Torsion in Milnor ber homology

Daniel C. Cohen
Graham Denham
Al exander I. Suciu

Abstract

In a recent paper, Dimca and Nemethi pose the problem of nding a homogeneous polynomial f such that the homology of the complement of the hypersurface de ned by f is torsion-free, but the homology of the Milnor ber of f has torsion. We prove that this is indeed possible, and show by construction that, for each prime p, there is a polynomial with p-torsion in the homology of the Milnor ber. The techniques make use of properties of characteristic varieties of hyperplane arrangements.

AMS Classi cation 32S55; 14J 70, 32S22, 55N25
Keywords Milnor bration, characteristic variety, arrangement

1 Introduction

Let $\mathrm{f}:\left(\mathbb{C}^{+1} ; \mathbf{0}\right)!(\mathbb{C} ; 0)$ be a homogeneous polynomial. Denote by $\mathrm{M}=$ $\mathbb{C}^{+1} \mathrm{nf}^{-1}(0)$ the complement of the hypersurface de ned by the vanishing of f , and let $F=\mathrm{f}^{-1}(1)$ be the Milnor ber of the bundle map $\mathrm{f}: \mathrm{M}!\mathbb{C}$. In [10, Question 3.10], Dimca and Nemethi ask the following.

Question Suppose the integral homology of M is torsion-free Is then the integral homology of F also torsion-free?

The Milnor ber F has the homotopy type of a nite '-dimensional CWcomplex. If f has an isolated singularity at $\mathbf{0}$ (for example, if ' $=1$), then F is homotopic to a bouquet of ' -spheres, and so $\mathrm{H}(\mathrm{F} ; \mathbb{Z})$ is torsion-free The purpose of this paper is to prove the following result, which provides a negative answer to the above question, as soon as ' >1.

Theorem 1 Let p bea prime number, and let ' be an integer greater than 1. Then there is a homogeneous polynomial $f_{p ;}: \mathbb{C}^{\prime+1}!\mathbb{C}$ for which $H(M ; \mathbb{Z})$ is torsion-free but $\mathrm{H}_{1}(\mathrm{~F} ; \mathbb{Z})$ has p-torsion.

Let $x_{1} ;::: ; X^{+}+1$ be coordinates for \mathbb{C}^{+1}. The theorem is proven by nding criteria for the construction of such polynomials, then by explicitly exhibiting a family of 3 -variable polynomials $f_{p}=f_{p}\left(x_{1} ; x_{2} ; x_{3}\right)$ with the desired properties, for all primes p :

$$
f_{p}=\left(\begin{array}{ll}
x_{1} x_{2}\left(x_{1}^{p}-x_{2}^{p}\right)^{2}\left(x_{1}^{p}-x_{3}^{p}\right)\left(x_{2}^{p}-x_{3}^{p}\right) ; & \text { if } p \text { is odd, } \tag{1}\\
x_{1}^{2} x_{2}\left(x_{1}^{2}-x_{2}^{2}\right)^{3}\left(x_{1}^{2}-x_{3}^{2}\right)^{2}\left(x_{2}^{2}-x_{3}^{2}\right) ; & \text { if } p=2 .
\end{array}\right.
$$

It then su ces to take $f_{p ;}\left(x_{1} ;::: ; x^{\prime}+1\right)=f_{p}\left(x_{1} ; x_{2} ; x_{3}\right)$.
The above polynomials are all products of powers of linear factors, and so de ne multi-arrangements of hyperplanes. Se [16] as a general reference on arrangements. For each prime p, the underlying arrangement A_{p} is a deletion of the arrangement associated to the complex reflection group $\mathrm{G}(3 ; 1 ; \mathrm{p})$, and has de ning polynomial $Q\left(A_{p}\right)=x_{1} x_{2}\left(x_{1}^{p}-x_{2}^{p}\right)\left(x_{1}^{p}-x_{3}^{p}\right)\left(x_{2}^{p}-x_{3}^{p}\right)$. As is well known, for any hyperplane (multi)-arrangement, the homology groups of the complement are nitely-generated and torsion-free. Thus, Theorem 1 is a consequence of the following result, which identi es more precisely the torsion in the homology of the Milnor ber of the corresponding multi-arrangement.

Theorem 2 Let $F_{p}=f_{p}^{-1}(1)$ be the Milnor ber of the polynomial de ned in (1). Then:

$$
H_{1}\left(F_{p} ; \mathbb{Z}\right)=\left(\begin{array}{llll}
\left(\begin{array}{l}
3 p+1 \\
\mathbb{Z}^{3 p+1}
\end{array}\right. & \mathbb{Z}_{p} & T ; \quad \text { if } p \text { is odd, } \\
\mathbb{Z}^{3 p+1} & \mathbb{Z}_{2} & \mathbb{Z}_{2} ; & \text { if } p=2,
\end{array}\right.
$$

where T is a nite abelian group satisfying $T \otimes \mathbb{Z}_{q}=0$ for every prime q such that $q \nmid 2(2 p+1)$.

The p-torsion in $\mathrm{H}_{1}\left(\mathrm{~F}_{\mathrm{p}} ; \mathbb{Z}\right)$ is the smallest it can be (without being trivial). Indeed, if $\mathrm{H}(\mathrm{M} ; \mathbb{Z})$ is torsion-free, then an application of the Wang sequence for the Milnor bration $\mathrm{F}!\mathrm{M}!\mathbb{C}$ shows that if the 2-torsion summand of $\mathrm{H}_{1}(\mathrm{~F} ; \mathbb{Z})$ is non-trivial, then it must contain a repeated factor (compare[10, Prop. 3.11]).

The complement M of a (central) arrangement of n hyperplanes admits a minimal cell decomposition, that is, a cell decomposition for which the number of k-cells equals the k-th Betti number, for each $k \quad 0$, see [18], [11]. On the other hand, it is not known whether the Milnor ber of a reduced de ning polynomial for the arrangement admits a minimal cell decomposition. As noted in [18], this Milnor ber does admit a cell decomposition with $n \quad b_{k}(U)$ cells of dimension k, where U is the complement of the projectivized arrangement. Our results show that there exist multi-arrangements for which the Milnor ber

F admits no minimal cell decomposition. Indeed, by the Morse inequalities, the existence of such a cell decomposition would rule out torsion in $\mathrm{H}(\mathrm{F} ; \mathbb{Z})$.

This paper is organized as follows. Relevant results concerning nite abelian covers, characteristic varieties, and Milnor brations of multi-arrangements are reviewed in Sections 2 and 3. Criteria which insure that the homology of the Milnor ber of a multi-arrangement has torsion are established in Section 4. Multi-arrangements arising from deletions of monomial arrangements are studied in Sections 5 and 6. The proof of Theorem 2 is completed in Section 7.

A cknowledgments Some of this work was carried out while the authors attended the March 2002 Mini-Workshop \Cohomology J umping Loci" at the Mathematisches Forschungsinstitut Oberwolfach. We thank the Institute for its hospitality, and for providing an exciting and productive mathematical environment.

This research was supported by Louisiana Board of Regents grant LEQSF (1999-2002)-RD-A-01 and by National Security Agency grant MDA904-00-1-0038 (D. Cohen), by a grant from NSERC of Canada (G. Denham), and by NSF grant DMS-0105342 (A. Suciu).

2 Finite abelian covers and cohomology jumping loci

We start by reviewing some basic facts about nite abelian covers, and how to derive information about their homol ogy from the strati cation of the character torus of the fundamental group by cohomology jumping loci. A more detailed treatment in the case of line arrangements may be found in the survey [20].

2.1 Homology of nite abelian covers

Let ($\mathrm{X} ; \mathrm{x}_{0}$) bea based, connected space with thehomotopy type of a niteCWcomplex, and let $G={ }_{1}\left(X ; x_{0}\right)$ be its fundamental group. Let Y be a nite, regular, abelian cover of X, with deck transformation group A. Finally, let \mathbb{K} be a ed, with multiplicative group of units \mathbb{K}, and let $\mathcal{B}=\operatorname{Hom}(G ; \mathbb{K})$ be the group of \mathbb{K}-valued characters of G.

We shall assume that \mathbb{K} is algebraically closed, and that the characteristic of \mathbb{K} does not divide the order of A. With these assumptions, nitely-generated $\mathbb{K}[A]$-modules are semisimple. Since A is abelian, irreducible representations
are onedimensional, given by characters : A! \mathbb{K}. By composing with the map $G \rightarrow A$, we obtain one-dimensional G-modules denoted \mathbb{K}.

The lemma below is not new, and its proof can be found in various special cases. Se [12], [19], [14] in the context of 2-complexes; [5] in the context of cydic covers of complements of arrangements; and [2] in an algebraic setting. For completeness, we will sketch a proof of the version needed here.

Lemma 2.2 Let p: Y! X be a nite, regular, abelian cover with group of deck transformations A, and let \mathbb{K} be an algebraically closed edd, with char $\mathbb{K} \nmid j A j$. Then

$$
H(Y ; \mathbb{K})={ }_{2 \widehat{A}}^{M} H(X ; \mathbb{K}) ;
$$

where \mathbb{K} denotes the rank one local system given by lifting a character 2 $\mathbb{Q}=\operatorname{Hom}(A ; \mathbb{K})$ to a representation of $G={ }_{1}\left(X ; x_{0}\right)$. Furthermore, thedirect summand indexed by a character is the corresponding isotypic component of $\mathrm{H}(\mathrm{Y} ; \mathbb{K})$ as a $\mathbb{K}[\mathrm{A}]$-module.

