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Abstract We consider the possibility of semisimple tensor categories
whose fusion rule includes exactly one noninvertible simple object. Con-
ditions are given for the existence or nonexistence of coherent associative
structures for such fusion rules, and an explicit construction of matrix so-
lutions to the pentagon equations in the cases where we establish existence.
Many of these also support (braided) commutative and tortile structures
and we indicate when this is possible. Small examples are presented in
detail.
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1 Introduction and results

The term near-group categories is introduced to describe a speci�c class of �nite
semisimple monoidal categories with duality. For the purposes of the present
paper:

Finite semisimple means: our categories have a \ground ring" R , and hom sets
in the category are free R{modules; that is, there is a �nite set of simple objects
si with

hom(si; sj) �=
�
R; i = j
0; i 6= j

and every object in the category is (isomorphic to) a direct sum of simple
objects.

Monoidal means: there is a (bifunctorial) tensor product ⊗: C � C ! C . We
assume the existence of a unit object (�) for our tensor product (so that ten-
soring on either side by � is naturally isomorphic to the identity). For objects
a; b; c there are natural associativity morphisms �a;b;c: (a⊗ b)⊗ c! a⊗ (b⊗ c),
and these satisfy the pentagon axiom.

Duality means: every object x has a dual object x� . Moreover, there exist
\pairing" and \copairing" morphisms �x: x� ⊗ x ! � and �x: � ! x ⊗ x�

which satisfy the identities:
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(IDx ⊗ �x) (�x;x�;x) (�x ⊗ IDx) = IDx

and
(�x ⊗ IDx�) (�x�;x;x�)

−1 (IDx� ⊗ �x) = IDx�

A consequence of this hypothesis is the existence of adjunction isomorphisms
hom(x ⊗ y; z) �= hom(x; z ⊗ y�) and hom(x; y ⊗ z) �= hom(y� ⊗ x; z). As a
special case, simples si and sj have

hom(�; si ⊗ sj) �=
�
R; sj = s�i
0; otherwise

Categories in which every simple has a multiplicative inverse (so g ⊗ g−1 �= � )
have been studied carefully, and called variously �{categories [FK] or group{
categories [Q2]. Note that the multiplicative inverse is the same object as the
dual. Complete information is available about the classi�cation of categorical
structures on group{categories and the interpretation of their �eld theories
(in [Q2]). The classi�cation is possible in one sense because all the structural
equations are 1{dimensional and there is no non-commutative matrix arithmetic
involved in their solutions.

In the present paper we would like to advance to studying a slightly more
complicated sort of multiplication, in which there is (up to isomorphism) a
single noninvertible simple object. For a category with such a multiplication
we introduce the term near-group category. The noninvertible simple object we
will call m. The invertible simple objects comprise a group G under tensor
product; invertibility of the group elements implies

g ⊗m �= m⊗ g �= m

for any invertible g . Moreover, the duality assumption implies

m⊗m �= G� k �m

that is, m⊗m splits as one summand of each invertible type, and some number
k of m{summands (possibly k = 0). We see that the multiplication table (or
fusion rule) for a near-group category is described by giving the group G and
the integer k ; we will refer to categories with the near-group fusion rule (G; k).

The �rst question of interest is which (G; k) actually occur as fusion rules of
near-group categories; the primary issue is the existence of coherent associa-
tivity, but we also want to investigate which G and k admit the additional
layers of structure we have indicated in the preceding section. The case where
k = 0 is dealt with in [TY] and [S], so the present paper is concerned only with
near-group fusion rules having k � 1.
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The main results on monoidal structures are:

1.1 Theorem (Order control) If the near-group fusion rule (G; k) admits a
monoidal structure then jGj � k + 1.

1.2 Theorem (Existence) In the maximal case jGj = k + 1 the near-group
fusion rule (G; k) admits a monoidal structure i� G is the multiplicative group
of a �nite �eld (ie, cyclic of order p� − 1).

To prove necessity, we examine in detail (sections 4 and 5) the pentagon equa-
tions in the category; we �nd that G must support some special structure (4.2)
and we show (6.1) that only the speci�ed groups support this structure.
We give two di�erent proofs of su�ciency. In 4.1 a �nite group is constructed
whose category of representations has the given fusion rule. Representation
categories are symmetric monoidal, so this also shows if there is any monoidal
category then there is a symmetric one. The other proof of su�ciency is in
5.18. This uses the analysis of the pentagon equations carried out in sections
4 and 5 to directly exhibit solutions of the matrix equations. This approach
gives information about the whole set of categories, including some that do not
admit braidings. There is a \simplest" standard solution; analysis of hexagon
equations in sections 8 and 9 veri�es that this solution additionally admits a
symmetric commuting structure. It seems likely that this is the representation
category exhibited earlier, but this has not been veri�ed.
The analysis of the pentagon equations enables small cases to be worked out
completely.

1.3 Theorem The �rst three maximal-order cases have the following struc-
ture:

Fusion (Z=2; 1) (Z=3; 2) (Z=4; 3)

Field F3 F22 F5

Monoidal
structures

3, indexed by �
where �3 = 1

2, indexed by � = �1 unique monoidal
structure

Braidings � = 1: 3, indexed
by  3 = 1

� 6= 1 : not braided

� = 1: 4, indexed
by  (1);  (2) = �1
� 6= 1: not braided

unique
braiding

Balance  = 1: balanced
 6= 1: not balanced

all balanced balanced

Symmetry  = 1 : symmetric  (1) =  (2) : symmetric
 (1) = − (2) : not symmetric

symmetric
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The primes 2 and 3 play special roles in the analysis, so the complexity of the
�rst two cases probably is representative of the fusion rules corresponding to
�nite �elds of characteristic 2 or 3. Larger primes may have simpler behavior,
though the complete uniqueness seen in the F5 case is probably too simple.

At the other extreme from the maximal-order case we have:

1.4 Theorem Assume that the characteristic of the ground ring R is not
equal to 2. Then, in the minimal case jGj = 1, the near-group fusion rule
(G; k) does not admit a monoidal structure if k � 2 or 3 mod 4

Remark A stronger result is obtained in [O] for the case where the ground
ring has characteristic zero, but the present proof works also for positive odd
characteristic.

We prove this in section 7. When G is small there is less symmetry to exploit
and the pentagon equations become much more di�cult; nonexistence theorems
are easier than constructions. For k = 1 and jGj = 1 it is not di�cult to solve
(the unique characteristic 5 solution is given in [Q] ; this lifts to two distinct
solutions in characteristic 0). But the next possible trivial-group case, k = 4,
so far seems to be intractable.

Section 8 reduces the hexagon equations and gives a standard construction
of commutativity data. Section 9 then gives the braidings possible for the
example categories from section 3, and this includes nonsymmetric braidings
on the standard monoidal structures; it turns out that the more exotic monoidal
structures exhibited in section 3 do not support braidings.

Section 10 gives a brief note on the possibility of adding twist morphisms to the
braided near-group categories studied in sections 8 and 9 (producing \tortile
categories").

2 Notation for associativities

In section 3 we will give examples and complete data for categories with small
values of k . Before doing that we need to introduce notation used to present the
many di�erent associativitities in the category; this scheme is an extension of the
notation used in [TY] , and in later sections this notation is used extensively in
proofs and calculations. Throughout this section, let a; b; c stand for arbitrary
elements of G.
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2.1 Associativities involving a product of three group elements

These we denote by a function � depending on three group variables.
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2.2 Associativities involving two group elements and one m

These we think of as a function of the two group elements, denoted by �’s with
a subscript to indiciate the position of the m:
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2.3 Associativities involving two m’s and one group element

Such a product has both group summands and m summands in it. We will use
� ’s to denote the associativity on the group summands:
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For the same kind of product, γ ’s will denote the the associativity on the m
summands. These will take values in k�k matrices (rows indexed by i = 1 : : : k ,
columns indexed by j = 1 : : : k):
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2.4 Associativities for a threefold product of m’s

Such a product has both group summands and m summands. We will use � to
denote associativity on the group summands. The �’s will be k � k matrices:
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Finally, � stands for associativity on the m summands; � will be a (k2 + jGj)�
(k2 + jGj) matrix: on the left, there are jGj basis elements as x runs over G,
and k2 indexed by r; s = 1 : : : k when x = m. Similarly on the right:
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3 Examples and results for small k

In this section we would like to present, for certain groups G and small values
of k , the complete classi�cation of monoidal categories with fusion rule (G; k)
by giving explicit associativity matrices. The purpose is to make numerical
data conveniently available in the small cases and to illustrate the construction
given in section 5.18. The matrix construction is best explained using a per-
mutation � which acts on the nonidentity elements of the group; this satis�es
some characterizing identities which are set out in 4.2 but are not important
for the present purpose.

3.1 Example 1 k = 1; G = Z=2Z = f�; gg

Here there is only one nonidentity element in G so of course � is the trivial
permutation.

In fact, there are three distinct monoidal structures possible for this fusion
rule, classi�ed by a choice of � with �3 = 1 (of course in characteristic 3 these
collapse to a single solution).

Let � be the nontrivial character of G, that is, �(�) = 1, �(g) = −1.

Let a; b; c represent arbitrary elements of G. With a good choice of basis, the
associativities are as follows:

�(a; b; c) � ( 1 )
�1(a; b) = �2(a; b) = �3(a; b) � ( 1 )
�1(a; b) = �2(a; b) = �3(a; b) � ( 1 )

γ1(a) = γ2(a) = γ3(a) = (�(a) )
�(a) = ( ��(a) )
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and �nally, �: 0@
x = � g m

y = � 1
2

1
2

1
2�

g 1
2

1
2 − 1

2�
m 1 −1 0

1A
Note The construction in 5.18 corresponds to � = 1, which is also the struc-
ture of the category of representations of the group S3 , in characteristic prime
to 6.

3.2 Example 2 k = 2; G = Z=3Z = f�; g; g2g

In this case take � to be the identity permutation on fg; g2g.
Let �1 and �2 be the two nontrivial characters of G.

There are two distinct monoidal structures for this fusion rule, corresponding
to a choice of � = �1, and with a good choice of bases the associativity data is
as follows:

�(a; b; c) � ( 1 )
�1(a; b) = �2(a; b) = �3(a; b) � ( 1 )
�1(a; b) = �2(a; b) = �3(a; b) � ( 1 )

γ1(a) = γ2(a−1) = γ3(a) =
�
�1(a) 0

0 �2(a)

�
�(a) =

�
��1(a) 0

0 ��2(a)

�
and �:

0BBBBBBBBBBBBBBBB@

x =
� g g2

(r; s) =
(1; 1) (1; 2) (2; 1) (2; 2)

y = �
�

3
�

3
�

3
0

�

3
1
3

0

g
�

3
�

3
�

3
0

��1(g2)
3

�2(g2)
3

0

g2 �

3
�

3
�

3
0

��1(g)
3

�2(g)
3

0

(i; j) = (1; 1) 0 0 0 0 0 0 �

(1; 2) 1 �1(g2) �1(g) 0 0 0 0
(2; 1) � ��2(g2) ��2(g) 0 0 0 0
(2; 2) 0 0 0 1 0 0 0

1CCCCCCCCCCCCCCCCA
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Note The construction in 4.18 corresponds to � = +1, and this is also the
structure in the category of representations of the group A4 in characteristic
prime to 12.

3.3 Example 3 k = 3; G = Z=4Z = f�; g; g2; g3g

The data for this example is lengthy, but this is the smallest available example
where � is a nontrivial permutation, and is really the best illustration of the
construction in 5.18.

Take � to be the 3{cycle
(
g g1 g3

�
.

Let �1; �2; and �3 be the nontrivial characters of G, with �2(g2) = 1.

