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A flat plane that is not the limit of periodic
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Abstract We construct a compact nonpositively curved squared 2-com-
plex whose universal cover contains a flat plane that is not the limit of
periodic flat planes.

AMS Classi�cation 20F67; 20F06

Keywords CAT(0), periodic flat planes, C(4)-T(4) complexes

1 Introduction

Gromov raised the question of which \semi-hyperbolic spaces" have the prop-
erty that their flats can be approximated by periodic flats [4, x6.B3 ]. In this
note we construct an example of a compact nonpositively curved squared 2-
complex Z whose universal cover ~Z contains an isometrically embedded flat
plane that is not the limit of a sequence of periodic flat planes.

A flat plane E ,! ~Z is periodic if the map E# Z factors as E! T ! Z where
E! T is a covering map of a torus T . Equivalently, �1Z contains a subgroup
isomorphic to Z�Z which stabilizes E and acts cocompactly on it. A flat plane
f : E ,! ~Z is the limit of periodic flat planes if there is a sequence of periodic
flat planes fi : E ,! ~Z which converge pointwise to f : E! ~Z . In our setting,
~Z is a 2-dimensional complex, and so E ,! ~Z is the limit of periodic flat planes
if and only if every compact subcomplex of E is contained in a periodic flat
plane.

In Section 2 we describe a compact nonpositively curved 2-complex X whose
universal cover contains a certain aperiodic plane called an \anti-torus". In
Section 3 we construct Z from X by strategically gluing tori and cylinders to
X so that ~Z contains a flat plane which is a mixture of the anti-torus and
periodic planes. This flat plane is not approximable by periodic flats because
it contains a square that does not lie in any periodic flat. Our example Z is a
K(�; 1) for a negatively curved square of groups, and in Section 4 we describe
an interesting related triangle of groups.
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Figure 1: The �gure above indicates the gluing pattern for the six squares of X . The
three vertical edges colored white, grey, and black are denoted a , b , and c respectively.
The two horizontal edges, single and double arrow, are denoted x and y respectively.

2 The anti-torus in X

2.1 The 2-complex X

Let X denote the complex consisting of the six squares indicated in Figure 1.
The squares are glued together as indicated by the oriented labels on the edges.
Note that X has a unique 0-cell, and that the notion of vertical and horizontal
are preserved by the edge identi�cations. Let H denote the subcomplex con-
sisting of the 2 horizontal edges, and let V denote the subcomplex consisting
of the 3 vertical edges.

The complex X , which was �rst studied in [8], has a number of interesting
properties that we record here: The link of the unique 0-cell in X is a complete
bipartite graph. It follows that the universal cover eX is the product of two trees
~H � ~V where ~H and ~V are the universal covers of H and V . In particular,
the link contains no cycle of length < 4 and so X satis�es the combinatorial
nonpositive curvature condition for squared 2-complexes [3, 1] which is a special
case of the C(4)-T (4) small-cancellation condition [6].

The 2-complex X was used in [8] to produce the �rst examples of non-residually
�nite groups which are fundamental groups of spaces with the above properties.
The connection to �nite index subgroups arises because while eX is isomorphic
to the cartesian product of two trees, X does not have a �nite cover which is
the product of two graphs.

2.2 The anti-torus �

The exotic behavior of X can be attributed to the existence of a strangely
aperiodic plane � in eX that we shall now describe. Let ~x 2 eX0 be the
basepoint of eX . Let c1 denote the in�nite periodic vertical line in ~X which is
the based component of the preimage of the loop labeled by c in X . De�ne y1
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Figure 2: The Anti-Torus �: The plane � above is the convex hull of two periodically
labeled lines in ~X . A small region of the northeast quadrant has been tiled by the
squares of X .

analogously. Let � denote the convex hull in ~X of the in�nite geodesics labeled
by c1 and y1 , so � = y1 � c1 . The plane � is tiled by the six orbits of
squares in ~X as in Figure 2. The reader can extend c1 [ y1 to a flat plane by
successively adding squares wherever there is a pair of vertical and horizontal
edges meeting at a vertex. From a combinatorial point of view, the existence
and uniqueness of this extension is guaranteed by the fact that the link of X is
a complete bipartite graph.