Proof The Leray spectral sequence of the cover p: Y ! X degenerates to give an isomorphism

$$
\mathrm{H}(\mathrm{Y} ; \mathbb{K})=\mathrm{H}(\mathrm{X} ; \mathbb{K}[\mathrm{A}]) ;
$$

where the action of G on $\mathbb{K}[A]$ is induced by left-multiplication of G on $A=$
${ }_{1}(X)=p\left({ }_{1}(Y)\right)$. That is, $H(Y ; \mathbb{K})$ is the homology of $C(Y) \otimes_{\mathbb{K}[G]} \mathbb{K}[A]$, a chain complex of A-modules under theright action of A. By our assumptions on \mathbb{K}, all $\mathbb{K}[A]$-modules are semisimple, so the group algebra of A is isomorphic, as an A-module to a direct sum of (one-dimensional) irreducibles: $\mathbb{K}[\mathrm{A}]=$
$2 \widehat{A} \mathbb{K}$. This decomposition into isotypic components commutes with $\otimes_{\mathbb{K}[G]}$ and homology, yielding (2).

2.3 Characteristic varieties

Assume that $H_{1}(X ; \mathbb{Z})=G^{\text {ab }}$ is torsion-free and non-zero, and x an isomorphism : $G^{a b}!\mathbb{Z}^{n}$, where $n=b_{1}(X)$. Let \mathbb{K} be an algebraically closed eld. The isomorphism identi es the character variety $d=\operatorname{Hom}(G ; \mathbb{K})$ with the algebraic torus $\mathbf{T}(\mathbb{K})=(\mathbb{K})^{n}$.
The cohomology jumping loci, or characteristic varieties, of X are the subvarieties ${ }_{d}^{q}(X ; \mathbb{K})$ of the character torus de ned by

$$
\begin{equation*}
{ }_{d}^{q}(X ; \mathbb{K})=f \mathbf{t}=\left(t_{1} ;::: ; t_{n}\right) 2(\mathbb{K})^{n} j \operatorname{dim}_{\mathbb{K}} H^{q}\left(X ; \mathbb{K}_{\mathbf{t}}\right) \quad \text { dg; } \tag{3}
\end{equation*}
$$

where $\mathbb{K}_{\mathbf{t}}$ denotes the rank one local system given by the composite G ${ }_{\underline{p}}$ $\mathrm{G}^{\mathrm{ab}}+\mathbb{Z}^{\mathrm{n}}!_{\mathbb{t}}^{\mathbb{K}}$, and the last homomorphism sends the j-th basis element to t_{j}. For $x e d q>0$, these loci determine a (nite) strati cation

$$
(\mathbb{K})^{n} \quad{ }_{1}^{q}(X ; \mathbb{K}) \quad{ }_{2}^{q}(X ; \mathbb{K}) \quad ;:
$$

De ne the depth of a character $\mathbf{t}: G!\mathbb{K}$ relative to this strati cation by

$$
\operatorname{depth}_{\mathrm{X} ; \mathbb{K}}^{q}(\mathbf{t})=\operatorname{maxfdj} \mathbf{t} 2 \quad{ }_{\mathrm{d}}^{\mathrm{d}}(\mathrm{X} ; \mathbb{K}) \mathrm{g}:
$$

The varieties ${ }_{\mathrm{d}}^{1}(\mathrm{G} ; \mathbb{K})$, the jumping loci for 1-dimensional cohomology of the Eilenberg-MacLane space K (G;1), are particularly accessible. Indeed, these varieties are the determinantal varieties of the Alexander matrix associated to a (nite) presentation of G, see for instance [14, Rem. 5.2].

Now assume that $\mathrm{H}_{2}(\mathrm{X} ; \mathbb{Z})$ is also torsion-free, and that the Hurewicz homomorphism h: ${ }_{2}(X)!H_{2}(X)$ is the zero map. Then $H^{2}(X)=H^{2}(G)$, and this readily implies ${ }_{d}^{1}(X ; \mathbb{K})={ }_{d}^{1}(G ; \mathbb{K})$. Thus, we may compute depth ${ }_{\mathbb{K}}(\mathbf{t}):=$ depth $_{\mathrm{X} ; \mathbb{K}}^{1}(\mathbf{t})$ directly from the Alexander matrix of G .

2.4 Finite cyclic covers

Consider the case where $A=\mathbb{Z}_{N}$ is a cyclic group of order N. Assume the characteristic of the eld \mathbb{K} does not divide N, so that the homomorphism $: \mathbb{Z}_{N}!\mathbb{K}$ which sends a generator of \mathbb{Z}_{N} to a primitive N-th root of unity in \mathbb{K} is an injection. For a homomorphism : $G!\mathbb{Z}_{N}$, and an integer $\mathrm{j}>0$, de nea character ${ }^{j}: G!\mathbb{K}$ by $\left.{ }^{j}(\mathrm{~g})=(\mathrm{g})\right)^{\mathrm{j}}$.
Le X bea nite CW-complex, with $H_{1}(X)$ and $H_{2}(X)$ torsion-free, and such that the Hurewic map h : $2(X)!H_{2}(X)$ is trivial. In view of the preceding discussion, Theorem 6.1 in [14] applies as follows.

Corollary 2.5 Let p: Y! X be a regular, N -fold cyclic cover, with classifying map $:{ }_{1}(X) \rightarrow \mathbb{Z}_{N}$. Let \mathbb{K} be an algebraically closed eld, with char $\mathbb{K} \uparrow \mathrm{N}$. Then

$$
\operatorname{dim}_{\mathbb{K}} H_{1}(Y ; \mathbb{K})=b_{1}(X)+{ }_{1 \notin \mathrm{kjN}} \quad,(k) \operatorname{depth}_{\mathbb{K}} \quad N=k
$$

where' is the Euler totient function.
This result was rst used in [14] to detect 2-torsion in the homology of certain 3 -fold covers of the complement of the deleted B_{3} arrangement (sex7.3 below). We will apply this result to Milnor brations in what follows.

3 Homology of the Milnor ber of a multi-arrangement

In this section, we review some facts concerning the Milnor bration of a complex (multi)-arrangement of hyperplanes, following [5] and [9].

3.1 Hyperplane arrangements

Let A be a central arrangement of hyperplanes in \mathbb{C}^{+1}. The union of the hyperplanes in A is the zero locus of a polynomial

$$
f=Q(A)={ }_{H 2 A} H
$$

where each factor H is a linear form with kernel H . Let $\mathbb{C}!\mathbb{C}^{+1} \mathrm{nf} \mathbf{O g}$! $\mathbb{C P}^{\prime}$ be the Hopf bundle, with ber $\mathbb{C}=\mathbb{C} n f 0 \mathrm{~g}$. The projection map of this (principal) bundle takes the complement of the arrangement, $M=M(A)=$ $\mathbb{C}^{+1} \mathrm{nf}^{-1}(0)$, to the complement U of the projectivization of A in $\mathbb{C P}^{\prime}$. The bundle splits over U, and so $M=U \quad \mathbb{C}$.
It is well known that U is homotopy equivalent to a nite CW-complex (of dimension at most '), and that $\mathrm{H}(\mathrm{U} ; \mathbb{Z})$ is torsion-free Furthermore, for each k 2, the Hurewicz homomorphism h : $k(U)!H_{k}(U)$ is the zero map, see [17]. Thus, the assumptions from $\times 2.4$ hold for $\mathrm{X}=\mathrm{U}$.

The fundamental group ${ }_{1}(M)$ is generated by meridian loops (positively oriented linking circles) about thehyperplanes of A. The homology dasses of these loops fredy generate $H_{1}(M)=\mathbb{Z}^{n}$, where $n=\operatorname{deg}(f)=j A j$. We shall abuse notation and denote both a meridian loop about hyperplane H 2 A , and its image in $\mathcal{O}^{(U)}$ by the samesymbol, γ_{H}. Notethat thesemeridians may bechosen so that ${ }_{H 2 A} Y_{H}$ is null-homotopic in U. In fact, $\quad 1(U)=1(M)=h_{H 2 A} Y_{H} i$, and so $\mathrm{H}_{1}(\mathrm{U})={ }_{1}(\mathrm{U})^{\mathrm{ab}}=\mathbb{Z}^{\mathrm{n}-1}$.

3.2 The Milnor bration

As shown by Milnor, the restriction of $f: \mathbb{C}^{+1}!\mathbb{C}$ to M de nes a smooth bration $f: M!\mathbb{C}$, with ber $F=f^{-1}(1)$ and monodromy $h: F$! F given by multiplication by a primitive n-th root of unity in \mathbb{C}.
Therestriction of the Hopf map to the Milnor ber gives rise to an n-fold cyclic covering F! U. This covering is classi ed by the epimorphism : ${ }_{1}(U) \rightarrow \mathbb{Z}_{n}$ that sends all meridians γ_{H} to the same generator of \mathbb{Z}_{n}. Se [5] for details.

Now x an ordering $A=f H_{1} ; \mathrm{H}_{2} ;::: ; \mathrm{H}_{\mathrm{n}}$ on the set of hyperplanes. Let $\mathbf{a}=\left(a_{1} ; a_{2} ;::: ; a_{n}\right)$ be an n-tuple of positive integers with greatest common divisor equal to 1 . We call such an n-tuple a choice of multiplicities for A. The (unreduced) polynomial

$$
\mathrm{f}_{\mathbf{a}}={ }_{i=1}^{\mathrm{M}_{\mathrm{i}}} \underset{\mathrm{a}_{i}}{\mathrm{H}_{i}}
$$

de nes a multi-arrangement $A_{\mathbf{a}}=H_{1}^{(1)} ;::: ; H_{1}^{\left(a_{1}\right)} ;::: ; H_{n}^{(1)} ;::: ; H_{n}^{\left(a_{n}\right)}$. Note that $A_{\mathbf{a}}$ has the same complement M, and projective complement U, as A, for any choice of multiplicities. Let $\mathrm{f}_{\mathrm{a}}: \mathrm{M}!\mathbb{C}$ be the corresponding Milnor bration. As we shall see, the ber $\mathrm{F}_{\mathbf{a}}=\mathrm{f}_{\mathbf{a}}^{-1}(1)$ does depend signi cantly on a.