There is a unique monoidal structure for this fusion rule, and with a good choice
of bases the associativity data is as follows:

�(a; b; c) � ( 1 )
�1(a; b) = �2(a; b) = �3(a; b) � ( 1 )
�1(a; b) = �2(a; b) = �3(a; b) � ( 1 )

γ1(a) =

0@�1(a) 0 0
0 �2(a) 0
0 0 �3(a)

1A
�(�) =

0@ 0 0 1
1 0 0
0 1 0

1A
γ2(a) = �(�)−1γ1(a−1)�(�)
γ3(a) = �(�)−1γ2(a−1)�(�)
�(a) = �(�)γ1(a)

and the large associator � is given in four submatrices: the upper left \M
submatrix" corresponding to x; y 2 G:

0BBB@
x = � g g2 g3

y = � 1
4

1
4

1
4

1
4

g 1
4

1
4

1
4

1
4

g2 1
4

1
4

1
4

1
4

g3 1
4

1
4

1
4

1
4

1CCCA
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the upper right \R submatrix", corresponding to x = m; y 2 G:



(r; s) = (1; 1) (1; 2) (1; 3) (2; 1) (2; 2) (2; 3) (3; 1) (3; 2) (3; 3)

y = � 0 0 1
4

0 1
4

0 1
4

0 0

g 0 0 1
4�3(g3) 0 1

4�1(g3) 0 1
4�2(g3) 0 0

g2 0 0 1
4
�3(g2) 0 1

4
�1(g2) 0 1

4
�2(g2) 0 0

g3 0 0 1
4
�3(g) 0 1

4
�1(g) 0 1

4
�2(g) 0 0


the lower left \C submatrix", corresponding to x 2 G; y = m:

0BBBBBBBBBBBBBBBB@

x = � g g2 g3

(i; j) = (1; 1) 0 0 0 0
(1; 2) 1 �1(g3) �1(g2) �1(g)
(1; 3) 0 0 0 0

(2; 1) 1 �2(g3) �2(g2) �2(g)
(2; 2) 0 0 0 0
(2; 3) 0 0 0 0

(3; 1) 0 0 0 0
(3; 2) 0 0 0 0
(3; 3) 1 �3(g3) �3(g2) �3(g)

1CCCCCCCCCCCCCCCCA
and the lower right \N submatrix" corresponding to x = y = m, with columns
indexed by (r; s) and rows indexed by (i; j) in the same (lexicographic) order
they appear in the previous two submatrices:0BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1CCCCCCCCCCCCCCCA
This example illustrates the most important structural features of the solutions
in the maximal group case, ie, in the setting of theorem 1.2: � and � associa-
tivities are trivial; the γ ’s are k{dimensional representations of G built out of
the nontrivial characters of G; the shape of the �(�) matrix comes from the
permutation � .
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Moreover, the large associator � is predictably organized. The M submatrix is
constant. The C submatrix has one nonzero row in each block (ie, one nonzero
row for each i = 1; 2; : : : ; k), and the columns are simply related by characters
of G. The R submatrix is organized much like C .

Finally, if we identify G with its dual group of characters, � can be viewed as
acting on �1; �2; �3 as the 3{cycle (�1 �2 �3). This is the key to understanding
the N submatrix: a nonzero entry occurs in row (i; j), column (r; s) if and only
if �r�s = �i and �−1(�i)�−1(�j) = �−1(�r).

Elaborating these observations and turning them into theorems will be the work
of the next two sections.

4 Pentagon equations and proof of Theorem 1.2

4.1 Proof of theorem 1.2: su�ciency

For each �nite �eld Fp� , we construct a nonabelian group whose category of
representations is a near-group category in which the group of invertibles is
isomorphic to the multiplicative group of the �eld.

Write F+
p� for the additive group of the �eld with p� elements, and F �p� for

the multiplicative group. Let G be the semidirect product F+
p�.< F �p� with the

obvious action.

It’s easy to verify:

(1) [G;G] = F+
p�

(2) G has one conjugacy class containing the identity, one conjugacy class
consisting of the nonidentity elements in F+

p� , and (p� − 2) classes each of
order p� .

It follows that in the semisimple setting, G has (p� − 1) linear representations
comprising a cyclic group Zp�−1 , together with a single, noninvertible, (p� −
1){dimensional representation m. By dimension, m ⊗ m contains (p� − 2)
copies of m, so the category of representations of G has near-group fusion rule
(Zp�−1; p

� − 2), and the \if" of Theorem 1.2 follows.

Remark The group G is none other than the a�ne group of the �eld Fp� .
The presentation as a semidirect product is just convenient for counting its
representations.
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We will later (5.18) show explicitly how to build associativity matrices that solve
the pentagon equations for these fusion rules. That point of view emerges from
the analysis of the pentagon equations we carry out in this and the following
section. Our goal is to prove the following intermediate theorem:

4.2 Intermediate Theorem If the near-group fusion rule (G; k), jGj =
k + 1, supports a monoidal structure, then there is a permutation � on the
nonidentity elements of G with the following three properties:

(i) �3 = id

(ii) �(x)−1 = �−1(x−1)

(iii) �(st) = �(t)�
�
�(s)−1�(t−1)] (for all s 6= t−1 )

Once we have established the intermediate theorem, we analyze (6.1) which
groups G support the structure of such a permutation � , completing the \only
if" portion of Theorem 1.2. It is interesting to note that the factorization
property (iii) on the permutation � is similar to the property studied by [KR]
(particularly, their Proposition 2) where they produce solutions to the pentagon
equations from \symmetrically factorizable groups."

Pentagon equations

Assume we have a near-group category with fusion rule (G; k).

Equations (1){(11) of [TY] hold verbatim in this setting; consequently after
�xing bases for all hom sets except hom(m;mm) we may assume:

� � �1 � �3 � 1

�1 � 1

�2 � �2 are symmetric and bimultiplicative

�3(a; b) = �3(a; �)

Since �3 is independent of the second variable, we will abbreviate �3(a; b) to
simply �3(a).

We proceed by examining remaining pentagon equations and looking for a good
choice of basis for hom(m;mm). In what follows we will refer to \the pentagon
abcd=x", meaning the content of the pentagon equation for the x summands
in the product a⊗ b⊗ c⊗ d.

4.3 Proposition γ1 , γ2 , and γ3 are representations of G.
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Proof For a; b 2 G, this is precisely the content of the pentagons mmab=m,
abmm=m, and mabm=m, respectively:

γ3(b)γ3(a) = γ3(ab) (1)
γ1(b)γ1(a) = γ1(ab) (2)
γ2(b)γ2(a) = γ2(ab) (3)

Pentagons ammb=m, mamb=m, and ambm=m are commutator relationships
among the γ representations:

γ3(b)�2(a; b)γ1(a) = γ1(a)γ3(b) (4)
�2(a; b)γ3(b)γ2(a) = γ2(a)γ3(b) (5)
γ2(b)γ1(a)�2(a; b) = γ1(a)γ2(b) (6)

4.4 Proposition �2(a; b) is an r{th root of unity where rj gcd(k; jGj).

Proof We choose basis of hom(m;mm) to split the representation γ1 into k
linear summands, diagonalizing all γ1 matrices. Now, equation (6) says

γ2(b)−1γ1(a)γ2(b) = �2(a; b)γ1(a)

The right hand side is of course diagonal; the left hand side is therefore diag-
onal and has the same eigenvalues as γ1(a). Multiplication by �2(a; b) simply
permutes those eigenvalues.

Since �2 is multiplicative in each factor we know �2(a; b) is an r{th root
of unity for some r which divides jGj. But by the above observation the k
eigenvalues of γ1(a) break up into n orbits each of size r ; we obtain k = nr
and so r divides k as well.

4.5 Proposition The representations γ1 , γ−12 , and γ3 are all conjugate, and
�(�) is an intertwiner carrying γ3 to γ1 to γ−12 back to γ3 .

Proof The pentagons for mmmg=hg , gmmm=hg , mmgm=h, and mgmm=h
give the following equations respectively:

�(hg) = γ3(g)�(h) (7)
�(hg) = �(h)γ1(g) (8)

γ2(g)�(h)γ3(g) = �(h)�2(g; h) (9)
γ1(g)�(h)γ2(g) = �(h)�2(g; h) (10)

By (7) with h = �, for any g we have �(g) = γ3(g)�(�).

Now substitute into (8) with h = � again to get γ1(g) = �(�)−1γ3(g)�(�), so
�(�) carries γ3 to γ1 . Take h = � in the remaining equations to complete the
remaining claims.
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Notation for the associator �

Recall from section 2.4 that � is the associator for the threefold product of
m’s, on its m summands. We think of it concretely as a matrix with respect
to the standard bases indicated by the trees in 2.4. On the left, there are jGj
basis elements indexed by the elements of G, and k2 elements indexed by pairs
(r; s) with 1 � r; s � k . So think of the columns of � as labeled either by a
group element g or a pair of indices (r; s).

The parametrization on the right is similar so � also has jGj rows labeled by
group elements and k2 rows labeled by pairs of indices (i,j).

If g; h 2 G, and 1 � i; j; r; s � k , entries in � might be described as �[g; h],
�[g; (r; s)], �[(i; j); g] or �[(i; j); (r; s)]. It will be useful to break up � into
submatrices M , R , C , and N as follows:

MjGj�jGj :=
(
�[g; h]

�
g;h

RjGj�k2 :=
(
�[g; (r; s)]

�
g;(r;s)

Ck2�jGj :=
(
�[(i; j); g]

�
(i;j);g

Nk2�k2 :=
(
�[(i; j); (r; s)]

�
(i;j);(r;s)

Think of � assembled from these pieces as

� =
�
M R
C N

�
It will also be convenient to talk about isolated rows from R and columns from
C , so de�ne

rg = the gth row of R
and cg = the gth column of C

Remaining pentagons for products with three m’s

The pentagons mmmg=m, mmgm=m, mgmm=m, and gmmm=m are infor-
mation about symmetries inside of the big associator �. Each one of the four
pentagons can be split into four statements, about the M , R , C , and N parts
of �. The next 16 equations are to hold for all a; b, and g in G.

Pentagon mmmg=m:

�[a; b]�2(b; g) = �[g−1a; b]�1(g−1a; g)�3(g) (11M)
ra = �3(g)rg−1a (γ3(g)−1 ⊗ IDk) (11R)

�2(a; g)ca = (γ3(g) ⊗ γ3(g)) ca (11C)
(γ3(g)⊗ γ3(g))N = N (γ3(g) ⊗ IDk) (11N)
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Pentagon mmgm=m:

�[a; b]�2(g; a)�3(g) = �[a; bg−1] (12M)
ra (γ2(g)⊗ γ3(g)−1) = �2(g; a)ra (12R)

cg−1a = �3(g) (IDk ⊗ γ2(g)) ca (12C)
(IDk ⊗ γ2(g))N = N (γ2(g) ⊗ γ3(g)−1) (12N)

Pentagon mgmm=m:

�[a; b]�2(g; b) = � [g−1a; b] (13M)
rg−1a = ra (IDk ⊗ γ2(g)) (13R)

(γ2(g)−1 ⊗ γ1(g)) ca = �2(g; a)ca (13C)
(γ2(g)⊗ γ1(g)−1)N = N (IDk ⊗ γ2(g)) (13N)

Pentagon gmmm=m:

� [a; g−1b] = �[a; b]�2(g; b) (14M)
ra (γ1(g) ⊗ γ1(g)) = �2(g; a)ra (14R)

cg−1a = (γ1(g) ⊗ IDk) ca (14C)
N (γ1(g) ⊗ γ1(g)) = (γ1(g) ⊗ IDk)N (14N)

4.6 Lemma For all g; h 2 G, �[g; h] = �[�; �]�2(h; h)−1 .

Proof Take a = g and b = � in (13M) to get �[g; �] = �[�; �] for all g 2 G.
By (14M), �[g; h−1h] = �[g;−1 h]�2(h; h); the claim follows.

4.7 Proof of order-control theorem 1.1

By lemma 4.6, the 1� jGj row vector ma =
(
�(a; b)

�
b

is actually independent
of a so we will write ~m for this common value.

Equation (11R) implies that rg = �3(g)r� (γ3(g)−1 ⊗ IDk) for all g 2 G.

Thus the �rst jGj rows of � look like0BBBB@
~m r�
~m �3(g2)r� (γ3(g2)−1 ⊗ IDk)
~m �3(g3)r� (γ3(g3)−1 ⊗ IDk)
...

...
~m �3(gN )r� (γ3(gN )−1 ⊗ IDk)

1CCCCA
jGj�(jGj+k2)
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Since � is invertible these are linearly independent. If we write r� =
P
i ui⊗vi ,

it follows that the jGj � (k + 1) matrix0BBB@
1

P
i ui

1
P
i �3(g1)uiγ3(g1)−1

...
...