The \axes" c1 and y1 of � are obviously periodic, and using that X is
compact, it is easy to verify that for any n 2 N, the in�nite strips [−n; n]�R and
R � [−n; n] are periodic. However, the period of these in�nite strips increases
exponentially with n. Thus, the entire plane � is aperiodic. Note that to
say that [−n; n]� R is periodic means that the immersion

(
[−n; n]� R

�
# X

factors as
(
[−n; n]� R

�
! C # X where

(
[−n; n]� R

�
! C is the universal

covering map of a cylinder. The map � # X is aperiodic in the sense that it
does not factor through an immersed torus.

We conclude this section by giving a brief explanation of the aperiodicity of �.
A complete proof that � is aperiodic is given in [8]. Let Wn(m) denote the
word corresponding to the length n horizontal positive path in � beginning
at the endpoint of the vertical path cm . Thus, Wn(m) is the label of the side
opposite yn in the rectangle which is the combinatorial convex hull of yn and
cm . Equivalently, Wn(m) occupies the interval fmg � [0; n]. For each n, the
words fWn(m) j 0 � m � 2n − 1g are all distinct! Consequently every positive
length n word in x and y is Wn(m) for some m. This implies that the in�nite
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Figure 3: The complex Y is formed by gluing four cylinders to a square.

strip [0; n]� R has period 2n , and in particular � cannot be periodic.

We refer to � as an anti-torus because the aperiodicity of � implies that c and
y do not have nonzero powers which commute. Indeed, if cp and yq commuted
for p; q 6= 0 then the flat torus theorem (see [1]) would imply that c1 and y1

meet in a periodic flat plane, which would contradict that � is aperiodic.

3 The 2-complex Z with a nonapproximable flat

We �rst construct a new complex Y as follows: Start with a square s, and then
attach four cylinders each of which is isomorphic to S1 � I . One such cylinder
is attached along each side of s. The resulting complex Y containing exactly
�ve squares is illustrated in Figure 3.

Let T 2 denote the torus S1�S1 with the usual product cell structure consisting
of one 0-cell, two 1-cells, and a single square 2-cell. We let eT 2 denote the
universal cover and we shall identify eT 2 with R2 .

At each corner of s � Y , there is a pair of intersecting circles in Y 1 , which are
boundary circles of distinct cylinders. Note that they meet at an angle of 3�

2
in Y . At each of three (NW, SW, & SE) corners of s � Y we attach a copy
of T 2 by identifying the pair of circles in the 1-skeleton of T 2 with the pair
of intersecting circles noted above at the respective corner of s. At the fourth
(NE) corner of s, we attach a copy of the complex X . Here we identify the pair
of circles meeting at the corner of s with the pair of perpendicular circles c and
y of X . We denote the resulting complex by Z . Thus, Z = T 2[T 2[T 2[Y [X .
See Figure 4 for a depiction of the 8 squares of Z−X and their gluing patterns.

De�nition 3.1 In�nite cross An in�nite cross is a squared 2-complex iso-
morphic to the subcomplex of eT 2 consisting of

(
[0; 1] � R

�
[
(
R� [0; 1]

�
. The

base square of the in�nite cross is the square [0; 1] � [0; 1].
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Figure 4: Z −X and Z : The eight squares of the �gure on the left are glued together
following the gluing pattern to form Z −X . To form Z , we add a copy of X at the
NE corner, identifying the loops in X labeled by c and y , with the black single and
double arrows of the diagram. The �gure on the right represents an in�nite cross whose
convex hull in Z is not approximable by any periodic plane. Note that while the NW,
SW, and SE quarters of this plane are periodic, the NE quarter is an aperiodic quarter
of �.

