χmin(d′) +χmin(M) +χmin(M ′). Here
d, d′ ∈ß(D[n]) and M , M ′ ∈ß(S(E(n))GLn). The same holds for χmax .
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Note that the function χmin always provides an admissible element and ı̂(dn,i)
contains a monomial with a unique admissible sequence, namely hχmin(dn,i) ,
and a monomial with a unique maximal sequence, namely hχmax(dn,i) . The
same is true for elements Mn;s−1L

p−2
n and Mn;s,mL

p−2
n . Moreover, ı̂(dmnM)

might contain a number of monomials with admissible sequences and this is
the main point of investigation because of its applications in [6]. Namely, those
monomials provide possible candidates for (dmnM)∗ . Primitives in R are well
known and so are their duals as generators in R∗ . But it is not the case for
their expression with respect to the Dickson algebra. On the other hand, the
action on the Dickson algebra is well known on S(E(n))GLn⊗D[n] and hence it
is easier to compute the annihilator ideal in the mod-p cohomology of a certain
finite loop space.

Definition 4.4 Let Ψ be the correspondence between ßn(S(E(n))GLn⊗D[n])
and Ŗ[n] given by d 7−→ Ψ(d) = Qχmin(d) and the corresponding one between
ßn(S(E(n))Bn ⊗B[n]) and Ţ[n] denoted by ΨT where
ΨT (hJM ε) = e

J+ε1Jn;s1+
∑
t

[
ε2t+ε2t+1

2
]Kn;s2t,s2t=1

.

The maps Ψ and ΨT are set bijections.

Let ι be the map

ι : ßn(S(E(n))GLn ⊗D[n])� ßn(S(E(n))Bn ⊗B[n]) (2)

defined by ι(d) = hχmin(d) .

Note that eχmax(d), eχmin(d) ∈Ţ[n]. The following diagram is commutative.

ßn(S(E(n))Bn ⊗B[n])
ι� ßn(S(E(n))GLn ⊗D[n])

χmin→ 〈N, 1
2 〉n × (Z/2Z)n

↓ ΨT ↓ Ψ ↙
Ţ[n]

θ� Ŗ[n]

Definition 4.5 A monomial in ßn(S(E(n))Bn ⊗ B[n]) is called admissible if
it is an element of ι

(
ßn(S(E(n))GLn ⊗D[n])

)
.

Lemma 4.6 Let hJM ε ∈ S(E(n))Bn ⊗B[n]. The following are equivalent:
i) hJM ε is admissible;

ii) jt ≤ jt+1 for t = 1, ..., n−1 and hJ is divisible by
l∏

t=0
(hs2t+1+2...hn)ε2t+1 for
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κ odd (see 3.19); or
l∏

t=1
(hs2t+2...hn)ε2t , otherwise. If s2t+1 + 2 or s2t+2 + 2 =

n+ 1, then the corresponding product must be 1.

iii) ρ(ΨT (hJM ε)) is admissible in R[n].

Proof This follows from the following relation:

Mk;sL
p−2
k = Ms+1;sL

p−2
s+1hs+1...hk +

k−s∑
t=2

Ms+t;s+t−1L
p−2
s+t ds+t−1,shs+t+1...hk . Ex-

plicitly, if hJ
′

= hJ/
l∏

t=0
(hs2t+1+2...hn)ε2t+1 , then χmin(dmM ε) = (J ′, ε). Here

dmM ε =
n−1∏
i=0

dmin,iM
ε1
n;s1L

p−2
n M

[
ε2+ε3

2
]

n;s2,s3 L
p−2
n ...M

[
εn−1+εn

2
]

n;sn−1,sn L
p−2
n and mt = j′t − j′t−1 ,

m0 = j′0 .

Firstly, we shall show that ρ∗ ≡ ı̂, ı̂ as in 3, i.e. for any eI ∈ T [n] and dmM ε ,

〈dmM ε, ρ(eI)〉 = 〈̂ı(dmM ε), eI〉.

Here, 〈−,−〉 is the Kronecker product. This is done by studying all monomials
in T [n] which map to primitives in R[n] after applying Adem relations.

Let n(mxε) =
∑
mi + κ. Let ψn(mxε) : R[n] →

n(mxε)
⊗ R[n] be the iterated

coproduct n(mxε) times. Let J be admissible, ρeJ = QJ , then

ψQJ = ψρeJ = ρψeJ = ρ(Σ± eJ1 ⊗ · · · ⊗ eJn(mxε)
), ΣJi = J

ψn(mxε)QJ = ΣaJ1,...,Jn(mxε)
QJ ′1 ⊗ · · · ⊗QJ ′n(mxε)

.