1
P
i �3(gN )uiγ3(gN )−1ui

1CCCA
has linearly independent rows; hence jGj � k + 1.

4.8 Proposition If jGj = k + 1 then �3(h) = �2(h; h) for all h 2 G.

Proof Similar to lemma 4.6, equations (11M) and (12M) imply that

�[g; h] = �[�; �]�3(g)�3(h)−1�2(h; g)−1

for all g; h 2 G. Equating this with the expression from lemma 4.4, we �nd

�[�; �]�3(g)�3(h)�2(h; g)−1 = �[�; �]�2(h; h)−1

Implicit in the proof of the order control theorem, if jGj = k + 1 then �[�; �]
cannot be zero (this would violate linear independence). So we can cancel and
rearrange to get

�2(h; hg−1) = �3(h)�3(g)−1

(we have also used that �2 � �2 and �2 is bimultiplicative.) Now, let g = � in
the above.

5 Further reduction of pentagons when jGj = k + 1

We proceed in the maximal-group case; throughout this section, G is a group of
order k+ 1. The results of the previous section are summarized for this special
case in the following result.

5.1 Proposition In a near-group category with fusion rule (G; k) where
jGj = k + 1, there exists a choice of bases such that:

(i) �;�1; �2; �3; �1; �2; �3 are all identically equal to 1.

(ii) γ1; γ
−1
2 and γ3 are conjugate representations of G in diagonal matrices.

(iii) �[a; b] is constant (independent of both a and b).

(iv) If we de�ne �i(g) = γ1(g)i;i , for i = 1 : : : k , then the �i are precisely the
k nontrivial characters of G.
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Proof All of (i) was proven in the previous section. For �2; �2; �3 vanishing
use 4.6 and 4.8.

For (ii), we have already established that γ1 , γ−12 , and γ3 are conjugate rep-
resentations; it remains to show that all three can be simultaneously be diago-
nalized. De�ne � on G�G�G by

�(g; h; k) = γ1(g)γ2(h)γ3(k)

Equations (4) through (6) and �2 vanishing imply that � is a homomorphism;
we can therefore choose basis of hom(m;m ⊗ m) so that � splits as linear
representations. Then of course γ1(g) = �(g; �; �) is diagonal for all g ; similarly
γ2 and γ3 .

Claim (iii) follows from 4.6 and �2 � 1

Claim (iv) follows from linear independence in the proof of theorem 1.1.

5.2 Corollary With respect to the basis given in 5.1, there is a permutation
� of order 3 in Sk and constants �(j) such that

�(�) =
(
�(j)�i;�(j)

�
i;j

Proof Follows from 4.5 and 5.1 (iv).

5.3 Remark

To make this � an invariant of the category (so it doesn’t depend on an ordered
basis of hom(m;mm)), we more correctly think of � as a permutation on the
set of nontrivial characters of G.

Notation

By the numbering indicated in 5.1 (iv) we can think of an index i in f1; 2; : : : ; kg
as corresponding to one of the k nontrivial characters of G. If we let �� stand
for the trivial character of G then the set f�; 1; 2; : : : ; kg becomes a group under
� where we de�ne

r � s = i () �r�s = �i

By the de�nition of the �0s, there is an equivalent description using entries in
γ1 matrices: For r; s 2 f1; 2; : : : ; kg,

r � s = i () γ1(g)rγ1(g)s = γ1(g)i 8g 2 G; i 2 f1; 2; : : : ; kg
r � s = � () γ1(g)rγ1(g)s = 1 8g 2 G
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If r is an index then r−1 will denote the inverse with respect to this � operation.

Of course the group we obtain this way is abstractly isomorphic to G itself and
if we choose an isomorphism then we can view the permutation � from 5.2 as
acting on the nonidentity elements of G.

Precisely the same characters appear in the representation γ3 although their
order of appearence on the diagonal is permuted by the � of lemma 5.2. We
introduce an analogous operation � on f�; 1; 2; : : : ; kg by

r � s = i () γ3(g)rγ3(g)s = γ3(g)i 8g 2 G; i 2 f1; 2; : : : ; kg
r � s = � () γ3(g)rγ3(g)s = 1 8g 2 G

The inverse of r with respect to � will be denoted r�{1 . There is a straightfor-
ward translation between the � and � operations via � : If r � s 6= �, then

r � s = � [�−1(r) � �−1(s)]
and r�{1 = � [�−1(r)−1]

The � operation is therefore not strictly necessary but it eliminates the frequent
awkward expressions on the righthand side of the above equations, considerably
neatening statements such as the following:

5.4 Proposition (R and C structure) For any g in G,

(i) rg[(r; s)] = 0 () r � s = �

(ii) cg[(i; j)] = 0 () i � j = �

Proof For (i), �rst suppose r � s = �. Then by (14N), N [(i; j); (r; s)] must
be zero for all (i; j). Linear independence of the columns of � implies that
rg[(r; s)] 6= 0 for some g 2 G, but (11R) says that for any g; h 2 G, rh[(r; s)]
and rg[(r; s)] are related via multiplication by a unit. So in fact rg[(r; s)] 6= 0
for all g 2 G.

Conversely, suppose rg[(r; s)] 6= 0. Then by (14R),

rg[(r; s)] = γ1(g)rγ1(g)srg[(r; s)]

for all g 2 G. Since rg[(r; s)] can be cancelled, we see that γ1(g)rγ1(g)s = 1
for all g 2 G, which means by de�nition r � s = �.

Proof of (ii) is similar, using equations (11N) and (11C) instead of (14N) and
(14C).

The previous result suggests notational shorthand: since for a given r , rg[(r; s)]
is nonzero only for s = r−1 we will abbreviate to rg(r) to refer to this nonzero
entry. Similarly, cg(i) will be short for cg[(i; i�{1)].

Algebraic & Geometric Topology, Volume 3 (2003)



Near-group categories 737

5.5 Proposition (N structure) N [(i; j); (r; s)] 6= 0 () r � s = i and
i � j = r .

Proof First suppose N [(i; j); (r; s)] 6= 0. Then for all g 2 G, (11N) implies

γ3(g)iγ3(g)jN [(i; j); (r; s)] = γ3(g)rN [(i; j); (r; s)]

and we can cancel the N entry to obtain γ3(g)iγ3(g)j = γ3(g)r for all g , which
is the de�nition of i � j = r . Similarly, equation (14N) implies r � s = i.

Conversely, suppose r�s = i and i�j = r . By 5.4, rg[(r; s)] = 0 for all g 2 G, so
linear independence of the columns of � implies that N [(p; q); (r; s)] is nonzero
for at least one pair of indices (p; q). But the �rst half of this proposition
implies that the only possible nonzero entry in this column is N [(i; j); (r; s)].

5.6 The pentagon mmmm=g

This pentagon gives the following equations for all a; b; g 2 G, for all indices 1 �
i; j; r; s � k . They have been reduced using the simpli�cations available from
5.1(i). We write N [−; (r; s)] for the entire (r; s) column of N , and N [(i; j);−]
for the (i; j) row. X

c2G
�[a; c]�[c; b] + ra (�(g)⊗ IDk) cb = �a;b−1g (15M)X

c2G
�[a; c]rc[(r; s)] + ra (�(g)⊗ IDk)N [−; (r; s)] = 0 (15R)X

c2G
cc[(i; j)]�[c; b] +N [(i; j);−] (�(g)⊗ IDk) cb = 0 (15C)X

c2G
cc[(i; j)]rc[(r; s)] +N [(i; j);−] (�(g)⊗ IDk)N [−; (r; s)]

= �(g)[i; s]�(g)[j; r] (15N)

5.7 Lemma For any g 2 G:

(i) rg[(r; s)] = γ3(g)−1r r�[(r; s)]

(ii) cg[(i; j)] = γ1(g)−1i c�[(i; j)]

Proof Immediate from (11R) and (14C).

5.8 Proposition The permutation � from 5.2 satis�es �(x−1) � �−1(x) = �
(for any index x, 1 � x � k .)
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Proof In equation (15R) the summation in fact vanishes. To see this, �x a; r;
and s. Now, �[a; c] is constant by 5.1(iii), and rc[(r; s)] = r�[(r; s)]γ3(c)−1r by
5.7. Therefore,X

c2G
�[a; c]rc[(r; s)] = �[�; �]r�[(r; s)]

X
c

γ3(c)−1r = 0

by orthogonality of characters. So (15R) reduces to

ra (�(g) ⊗ IDk)N [−; (r; s)] = 0

and in particular, for g = a = �,

r� (�(�)⊗ IDk)N [−; (r; s)] = 0

By 5.5 this yields no useful information if r � s = � so assume r � s 6= �. By
5.5, there is a single nonzero entry in N [−; (r; s)], namely N [(i; j); (r; s)] where
r � s = i and i � j = r . The lefthand side will not be zero if � manages to \line
up" that nonzero entry from N with one of the nonzero entries in r� . But we
know where the nonzero entries in r� live by 5.4. So if (15R) is to be satis�ed
there must not exist any triple of indices r; s; x with r � s 6= �, �(r � s) � x = �,
and (r � s) � x = r .

For any index r , there is an s so that x−1 = �(r�s). So (15R) says �−1(x−1)�x 6=
r for any index r ; by elimination it must be that �−1(x−1) � x = �. Now,

�−1(x−1) � x = �

)�−2(x−1) � �−1(x) = �

)�(x−1) � �−1(x) = � (since �3 = id)

5.9 Proposition The permutation � satis�es �(s � t) = �(t) � �
�
�(s)−1 �

�(t−1)] (for all s 6= t−1 )

Proof Consider (15N) with r 6= s−1 , i = �(s), and j = �(r), so that the
summation on the left vanishes but the righthand side is nonzero. By the N
structure proposition, the only nonzero entry in column (r; s) of N occurs in
row (r � s; x) where x = (r � s)�{1 � r . Expressed purely in terms of the �
operation,

x = � [�−1(r � s)−1 � �−1(r)]
But for the lefthand side of (15N) to be nonzero, it must be that i = �(r�s)�x;
since we have chosen i = �(s), the following relation appears:

�(s) = �(r � s) � � [�−1(r � s)−1 � �−1(r)] (8r 6= s−1)

The identity claimed in the proposition follows from a change of variable: set
t = (r �s) and rewrite. The change of variable is reversible so the two identities
are in fact equivalent.
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5.10 Proof of intermediate theorem 4.2

The results in 5.2, 5.8, and 5.9 establish Theorem 4.2: If a monoidal struc-
ture exists, then we can extract a permutation � satisfying the three indicated
properties.

In section 6 we will complete Theorem 1.2 by identifying which groups support
such a � but the remainder of this section will continue the analysis of the pen-
tagon equations so that we can give an explicit matrix solution to the pentagon
equations in 5.18.

5.11 Identifying primitive data

At this point we have reduced the problem of describing the categorical data
to describing the associativities �(�) and �. We know the �’s and � ’s are
trivial and we know that the γ ’s contain all the nontrivial characters. All �(g)
are determined once we know �(�) and the γ ’s. The �(�) is described by the
permutation � and the function � of 5.2; � is described by M , R , C , and
N but M is a constant block; all of C can be generated given the function
c� . Likewise R is described by the function re , and N by a function of two
indices: N(r; s), denoting the single nonzero entry in column (r; s) of N (where
r �s 6= �). Our next step is to give a formula for r� in terms of c� thus reducing
the problem to specifying three functions � , c� , and N .

5.12 Proposition r�(i) = [jGj�(�−1(i))c� (�−1(i))]−1

Proof The key is to reformulate (15M) as a small matrix equation which
essentially allows us to solve for R in terms of C. For g 2 G, set r0g = (rg(i))i ,
a 1 � k row vector regarded as r� with all the zeros squeezed out. Similarly,
set c0g = (cg(i))Ti , a k � 1 column vector. De�ne

R0 =

0BB@
y r0�
y r1

0

...
...

y rk
0

1CCA C0 =
�
y y � � � y
c0� c01 � � � c0k

�
�0 =

�
1 0
0 �(�)

�

where y =
p
jGj�[�; �]2 . The three matrices de�ned above are (k+ 1)� (k+ 1)

and invertible by linear independence of characters. For g = � it is simple to
verify that equation (15M) for all a; b 2 G is equivalent to the matrix equation

R0�0C0 =
(
�a;b−1

�
a;b2G
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Write X for the involutive permutation matrix
(
�a;b−1

�
a;b2G and D0 for a

diagonal matrix with (c�(i)c�(i−1)jGj)−1 on the diagonal. Character relations
let us calculate

C−10 = CT0 XD0

and so
R0 = XCT0 XD0�

−1
0

Now it is easy to expand the matrix product on the right hand side and obtain
the formula claimed.