The planes containing s: Observe that Y contains various immersions of
an in�nite cross whose base square maps to s. In particular, there are exactly
16 distinct immersed in�nite crosses C # Y that pass through s exactly once.
Each of these in�nite crosses extends uniquely to an immersed flat plane in
Z . Each such flat plane fails to be periodic because its four quarters map to
distinct parts of Z . Our main result is that these immersed flat planes are not
approximable by periodic flat planes because of the following:

Theorem 3.2 (No periodic approximation) There is no immersion of a torus
T 2 ! Z which contains s. Equivalently, there is no periodic plane in ~Z con-
taining ~s.

Proof We argue by contradiction. Suppose that there is an immersed periodic
plane Ω containing s. We shall now produce a rectangle as in Figure 5 that
will yield a contradiction. We may assume that a copy of s in Ω is oriented as
in Figure 4. We begin at this copy of s and travel north inside the northern
cylinder until we reach another copy sn of s. The existence of sn is guaranteed
by our assumption that Ω is periodic. Similarly, we travel east from s to reach
a square se . Travelling north from se and east from sn , we trace out the
boundary of a rectangle whose NE corner is a square sne (see Figure 5).
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Figure 5: The �gure above illustrates one of the four possible contradictions which
explain why no periodic plane contains the square s .

This yields a contradiction because the inside of this rectangle is tiled by squares
in X , yet the boundary of this rectangle is a commutator

�
c�n; y�m

�
. As

explained in Section 2, such a word cannot be trivial in �1X because of the
anti-torus.

Remark 3.3 Using an argument similar to the above proof, one can show that
these sixteen planes are the only flat planes in ~Z containing ~s. One considers
the pair of \axes" intersecting at ~s in a plane containing ~s. If this plane is
di�erent from each of the 16 mentioned above, then some translate of ~s must
appear along one of these \axes". The in�nite strip in the plane whose corners
are these two s squares yields a contradiction similar to the one obtained above.

Remark 3.4 While X is a rather pathological complex, we note that every
flat plane in ~X is the limit of periodic flat planes. Indeed this holds for any
compact 2-complex X whose universal cover is isomorphic to the product of
two trees [8].

4 Polygons of groups

4.1 The algebraic angle versus the geometric angle

Since the elements c and y have axes which intersect perpendicularly in a
plane in ~X , the natural geometric angle between the subgroups hci and hyi
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of �1X is �
2 . However, the algebraic Gersten-Stallings angle (see [7]) between

these subgroups is � �
3 . To see this, we must show that there is no non-trivial

relation of the form ckylcmyn = 1.

Since ~X is isomorphic to the cartesian product ~V � ~H , of two trees and c and
y correspond to distinct factors, it follows that the only relations that must be
checked are rectangular (i.e., jkj = jmj and jlj = jnj ). However, these are easily
ruled out by the anti-torus � and the fact that X is nonpositively curved.

4.2 Square of groups and triangle of groups

The complex Z can be thought of in a natural way as a K(�; 1) for a negatively
curved square of groups (see [7, 5, 2]) with cyclic edge groups and trivial face
group.

Because the algebraic angle between hci and hyi in �1X is � �
3 , it is tempting to

form an analogous nonpositively curved triangle of groups D . The face group
of D is trivial, the edge groups of D are cyclic, the vertex groups of D are
isomorphic to �1X , and each edge group of D is embedded on one (clockwise)
side as hci and on the other (counter-clockwise) side as hyi. This can be done so
that the resulting triangle of groups D has Z3 symmetry. The tension between
the algebraic and geometric angles should endow �1D with some interesting
properties. For instance, I suspect that �1D fails to be the fundamental group
of a compact nonpositively curved space, but it fails for reasons di�erent from
the usual types of problems.
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