3.3 Homology of the Milnor ber

Let $N={ }^{P}{ }_{i=1}^{n} a_{i}$ be the degre of f_{a}, and let $\mathbb{Z}_{N}=h g j g^{N}=1 i$ be the cydic group of order N , with xed generator g . As in the reduced case above, the restriction of the Hopf map to $\mathrm{Fa}_{\mathbf{a}}$ gives rise to an N -fold cyclic covering F_{a} ! U, classi ed by the homomorphism $\quad \mathbf{a}: \quad{ }_{1}(U) \rightarrow \mathbb{Z}_{N}$ which sends the meridian γ_{i} about H_{i} to $g^{a_{i}}$.
For any edd \mathbb{K}, let : $(\mathbb{K})^{n}$! \mathbb{K} be the map which sends an n-tuple Qf elements to their product. Since the meridians γ_{i} may be chosen so that ${ }_{i=1}^{n} Y_{i}=1$, if $\mathbf{s} 2(\mathbb{K})^{n}$ satis es $(\mathbf{s})=1$, then \mathbf{s} gives rise to a rank one local system on U , compare $\times 2.3$. We abuse notation and denote this local system by $\mathbb{K}_{\mathbf{s}}$.
Suppose that \mathbb{K} is algebraically closed, and char \mathbb{K} does not divide N. Then there is a primitive N -th root of unity $2 \mathbb{K}$. Let $\mathbf{t} 2(\mathbb{K})^{\mathrm{n}}$ be the character with $t_{i}=a_{i}$, for $1 \quad i \quad n$. Note that $(\mathbf{t})=1$. Let $h_{a}: F_{a}!F_{a}$ be the geometric monodromy of the Milnor bration $f_{a}: M!\mathbb{C}$, given by multiplying coordinates in \mathbb{C}^{+1} by a primitive N -th root of unity in \mathbb{C}. The action of the algebraic monodromy ($\mathrm{ha}_{\mathbf{a}}$): H ($\mathrm{F}_{\mathbf{a}} ; \mathbb{K}$)! $\mathrm{H}\left(\mathrm{F}_{\mathbf{a}} ; \mathbb{K}\right)$ coincides with that of the deck transformations of the covering Fa_{a} ! U. Lemma 2.2 yields the following.

Lemma 3.4 With notation as above, we have

Furthermore, the k-th summand is an eigenspace for $\left(h_{a}\right)$ with eigenvalue k.

The next lemma appeared in [9] in the complex case For convenience, we reproduce the proof in general.

Lemma 3.5 Let \mathbb{K} bean algebraically closed edd, and let $\mathbf{s} 2(\mathbb{K})^{n}$ bean element of nite order, with $(\mathbf{s})=1$. Then there exists a choice of multiplicities \mathbf{a} for A so that $H_{q}\left(U ; \mathbb{K}_{\mathbf{s}}\right)$ is a monodromy eigenspace of $H_{q}\left(F_{a} ; \mathbb{K}\right)$.

Proof Let $2 \mathbb{K}$ bea primitive k-th root of unity, where k is the order of \mathbf{s}. Then, for each $2 \quad i \quad n$, there is an integer $1 \quad a_{i} \quad k$ such that $s_{i}=a_{i}$. By choosing ether $\beta \quad a_{1} \quad k$ or $k+1 \quad a_{1} \quad 2 k$ suitably, we can arrange that the sum $N={ }_{i=1}^{n} a_{i}$ is not divisible by $p=$ char \mathbb{K}, if $p>0$. Since \mathbf{s} and both have order k, we have gcdfa $a_{1} ;::: ; a_{n} g=1$. Since the product of the coordinates of \mathbf{s} is 1 , the integer k divides N

By insuring $\mathrm{p} \nmid \mathrm{N}$, there is an element $2 \mathbb{K}$ for which $\mathrm{N}^{\mathrm{k}}=$. By construction, $\mathbf{a}=\left(a_{1} ;::: ; a_{n}\right)$ is a choice of multiplicities for which $\mathbf{s}=\mathbf{t}^{N k}$ in the de composition of Lemma 3.4, so $\mathrm{H}_{\mathrm{q}}\left(\mathrm{U} ; \mathbb{K}_{\mathbf{s}}\right)$ is a direct summand of $\mathrm{H}_{\mathrm{q}}\left(\mathrm{F}_{\mathbf{a}} ; \mathbb{K}\right)$.

Remark 3.6 The choice of multiplicities a in Lemma 3.5 is not unique. As above, write $s_{i}=a_{i}$ for integers a_{i}, where is a k-th root of unity and $1 \quad a_{i} \quad k$. Let $\mathbf{a}=\left(a_{1} ;::: ; a_{n}\right)$. Then $H_{q}\left(U ; \mathbb{K}_{\mathbf{s}}\right)$ is also a monodromy eigenspace of $F_{\mathbf{b}}$ if $\mathbf{b}=\mathbf{p}^{+}$, for all $2(k \mathbb{Z})^{n}$ for which satisfy $b>0$ for each i and, if $p>0, p \nmid{ }_{i=1}^{n} b$.

4 Translated tori and torsion in homology

4.1 Characteristic varieties of arrangements

Le $A=\mathrm{fH}_{1} ;::: ; \mathrm{H}_{\mathrm{n}} \mathrm{g}$ be a central arrangement in \mathbb{C}^{+1}. Let M denote its complement, and U the complement of its projectivization. Then the restriction of the Hopf bration $\mathbb{C}!M$! U induces an isomorphism ${ }_{1}(U)={ }_{1}(M)=h n_{i=1} \nu_{i} i$, as in the previous section. For this reason, although the rank of ${ }_{1}(U)^{\text {ab }}$ is $n-1$, we shall regard the characteristic varieties of U as embedded in the character torus of ${ }_{1}(M)$:

$$
\begin{equation*}
{ }_{\mathrm{d}}^{\mathrm{q}}(\mathrm{U} ; \mathbb{K})=\mathbf{t} 2 \mathrm{ker}=(\mathbb{K})^{\mathrm{n}-1} \mathrm{j} \operatorname{dim}_{\mathbb{K}} \mathrm{H}^{\mathrm{q}}\left(\mathrm{U} ; \mathbb{K}_{\mathbf{t}}\right) \quad \mathrm{d} ; \tag{4}
\end{equation*}
$$

(compare with (3)), where, as above, $:(\mathbb{K})^{\mathrm{n}}!\mathbb{K}$ is the homomorphism given by $\left(t_{1} ;::: ; t_{n}\right)=t_{1} \quad t_{n}$.

Proposition 4.2 For q 1 and d 0 ,

In particular, for $\mathbf{t} 2$ ker , we have

$$
\operatorname{depth}_{M ; \mathbb{K}}^{q}(\mathbf{t})=\operatorname{depth}_{\cup ; \mathbb{K}}^{q}(\mathbf{t})+\operatorname{depth}_{\cup ; \mathbb{K}}^{q-1}(\mathbf{t}):
$$

Proof Let $\mathbb{K}_{\mathbf{t}}$ bethe local system on M corresponding to $\mathbf{t} 2(\mathbb{K})^{\mathrm{n}}$. There is an induced local system $\mathrm{i} \mathbb{K}_{\mathbf{t}}$ on \mathbb{C}, with monodromy (\mathbf{t}), where i: \mathbb{C} ! M is the inclusion of the ber in the Hopf bundle $\mathbb{C}!\mathrm{M}$! U. Fix a section s : U! M of this trivial bundle, and let $\mathrm{s} \mathbb{K}_{\mathbf{t}}$ be the induced local system on U. Recall that we denote this local system by $\mathbb{K}_{\mathbf{t}}$ in the case where $(\mathbf{t})=1$. To prove the Proposition, it su ces to show that, for each q 1 ,

$$
H^{\mathrm{q}}\left(\mathrm{M} ; \mathbb{K}_{\mathbf{t}}\right)=\begin{array}{lll}
0 ; & \text { if }(\mathbf{t}) \in 1 ; \\
H^{\mathrm{q}}\left(\mathrm{U} ; \mathbb{K}_{\mathbf{t}}\right) & H^{\mathrm{q}-1}\left(U ; \mathbb{K}_{\mathbf{t}}\right) ; & \text { if } \\
(\mathbf{t})=1:
\end{array}
$$

Let $C(\mathbb{M})$ and $C(\Theta)$ be the chain complexes of the universal covers of M and U, viewed as modules over the group rings of $G={ }_{1}(M)$ and $G=$ ${ }_{1}(\mathrm{U})$, respectively. Then the cohomology of M with coe cients in $\mathbb{K}_{\mathbf{t}}$ is (by de nition) the cohomology of the complex $C=\operatorname{Hom}_{\mathbb{Z} G}(\mathbb{C}(\mathbb{G}) ; \mathbb{K})$, where the \mathbb{Z} G-module structure on \mathbb{K} is given by the representation $G \underline{̣}{ }^{\text {b }} \mathrm{G}^{\mathrm{ab}}+$ $\mathbb{Z}^{n}!\mathbb{K}$. Similarly, $\mathrm{H}\left(\mathrm{U} ; \mathrm{s} \mathbb{K}_{\mathbf{t}}\right)$ is the cohomology of the complex $\mathrm{C}=$ $\mathrm{Hom}_{\mathbb{Z}}(\mathrm{C}(\Theta) ; \mathbb{K})$. Denote the boundary maps of the complexes C and C by and , respectively.