Moreover, examination of the �rst column on both sides implies y2jGj−1 = 1,
and we have

5.13 Corollary �[�; �] = �1=jGj

We introduce � := jGj�[�; �] = �1 as this will occur frequently in subsequent
equations.

5.14 The big pentagon: mmmm=m

Graphically, the bases for the full left and full right associated product have
the form

................

................

................

................

.....................
....................

....................
....................

....................
....................

....................
....................

.......

....................
....................
....................
....................
....................
....................
....................
....................
.......

....................
....................
....................
....................
....................
............

....................
....................
................

m m m m

y

x

m

or

................

................

................

................

.....................
....................
....................
....................
....................
....................
....................
....................
.......

....................
....................

....................
....................

....................
....................

....................
....................

.......

....................
....................

....................
....................

....................
............

....................
....................

................
mmmm

ŷ

x̂

m

respectively.

On the left, for example, there are kjGj basis elements with x 2 G, kjGj basis
elements with y 2 G, and k3 with x = y = m, for a total of k3+2kjGj elements.
Rather than view this pentagon as one large (k3 + 2kjGj){dimensional matrix
equation, we break it down into several more sensible submatrix equations based
on this grouping of basis elements:

0BBBBBB@

x2G
y=m

x=m
y2G x = y = m

x̂2G
ŷ=m (16) (18) (23)

x̂=m
ŷ2G (17) | (20); (21)

x̂ = ŷ = m (22) (18); (19) (24)

1CCCCCCA
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The table indicates which submatrix of the pentagon equation corresponds to
which of the following constraints. We have used all reductions available to ex-
press these in the minimal number of variables: these are essentially functional
equations in the functions c� , � , and N , and they are to hold for all indices i; j
for which they make sense:

c�(i)c�(�−1(i))−1 = ��(i−1)�(�(i−1))�(�−1(i)) (16)
�(i)c�(i) = ��(�(i−1))c�(�(i−1)) (17)

c�(i) = �c�(�(i)−1) (18)
c�(i) = c�(j)N(i � j−1; j)

N(�(j) � �(i)−1; �(j)−1) (19)
�(i)c�(i) = ��(�(i−1))c�(�(i−1)) (20)

�(�−1(i) � �(j−1))c�(�−1(i) � �(j−1)) = �(�−1(i))c�(�−1(i))
N(i; i−1 � j)N(i−1; j) (21)

c�(i)N(i; j) = �(j)c�(i � j)N(�(i � j)−1; �(j)) (22)
�(�−1(i))N(i; j)c�(�−1(i)) = � (�(�−1(j) � �(i)) � (�−1(i � j))−1)

N(j; (i � j)c�(�−1(i � j)) (23)
c� ((i � j)−1) c�(j)−1�(j)−1 = N (�−1(i) � �(j); �(j)−1)

N (�−1(i); �(j)) (24)

Note The y; ŷ 2 G piece of the pentagon is automatically satis�ed by the
properties of the permutation � , without introducing any new relations. This
will be illustrated in section 5.18 below. In general the process of transcribing
the above equations from the abstract pentagon is lengthy but requires no
sophistication. We will illustrate the derivation of two of the equations and
omit the similar details of the remainder.

5.15 Derivation of equation (16)

As the table indicates, this equation is supposed to come from the following
piece of the pentagon:
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For each g; h 2 G we get a k� k submatrix of coe�cients indexed by i and j .
Using the reductions available it is not di�cult to compute these coe�cients.

Following the two-step path in the pentagon, the �rst step is
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(m!gm)⊗(g!mm)⊗ (m!mm)i
�7−!
X
p

cg[p; j](m!mm)p ⊗ (m!mm)i ⊗ (m!mm)j + irrelevant terms

and the second step is
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(m!mm)p ⊗ (m!mm)i ⊗ (m!mm)j
�7−! rh[p; i](m!mh) ⊗ (h!mm)⊗ (m!mm)j + irrelevant terms

Therefore the (j; i) coe�cient is
P
p cg[p; j]rh[p; i]. By 5.4 this sum will be zero

unless there is an index p = j�{1 = i−1 which happens i� j = �−1(i), in which
case the coe�cient is cg(i−1)rh(i−1), and so the submatrix here is�

cg(i−1)rg(i−1)�j;�−1(i)

�
j;i

Now we follow the three-step path in the pentagon; the �rst step is
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(m!gm)⊗(g!mm)⊗ (m!mm)i
�7−!
X
l

�(g)[l; i](m!gm) ⊗ (g!mm)⊗ (m!mm)l

From here,
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(m!gm)⊗ (g!mm)⊗ (m!mm)l
�7−! �[h; g](m!mh) ⊗ (h!mm)(m!mm)l + irrelevant terms

Note that �[h; g] = �[�; �], independent of h and g . In the third association,
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(m!mh)⊗ (h!mm)(m!mm)l
�7−! �(h)[j; l](m!mh) ⊗ (h!mm)⊗ (m!mm)j + irrelevant terms

so the submatrix from this path is

�[�; �]�(h)�(g)
= �[�; �]�(�)γ1(h)�(�)γ1(g) by 4.5

and the requirement of the pentagon equation is that

�[�; �]�(�)γ1(h)�(�)γ1(g) =
�
cg(i−1)rh(i−1)�j;�−1(i)

�
j;i

(160)

Claim (160) for arbitrary g and h follows from the case g = h = �
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Proof The matrix product on the left is�
�[�; �]�i(g)�(i)��(i)(h)�(�(i))�j;�−1(j)

�
j;i

So (160) can be written as

�[�; �]�(i)�(�(i))�i(g)��(i)(h) = cg(i−1)rh(i−1) 8i (1600)

But cg(i−1) = c�(i−1)�i(g) by (14C). Similarly rh(i−1) = r�(i−1)��(i)(h). All
terms involving g and h in fact cancel, so the general case reduces to

�[�; �]�(i)�(�(i)) = c�(i−1)r�(i−1)

as claimed.

Now 5.12 replaces the r� with an equivalent expression in c� ,

�[�; �]�(i)�(�(i)) = c�(i−1) (jGj�(�−1(i−1))c�(�−1(i−1)))
−1

Rearrange:
c�(i−1) = ��(i)�(�(i))�(�−1(i−1))c�(�−1(i−1))

and we have shown that this piece of the pentagon is precisely equation (16)
(after a �nal change of variable i 7! i−1 ).

5.16 Derivation of equations (18) and (19)

Graphically, we are interested in the following basis elements:
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Following the two-step path in the pentagon, �rst

(m!mm)i⊗(m!gm)⊗ (g!mm)
�7−! γ1(g)[r; i](m!gm) ⊗ (g!mm)⊗ (m!mm)r + irrelevant terms

and then

(m!gm)⊗(g!mm)⊗ (g!mm)r
�7−! �[(p; q); g](m!mm)p ⊗ (m!mm)q ⊗ (m!mm)r + irrelevant terms
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So the total coe�cient from this path is simply

�[(p; q); g]γ1(g)[r; i]

Following the three-step path, �rst

(m!mm)i⊗(m!gm)⊗ (g!mm)
�7−!

X
h2G

�[h; g](m!mm)i ⊗ (m!mh)⊗ (h!mm)

+
X
j;l

�[(j; l); g](m!mm)i ⊗ (m!mm)j ⊗ (m!mm)l

then
(m!mm)i ⊗ (m!mh)⊗ (h!mm)

�7−! γ2(h)[p; i](m!mm)p ⊗ (m!hm)⊗ (h!mm)

and

(m!mm)p ⊗ (m!hm)⊗ (h!mm)
�7−! �[(q; r);h](m!mm)p ⊗ (m!mm)q ⊗ (m!mm)r + irrelevant terms

while

(m!mm)i ⊗ (m!mm)j ⊗ (m!mm)l
�7−!
X
s

�[(p; s); (i; j)](m!mm)p ⊗ (m!mm)s ⊗ (m!mm)l+irrel. terms

and

(m!mm)p ⊗ (m!mm)s ⊗ (m!mm)l
�7−! �[(q; r); (s; l)](m!mm)p ⊗ (m!mm)q ⊗ (m!mm)r + irrelevant terms

So the total coe�cient from this path isX
h2G

�[(q; r);h]γ2(h)[p; i]�[h; g]

+
X
j;l;s

�[(q; r); (s; l)]�[(p; s); (i; j)]�[(j; l); g]

and the requirement of the pentagon is that

�[(p; q); g]γ1(g)[r; i] =
X
h2G

�[(q; r);h]γ2(h)[p; i]�[h; g]

+
X
j;l;s

�[(q; r); (s; l)]�[(p; s); (i; j)]�[(j; l); g]

We will handle this in two cases.
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Case I i = p In this case, the second summation on the righthand side
vanishes, by the N structure theorem (because i � j 6= i = p). Again, �[g; h] =
�[�; �] independent of g and h, so we are left with

cg(i; q)γ1(g)[r; i] = �[�; �]
X
h

ch(q; r)γ2(h)[i; i]

Now we can use (14C) and (12C) to replace the cg and ch terms with expressions
in c� :

c�(i; q)γ1(g−1)[i; i]γ1(g)[r; i] = �[�; �]
X
h

c�(q; r)γ2(h−1)[r; r]γ2(h)[i; i]

If r 6= i the lefthand side vanishes since γ1 is diagonalized, and the righthand
side vanishes by orthogonality of characters. So we can reduce to

c�(i; q) = �[�; �]jGjc�(q; i)
and both vanish by the C structure theorem unless q = i�{1 , so the only
requirement here is

c�(i) = �c�(i�{1) for all i

which is precisely equation (18).

Case II i 6= p In this case the �rst summation vanishes because γ2 is diago-
nalized, and we are left with

cg(p; q)γ1(g)[r; i] =
X
j;l;s

�[(q; r); (s; l)]�[(p; s); (i; j)]�[(j; l); g] (25)

Note that for many choices of indices p; q; i; r the equation will be satis�ed
without introducing any new constraints since both sides vanish. We need to
identify precisely when this happens. Fix indices p; q; i; r .

By the C{structure theorem and diagonalization of γ1 , the lefthand side is
nonzero i�

p = q�{1 and r = i (26)

By the C{ and N {structure theorems, the righthand side is nonzero i� there
exist indices s; l satisfying

q � r = s (27i)
s � j�{1 = q (27ii)

p � s = i (27iii)
i � j = p (27iv)

Claim: The conditions of (26) are equivalent to the conditions of (27).
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Proof Assume (26), guaranteeing the lefthand side is nonzero. In order to
satisfy (27iii) and (27iv) we must take

j = p � i−1 and s = p�{1 � i
This s and j clearly satisfy (27i); with a little more work we verify that (27ii)
also holds:

s � j�{1 = (p�{1 � i) � (p � i−1)�{1

= �(�(p−1) � �−1(i)) � �(p � i−1)−1

= �(p)−1 using 5.9

= p�{1 = q

as required. Conversely, supppose the conditions of (27) are satis�ed. Then
we simply repeat the above calculation to show that q = p�{1 . It follows from
(27i) and (27iii) that i = r , so both conditions of (26) are satisi�ed.

Therefore in considering the requirements of (25) we only need the case p = q�{1

and r = i, reducing to

cg(p)γ1(g)[i; i] = N [p�{1 � i; (p�{1 � i)−1 � p�{1)]N [i; i−1 � p]cg(p � i−1)
Using (14C) and cancelling γ ’s, this reduces further to

c�(p) = N [p�{1 � i; (p�{1 � i)−1 � p�{1)]N [i; i−1 � p]c�(p � i−1)
which, after a change of variable, is precisely equation (19), and we have com-
pleted showing that equations (18) and (19) completely describe the require-
ments of this piece of the pentagon.