Since Ji may not be in admissible form, after applying Adem relations we have
J ′i ≤ Ji .

〈dmM ε, ρeI〉 = 〈
n−1∏
i=0

dmin,iM
ε, ψn(mxε)ρeI〉 = 〈

n−1∏
i=0

dmin,iM
ε, ρψn(mxε)eI〉 =

〈
n−1∏
i=0

dmin,iM
ε,
∑
Ij

n(mxε)⊗
j

ρeIj〉 =
∑
Ij

n(m)∏
j
〈djn,i, ρeIj 〉

n(ε)∏
j
〈M [

εj−1+εj
2

]
n;sj−1,sj L

p−2
n , ρeIj 〉.

Lemma 4.7 Let dm =
n∏
i=1

dmin,i . Then ι (dm) =
n∏
t=1

h

t−1∑
i=0

mi

t and

(ι (dm))∗ = em0em0+m1 ...em0+...mn−1 .

Lemma 4.8 Let I = χmax(dn,n−i), then ρ(eI) = QIn,n−i = Ψ (dn,n−i) in R[n].
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Proof By direct computation.

Lemma 4.9 Let eI ∈ T [n] be such that eI = Φ−1

(
i∏

s=1
hp

n−i+s−js
js

)
in (1).

Here 1 ≤ j1 < ... < ji ≤ n. Then ρ(eI) = Qn,n−i = Ψ (dn,n−i) in R[n].

Proof The sequence I is given by:0, · · · , 0, pn−i+1−j1︸ ︷︷ ︸
j1

, 0, · · · , 0, pn−i+2−j2︸ ︷︷ ︸
ji−2−j1

, · · · , 0, · · · , 0, pn−ji︸ ︷︷ ︸
ji−ji−1

, 0, · · · , 0︸ ︷︷ ︸
n−ji


Please note the analogy between I above and the corresponding row of a
matrix in An,n−i in section 3. Here pm := 0, whenever m < 0. We shall
work out the first steps to describe the idea of the proof. First, we consider
the last n − i + 1 elements of χmax(dn,n−i): (pn−i, 0, ..., 0) which becomes
(0, · · · , 0, pn−ji︸ ︷︷ ︸

ji−ji−1

, 0, · · · , 0︸ ︷︷ ︸
n−ji

). Thus applying Adem relations on certain positions

on Qχmax(dn,n−i) , QI is obtained and the lemma follows.

Proposition 4.10 Let eI ∈ T [n] be the hom-dual of a monomial hJ ∈ T [n]
such that |hJ | = 2

(
pn − pn−i

)
and hJ is not a summand in (1). Then ρ(eI) = 0

in R[n].

Proof Please see:
http://www.maths.warwick.ac.uk/agt/ftp/aux/agt-4-13/full.ps.gz

Now the following theorem is easily deduced because R[n] is a coalgebra, the
map ρ is a coalgebra map, and primitives which do not involve Bockstein op-
erations have been considered.

Theorem 4.11 Let ρ′ be the restriction of ρ between the subcoalgebras T ′[n]
and R′[n] where no Bockstein operations are allowed. Let ı̂′ : D[n] ↪→ B[n]
be the natural inclusion. Then (ρ′)∗ ≡ ı̂′ , i.e. for any eI ∈ T [n] and dm =
n−1∏
i=0

dmin,i ∈ D[n],

〈dm, ρ′(eI)〉 = 〈̂ı′(dm), eI〉.

We shall extend last Theorem to cases including Bockstein operations as well.

Please recall that χmin(Mn;sL
(p−2)
n ) = Jn;s .
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Proposition 4.12 a) Let J = Jn,t;t−1 + (I ′t−1,s ⊕ 0n−t+1) + In,t such that

ρ′(eI′t−1,s
) = QIt−1,s for s+ 1 ≤ t ≤ n. Then ρ(eJ ) = QJn;s = Ψ(Mn;sL

p−2
n ).

b) Let J be a sequence of length n such that |J | = 2(pn − ps) − 1 and J is
not of the form described in a), then ρ(eJ) = 0.

c) ı̂(Mn;sL
p−2
n ) = ρ∗(Mn;sL

p−2
n ).