Multiplication by 1- (t) gives rise to a chain map C ! C. Since M = U \mathbb{C} is a product, and the monodromy of the induced local system $i \mathbb{K}_{\mathbf{t}}$ on \mathbb{C} is
(t), the complex C may be realized as the mapping cone of this chain map. Explicitly, we have $\mathrm{C}^{q}=\mathrm{C}^{q} \quad \mathrm{C}^{q-1}$, and $\quad \mathrm{q}: \mathrm{C}^{q} \quad \mathrm{C}^{q-1}!C^{q+1} \quad \mathrm{C}^{q}$ is given by

$$
{ }^{q}(x ; y)={ }^{q}(x) ;{ }^{q-1}(y)+(-1)^{q}(1-(t)) x:
$$

If $(\mathbf{t}) \boldsymbol{G}$, it is readily decked that the complex C is acydic. If $(\mathbf{t})=1$, it follows immediately from the above description of the boundary map that $H^{q}(C)=H^{q}(C) \quad H^{q-1}(C)$ for each q.

Now let dA be the decone of A with respect to one of the hyperplanes (which, after a linear change of variables, may be assumed to be a coordinate hyperplane). The complement, $M(d A)$, in \mathbb{C}^{\prime} is di eomorphic to the complement
U of the projectivization of A. An isomorphism ${ }_{1}(\mathrm{U})$! ${ }_{1}(\mathrm{M}(\mathrm{dA}))$ is obtained by deleting the meridian corresponding to the deconing hyperplane Let $:(\mathbb{K})^{\mathrm{n}}!(\mathbb{K})^{\mathrm{n}-1}$ be the map that forgets the corresponding coordinate Then induces abijection \quad : ${ }_{\mathrm{d}}^{\mathrm{d}}(\mathrm{U} ; \mathbb{K})!\quad{ }_{\mathrm{d}}^{\mathrm{g}}(\mathrm{M}(\mathrm{dA}) ; \mathbb{K})$.
If \mathbf{s} is a nontrivial character, then $\mathrm{H}^{0}\left(\mathrm{U} ; \mathbb{K}_{\mathbf{s}}\right)=0$ and depth $\mathrm{H}_{\mathrm{U} ; \mathbb{K}}^{1}(\mathbf{s})<\mathrm{n}-1$. Consequently, as shown in [8] using properties of Fitting ideals, for $\mathrm{q}=1$ and $\mathrm{d}<\mathrm{n}$, the above proposition simpli es to:

$$
\begin{equation*}
{ }_{\mathrm{d}}^{1}(\mathrm{M}(\mathrm{~A}) ; \mathbb{K})=\mathbf{t} 2(\mathbb{K})^{\mathrm{n}} \mathrm{j} \quad(\mathbf{t}) 2 \quad{ }_{\mathrm{d}}^{1}(\mathrm{M}(\mathrm{dA}) ; \mathbb{K}) \text { and } \quad(\mathbf{t})=1: \tag{5}
\end{equation*}
$$

Each irreducible component of $\quad{ }_{d}^{q}(U ; \mathbb{C})$ (resp., $\quad{ }_{d}^{q}(M(d A) ; \mathbb{C})$) is a torsiontranslated subtorus of the algebraic torus $\mathbf{T}(\mathbb{C})=(\mathbb{C})^{n}$, se ${ }^{\text {en }}$. That is, each component of ${ }_{d}^{q}(\mathrm{U} ; \mathbb{C})$ is of the form gT , where T is a subgroup of $\mathbf{T}(\mathbb{C})$ isomorphic to a product of 0 or more copies of \mathbb{C}, and $\operatorname{g~} 2 \mathbf{T}(\mathbb{C})$ is of nite order. Recall that every algebraic subgroup of $\mathbf{T}(\mathbb{K})$ can be written as the product of a nitegroup with a subtorus [15, p. 187]. If the order of an element $\mathrm{g} 2 \mathbf{T}(\mathbb{K})$ is nite, we will denote its order by ord (g).

4.3 J umping loci and the Milnor bration

White $H_{i}=\operatorname{ker}\left({ }_{i}\right)$ and let $f_{a}=Q_{i=1}{ }_{i}^{a_{i}}$ be the polynomial of degree $N=$ $n_{i=1}^{n} a_{i}$ corresponding to a choice of multiplicities $\mathbf{a}=\left(a_{1} ;:: ; ; a_{n}\right)$ for A. Recall that $\mathrm{F}_{\mathbf{a}}$, the Milnor ber of $\mathrm{f}_{\mathbf{a}}: \mathrm{M}!\mathbb{C}$, is the regular, N -fold cyclic cover of U dassi ed by the homomorphism a: $\quad{ }_{1}(U) \rightarrow \mathbb{Z}_{N}$ given by a $\left(\gamma_{i}\right)=$ $g^{a_{i}}$. Recall also that $b_{1}(U)=j A j-1=n-1$. From Corollary 2.5, we obtain the following.

Theorem 4.4 Let \mathbb{K} be an algebraically closed edd, with char $\mathbb{K} \nmid \mathrm{N}$. Then

$$
\operatorname{dim}_{\mathbb{K}} H_{1}\left(F_{\mathbf{a}} ; \mathbb{K}\right)=n-1+{\underset{1 G k j N}{N}}^{N}(k) \operatorname{depth}_{\mathbb{K}}{\underset{\mathbf{a}}{ }}_{N=k}^{N}:
$$

4.5 J umping loci in di erent characteristics

Our goal for the rest of this section is to show that if a translated torus gT is a positivedimensional component of a characteristic variety ${ }_{d}^{q}(\mathrm{U} ; \mathbb{C})$, but T itself is not a component, then there exist choices of multiplicities a for which $\mathrm{H}_{\mathrm{a}}\left(\mathrm{F}_{\mathrm{a}} ; \mathbb{Z}\right)$ has integer torsion (Theorem 4.11). In fact, we will describe how to choose such exponents explicitly, and give a more general criterion for the existence of torsion (Theorem 4.9).

We start by comparing representations of the fundamental group over edds of positive characteristic with those over \mathbb{C}. Let be a root of unity, and denote by $\mathbb{Z}[]$ the ring of cyclotomic integers.

Lemma 4.6 Let $\mathrm{i}: \mathbb{Z}[]!\mathbb{C}$ and $\mathrm{j}: \mathbb{Z}[]!\mathbb{K}$ bering homomorphisms, and assume that i is an injection. For any $\mathbf{t} 2(\mathbb{Z}[])^{n}$ with $\quad(\mathbf{t})=1$, let t and $j \mathbf{t}$ denote the images of \mathbf{t} in $\mathbf{T}(\mathbb{C})$ and $\mathbf{T}(\mathbb{K})$, respectively. Then

$$
\operatorname{dim}_{\mathbb{C}} \mathrm{H}_{\mathrm{q}}\left(\mathrm{U} ; \mathbb{C}_{\mathbf{i} \mathbf{t}}\right) \quad \operatorname{dim}_{\mathbb{K}} \mathrm{H}_{\mathrm{q}}\left(\mathrm{U} ; \mathbb{K}_{\mathbf{j}} \mathbf{t}\right):
$$

Proof Since the character \mathbf{t} satis es (t) = 1, it gives rise to a homomorphism $: \mathbb{Z} G!\mathbb{Z}[]$, where $G={ }_{1}(U)$ and $\mathbb{Z} G$ is the integral group ring. Let $K=C(\Theta) \otimes \mathbb{Z}[]$ denote the corresponding tensor product of the chain complex of the universal cover of U with $\mathbb{Z}[]$, a chain complex of $\mathbb{Z}[]$-modules. Then the homology groups under comparison are just those of $K \otimes_{i} \mathbf{C}$ and $K \otimes_{j} \mathbb{K}$, respectively. Since the rst map i is flat, the inequality follows.

Lemma 4.7 Given an arrangement A and positive integers q, d, thefollowing two statements are equivalent.
(1) The characteristic variety ${ }_{d}^{q}(\mathrm{U} ; \mathbb{C})$ contains an element g of nite order for which the cyclic subgroup hgi $6{ }_{d}^{q}(U ; \mathbb{C})$. Moreover, there exists h 2 hi $\mathrm{n}{ }_{\mathrm{d}}^{\mathrm{q}}(\mathrm{U} ; \mathbb{C})$ and a prime p with pj ord(g) but $\mathrm{p} \nmid$ ord (h).
(2) There exist \mathbf{s}; $\mathbf{t} 2 \mathbf{T}(\mathbb{C})$, a prime p, and integer $r \quad 1$ for which
(a) $\operatorname{depth}_{\cup ; \mathbb{C}}^{q}(\mathbf{t})<\operatorname{depth}_{\cup ; \mathbb{C}}^{q}(\mathbf{s})=\mathrm{d}$;
(b) $\operatorname{ord}\left(\boldsymbol{s t}^{-1}\right)=\mathrm{p}^{r}$;
(c) $\mathrm{p} \nmid \operatorname{ord}(\mathbf{t})$.

Proof (1)) (2): Write hgi $\left.={ }^{L} m_{i=1} \mathbb{Z}=p_{i}^{r_{i}} \mathbb{Z}\right)$, wherethe primes $p_{1} ; p_{2} ;::: ; p_{m}$ are all distinct. For each h 2 hgi, de ne an m-tuple (h) as follows: for 1 i m, let $(h)_{i}=a_{i}$, where the projection of h to $\mathbb{Z}=\left(p_{i}^{r_{i}} \mathbb{Z}\right)$ has order $p_{i}^{a_{i}}$. Clearly $0 \quad a_{i} \quad r_{i}$.