Derivation of the remaining equations in the list is very similar to the examples
we have worked. The y; ŷ 2 G equation is a little di�erent; we have claimed
it is automatically satis�ed by the properties of � already established, and we
will now prove that.

5.17 The y; ŷ 2 G piece of the pentagon

Here we consider the following entries in the pentagon:
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It is easy to verify that the two-step path of the pentagon gives zero coe�cient
for this entry. Walking through the three-step path as we did for previous pieces
gives a total coe�cient ofX

a2G
�[�; �]2γ2(a)[i; j]

+
X
p;q;l

�[h; (l; q)]�[(j; l); (i; p)]�[(p; q); g]

Now the �rst sum (over a 2 G) is always vanishing, so the requirement of the
pentagon is that X

p;q;l

rh(l; q)�[(j; l); (i; p)]cg (p; q) = 0

for all i and j . If i = j the �[(j; l); (i; p)] is always zero by the N {structure
theorem and the sum vanishes. If i 6= j , there could be at most one nonzero
term; by the N { and C{structure theorems this would occur for

l = j�{1 � i
p = i−1 � j

and q = p�{1

But then
l � q = (j�{1 � i) � (i−1 � j)�{1

= � [�(j−1) � �−1(i)] � � [i−1 � j]−1

= �(j)−1 by 5.9
6= �

so by the R{structure theorem rh(l; q) = 0 and in fact every term of the
summation is zero without imposing any further conditions.

5.18 Constructing matrix solutions to the pentagon equations

Suppose we are given near-group fusion rule (G; k), jGj = k + 1, and we are
given a permutation � on G n � satisfying the three conditions of Theorem 4.2.
Guided by the preceding analysis, we give a set of associativity matrices and
prove that they satisfy all pentagon equations.

Using the notation established earlier, set

�;�1; �2; �3; �1; �2�3 � 1

Let �1; : : : ; �k be the nontrivial characters of G, and choose an identi�cation
of G with its dual group of characters so that � can be regarded as permuting
the characters.
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For indices i; j; r write i � j = r provided �i�j = �r ; write i � j = � provided
�i�j = �� , the trivial character. Let i−1 stand for the inverse of i with respect
to this operation. Write i � j = r provided �−1(i) � �−1(j) = �−1(r), and let
i�{1 denote the inverse with respect to this operation. As indicated before,
i�{1 = �(i)−1 .

Now we can make the following de�nitions:

�(�) =
(
�i;�(j)

�
i;j

γ1(g) =

0BB@
�1(g)

�2(g)
. . .

�k(g)

1CCA
γ2(g) = �(�)−1γ1(g−1)�(�)
γ3(g) = �(�)−1γ2(g−1)�(�)
�(g) = γ3(g)�(�) for arbitrary g 2 G

Note that with these de�nitions, all γ2(g) and γ3(g) are diagonal, and

γ2(g)[i; i] = ��(i)−1(g)

and γ3(g)[i; i] = ��−1(i)(g)

At this point we have de�ned all associativities except � and it clear that
pentagon equations (1){(10) of this paper are satis�ed, as well as (1){(11) of
[TY] together, these account for all four-term products involving two m’s or
fewer). The only associativity left to de�ne is �.

For g; h 2 G and i; j; r; s 2 f1; 2; : : : ; kg, de�ne

�[g; h] = jGj−1

�[(i; j); g] = �i(g−1)�i;j�{1

�[g; (r; s)] =
(
jGj��−1(r)(g)

�−1
�r;s−1

�[(i; j); (r; s)] = �r;i�j�i;r�s

Equations (11M{14M) are clearly satis�ed by construction.

(14C) is clearly satis�ed by construction. For (13C), check:(
(γ2(g)−1 ⊗ γ1(g)) cg

�
[(i; j)] = ��(i)(g)�j(g)cg(i; j)

so if j 6= i�{1 = �(i)−1 then cg(i; j) = 0 and (13C) is satis�ed; if j = i�{1

then ��(i)(g)�j(g) = 1 and (13C) is still satis�ed. Verifying (12C) and (11C)
is similar.
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(11R) is clearly satis�ed by construction.

Check that (12R) is satis�ed: for a; g 2 G,

ra
(
γ2(g) ⊗ γ3(g)−1

�
= ra

() r�[r; s]��(r)−1 (g)��−1(s)−1 (g) = r�[r; s] 8r; s
If r 6= s−1 then r�(r; s) = 0, and (12R) is satis�ed. If r = s−1 then by property
(ii) of � , �(r)−1 � �−1(s)−1 = �, so ��(r)−1(g)��−1(s)−1(g) = 1, and (12R) is
satis�ed.

Check that (13R) is satis�ed: This is trivial for r 6= s−1 , so assume r = s−1 . By
property (ii) of � , then, �(s) = �−1(r)−1 , so for any a; g 2 G,(

ra(IDk ⊗ γ2(g)
�
[r; s] =

(
jGj��−1(r)(a)�[(�−1(r); s); �]

�−1
��(s)−1(g)

=
(
jGj��−1(r)(a)��(s)(g)�[(�−1(r); s); �]

�−1
=
(
jGj��−1(r)(g−1a)�[(�−1(r); s); �]

�−1
= rg−1a[r; s]

so (13R) is satis�ed. Checking (14R) is similar to (12R), so details are omitted.

(11N) is satis�ed provided

��−1(i)(g)��−1(j)(g)N [(i; j); (r; s)] = ��−1(r)(g)N [(i; j); (r; s)]

for all i; j; r; s. If i � j 6= r then both sides are zero, and (11N) is satis�ed; if
i � j = r then ��−1(i)��−1(j) = ��−1(r) so (11N) is satis�ed in that case as well.

(12N) is satis�ed provided

��−1(i)(g)��−1(j)(g)N [(i; j); (r; s)] = ��−1(r)(g)N [(i; j); (r; s)]

for all i; j; r; s. If N [(i; j); (r; s)] = 0 this is satis�ed. If N [(i; j); (r; s)] 6= 0 then
r � s = i and i � j = r so j = r � (r � s)�{1 ; we use the hypotheses on � to
massage this expression:

j = r � (r � s)�{1 = �
(
� ((r � s)−1) � �−1(r)

�
= �(s) � �(r � s)−1

therefore
�(j)−1 = �

(
�(s) � �(r � s)−1

�−1
=
(
�−1(s) � �(r)

�−1
= �(r)−1 � �−1(s)−1

therefore in this case ��(j)−1 = ��(r)−1��−1(s)−1 and equation (12N) is satis�ed.

Checking (13N) is similar to (12N) and checking (14N) is similar to (11N) so
details are omitted.
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Check for (15M): by construction,

(�(g) ⊗ IDk

�
[(i; j); (r; s)] = �r(g)�i;�(r)�j;s

and
cb[(r; s)] = �i(b−1)�i;�(j)−1

So we can compute

(�(g) ⊗ IDk) [(r; s)] =
X
u;v

�u(g)�i;�(u)�j;v�u(b−1)�u;�(v)−1

= ��−1(r)(gb−1)�r;s−1

whence

ra (�(g) ⊗ IDk) cb =
X
r;s

(
jGj�−1� (r)(a)�r;s−1

�−1 (
�−1� (r)(gb−1)�r;s−1

�
=
�

(jGj − 1)=jGj; a = gb−1

−1=jGj; 6= gb−1

and X
c2G

�[a; c]�[c; b] + ra [�(g)⊗ IDk] cb = �a;b−1g

so (15M) is satis�ed.

Veri�cations of (15C) and (15R) are similar and easy. We will check that (15C)
is satis�ed, splitting into two cases.

Case I i = j�{1 In this case N [(i; j); (r; s)] = 0 for all r; s so

N [(i; j);−] (�(g) ⊗ IDk)) cb = 0

As for the summation,
P
c2G cc[(i; j)�[c; b] =

P
c �i(c

−1)(1=jGj) = 0, so (15C)
is satis�ed in this case.

Case II i 6= j�{1 In this case every term in the summation is zero. The other
expression on the left also vanishes:

N [(i; j);−] (�(g)⊗ IDk)) cb =
X
r;s

N [(i; j); (r; s)]��−1(r) (gb−1) �r;s−1

so the � kills o� every summand where N [(i; j); (r; s)] is nonzero. That com-
pletes the check that (15C) is satis�ed and (15R) is obviously very similar.

Checking (15N): Recall this equation requires thatX
c2G

cc[(i; j)]rc[(r; s)] +N [(i; j);−](�(g) ⊗ IDk)N [−; (r; s)] = �(g)[i; s]�(g)[j; r]
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holds for all g 2 G and all indices i; j; r; s. This is the trickiest equation to
verify; we will �rst do a general calculation of both expressions on the lefthand
side and then proceed to verify equality in several cases.

First calculation:X
c2G

cc[(i; j)]rc[(r; s)] =
1
jGj

X
c

�i(c−1)��−1(r)(c−1)�i;j�{1�r;s−1

= �i;j�{1�r;s−1�i;�−1(r)−1

Second calculation: By construction N [(i; j);−] (�(g) ⊗ IDk)N [−; (r; s)] will
certainly be zero if i = j�{1 or r = s−1 . Let us calculate the value of this
expression assuming that i 6= j�{1 and r 6= s−1 . For any indices p and q ,

((�(g) ⊗ IDk) (N [−; (r; s)])) [(p; q)]

=
X
u;v

(�(g) ⊗ IDk) [(p; q); (u; v)]N [(u; v); (r; s)]

=
X
u;v

�u(g)�p;�(u)�q;v�u;r�s�v;(r�s)�{1�r

= �r�s(g)�q;(r�s)�{1�r�p;�(r�s)

Therefore,

N [(i; j);−] (�(g) ⊗ IDk)N [−; (r; s)]

=
X
p;q

�r�s(g)�q;(r�s)�{1�r�p;�(r�s)�p;i�j�q;(i�j)−1�i

Now it’s clear that the only potentially nonzero term in this sum occurs at the
indices

p = �(r � s)
and q = (r � s)�{1 � r

That term will actually be nonzero i� i�j = �(r�s) and (i�j)−1 �i = (r�s)�{1 .
We can now solve for the unique i and j that will make this sum nonzero, for
a particular r and s:

�(r � s)−1 � i = (r � s)�{1 � r
= �

(
�
(
(r � s)−1

�
� �−1(r)

�
= �(r � s)−1 � � (r−1 � r � s) using hypotheses on �

= �(r � s)−1 � �(s)
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hence a nonzero result occurs i� i = �(s) and j = �(r). Thus the �nal
calculation is

N [(i; j);−] (�(g) ⊗ IDk)N [−; (r; s)]

=
�

0; i = j�{1 or r = s−1

�r�s(g)�i;�(s)�j;�(r); otherwise

Now we will proceed to verify equality in (15N). First of all, the righthand side
is easy to calculate; by construction,

�(g)[i; s]�(g)[j; r] = �r(g)�s(g)�i;�(s)�j;�(r)

From here we proceed in cases:

Case I When the righthand side is nonzero, ie, i = �(s) and j = �(r).

Case I, part (i) Assume r � s = �. It follows that i � j = � as well; and on
the righthand side of the equation (15N) we have speci�cally �r(g)�s(g) = 1.

On the lefthand side r � s = � implies the term involving N ’s is zero, and by
the �rst calculation above, the summation is 1, so (15N) is satis�ed.

Case I, part (ii) Assume r � s 6= �. It follows that i � j 6= � as well. On the
lefthand side of equation (15N), all terms in the summation are zero, whereas
by second calculation the term involving N ’s gives precisely �r�s(g), so (15N)
is satis�ed.

Case II When the righthand side is zero, ie, i 6= �(s) or j 6= �(r). Note in
this case the term involving N ’s on the lefthand side is zero, so we have to
check that the summation vanishes.

Case II, part (i) Suppose i 6= j�{1 or r 6= s−1 . In this case every term of the
summation is clearly zero.

Case II, part (ii) Suppose i = j�{1 and r 6= s−1 . In this case it must be that
both i 6= �(s) and j 6= �(r). For suppose i = �(s). Then �(s) = j�{1 = �(j)−1

so �(j) � �(s) = � and it follows that �(j) = �−1(r), or j = �(r) contradictory
to the hypothesis we are assuming in Case II. Similarly j = �(r) forces i =
�(s), a contradiction. So we suppose both i 6= �(s) and j 6= �(r). Then
i = j�{1 = �(j)−1 6= �−1(r)−1 so the �i;�−1(r)−1 term in our calculation of the
summation kills it, and equality holds in (15N).