Proof Please see:
http://www.maths.warwick.ac.uk/agt/ftp/aux/agt-4-13/full.ps.gz

Lemma 4.13 a) Let the sequences Kn,t+1;q,t and In,t+1 , then
ρe(Kn,t+1;q,t+In,t+1) = QKn;q,t .

b) Let the sequence K = Kn;q,t + (I”
q ⊕ 0n−q) + (I ′t⊕ 0n−t) such that I ′t = I ′q⊕

I ′t−q , ρ(eI”
q
) = QI”q,s and ρ(eI′t) = QIt,m . If we allow Adem relations everywhere

in the first t positions except at positions between q and q + 1 from left, then
ρ′(eK) = eK ′ where K ′ = Kn;q,t + (I”

q,s⊕ 0n−q) + pt−q−m2(I ′q,m1
⊕ 0n−q) + (0q ⊕

I ′t−q,m2
⊕0n−t) or K ′ = Kn;q,t+pt−q−m2(I ′q,s+m1−q⊕0n−q)+(0q⊕I ′t−q,m2

⊕0n−t).
For the first case ρ(eI′t) = QI′t−q,m2

, ρ(eI′q) = Qpt−q−m2I′q,m1
and m = m1 +m2 ,

and for the second s+m1 ≥ q and ρ(eI”q+I′q) = Qpt−q−m2I′q,s+m1−q
.

Proof This is an application of theorem 4.11.

Proposition 4.14 a) Let K = Kn,t+1;s,t + (I ′t ⊕ 0n−t) + In,t+1 such that

ρ′(eI′t) = QIt,m for m ≤ t ≤ n− 1. Then ρ(eK) = QKn;s,m = Ψ(Mn;s,mL
p−2
n ).

b) Let K = Kn,m+1;t,m + (I ′t ⊕ 0n−t) + In,m+1 such that ρ′(eI′t) = QIt,s for

s ≤ t ≤ m− 1. Then ρ(eK) = QKn;s,m = Ψ(Mn;s,mL
p−2
n ).

c) Let K = Kn,t+1;q,t + I + In,t+1 for m ≤ q < t ≤ n − 1 with I = I ′ + I”,
I ′ = (I ′q⊕0n−q), I” = (I”

t ⊕0n−t) such that: ρ′(eI”
t
) = QIt,m and ρ′(eI′q) = QIq,s

and not of the form ρ′(eI”
t
) = QIt,s and ρ′(eI′q) = QIq,m . Then ρ(eK) =

QKn;s,m = Ψ(Mn;s,mL
p−2
n ).

d) Let K be a sequence of length n such that |K| = 2(pn − ps − pm) and K
is not of the form described in a), b) and c) above, then ρ(eK) = 0.

e) ı̂(Mn;s,mL
p−2
n ) = ρ∗(Mn;s,mL

p−2
n ).

Proof Please see:
http://www.maths.warwick.ac.uk/agt/ftp/aux/agt-4-13/full.ps.gz
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Theorem 4.15 Let ρ : T [n] → R[n] be the map which imposes Adem rela-
tions. Let ı̂ : S(E(n))GLn⊗D[n] ↪→ S(E(n))Bn⊗B[n] be the natural inclusion.
Then ρ∗ ≡ ı̂, i.e. for any eI ∈ T [n] and dmM ε ∈ S(E(n))GLn ⊗D[n],

〈dmM ε, ρ(eI)〉 = 〈̂ı(dmM ε), eI〉.

Theorem 4.16 Let dmM ε be an element of ßn(S(E(n))GLn⊗D[n]), then the
following algorithm calculates its image in R[n]∗ :

dmM ε =
∑

J≥χmin(dm)

〈dm, QJ〉(Q(J+χmin(Mε)))
∗

1) Find all elements QJ in R[n] such that |dm| = |QJ | and J > χmin(dm),

i.e. solve the Diophantine equation
n−1∑

0
ki(pn − pi) = |dm| for (k0, ..., kn−1) >

(m0, ...,mn−1). For each such a sequence J , let J(1) = J − m0(1, ..., 1) and
consider Ψ−1(QJ(1)) = dJ

′(1) in D[n].

2) Let dmM ε = (Qχmin(dmMε))∗ .

3) Let dm(1) = dm

d
m0
n,0

and dK be an element in step 1) corresponding to

the biggest sequence among those which have not been considered yet. If
dK(1) = dm(1) , then α(K) = 〈dm, QK〉 = 1. Otherwise, proceed as follows:

find the coefficient, α(K) , of ι(dK(1)) in ı̂(dm(1)), α(K) = 〈dm, QK〉. Then add
α(K)(QK+χmin(Mε))∗ in dmM ε .

4) Repeat step 3).