Let S consist of those elements h 2 hgi for which h $2{ }_{d}^{q}(\mathrm{U} ; \mathbb{C})$. Since dharacteristic varieties are closed under cyclotomic Galois actions, two de ments $h_{1} ; \mathrm{h}_{2} 2$ hgi of the same order are either both in S or both not in S. By reordering the p_{i} 's, our hypothesis states that there exists $h z S$ with
(h) $=\left(a_{1} ;::: ; a_{j} ; 0 ;::: ; 0\right)$, for some nonzero integers $a_{1} ; a_{2} ;::: ; a_{j}$, where
$\mathrm{j}<\mathrm{m}$. Choose $\mathrm{h} \neq \mathrm{S}$ of this form for which j is minimal. Since 12 S and
(1) $=(0 ; 0 ;::: ; 0)$, we have j 1. Then for some $h^{0} 2$ tgi of order $p_{j}^{r_{j}-a_{j}}$,
we have $\left(h^{9} 9\right)=\left(a_{1} ;::: ; a_{j-1} ; 0 ; 0 ;::: ; 0\right)$. By minimality, $h^{0} 2$ S. Then the pair of $\mathbf{t}=\mathrm{h}$ and $\mathbf{s}=\mathrm{hh}^{0}$ together with $\mathrm{p}=\mathrm{p}_{\mathrm{r}}, \mathrm{r}=\mathrm{r}_{\mathrm{j}}-\mathrm{a}_{\mathrm{j}}$ satisfy the conditions (2).
(2)) (1): Let $\mathrm{g}=\mathbf{s}, \mathrm{h}=\mathbf{t}$, and $\mathrm{h}^{0}=\mathrm{gh}^{-1}$. By hypothesis, ord(hh $9=$ $\operatorname{ord}(\mathrm{h}) \operatorname{ord}(\mathrm{h} 9$, from which it follows that $\mathrm{hgi}=\mathrm{mh} 9=\mathrm{h} ; \mathrm{h} 9$. In particular, h 2 hgi, but by (a), h $\underset{d}{\mathrm{q}}(\mathrm{U} ; \mathbb{C})$.

4.8 Torsion jumps

Once again, let \mathbb{K} be an algebraically dosed eld of positive characteristic p.
Theorem 4.9 If A is an arrangement for which the characteristic variety ${ }_{d}(U ; \mathbb{C})$ satis es one of the equivalent conditions of Lemma 4.7, then

$$
\operatorname{dim}_{\mathbb{K}} \mathrm{H}_{\mathrm{q}}\left(\mathrm{U} ; \mathbb{K}_{\mathbf{t}}\right) \quad \mathrm{d}:
$$

Proof Let $\mathrm{k}=\operatorname{ord}(\mathbf{t})$; from condition (2), parts (b) and (c), we have ord(s) $=$ $p^{r} k$. Let be a root of unity in \mathbb{C} of order $p^{r} k$, so that $\mathbf{s} ; \mathbf{t} 2(\mathbb{Z}[])^{n}$. Let $\mathrm{j}: \mathbb{Z}[]!\mathbb{K}$ be given by choosing a k-th root of unity j() in \mathbb{K}. Since $\operatorname{ord}\left(\mathbf{s t}^{-1}\right)$ is a power of the characteristic of \mathbb{K}, we have $\mathrm{j} g=\mathrm{j} h$. Then

$$
\operatorname{dim}_{\mathbb{K}} H_{q}\left(U ; \mathbb{K}_{\mathbf{j}} \mathbf{t}\right)=\operatorname{dim}_{\mathbb{K}} \mathrm{H}_{\mathrm{q}}\left(\mathrm{U} ; \mathbb{K}_{\mathrm{j}}^{\mathbf{s}}\right) \quad \mathrm{d} ;
$$

by condition (2)(a) and Lemma 4.6.
Corollary 4.10 Suppose A is an arrangement for which the characteristic variety $\quad \underset{d}{q}(U ; \mathbb{C})$ satis es the equivalent conditions of Lemma 4.7. Then there is a choice of multiplicities a for A for which the group $H_{q}\left(F_{a} ; \mathbb{Z}\right)$ contains p-torsion elements.

Proof Assume that $\mathbf{t} 2 \mathbf{T}(\mathbb{C})$ satis es condition (2)(a) of Lemma 4.7. Then, since $\mathbf{t} \sqrt{\mathrm{G}} \quad \mathrm{d}_{\mathrm{d}}(\mathrm{U} ; \mathbb{C})$, we have $\operatorname{dim}_{\mathbb{C}} \mathrm{H}_{\mathrm{q}}\left(\mathrm{U} ; \mathbb{C}_{\mathbf{t}}\right)<\operatorname{dim}_{\mathbb{K}} \mathrm{H}_{\mathrm{q}}\left(\mathrm{U} ; \mathbb{K}_{\mathbf{t}}\right)$. Lemma 3.5 implies that there exists a choice of multiplicities a for which $\mathrm{H}_{\mathrm{q}}\left(\mathrm{U} ; \mathbb{K}_{\mathbf{t}}\right)$ and $\mathrm{H}_{\mathrm{q}}\left(\mathrm{U} ; \mathbb{C}_{\mathbf{t}}\right)$ are monodromy eigenspaces. Using Lemmas 3.4 and 4.6, with one of the inequalities being strict, we nd that $\operatorname{dim}_{\mathbb{C}} \mathrm{H}_{\mathrm{q}}\left(\mathrm{F}_{\mathbf{a}} ; \mathbb{C}\right)<\operatorname{dim}_{\mathbb{K}} \mathrm{H}_{\mathrm{q}}\left(\mathrm{F}_{\mathbf{a}} ; \mathbb{K}\right)$. The result follows.

The following statement is a special case of Theorem 4.9 that applies to some speci c behavior observed in characteristic varieties (see [21] and [4]). In particular, we will use it in what follows to nd torsion for our family of examples.

Theorem 4.11 Let $\mathbf{s T}$ be a component of ${ }_{d}^{q}(U ; \mathbb{C})$, where T is a subtorus of $\mathbf{T}(\mathbb{C})$ and \mathbf{s} is a nite-order element in $\mathbf{T}(\mathbb{C})$. Suppose that $T 6{ }_{d}^{q}(U ; \mathbb{C})$. Then there exist choices of multiplicities \mathbf{a} for A for which the group $\mathrm{H}_{\mathrm{q}}\left(\mathrm{F}_{\mathbf{a}} ; \mathbb{Z}\right)$ has p-torsion, for some prime p dividing ord(s).

Proof First, note that T is positivedimensional, since $\mathbf{1}$ is contained in all non-empty characteristic varieties. Since T is not contained in ${ }_{d}^{q}(U ; \mathbb{C})$, there exist in nitely many niteorder elements h 2 T for which $\mathrm{h} \boldsymbol{\mathrm { B }}{ }_{\mathrm{d}}^{\mathrm{q}}(\mathrm{U} ; \mathbb{C})$. (In fact, for each su ciently large integer k, there exist elements h with ord(h) $=k$ and $\left.h z{ }_{d}^{q}(U ; \mathbb{C}).\right)$

Choose any element h as above of order relatively prime to that of \mathbf{s}, and let $u=h^{r}$ for an r for which $u^{\text {ord }(\mathbf{s})}=h$. Let $g=s u$. Then, by construction, g and h satisfy the rst condition of Lemma 4.7. By Corollary $4.10, \mathrm{H}_{\mathrm{q}}\left(\mathrm{F}_{\mathrm{a}} ; \mathbb{Z}\right)$ has torsion of order p for those a given by Lemma 3.5.

5 Deletions of monomial arrangements

Now we turn to a detailed study of arrangements obtained by dedeing a hyperplane from a monomial arrangement. Using results from [21] and [4], we check that these arrangements satisfy the hypotheses of Theorem 4.11. Hence, there are corresponding multi-arrangements whose Milnor bers have torsion in homology.

5.1 Fundamental group of the complement

Let A_{p} be the arrangement in \mathbb{C}^{3} de ned by the homogeneous polynomial $\mathrm{Q}\left(\mathrm{A}_{\mathrm{p}}\right)=\mathrm{x}_{1} \mathrm{x}_{2}\left(\mathrm{x}_{1}^{\mathrm{p}}-\mathrm{x}_{2}^{\mathrm{p}}\right)\left(\mathrm{x}_{1}^{\mathrm{p}}-\mathrm{x}_{3}^{\mathrm{p}}\right)\left(\mathrm{x}_{2}^{\mathrm{p}}-\mathrm{x}_{3}^{\mathrm{p}}\right)$. This arrangement is obtained by deleting the hyperplane $x_{3}=0$ from the complex reflection arrangement associated to the full monomial group $\mathrm{G}(3 ; 1 ; \mathrm{p})$.

The projection \mathbb{C}^{3} ! \mathbb{C}^{2} de ned by $\left(x_{1} ; x_{2} ; x_{3}\right)$ I $\left(x_{1} ; x_{2}\right)$ restricts to a bundle $\operatorname{map} M\left(A_{p}\right)!M(B)$, where B is de ned by $Q(B)=x_{1} x_{2}\left(x_{1}^{p}-x_{2}^{p}\right)$. The ber of this bundle is the complex line with $2 p$ points removed. Thus, A_{p} is a ber-type arrangement, with exponents ($1 ; p+1 ; 2 p$). Hence, the fundamental group $G\left(A_{p}\right)={ }_{1}\left(M\left(A_{p}\right)\right)$ may be realized as a semidirect product

$$
\begin{equation*}
\mathrm{G}\left(\mathrm{~A}_{\mathrm{p}}\right)=\mathbf{F}_{2 \mathrm{p}} \rtimes \mathrm{G}(\mathrm{~B}) ; \tag{6}
\end{equation*}
$$

where $\mathbf{F}_{2 p}={ }_{1}(\mathbb{C} n f 2 p$ pointsg) is free on $2 p$ generators corresponding to the hyperplanes de ned by $\left(x_{1}^{p}-x_{3}^{p}\right)\left(x_{2}^{p}-x_{3}^{p}\right)$, and $G(B)=F_{p+1} \quad \mathbb{Z}$ is the fundamental group of $M(B)$.