This completes the veri�cation of (15N) in all cases; equivalently, the veri�cation
of the pentagon equations for the group summands of a fourfold product of
m’s. The only remaining pentagon to check is the m summands of fourfold
product of m’s, which we have reduced to equations (16){(24). However, our
construction makes the functions c� , � , and N which we use to express those

Algebraic & Geometric Topology, Volume 3 (2003)



754 Jacob Siehler

equations all identically 1, giving a trivial solution to equations (16){(24). With
this observation we complete the veri�cation that all pentagon equations in the
category are satis�ed and we have constructed a coherent monoidal structure.

The example data for k = 1; 2; 3 in section 3 shows that this \trivial" solution
need not be the only one. Completing the classi�cation for those small values
of k ad hoc is easy but so far a general and useful classi�cation theorem hasn’t
appeared, so for the present we will be content with the existence theorem.

6 Groups that support a �

In this section we characterize the groups and permutations satisfying the hy-
potheses of Theorem 4.2. For reference: the hypotheses are that � is a permu-
tation on the nonidentity elements of G, satisfying

(i) �3 = id

(ii) �(x)−1 = �−1(x−1)

(iii) �(st) = �(t)�
�
�(s)−1�(t−1)] (for all s 6= t−1 )

The result is:

6.1 Theorem A �nite abelian group G admits a permutation � satisfying
the above hypotheses if and only if G is the multiplicative group of a �eld; ie,
G is cyclic of order (p� − 1).

First we prove the following:

6.2 Lemma Suppose G;� satisfy the hypotheses. Then there is an element
! 2 G such that s�(s)�−1(s) = ! for all s 6= � 2 G. Moreover, !2 = �.

Proof This is established by iterating the product expansion given by property
(iii) of � . Properties (i) and (ii) are also used to simplify. Let s 6= t−1 be any
nonidentity elements in G.

�(st) = �(t)�
(
�(s)−1�(t−1)

�
= �(t)s−1�

(
�(t)�−1(s)

�
= �(t)s−1�−1(t)�(s−1t−1)
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Since �(st) is symmetric in s and t, we have

�(t)s−1�−1(t) = �(s)t−1�−1(s)

or, on rearranging,
s�(s)�−1(s) = t�(t)�−1(t)

Since this holds for arbitrary s and t we conclude that the product s�(s)�−1(s)
is independent of s and we call the common value ! . (The case where G has
only two nonidentity elements requires a slightly di�erent argument; in that
case it is easy to verify that the only permutation satisfying the hypotheses is
the identity permutation, and the present proposition is trivial).

For !2 = �, let s 6= � 2 G. By the preceding,

s�(s)�−1(s) = s−1�(s−1)�−1(s−1)
= (s�−1(s)�(s))−1

hence ! = !−1 .

Note It may be the case that ! = �.

Now we can proceed with the main result.

Proof of 6.1 First suppose G = F �p� , the multiplicative group of a �eld.
Then de�ning �(x) = (1 − x)−1 for x 6= 1 gives a permutation satisfying the
hypotheses (easily veri�ed).

For the converse, suppose G;� satisfy the hypotheses. We construct a �eld F
with multiplicative group G as follows: setwise, of course, F = G [ f0g. The
multiplication extends to F by the obvious rule 0 � x = x � 0 = 0. The main
chore is to de�ne addition. We do this as follows:

0 + a = a+ 0 = a

a+ b = �(!ba−1)−1a; a; b 6= 0; b 6= !a

a+ b = 0; b = !a

The element ! , apparently, acts as a unary (−) operator, giving additive in-
verses. We now have to show that F is an abelian group under this addition and
that multiplication distributes. We will repeatedly use the lemma to replace
expressions of the form �(x)−1 with !x�−1(x).

(1) Addition is commutative:

a+ b = �(!ba−1)−1a
= ! !ba−1 �−1(!ba−1)a
= �(!ab−1)−1b
= b+ a
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(2) Addition is associative: If any of a; b; c is 0 then (a+ b) + c = a+ (b + c)
is trivial, so we assume a; b; c 2 G. Expanding the left-associated expression,

(a+ b) + c = �
(
!c (a+ b)−1

�−1 (a+ b)

= �
(
!c (�(!ba−1)−1a)−1

�−1
�(!ba−1)−1a

= � (!c � (!ba−1) a−1)−1 �(!ba−1)−1a

On the other (the right) hand,

a+ (b+ c) = � (! (b+ c) a−1)−1 a
= �(! �(!cb−1)−1 ba−1)−1a
= �(st)−1a

where s = �(!cb−1)−1 and t = !ba−1 . Continuing the calculation, we have

a+ (b+ c) = (�(t)� (�(s)−1�(t−1)))−1 a
= � (�(s)−1�(t−1))−1 �(!ba−1)−1a

now we evaluate the expression �(s)−1�(t−1):

�(s)−1�(t−1) = �
(
�(!cb−1)−1

�−1
�(!ab−1)

= �
(
�−1(!bc−1)

�−1
�(!ab−1)

= !cb−1�(!ab−1)
= !cb−1 ! !ba−1 �(!ba−1)
= !c�(!ba−1)a−1

and putting it all together we have obtained

a+ (b+ c) = � (!c � (!ba−1) a−1)−1 �(!ba−1)−1a

which agrees with the expression obtained from left association.

At this point we have established that F is an abelian group under +, and we
need only prove that multiplication distributes. This is easy: if a; b; c 6= 0,

a(b+ c) = a �(!cb−1)−1 b
= �(!ac(ab)−1)−1ab
= ab+ ac

while if any of a; b; c is 0 the calculation is trivial. Distributivity on the right
follows by commutativity of multiplication. So we have F a �eld with units the
group G, as claimed.

Note that in the �eld F we have constructed from G and � , the permutation
� can now be expressed by the formula �(x) = (1 − x)−1 so this is essentially
the only example.
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7 The trivial group case: a nonexistence result

Here we study the case in which our category has only two isomorphism classes
of simple objects: the identity � and a noninvertible m; the fusion rule is
described by m ⊗ m = � � km. There are two nontrivial associativity mor-
phisms, �: hom(�; (mm)m) ! hom(�;m(mm)) and �: hom(m; (mm)m) !
hom(m;m(mm)). These have to satisfy two pentagon equations: mmmm=�
and mmmm=m. Element-level descriptions of these equations such as we pro-
duced in the nontrivial group case are not particularly helpful since we can’t
use character relations to deduce large amounts of symmetry. We can, however,
extract some information by expressing the pentagons in the large as matrix
equations and using determinants.

The mmmm=� pentagon is formulated as a (k2 +1)� (k2 +1) matrix equation.
Write IDk for a k � k identity matrix, and Xk for the matrix which operates
on basis fei⊗ ejgi;j=1:::k by tensor flip: Xk: ei⊗ ej 7! ej ⊗ ei . Write �0 for the
block matrix (1)� (�⊗ IDk). With this notation, the pentagon equation is

��0� = �0
(
(1)�Xk

�
�0

Write M = det� and L = det�. Passing to determinants from the above
equation,

M2Lk = L2k det(Xk) (25)

The mmmm=m pentagon is formulated as a k3 + 2k dimensional matrix equa-
tion. We need some permutation matrices to take care of reordering bases in
between steps of the pentagon (as the Xk did in the smaller pentagon). De�ne

P1 =

0@ 0 IDk 0
IDk 0 0

0 0 IDk3

1A
in other words, P1 exchanges the �rst block of k basis elements with the second
k . Clearly detP1 = (−1)k and P 2

1 = ID. De�ne

P2 = ID2k �
k copiesz }| {

Xk � � � � �Xk

and note P2 is also involutory, with detP2 = (detXk)k .
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Finally, let P3 be the permutation which changes the basis elements
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m m m m

r

qy

px

m

for hom(m; (((mm)m)m)) from (x; y; p; q; r) order to (x; p; y; q; r) order. Now,
if we write

A = �� (IDk ⊗ �) and
B = IDk � (�⊗ IDk)

then the large pentagon mmmm=m is expressed as the matrix equation

AP3BP1AP3 = P1BP2P1BP1

or

AP3BP1AP3 = BP1P1P2B
P1

where exponents denote conjugation.

Now detA = LkM and detB = Lk so on passing to determinants from the
pentagon, we obtain

(LMk)2 = Mk(−1)k(detXk)k (26)

7.1 Lemma detXk =
�

+1; k � 0 or 1 (mod 4)
−1; k � 2 or 3 (mod 4)

Proof The (−1){eigenspace is spanned by k(k − 1)=2 vectors of the form
ei⊗ej−ej⊗ei , 1 � i < j � k . The dimension will be even, hence detXk = +1,
i� 4jk or 4j(k − 1).

7.2 Corollary If k � 2 or 3 (mod 4) then L is a root of −1.

Algebraic & Geometric Topology, Volume 3 (2003)



Near-group categories 759

Proof Case I k � 2 (mod 4) Write k = 2r , where r odd. Equations 25
and 26 reduce to

L2 = M−2r

M2 = (−1)L2r

whence L2r2+2 = −1.

Case II k � 3 (mod 4) In this case equations 25 and 26 reduce to

L2 = M−k

M2 = (−1)Lk

whence Lk
2+4 = −1.

7.3 Lemma �[�; �] is invertible.

Proof This a consequence of duality assumptions (explained in the introduc-
tion). We have assumed the existence of a map �m such that

m! �m! (mm)m
�!m(mm)

1⊗�m−−−!m�! m

is equal to the identity on m, which means �m�[�; �] = 1.

7.4 Proposition L3 = 1 (independent of k).

Proof To prove this we will examine more carefully certain submatrices in the
big pentagon.

First, consider the k � k submatrix corresponding to:

................

................

................

................

.....................
....................

....................
....................

....................
....................

....................
....................

.......

....................
....................
....................
....................
....................
....................
....................
....................
.......

....................
....................
....................
....................
....................
............

....................
....................
................

m m m m

j

m

e

m

−−−−!

................
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m

Working through both sides of the pentagon, we �nd this piece gives the equa-
tion X

p

�[p; j]�[�; �]�[i; p] =
X
p

�[(p; i); �]�[�; (p; j)]

If we de�ne k � k matrices �R and �C as follows:

�R[i; j] = �[�; (i; j)]
�C [i; j] = �[(j; i); �]
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then the above equation can be reformulated as a matrix equation:

�C�R = �[�; �]�2 (27)

Now we consider the k � k submatrix corresponding to:
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This piece gives usX
p;q

�[p; k]�[(i; q); �]�[�; (q; p)] = �[�; �]IDk

which we can reformulate as a matrix equation:

�TC�R� = �[�; �]IDk (28)

By previous proposition, �[�; �] is invertible. So we can combine (27) and (28),
pass to determinants, and cancel to obtain

det�2 = (det�C)(det�R) = det�−1

or L3 = 1 as claimed.

7.5 Proof of theorem 1.4

By 7.2, 7.4, and the hypothesis that the ground ring R has characteristic other
than 2, the pentagon equations admit no solution when k � 2 or 3 (mod 4).

8 Additional structures I: commutativity

With sections 3 through 5 we have given quite a few examples, and a general
construction, of monoidal structures in the maximal-group case. Topological
applications (eg, link invariants) generally require at least a commutative struc-
ture in addition to the monoidal structures, and that means examining the
hexagon equations for coherence of the two structures. In this section we will
list the hexagon equations that need to be satis�ed, reduce them as much as
possible in general, and then show that the general construction of 5.18 always
admits a (symmetric) commuting structure.

Throughout this section we will assume we are in the setting of theorem 1.2 and
have chosen bases so that all the reductions of sections 4 and 5 are in e�ect.
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8.1 Notation for commutativity

This is a slight extension of the notation used previously in [S]. For g; h 2 G,
the commuting isomorphisms are:

gh ! hg is multiplication by �0(g; h)
gm ! mg is multiplication by �1(g)
mg ! gm is multiplication by �2(g)
mm! mm is multiplication by �3(g) on the g summand

and commutativity on the m summands of m ⊗m is represented by a k � k
matrix �4 .