Proof Since R[n]∗ is a free module over D[n] with basis all elements which
involve Bockstein operations, the computation of dmM ε reduces to that of dm ,
i.e.

dm =
∑

J≥χmin(dm)

〈dm, QJ〉(Q(J))
∗ ⇒

dmM ε =
∑

J≥χmin(dm)

〈dm, QJ〉(Q(J+χmin(Mε)))
∗

Let dm =
∑
α(I)(QI)∗ and n(m) =

n−1∑
t=0

mt . Because of the definition of the

hom-dual, we have : 〈dm, Qχmin(dm)〉 = 1 and 〈dm, QI〉 = a(I) 6= 0 for a
sequence I such that in the n(m)-times iterated coproduct:

ψQI =
∑

ΣJt=I

eJ1 ⊗ ...⊗ eJn(m)

Adem=
∑

aI1,...,In(m)
QI1 ⊗ ...⊗QIn(m)
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a(I)

n−1⊗
t=0

mt⊗
1

(QIn,t) is a summand. Thus I ≥ χmin(dm). Let I1 > · · · > Il >

χmin(dm) be all sequences such that |QIt | = |Qχmin(dm)|.

We quote from May page 20: if for each dmM ε we associate its coefficients a(I)

as a matrix (aχmin(dmMε),(I)), then this matrix is upper triangular with ones
along the main diagonal. This allows us to express one basis element dmM ε

with respect to the dual basis of admissible monomials.

We consider the first sequence I1 . Our task is to evaluate α(I1) . Let ψQI1 be
the iterated coproduct applied n(m)-times. We shall write I1 as a sum of n(m)
sequences such that each of them is a primitive element of R[n] equals to one of
those involved in χmin(dm). This is possible, since n(m) ≥ n(χmin(Ψ−1(QI1))).
The common element dm0

n,0 between Ψ−1(Q(I1)) and dm does not change the co-
efficient α(I1) , because no Adem relation can reduce QIn,0 to a smaller sequence.
Instead, we consider QI1−m0In,0 (dJ1 = Ψ−1(Q(I1))/d

m0
n,0 ) and Q(χmin(dm)−m0In,0)

(dm(1) = dm/dm0
n,0 ). Now the iterated coproduct is applied n(m(1))-times.

For the second part of step 3), we use ψρ = ρψ , lemma 4.9 and proposition
4.10. All elements eI ∈ T [n], which have the property ρeI = QIn,n−i , are
known. Moreover, the dual of those elements, (eI)∗ ∈ B[n], are summands in
ı̂(dn,n−i). Using commutativity in D[n] induced by symmetry in coproduct, we
deduce that the required coefficient is the coefficient of ι(dJ1) in ı̂(dm(1)).

Remark Suppose that (QI)∗ is to be expressed with respect to
ßn(S(E(n))GLn ⊗ D[n]), then one starts with the biggest sequence, say
K(1), Ψ−1(QK(1)) = (QK(1))∗ , then substitutes in the next element
Ψ−1(QK(2)) = (QK(2))∗ + aK(2),K(1)(QK(1))∗ ⇒ (QK(2))∗ = Ψ−1(QK(2)) −
aK(2),K(1)Ψ−1(QK(2)) and so on.

Let us make some comments. If the degree m of a monomial dm is quite high,
then there exist many elements of the same degree such that the dual of their
images under Φ do not appear in dm for a variety of reasons. We shall give a
refinement of the algorithm described above through the next lemmas.

Definition 4.17 Let dm =
n−1∏
i=0

dmin,i be a monomial in the Dickson algebra and

mi =
`i∑
t=0

ai,tp
t . Let i0 = max{i | mi 6= 0} and 0 ≤ t < i0 . Let δ(t) be a positive

integer such that t ≤ γ(s) ≤ n−1 for s = 1, ..., δ(t) and
γ(δ(t))∑

1
(n−γ(s)) = n−t.
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Let also `(t,γ(1),...,γ(δ(t))) = max{γ(s) − (
s∑
1
γ(j)) + (s − 1)n | s = 1, ..., γ(δ(t))}

and 0 ≤ c ≤ min{`γ(s) − `(t,γ(1),...,γ(δ(t))) +
s−1∑
j=1

(n− γ(j))}. We define

ζ(t, γ(1), ..., γ(δ(t)), c, µ) =


γ(δ(t))∏
s=2

(a
γ(s),c+`(t,γ(1),...,γ(δ(t)))−

s−1∑
j=1

(n−γ(j))

µ

)
,

if 0 ≤ mγ(1) − µpc+`(t,γ(1),...,γ(δ(t)))

0, otherwise

.

Here 1 ≤ µ ≤ min{a
γ(s),c+`(t,γ(1),...,γ(δ(t)))−

s−1∑
j=1

(n−γ(j))
| s = 2, ..., δ(t)}.