The monodromy : $G(B)!\operatorname{Aut}\left(\mathbb{F}_{2 p}\right)$ which de nes the semidirect product structure (6) factors as $G(B)!P_{2 p}!\quad \operatorname{Aut}\left(F_{2 p}\right)$, where the inclusion of the pure braid group on $2 p$ strands $P_{2 p}$ in $\operatorname{Aut}\left(F_{2 p}\right)$ is given by the restriction of the Artin representation. The \backslash braid monodromy" : $G(B)!P_{2 p}$ may be determined using the techniques of [6], [7], and [3]. In fact, this map may be obtained by an appropriate modi cation of the calculation in [3, x2.2] of the braid monodromy of thefull monomial arrangement de ned by $\mathrm{x}_{3} \mathrm{Q}\left(\mathrm{A}_{\mathrm{p}}\right)$, which we now carry out.

5.2 B raid monodromy

Fix a primitive p-th root of unity $2 \mathbb{C}$. Let $B_{2 p}$ be the full braid group on $2 p$ strands, and let $i, 1$ i $2 p-1$, be the standard generators. The indices of the strands correspond to the hyperplanes $\mathrm{H}_{\mathrm{i} 3: \mathrm{r}}=\operatorname{ker}\left(\mathrm{x}_{\mathrm{i}}-{ }^{r} \mathrm{X}_{3}\right)$ and the generators $y_{1} ;::: ; y_{2 p}$ of $\mathbf{F}_{2 p}$, as indicated below:

strand \#	1	2	p	$p+1$	$p+2$	$2 p$
hyperplane	$H_{13: p}$	$H_{13: p-1}$	$H_{13: 1}$	$H_{23: p}$	$H_{23: p-1}$	$H_{23: 1}$
generator	y_{1}	y_{2}	y_{p}	y_{p+1}	y_{p+2}	$y_{2 p}$

De ne braids 0; $12 \mathrm{~B}_{2 \mathrm{p}}$ by

$$
0=p-1 \mathrm{p}-2 \quad 1 \text { and } \quad 1={ }^{-1} 1 \quad 3 \quad 2 \mathrm{p}-3 \quad 2 \mathrm{p}-1 ;
$$

where

$$
=\left(\begin{array}{llll}
2 & 4 & 2 p-2
\end{array}\right)\left(\begin{array}{cc}
3 & 5
\end{array} 2 p-3\right) \quad\left(\begin{array}{c}
p-2 p p+2 \tag{7}
\end{array}\right)(p-1 p+1)(p) ;
$$

see Figure 1. The braids ; are obtained from the \backslash monomial braids" of [3] by deleting the central strand, corresponding to the hyperplane $\mathrm{H}_{3}=\operatorname{ker}\left(\mathrm{x}_{3}\right)$ in the full monomial arrangement, but not in the monomial deletion. As in [3], the braid monodromy : $G(B)!P_{2 p}$ may be expressed in terms of these braids, as follows.
De ne purebraids $Z_{1} ; Z_{2} ; A_{1 ; 2}^{(1)} ;:: ; A_{1 ; 2}^{(p)}$ in $P_{2 p}$ by $Z_{1}={ }_{0}^{p}, Z_{2}={ }_{1}^{p}{ }_{0}^{p} l_{1}^{-1}$, and $A_{1 ; 2}^{(r)}={ }_{0}^{r-p}{ }_{1}^{2} 0_{0}^{p-r}$ for $1 \quad r \quad p$. Let γ_{j} and $\gamma_{12: r}$ be meridian loops in $M(B)$ about the lines $\mathrm{H}_{\mathrm{j}}=\operatorname{ker}\left(\mathrm{x}_{\mathrm{j}}\right)$ and $\mathrm{H}_{12: r}=\operatorname{ker}\left(\mathrm{x}_{1}-{ }^{r} \mathrm{X}_{2}\right)$. These loops generate the fundamental group $G(B)$.

Figure 1: The braids 0 and ${ }_{1}$, for $p=3$

Proposition 5.3 The braid monodromy: $G(B)!P_{2 p}$ of the ber bundle $M\left(A_{p}\right)!M(B)$ is given by $\left(\gamma_{j}\right)=Z_{j}, \quad\left(\gamma_{12: r}\right)=A_{1 ; 2}^{(r)}$.

C orollary 5.4 The fundamental group of $M\left(A_{p}\right)$ has presentation
where $\mathrm{i}=1 ;::: ; 2 \mathrm{p}, \mathrm{j}=1 ; 2$, and $\mathrm{r}=1 ;::: ; \mathrm{p}$, and the pure braids (γ) act on the fre group $\mathbf{F}_{2 p}=h_{y_{1}} ;::: ; y_{2 p}$ by the Artin representation.

5.5 Fundamental group of the decone

Let $\Gamma=\gamma_{1} \gamma_{12: 1} \quad \gamma_{12: p-1} \gamma_{2} \gamma_{12: p} 2 G(B)$. Note that $\quad(\Gamma)=A_{[2 p]}$ is the full twist on all strands. As is well known, this braid generates the center of $\mathrm{P}_{2 p}$. It follows that Γ is central in $G(B)$, so

$$
G(B)=\mathbf{F}_{p+1} \quad \mathbb{Z}=h_{\gamma_{1}} ; \gamma_{12: 1} ;::: ; \gamma_{12: p} i \quad h \Gamma^{i}:
$$

To simplify calculations in $\times 6$ below, we will work with an explicit decone of the arrangement A_{p}, as opposed to the projectization. Let $d A_{p}$ denote the decone of A_{p} with respect to the hyperplane $H_{2}=\operatorname{ker}\left(x_{2}\right)$. This is an a ne arrangement in \mathbb{C}^{2} (with coordinates $\mathrm{x}_{1} ; \mathrm{x}_{3}$), de ned by $\mathrm{Q}\left(\mathrm{dA}_{\mathrm{p}}\right)=$ $x_{1}\left(x_{1}^{p}-1\right)\left(x_{1}^{p}-x_{3}^{p}\right)\left(1-x_{3}^{p}\right)$. From the above discussion, we obtain the following presentation for the fundamental group of the complement of $d A_{p}$:

$$
\mathrm{G}\left(\mathrm{dA}_{\mathrm{p}}\right)=\begin{array}{cc}
* \tag{8}\\
\mathrm{Y}_{1} ; \mathrm{Y}_{12: 1} ;::: ; \mathrm{y}_{12} \mathrm{p} & \mathrm{Y}_{1}^{-1} \mathrm{y}_{\mathrm{i}} \mathrm{y}_{1}
\end{array}=\left(\mathrm{y}_{1}\right)\left(\mathrm{y}_{\mathrm{i}}\right) \quad+
$$

where, as before, $i=1 ;::: ; 2 p$ and $r=1 ;:: ; p$.

5.6 Characteristic varieties

Set $n=3 p+2=j A_{p} j$. Denote the coordinates of the algebraic torus $(\mathbb{K})^{n}$ by $z_{1} ; z_{2} ; z_{12: 1} ;::: ; z_{12: p} ; z_{13: 1} ;::: ; z_{13: p} ; z_{23: 1} ;::: ; z_{23 ; p} ;$ where z_{i} corresponds to the hyperplane $\mathrm{H}_{\mathrm{i}}=\operatorname{ker}\left(\mathrm{x}_{\mathrm{i}}\right)$ and $\mathrm{z}_{\mathrm{ij}: \mathrm{r}}$ to the hyperplane $\mathrm{H}_{\mathrm{ij}: r}=\operatorname{ker}\left(\mathrm{x}_{\mathrm{i}}-{ }^{\mathrm{r}} \mathrm{x}_{\mathrm{j}}\right)$.
The following theorem was proved for $p=2$ in [21], and for $p \quad 2$ in [4], in the case $\mathbb{K}=\mathbb{C}$. The same proofs work for an arbitrary, algebraically closed eld \mathbb{K}.

Theorem 5.7 In addition to components of dimension 2 or higher, the variety ${ }_{1}^{1}\left(M\left(A_{p}\right) ; \mathbb{K}\right)$ has 1-dimensional components $C_{1} ;::: ; C_{p-1}$, given by

$$
\left.{ }_{i=1}^{\Psi^{-1}} C_{i}=\left(u^{p} ; v^{p} ; w ;::: ; w ; v ;::: ; v ; u ;::: ; u\right) 2(\mathbb{K})^{n} \begin{array}{c}
P=0 \\
\text { pind } \\
\text { and } u v w=1
\end{array}\right)
$$

where C_{i} is obtained by setting w equal to the i-th power of a xed primitive p-th root of unity in \mathbb{K}.

If char $\mathbb{K}=p$, then C_{i} is a subtorus of $(\mathbb{K})^{n}$, so passes through the origin $\mathbf{1}$. However, if char $\mathbb{K} \in p$, then C_{i} is a subtorus translated by a character of order p. The results of $x 4.8$ imply that there exist choices of multiplicities a for A_{p} such that the rst homology group of the corresponding Milnor ber, $\mathrm{F}_{\mathbf{a}}$, has p-torsion. In particular, we have the following.

Corollary 5.8 Let $F_{p}=f_{p}^{-1}(1)$ bethe Milnor ber of the polynomial de ned in (1). Then $H_{1}\left(F_{p} ; \mathbb{Z}\right)$ has p-torsion.