8.2 Unreduced hexagon equations

The point here is simply to write down a transcription of the hexagon equations
using the notation we have developed, without attempting any simpli�cations.
Once we have an entire transcription in hand, we will proceed to analyze and
simplify.

We will refer to the xyz=w hexagon meaning the content of the hexagon identity
for the w summands in the product xyz . Note that lots of associativities will
be invisible since we have chosen bases well.

Let a; b; c stand for arbitrary elements of G.

Hexagons for products with no m’s:

�0(a; c)�0(a; b) = �0(a; bc) (abc=abc)

Hexagons for products with one m:

�1(a)�0(a; b) = �1(a) (abm=m)
�0(a; b)�1(a) = �1(a) (amb=m)
�2(b)�2(a) = �2(ab) (mab=m)

Hexagons for the group summands of products with two m’s:

�2(a)�3(ba−1) = �3(b) (mma=b)
�3(ba−1)�2(a) = �3(b) (mam=b)

�1(a)2 = �(a; ba−1) (amm=b)

Hexagons for the m summands of products with two m’s:

�2(a)γ3(a)�4 = γ2(a)�4γ3(a) (mma=m)
�4γ1(a)�2(a) = γ1(a)�4γ2(a) (mam=m)

�1(a)γ2(a)�1(a) = γ3(a)�1(a)γ1(a) (amm=m)
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The hexagon for group summands in a product of three m’s:

�4�(g)�4 = �(g)�3(g)�(g) (mmm=g)

The hexagon for m summands in a product of three m’s we break into indi-
vidual entries in the matrices.

I For all g; h 2 G,
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�3(g)�[h; g]�3(h) =
X
a2G

�[a; g]�2(a)�[g; a]

+
X
i;j;p

�[(i; j); g]�4 [p; i]�[h; (p; j)]

II For all g 2 G, i; j = 1 : : : k ,
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�3(g)�[(i; p); g]�4 [j; p] =
X
a2G

�[a; g]�2(a)�[(i; j); a]

+
X
r;s;t

�[(r; s); g]�4[t; r]�[(i; j); (t; s)]

III For all g 2 G, r; s = 1 : : : k ,
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X
t

�4[t; s]�[g; (r; t)]�3(g) =
X
a2G

�[a; (r; s)]�2(a)�[g; a]

+
X
j;p;q

�[(p; q); (r; s)]�4 [j; p]�[g; (j; q)]

IV For all i; j; r; s = 1 : : : k ,

................

................

................

....................
....................

....................
.....................
....................
.................
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....................
....................
....................
....................
............

....................
....................
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.....................

....................
.................

....................
....................

....................
....................

....................
............

....................
....................
................

m

mmm

mi

j

X
u;v

�4[u; s]�[(i; v); (r; u)]�4 [j; v] =
X
a2G

�[a; (r; s)]�2(a)�[(i; j); a]

+
X
p;q;t

�[(p; q); (r; s)]�4[t; p]�[(i; j); (t; q)]

That completes the list of hexagon equations. There are also inverse hexagons
to be considered since we do not assume a symmetric commutative structure
but we will postpone analysis of the inverse hexagons until we have simpli�ed
the standard ones.

8.3 Reducing the hexagons

Quite a lot of reductions are possible in the list of hexagons. To start, �0 � 1 is
obvious. We will show that �1; �2 must both be equal to a distinguished linear
character of G. Then �3 is entirely determined up to the value of �3(�), and
happily, the �4 matrix admits considerable simpli�cation as well.

8.4 Proposition �1 = �2

Proof It’s clear from the list of hexagons that �0 � 1 so the present proposi-
tion would follow from the amm=b hexagon if we assumed symmetric commu-
tativity. In general, however, it still follows from the mma=b hexagon together
with its inverse:

�2(a) = �3(b)�3(ba−1)−1 = �1(a)

From the mab=m hexagon it’s now clear that �1 and �2 are linear characters
of G. Our next result sharpens that statement. By the results of section 7,
we know there is a unique character �! with �i��(i)��−1(i) = �! for all i; it
satis�es �2

! = 1 and is the trivial character (ie, ! = �) i� jGj is odd.
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8.5 Proposition �1 = �2 = �!

Proof By the amm=b hexagon, �2
1 = 1. Therefore the amm=m hexagon can

be reduced to
�1(a) = γ3(a)γ1(a)γ2(a)−1

Since γ ’s are diagonalized this is equivalent to

�1(a) = ��−1(i)(a)�i(a)��(i)(a)

for all a and i. Hence, �1 = �! as claimed.

8.6 Proposition (�4 Structure) There are invertible constants  (1); : : : ;  (k)
such that the matrix �4 has the form �4 = ( (j)�i;�(j−1) )i;j

Proof Consider the mma=m hexagon. It now reduces to

�!(g)�4[i; j] = ��(i−1)(g)��−1(i−1)(g)��−1(j)(g)�4[i; j]

for all i; j; and g . But that, together with invertibility of �4 tells us that �4[i; j]
is nonzero (moreover, invertible) i� i = �(j−1).

Note that the mam=m hexagon is satis�ed by precisely the same condition.

8.7 Proposition All of the mmm=g hexagons are satisi�ed i� the constants
 satisfy the identity

 (j) (�(j)−1)�(�(j−1)) = �3(�)�(j)�(�(j))

for all j .

Proof This is simply working out the matrix products on both sides. On the
left,

�4�(g)�4 =
�
 (j) (�(j)−1)�(�(j−1))��(j−1(g)�i;�−1(j)

�
i;j

while on the right,

�(g)�3(g)�(g) =
�
�(j)�(�(j))�3(�)�!(g)�j(g)��(j)(g)�i;�−1(j)

�
i;j

All the �’s cancel and the proposition follows.
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8.8 Reducing the mmm=m hexagon, part I

On the lefthand side,

�3(g)�[h; g]�3(h) = �3(�)2�!(gh)�[�; �]

On the righthand side, the �rst summation isX
a2G

�[a; g]�2(a)�[g; a] = (jGj−1)
X
a2G

�!(a) = jGj−1�!;�

The second summation isX
i;j;p

�[(i; j); g]�4 [p; i]�[h; (p; j)] =
�
jGj−1 (!)�(!)−1�!(gh)−1; ! 6= �
0; ! = �

In case jGj is odd, ! = �, the requirement of this piece of the hexagon is simply

�3(�)2 = �

(recall � = jGj�[�; �] = �1).

In case jGj is even, ! 6= �, the requirement of the hexagon is

�3(�)2 =  (!)�(!)−1

In either case this completes the simpli�cation of this piece of the mmm=m
hexagon.

8.9 Reducing the mmm=m hexagon, part II

On the lefthand side,X
p

�3(g)�[(i; p); g]�4 [j; p] = �3(g)
X
p

c�[(i; p)]�i(g)−1�4[j; p]

= �3(�)�!(g)�i(g)−1c�(i) (�(i)−1) �i;�(j)

On the right, the �rst summation isX
a2G

�[a; g]�2(a)�[(i; j); a] = �c�(i)�i;!�i;�(j)

The second summation isX
r;s;t

�[(r; s); g]�4[t; r]�[(i; j); (t; s)]
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Note this will be nonzero i� there exist indices r; s; and t satisfying

r = s�{1 = �(s)−1

t = �(r−1)
i � j = t

t � s = i

We can solve for the indices uniquely, in terms of i if they exist:

�−1(s) � s = i

so �(s)−1 � �(s) � �−1(s) � s = i

and s = �−1(! � i−1)

Note that if i = ! there could be no s �lling the requirement and the sum
would vanish.

Immediately, t = �(! � i−1) follows. Now from the remaining equation i � j = t
we discover the condition necessary to get a nonzero sum:

j = t � i�{1 = �
(
�−1(t) � �−1(�−1(i−1))

�
= �

(
! � i−1 � �(i−1)

�
= �

(
! � i−1 � �(i−1) � �−1(i−1) � �−1(i−1)−1

�
= �(�(i)) = �−1(i)

So a nonzero summation happens precisely when i = �(j) and the reduction isX
r;s;t

�[(r; s); g]�4[t; r]�[(i; j); (t; s)]

= c�(i)�!(g)−1�i(g)−1 (! � i)N (�(!i−1); �−1(!i−1)) (1− �i;!)�i;�(j)

The upshot is that for jGj odd, ! = �, this piece of the pentagon is equivalent
to the requirement

�3(�) (�(i)−1) =  (i)N (�(i−1); �−1(i−1)) ; for all i

For jGj even, ! 6= �, this piece of the pentagon is equivalent to the requirements

�3(�) (�−1(!)) = 1
�3(�) (�(i)−1) =  (! � i)N (�(! � i−1); �−1(! � i−1)) ; for all i 6= !
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8.10 Reducing the mmm=m hexagon, part III

This is very similar to Part II, so we omit some details. On the left,X
t

�4[t; s]�[g; (r; t)�3(g)

= �3(�)�!(g) (s)
(
jGj� (�(s))��(s)(g)−1c� (�(s))

�−1
�s;�(r)

On the right, the �rst summation isX
a2G

�[a; (r; s)]�2(a)�[g; a] = � (jGj�(!)c�(!))−1 �r;s−1�!;�(s)

The second summation isX
j;p;q

�[(p; q); (r; s)]�4[j; p]�[g; (j; q)]

= rg
(
� (r � s)−1

�
 (r � s)N(r; s)�s;�(r)(1− �r;s−1)

=
(
jGj� (! � �(s))�!��(s)(g)−1c� (! � �(s))

�−1
�  (! � �(s)−1)N (�−1(s); s) �s;�(r)(1− �r;s−1)

So for jGj odd, ! = �, the requirement of the pentagon is

�3(�) (s) =  (�(s)−1))N (�−1(s); s) ; for all s

Note that this is equivalent to the requirement from Part II of the pentagon,
under the change of variable s! �(i)−1 .

For jGj even, ! 6= �, this piece of the pentagon is equivalent to the requirements

�3(�) (�−1(!)) = 1

and
�3(�) (s)� (! � �(s)) c� (! � �(s))

= � (�(s)) c� (�(s)) (! � �(s)−1)N (�−1(s); s)

for all s 6= �−1(!). Note that while the �rst equation duplicates the result from
Part II, the second is a bit more complicated, as it involves � ’s.

8.11 Reducing the mmm=m hexagon, part IV

On the left,X
u;v

�4[u; s]�[(i; v); (r; u)]�4 [j; v]
= �4[�(s−1); s]�[(i; �(j−1)); (r; �(s−1))]�4[j; �(j−1)]
=  (s) (�(j−1))N (r; �(s−1)) �i;r��(s−1)�r;i��(j−1)
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On the right, the �rst summation isX
a2G

�[a; (r; s)]�2(a)�[(i; j); a]

= (jGj� (�−1(r)) c� (�−1(r)))−1 c�(i)
X
a

�!(a)�i(a)−1��−1(r)(a)−1�r;s−1�i;j�{1

= (� (�−1(r)) c� (�−1(r)))−1 c�(i)�r;s−1�i;j�{1�!;i��−1(r)

Recall the second summation isX
p;q;t

�[(p; q); (r; s)]�4 [t; p]�[(i; j); (t; q)]

As usual, there could be at most one nonzero term in the sum and the game is
to �nd the conditions on i; j; r; s which would permit this.

A nonzero sum happens i� there are p; q; t with
r = p � q p = r � s
t = i � j i = t � q

t = �(p−1)

In terms of r and s, the magic indices must be

p = r � s
q = �(s) � �(r � s)−1

t = �
(
(r � s)−1

�
but in terms of i and j we must have

p = �(i−1) � �(j−1)
q = �−1 (j � �(i))
t = i � j = � (�−1(i) � �−1(j))

So we can determine r and s in terms of i and j if there is to be a nonzero
sum.