Proposition 4.18 Let dm =
n−1∏
i=0

dmin,i be a monomial in the Dickson algebra

as above. Then dm containsΨ(dmdp
`(t,γ(1),...,γ(δ(t)))

n,t /

γ(δ(t))∏
1

dp
`(t,γ(1),...,γ(δ(t)))−

s−1∑
j=1

(n−γ(j))

n,γ(s) )


∗

with coefficient∑
γ(1),...,γ(δ(t))

ζ(t, γ(1), ..., γ(δ(t)), 0, 1)+

∑
γ′(1),...,γ′(δ′(t))

∏
i∈I(t,γ′(1),...,γ′(δ′(t)))

(
mi

σi(t, γ′(1), ..., γ′(δ′(t)))

)
such that `(t,γ(1),...,γ(δ(t))) = `′(t,γ′(1),...,γ′(δ′(t))) and

γ(δ(t))∏
1

dp
`(t,γ(1),...,γ(δ(t)))−

s−1∑
j=1

(n−γ(j))

n,γ(s) =
∏

i∈I(t,γ′(1),...,γ′(δ′(t)))

d
σi(t,γ′(1),...,γ′(δ′(t)))
n,i .

Here {γ(1), ..., γ(δ(t))} and {γ′(1), ..., γ′(δ′(t))} are partitions of {t + 1, ..., n}
of consecutive and non-consecutive elements respectively. For the definition of
I(t,γ′(1),...,γ′(δ′(t))) and σi(t, γ′(1), ..., γ′(δ′(t))), please see the second case in the
proof bellow because they strongly depend on the particular partition.

Proof Please see:
http://www.maths.warwick.ac.uk/agt/ftp/aux/agt-4-13/full.ps.gz

Next we consider a lemma in the “opposite” direction of last Proposition.
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Lemma 4.19 Let k ≤ n− i and i < n, then: dαkp
k+α0

n,n−i =
(

Ψ(dαkp
k+α0

n,n−i )
)∗

+(
αk

min(αk,α0)

)(
α0

min(αk,α0)

)(
Ψ(dmin(αk,α0)pk

n,n−i−k d
(αk−min(αk,α0))pk+(α0−min(αk,α0))
n,n−i d

min(αk,α0)
n,n−i+k )

)∗
Proof We consider all admissible sequences in

(
i(dp

k

n,n−i)
)αk

(i(dn,n−i))
α0 .

Note that dαkp
k+...+α0

n,n−i can be computed by repeated use of the formulae in the
last lemma for all possible choices.

Remark We must admit that if m(n) >> 0, then there exist many candidates
for m′ and the bookkeeping described above can not be done by hand. We
believe that it is harder but safer to consider all possible choices.

Next, the algorithm which calculates Adem relations using modular invariants
is demonstrated.

Proposition 4.20 Let eI ∈ T [n]. The following algorithm computes ρ(eI) in
R[n].

i) Let < = {m = (m0, ...,mn−1)} be all solutions of |I| =
n−1∑

0
mi(pn − pi) +

l′∑
1

(pn−psi−pki). Note that si and ki are uniquelly defined by lemma 3.20. Let

Ķ be the set of all admissible sequences K such that | K |=| I | and K ≤ I .
Moreover, QK ∈ R[n] and QK = Ψ−1(dmM ε) for m ∈ <.

ii) Let hI
′

= Ψ−1
T (eI) and find bI,K the coefficient of hI

′
in ı̂(dmM ε) for all

elements of <.

iii) Compute the image of dmM ε in (R[n])∗ .

iv) Use the Kronecker product to evaluate ρ(eI) :

Start with the first non-zero bI,K1 , ρ(eI) contains aI,K1QK1 ; i.e. 〈dK ′1 , ρ(eI)〉 =
aI,K1 = bI,K1 . Proceed to the next sequence K2 and use bI,K2 (whether or not
is zero) and the image of dK

′
2 to compute the coefficient aI,K2 of QK2 in ρ(eI).

Repeat last step for all remaining sequences.

We close this work by making some remarks about evaluating ρ(eI) using matri-
ces introduced in section 4. Since (eI)∗ = hI

′
is an element of B[n], one has to

find all sequences m = (m0, · · · ,mn−1) such that dm contains (eI)∗ as a sum-

mand. This is equivalent to find all matrices C such that (eI)∗ =
n∏
t=1

h
(1·C)t−1

t
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and then group them in different sets such that each set corresponds to an m.
The coefficient α′m of Q

′m in ρ(eI) is a function of the order of the set corre-
sponding to m. Given hI

′
, there is a great number of choices for C depending

on I ′ as the interested reader can easily check and this is the reason for the
high complexity of Adem relations.
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