Proof Let $U=M\left(d A_{p}\right)$ be the complement of the projectivization of A_{p}. Note that for $\mathbf{t} 2 \mathrm{C}_{\mathrm{i}}$, we have $(\mathbf{t})=1$. So $\mathrm{C}_{\mathrm{i}} \quad \frac{1}{1}(\mathrm{U} ; \mathbb{K})$ by Proposition 4.2. In the case $\mathbb{K}=\mathbb{C}$, let $\mathbf{s}=1 ; 1 ;{ }^{i} ;:: ;^{i} ;{ }^{-i} ;::: ;^{-i} ; 1 ;::: ; 1$. where $=$ $\exp (2 \quad i \neq p)$, and

$$
\mathrm{T}=\mathrm{f} u^{\mathrm{p}} ; \mathrm{v}^{\mathrm{p}} ; 1 ;::: ; 1 ; \mathrm{v} ;::: ; \mathrm{v} ; \mathrm{u} ;::: ; \mathrm{u} 2(\mathbb{C})^{\mathrm{n}} \mathrm{j} u v=1 \mathrm{~g}:
$$

Then $\operatorname{ord}\left(\mathbf{s}_{i}\right)=\mathrm{p}, \mathrm{T}$ is a onedimensional subtorus of $(\mathbb{C})^{n}$, and $\mathrm{C}_{\mathrm{i}}=\mathbf{s}_{\mathrm{i}} \mathrm{T}$. One can check that T $6 \quad \frac{1}{1}(\mathrm{U} ; \mathbb{C})$ using known properites of characteristic varieties of arrangements, see [13]. Hence, Theorem 4.11 implies that there are choices of multiplicities a for A_{p} for which $\mathrm{H}_{1}\left(\mathrm{~F}_{\mathbf{a}} ; \mathbb{Z}\right)$ has p-torsion. Arguing as in the proof of that theorem, and using Lemma 3.5, reveals that among these choices of multiplicities are $\mathbf{a}=(2 ; 1 ; 3 ; 3 ; 2 ; 2 ; 1 ; 1)$ in the case $p=2$, and $\mathbf{a}=(1 ; 1 ; 2 ;::: 2 ; 1 ;::: 1 ; 1 ;::: 1)$ in the case $p \in 2$. These choices yield the polynomials f_{p} of (1).

6 Homology calculations

Keping the notation from the previous section, we analyze the homology of $G\left(d A_{p}\right)={ }_{1}\left(M\left(d A_{p}\right)\right)$ with coe cients in the rank one local systems that arise in the study of the Milnor bration $f_{p}: M\left(A_{p}\right)!\mathbb{C}$. In this section, we consider the case where $p \in 2$ is an odd prime.

Le \mathbb{K} be an algebraically closed edd. Recall that $d A_{p}$ is the decone of A_{p} with respect to the hyperplane $\mathrm{H}_{2}=\operatorname{ker}\left(\mathrm{x}_{2}\right)$, which has multiplicity 1 in the multi-arrangement de ned by f_{p}. Consequently, to analyze the homology of the Milnor ber F_{p} using Theorem 4.4, we will consider the modules $\mathbb{K}_{\mathbf{t}(k)}$ corresponding to dharacters $\mathbf{t}(\mathrm{k})$ de ned by

$$
\begin{equation*}
\text { t(k) }=\left(\mathrm{t} ; \mathrm{t}^{2} ;::: ; \mathrm{t}^{2} ; \mathrm{t} ;::: ; ; \mathrm{t} ; \mathrm{t} ;::: ; \mathrm{t}\right) 2(\mathbb{K})^{\mathrm{n}-1} ; \tag{9}
\end{equation*}
$$

where $t=N *$ is a power of a primitive N-th root of unity, $N=4 p+2, k \in 1$ is a positive integer dividing N, and $n=3 p+2$.

Proposition 6.1 If $k \in 2$ and char $\mathbb{K} \nmid \mathrm{N}$, then $\mathrm{H}_{1}\left(\mathrm{G}\left(\mathrm{dA} \mathrm{A}_{\mathrm{p}}\right) ; \mathbb{K}_{\mathbf{t}(\mathrm{k})}\right)=0$.

Proof The braid $Z_{1}=\left(\gamma_{1}\right)$ is a full twist on strands 1 through p, given in terms of the standard generators $A_{i ; j}$ of $P_{2 p}$ by

$$
\mathrm{Z}_{1}=\mathrm{A}_{1 ; 2}\left(\mathrm{~A}_{1 ; 3} \mathrm{~A}_{2 ; 3}\right) \quad\left(\mathrm{A}_{1 ; p} \quad \mathrm{~A}_{p-1 ; p}\right):
$$

Consider the generating set $f u_{1} ;::: ; u_{p} ; v_{1} ;::: ; v_{p} g$ for the free group $F_{2 p}$ given by $u_{r}=y_{1} y_{2} \quad y_{r}$ and $v_{r}=y_{p+r}, 1 \quad r \quad$ p. Theaction of thebraid Z_{1} on this generating set is given by $Z_{1}\left(u_{i}\right)=u_{p} u_{i} u_{p}^{-1}$ and $Z_{1}\left(v_{j}\right)=v_{j}$ for $1 \quad i ; j \quad p$, see [7, x6.4].

Taking $\gamma_{1} ; \gamma_{12: r} ; u_{r} ; v_{r}\left(\begin{array}{lll}1 & r & p\end{array}\right)$ as generators for $G\left(d A_{p}\right)$, we obtain from (8) a presentation with relations

$$
\begin{array}{lll}
u_{i} \gamma_{1} u_{p}=\gamma_{1} u_{p} u_{i} ; & u_{p} \gamma_{1}=\gamma_{1} u_{p} ; & v_{j} \gamma_{1}=\gamma_{1} v_{j} ; \\
u_{j} \gamma_{12: r}=\gamma_{12: r} A_{1 ; 2}^{(r)}\left(u_{j}\right) ; & v_{j} \gamma_{12: r}=\gamma_{12: r} A_{1 ; 2}^{(r)}\left(v_{j}\right) ; &
\end{array}
$$

where 1 i $\mathrm{p}-1,1 \quad \mathrm{j} \quad \mathrm{p}$, and $1 \quad \mathrm{r} \quad \mathrm{p}$.
Let \mathbf{A} denote the Alexander matrix obtained from this presentation by taking Fox derivatives and abelianizing. This is a $2 p(p+1) \quad(3 p+1)$ matrix with entries in the ring of Laurent polynomials in the variables $\gamma_{1} ; \eta_{12: r} ; u_{r} ; v_{r}$, and
has the form

$$
\left.\mathbf{A}=\begin{array}{ccccccc}
0 & 0 & & 0 & 0 & \mathbb{I}_{2 p}-\gamma_{1}\left(Z_{1}\right) & 1 \\
\beta & & & 0 & 0 & \mathbb{I}_{2 p}-\gamma_{12: 1}\left(A_{1 ; 2}^{(1)}\right) \\
\vdots & & \ddots & & & \vdots & \\
@ 0 & 0 & & & 0 & \mathbb{I}_{2 p}-\gamma_{12: p-1}\left(A_{1 ; 2}^{(p-1)}\right) \\
0 & 0 & & 0 & & \mathbb{I}_{2 p}-\gamma_{12: p}\left(A_{1 ; 2}^{(p)}\right)
\end{array}\right\} ;
$$

where isthe column vector ($\left.u_{1}-1 ;::: ; u_{p}-1 ; v_{1}-1 ;::: ; v_{p}-1\right)^{>}, \mathbb{I}_{m}$ is the $m \quad m$ identity matrix, and $: P_{2 p}!G L\left(2 p ; \mathbb{Z}\left[u_{1}{ }^{1} ;::: ; u_{p}{ }^{1} ; v_{1}{ }^{1} ;::: ; v_{p}{ }^{1}\right]\right)$ is the Gassner representation.
Let $\mathbf{A}(k)$ denote the evaluation of the Alexander matrix at the character $\mathbf{t}(\mathrm{k})$. This evaluation is given by $\gamma_{1} \nabla t, \gamma_{12: r} \nabla t^{2}, y_{i} \nabla t$, so $u_{r} \nabla t^{r}$ and $v_{r} \nabla t$. To show that $H_{1}\left(G\left(d A_{p}\right) ; \mathbb{K}_{\mathbf{t (k)}}\right)=0$, it su ces to show that $\mathbf{A}(k)$ has rank $3 p$.
A calculation (compare [7, Prop. 6.6]) reveals that the evaluation at $\mathbf{t}(\mathrm{k})$ of $\mathbb{I}_{2 p}-\gamma_{1}\left(Z_{1}\right)$ is upper triangular, with diagonal entries $1-t^{p+1}$ and $1-t$. Recall that is a primitive N-th root of unity, where $N=4 p+2$, that $k \in 1$ divides N, and that $t=N *$. Since p is prime and $k \in 2$ by hypothesis, k does not divide $p+1$. Consequently, all of the diagonal entries of the evaluation at $\mathbf{t}(\mathrm{k})$ of $\mathbb{I}_{2 p}-\gamma_{1}\left(Z_{1}\right)$ are nonzero. It follows that $\operatorname{rank} \mathbf{A}(k)=3 \mathrm{p}$.

For the character $\mathbf{t}(2)=(-1 ; 1 ;:: ; 1 ;-1 ;::: ;-1 ;-1 ;::: ;-1)$, and the corre sponding module $\mathbb{K}_{\mathbf{t}(2)}$, there are several cases to consider.
First, note that if char $\mathbb{K}=2$, then $\mathbf{t}(2)=\mathbf{1}$ is the trivial character.
If char $\mathbb{K}=p$, Theorem 5.7 and equation (5) combine to show that $\mathbf{t}(2) 2$
${ }_{1}^{1}\left(M\left(d A_{p}\right) ; \mathbb{K}\right)$. Moreover, $\mathbf{t}(2) \in \mathbf{1}$, since $p \in 2$. Hence, in this case the depth of $\mathbf{t}(2)$ is at least 1.
If char $\mathbb{K} \in 2$ or p, one can show that the character $\mathbf{t}(2)$ does not lie in any component of $\quad \frac{1}{1}\left(M\left(d A_{p}\right) ; \mathbb{K}\right)$ of positive dimension. However, this does not rule out the possibility that $\mathbf{t}(2)$ is an isolated point in ${ }_{1}^{1}\left(M\left(d A_{p}\right) ; \mathbb{K}\right)$. This is not the case, as the next result shows.