First, we can solve for s:

�(s) = �−1(j � �(i)) � �(r � s)
= (�(j−1 � �(i)−1))−1 � � (�(i−1) � �(j−1))
= (i−1 � � (�(j−1)−1 � �−1(i)))−1 � � (�(i−1) � �(j−1))
= i � �−1 (�(j−1) � �(i−1)) � � (�(i−1) � �(j−1))
= i � ! � �−1(j) � �−1(i)
= ! � ! � �(i)−1 � �−1(j)
= �(i)−1 � �−1(j)
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and the conclusion is

s = �−1 (�(i)−1 � �−1(j)) = � (�(i) � �(j−1))−1

Now we can solve for r as well:
r = �(i−1) � �(j−1) � � (�(i) � �(j−1))

= �(i−1) � �(j−1) � �−1(i) � � (�(j) � i−1)
= �(j−1) � �−1(j) � � (�−1(i) � j−1)
= � (�−1(i) � j−1)

and so the complete reduction of the second summation is:X
p;q;t

�[(p; q); (r; s)]�4 [t; p]�[(i; j); (t; q)]
= N (r; s) (r � s)N (� ((r � s)−1) ; �(s) � �(r � s)−1)

�r;�(�−1(i)�j−1)�s;�−1(�(i)−1)��−1(j))(1− �r;s−1)(1− �i;j�{1)

Now we can set about extracting practical equations.

Assume the lefthand side is nonzero, ie, i = r � �(s−1) and r = i � �(j−1).

Case I r = s−1 and i = j�{1 In this case the second sum on the right vanishes
but since we have i = r � �(r) = ! � �(r−1), the �rst sum on the right does not
vanish, so we get the requirement

 (s) (�(j−1))N(r; �(s−1)) = (�(�−1(r))c�(�−1(r)))
−1
c�(i)

This can be rewritten all in terms of r , but it requires some work to express
�(j−1) in terms of r :

�(j−1) = r � (r � �(r))�{1

= � (�−1(r) � �(r−1 � �(r)−1))
= (�(r � �(r)))−1 � �−1(r)
= �−1(r � �(r))

So our �nal version of the hexagon in this case is

 (r−1) (�−1(r � �(r)))N(r; �(r)) = (�(�−1(r)c�(�−1(r)))
−1
c�(r � �(r));

for all r .

Case II r 6= s−1 and i 6= j�{1 In this case the �rst sum on the right vanishes
but it is easy to verify that the second does not. As in the previous case we
can solve for �(j−1) in terms of r and s, namely, �(j−1) = �−1(s−1 � �(r)). So
our �nal version of the hexagon in this case is

 (s) (�−1(s−1 � �(r)))N(r; �(s−1))
= N(r; s) (r � s)N (� ((r � s)−1) ; �(s) � �(r � s)−1)
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for all r 6= s−1 .

Case III r 6= s−1 xor i 6= j�{1 If the lefthand side is nonzero, it is easy to
check that this cannot occur.

That takes care of all possibilities when the lefthand side is nonzero. But
conversely any conditions under which the righthand side is nonzero give a
nonzero lefthand side so we have covered all the nontrivial possibilities, and
completed reducing all the hexagon equations. As with the results of the largest
pentagon in section 5, the expressions are awkward but do have the virtue of
admitting an obvious trivial solution.

We summarize the work of this section so far in the following:

8.12 Proposition Suppose near-group fusion rule (G; k), jGj = k + 1, has
a monoidal structure described by �; c� , and N . If a braiding is possible, then
that braiding has the following structure:

(1) �0 � 1

(2) �1(g) = �2(g) = �!(g) for all g 2 G.

(3) �3(g) = �3(�)�!(g) for all g in G

(4) �4(g) =
(
 (j)�i;�(j−1)

�
i;j

where �3(�) and  (1); : : : ;  (k) are invertible
constants.

Proof Summary of results up to this point.

If we want to construct a braiding, therefore, 8.12 gives a recipe for the com-
muting maps in terms of constants �3(�) and  (1); : : : ;  (k). The following
summarizes the constraints on those constants.

8.13 Proposition The hexagon axiom is satis�ed provided the constants
�3(�) and  (1); : : : ;  (k) satisfy the following constraints:

Independent of jGj, for all indices r ,

 (r) (�(r)−1)�(�(r−1)) = �3(�)�(r)�(�(r)) (29)

for r 6= �(r)−1 ,

 (r−1) (�−1(r � �(r)))N(r; �(r))
= (�(�−1(r)c�(�−1(r)))

−1 c�(r � �(r)) (30)
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and for s 6= �(r), s 6= r−1 ,

 (s) (�−1(s−1 � �(r)))N(r; �(s−1))
= N(r; s) (r � s)N (� ((r � s)−1) ; �(s) � �(r � s)−1) (31)

For jGj odd, for all indices r ,

�3(�)2 = � (32)
�3(�) (�(r)−1) =  (r)N (�(r−1); �−1(r−1)) (33)

For jGj even,

�3(�)2 =  (!)�(!)−1 (34)
�3(�) (�−1(!)) = 1 (35)
�3(�) (�(r)−1) =  (! � r)N (�(! � r−1); �−1(! � r−1)) ; for r 6= ! (36)

�3(�) (�−1(r))� (! � r) c� (! � r)
= � (r) c� (r) (! � r−1)N (�(r); �−1(r)) ; for r 6= ! (37)

Proof Equations (29){(31) come from 8.7 and 8.11. Equations (32) and (33)
come from 8.8 and 8.9. Equations (34){(37) come from 8.8, 8.9, and 8.10, with
minor change of indices to make the present list appear consistent.

8.14 Proposition The standard monoidal solution constructed in 5.18 ad-
mits a symmetric commuting structure.

Proof This is now a triviality. The standard monoidal solution corresponds to
taking �; c� , and N all identically equal to 1. Now we can satisfy the constraints
listed in 8.3 by setting �3(�) =  (1) = � � � =  (k) = 1 as well, obtaining a
solution to the hexagon equations. It’s easy to check that this is a symmetric
structure: �0(g; h)�0(h; g) = 1 since �0 � 1. Also �1(g)�2(g) = �2(g)�1(g) =
�!(g)2 = 1. Similarly, �3(g)2 = �3(�)�!(g)2 = 1, and �4 =

(
�i;�(j−1)

�
i;j

is
self-inverse because the map j 7! �(j−1) is an involution. Since the structure is
symmetric we do not need to consider any inverse hexagons.

9 Examples of braidings

9.1 Example 1 k = 1; G = Z=2Z

From section 3, there are three monoidal structures, corresponding to a choice
of � a cube root of unity. In the language we have developed the monoidal
structure is described by c�(1) = 1, xi(1) = � , and there is no N due to a
shortage of indices. Braidings, if possible, are described by invertible constants
�3(�) and  (1). The possibilities are given in the following:
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9.2 Theorem (Braidings, k = 1; G = Z=2Z) The � = 1 structure admits
three distinct braidings corresponding to a choice of  =  (1) with  3 = 1.
The � 6= 1 structures do not admit braidings.

Proof Referring to proposition 7.13 we see that the only requirements of the
hexagon axiom are:

 2� = �3(�)�2

�3(�)2 =  �−1

�3(�) = 1

(these come from equations (29), (34), and (35), respectively; none of the re-
maining equations from 8.13 apply in this case). It is easy that these equations
are satis�ed i�  3 = � and �3(�) =  −1 . But inverse hexagons will be satis�ed
i�  −3 = � as well; we conclude that � = 1 is the only monoidal structure
which admits any commutative structure satisfying both the hexagon and in-
verse hexagon axioms. Of course the  = 1 structure is symmetric; the other
two clearly not.

For reference, then, the complete data for the braidings in this case is:

�0 � (1)
�1(a) = �2(a) = (�(a) )

�3(a) = ( −1�(a) )
�4 = ( )

where � is the nontrivial character of G and a 2 G.

9.3 Example 2 k = 2; G = Z=3Z = f�; g; g2g

From section 3 there are two distinct monoidal structures corresponding to a
choice of � = �1. In the language we have developed, the monoidal structure
is described by

�(1) =�(2) = �

c�(1) = 1; c�(2) = �

N(1; 1) = 1; N(2; 2) = �

Braidings, if possible, are described by �3(�),  (1), and  (2). The possibilities
are given in the following:

9.4 Theorem (Braidings, k = 2; G = Z=3Z) The � = 1 structure admits
four distinct braidings corresponding to a choice of  (1);  (2) with  (1)2 =
 (2)2 = 1. The � = −1 structure does not admit any braiding.
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Proof Referring to proposition 8.13, and using the monoidal data, we see the
requirements of the hexagon axiom are as follows. From equation (29),

 (1) (2)� = �3(�)

From equation (30),
 (2)2 = 1

 (1)2� = 1

There are no indices r; s to which (31) applies. From (32),

�3(�)2 = �

and from (33),
�3(�) (2) =  (1)�
�3(�) (1) =  (2)

It’s clear that these are satis�ed i� we take  (1)2 = � ,  (2)2 = 1, and �3(�) =
 (1) (2)� . For inverse mmm=m hexagon to be satis�ed, though, �3(�) has to
be self-inverse, and so � = +1 is the only possibility for the monoidal structure.
The cases  (1) =  (2) = �1 are symmetric; the  (1) 6=  (2) cases are not.

For reference, the complete data for the braidings in this case is:

�0 � (1)
�1 � �2 � (1)
�3(a) = ( (1) (2) )

�4 =
�

0  (2)
 (1) 0

�
where a 2 G.

9.5 Example 3 k = 3; G = Z=4Z = f�; g; g2; g3g

From section 3, this fusion rule has a unique monoidal structure, which is de-
scribed by taking �; c� , and N all identically 1. As it turns out, the commutative
structure is unique as well.

9.6 Theorem (Braidings, k = 3; G = Z=4Z) The unique monoidal structure
for this fusion rule admits a unique braiding.

Proof Referring to proposition 8.13, and using the monoidal data, we get the
following constraints. From (29) with r = 1; 2; 3, respectively:
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 (1) (2) = �3(�)  (2) (1) = �3(�)

 (3)2 = �3(�)

From (30) with r = 1; 2:

 (3) (2) = 1  (2) (3) = 1

From (31) with (r; s) = (2; 1); (3; 2):

 (1)2 =  (3)  (2)2 =  (1)

From (34) and (35),

�3(�)2 =  (2) �3(�) (1) = 1

And from (36),
�3(�) (2) =  (3) �3(�) (3) =  (1)

Since the monoidal data is trivial, equation (37) is equivalent to (36). It is easy
to check that the solutions to these are of the following form:  (2) any �fth
root of unity;  (1) =  (2)2 ;  (3) =  (2)−1 ; �3(�) =  (2)−2 . In other words,
the commutativity data is determined by the choice of  (2). However, inverse
hexagons (consider mmm=�) force the additional requirement  (1) =  (2) =
 (3), so the only braiding comes from  (2) = 1 (our standard symmetric
solution). For reference, the complete data:

�0 � (1)
�1(a) = �2(a) = (�!(a) )

�3(a) = (�!(a) )

�4 =

0@ 1 0 0
0 0 1
0 1 0

1A
where �! is the nontrivial order 2 character and a 2 G.

10 Additional structures II: twist

This is just a brief comment on the possibility of adding twist morphisms to a
braided near-group category in the setting of Theorem 1.2 (useful for invariants
of framed links). We need endomorphisms �s for each simple s, which balance
the commutative structure in the sense that �r⊗s = �r�s�(r; s)�(s; r) where
�(r; s) is used generically to denote commuting r past s. After the simpli�ca-
tions of the braided structure carried out in section 8, it is easy to see that this
axiom reduces to the following:
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�g = 1 for all g 2 G
�3(�)2�2

m = 1
 (j) (�(j−1)) = �m for all j

This is simple to work out for the small example categories we have studied in
sections 3 and 9, but interesting since it gives a few examples of non-symmetric
braidings that do or do not admit braidings. We say a braiding is balanced if
there is a �m satisfying the twist equations above.

10.1 Proposition (Twist, k = 1; G = Z=2Z) In the setting of theorem 9.2,
the  = 1 structure is balanced. The  6= 1 structures are not.

Proof The symmetric  = 1 case has trivial twist morphisms and the braiding
data from 8.2 together with the twist equations above implies  = 1 immedi-
ately.

10.2 Proposition (Twist, k = 2; G = Z=3Z) In the setting of theorem 9.4,
all of the braidings are balanced.

Proof The symmetric  (1) =  (2) structures take trivial twist morphisms;
taking �m = −1 satis�es the nonsymmetric  (1) = − (2) structures.
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