Proposition 6.2 Let \mathbb{K} be an algebraically closed edd. If char $\mathbb{K}=p$, then $\operatorname{depth}_{\mathbb{K}}(\mathbf{t}(2))=1$. If char $\mathbb{K} \in 2$ or p, then $\operatorname{depth}_{\mathbb{K}}(\mathbf{t}(2))=0$.

We will sketch a proof of this proposition by means of a sequence of lemmas. As above, we will analyze the Alexander matrix arising from a well-chosen presentation of the group $G\left(d A_{p}\right)$.

The presentation of $\mathrm{G}\left(\mathrm{dA}_{\mathrm{p}}\right)$ given in (8) is obtained from the realization of this group as a semidirect product, $\mathrm{G}\left(\mathrm{dA}_{\mathrm{p}}\right)=\mathrm{F}_{2 \mathrm{p}} \rtimes-\mathbf{F}_{\mathrm{p}+1}$. The homomorphism $-: \mathbf{F}_{p+1}!\operatorname{Aut}\left(\mathbb{F}_{2 p}\right)$ is the composition of the Artin representation with the braid monodromy ${ }^{-}: \mathbf{F}_{p+1}!P_{2 p}$ given by ${ }^{-}: \gamma_{1}$ ワ $Z_{1}, \gamma_{12: r}$ $\nabla_{1 ; 2}^{(r)}$. We rst modify the map ${ }^{-}$, as follows.
Recall the braid $2 \mathrm{~B}_{2 p}$ from (7). Conjugation by induces an automorphism cong : $P_{2 p}$! $P_{2 p}, 7{ }^{-1}$. Then, cong ${ }^{-}$: \mathbf{F}_{p+1} ! $P_{2 p}$ is another choice of braid monodromy for the (ber-type) arrangement dA_{p}, and the presentation of $\mathrm{G}\left(\mathrm{dA} A_{\mathrm{p}}\right)$ resulting from composing cong - and the Artin representation is equivalent to that obtained from ${ }^{-}$.

Lemma 6.3 In terms of the standard generating set for the pure braid group $P_{2 p}$, the braids cong ($A_{1 ; 2}^{(p)}$) and cong $\left(Z_{1}\right)$ are given by

$$
\left.\begin{array}{rl}
\text { cong } \quad A_{1 ; 2}^{(p)} & =A_{1 ; 2} A_{3 ; 4} \quad A_{2 p-1 ; 2 p ;} \\
\text { cong }\left(Z_{1}\right) & =A_{1 ; 3}\left(A_{1 ; 5} A_{3 ; 5}\right) \quad\left(A_{1 ; 2 p-1} A_{3 ; 2 p-1}\right.
\end{array} A_{2 p-3 ; 2 p-1}\right): ~ l
$$

Proof Recall that $0=p-1 p-2 \quad 1,1={ }^{-1} 1_{1} 3 \quad 2 p-1$, and $A_{1 ; 2}^{(r)}=$ ${ }_{0}^{r-p}{\underset{1}{2}}^{2} 0_{0}^{p-r}$. Hence, cong $\left(A_{1 ; 2}^{(p)}\right)=\begin{array}{lll}2 & 2 & 2 \\ 1 & 3 & 2 p-1\end{array}=A_{1 ; 2} A_{3 ; 4} \quad A_{2 p-1 ; 2 p}$. Also recall that $Z_{1}=A_{[p]}=A_{1 ; 2}\left(A_{1 ; 3} A_{2 ; 3}\right) \quad\left(A_{1 ; p} A_{2 ; p} \quad A_{p-1 ; p}\right)$ is the full twist on strands 1 through p. We will show that cong $\left(Z_{1}\right)$ is as asserted (for any integer $p \quad 2$) by induction on p.
Write $=p$. When $p=2$, we have ${ }_{2} A_{[2]} 2^{-1}=21_{2}^{2} 2^{-1}=A_{1 ; 3}$. So inductively assumethat ${ }_{p} A_{[p]} p^{-1}=A_{O[p]}$, where $O[p]=f 1 ; 3 ;::: ; 2 p-1 \mathrm{~g}$. Using (7) and thebraid relations, wehave $p+1=p p+1$, where $p+1=2 p 2 p-1 \quad p+1$. Note that ${ }_{p+1}$ commutes with $A_{[p]}$. Hence,

$$
\begin{aligned}
& { }_{p+1} A_{[p+1]} \stackrel{-1}{p+1}={ }_{p p+1} A_{[p]}\left(A_{1 ; p+1} A_{2 ; p+1} \quad A_{p ; p+1}\right)_{p+1}^{-1} p^{-1} \\
& \left.={ }_{p} A_{[p]} p^{-1} \quad p p+1\left(A_{1 ; p+1} A_{2 ; p+1} \quad A_{p ; p+1}\right)\right)_{p+1}^{-1} p^{-1} \\
& =A_{O[p]} \quad p \quad p+1\left(A_{1 ; p+1} A_{2 ; p+1} \quad A_{p ; p+1}\right)_{p+1} p^{-1} \\
& =A_{O[p]} \quad{ }_{p}\left(A_{1 ; 2 p+1} A_{2 ; 2 p+1} \quad A_{p ; 2 p+1}\right)_{p}^{-1}
\end{aligned}
$$

by induction, and the readily checked fact that ${ }_{p+1} A_{i ; p+1} \underset{p+1}{-1}=A_{i ; 2 p+1}$. The result now follows from the equality ${ }_{p} A_{i ; 2 p+1} p^{-1}=A_{2 i-1 ; 2 p+1}$, which may itself be established by an inductive argument.

Write $\mathfrak{z}=$ cong $\left(Z_{1}\right)$ and $\mathfrak{a}=$ cong $\left(A_{1 ; 2}^{(p)}\right)$. We specify a generating set for the fre group $\mathbf{F}_{2 p}=h_{1} ;::: ; y_{2 p}$ for which the action of these braids is tractable.

For $1 \quad r \quad p$, let $u_{r}=y_{1} y_{2} \quad y_{2 r-1} y_{2 r}$ and $v_{r}=y_{2 r-1}$. Write $V=v_{1} v_{2} \quad v_{p}$. It is readily checked that the set of elements $f u_{1} ;::: ; u_{p} ; v_{1} ;::: ; v_{p} g$ generates $F_{2 p}$. Moreover, a calculation using the Artin representation yields the following.

Lemma 6.4 The action of the braids \mathfrak{z} and \mathfrak{a} on the set $f u_{r} ; v_{r} g_{r=1}^{p}$ is given by

$$
\begin{array}{llll}
\mathfrak{z}\left(\mathrm{u}_{\mathrm{r}}\right)=\mathrm{u}_{\mathrm{r}}\left[\mathrm{v}_{\mathrm{r}+1}\right. & \mathrm{v}_{\mathrm{p}} ; \mathrm{v}_{1} & \left.\mathrm{v}_{\mathrm{r}}\right] ; & \mathfrak{a}\left(\mathrm{u}_{\mathrm{r}}\right)=\mathrm{u}_{\mathrm{r}} ; \\
\mathfrak{z}\left(\mathrm{v}_{\mathrm{r}}\right)=\mathrm{V} \mathrm{v}_{\mathrm{r}} \mathrm{~V}^{-1} ; & & & \mathfrak{a}\left(\mathrm{v}_{\mathrm{r}}\right)=\mathrm{u}_{\mathrm{r}-1}^{-1} \mathrm{u}_{\mathrm{r}} \mathrm{v}_{\mathrm{r}} \mathrm{u}_{\mathrm{r}}^{-1} \mathrm{u}_{\mathrm{r}-1}:
\end{array}
$$

Note that $\mathfrak{z}\left(u_{p}\right)=u_{p}$ and that $\mathfrak{a}\left(v_{1}\right)=u_{1} v_{1} u_{1}^{-1}$.
Now consider the presentation of the group $G\left(d A_{p}\right)$ obtained from the braid monodromy cong $-: \mathbf{F}_{p+1}!P_{2 p}$ and the Artin representation, using the generating set $f u_{r} ; v_{r} g_{r=1}^{p}$ for the fre group $F_{2 p}$. Identify the generators $Y_{1} ; Y_{12}$:j of F_{p+1} with their images in $P_{2 p}$ via $\gamma_{1} \nabla$ cong $\left(\gamma_{1}\right)=\mathfrak{z}, \gamma_{12}$: $\overline{7}$ cong $\left(\gamma_{12: p}\right)=\mathfrak{a}$, and write $\gamma_{12: j} \nabla$ cong $\left(\gamma_{12: j}\right)=\mathfrak{a}_{j}$ for $1 \quad j \quad p-1$. With this notation, the presentation for $G\left(\mathrm{dA}_{p}\right)$ has relations

$$
\begin{array}{llll}
\mathrm{u}_{\mathrm{r} \mathfrak{z}}=\mathfrak{z} \mathrm{u}_{\mathrm{r}}\left[\mathrm{v}_{\mathrm{r}+1}\right. & \mathrm{v}_{\mathrm{p}} ; \mathrm{v}_{1} & \left.\mathrm{v}_{\mathrm{r}}\right] ; & \mathrm{u}_{\mathrm{r}} \mathfrak{a}=\mathfrak{a} \mathrm{u}_{\mathrm{r}} ; \\
\mathrm{v}_{\mathrm{r}} \mathfrak{z}=\mathfrak{z} \mathrm{V} \mathrm{v}_{\mathrm{r}} \mathrm{~V}^{-1} ; & & & \mathrm{v}_{\mathrm{r}} \mathfrak{a}=\mathfrak{a} u_{\mathrm{r}-1}^{-1} \mathrm{u}_{\mathrm{r}} \mathrm{v}_{\mathrm{r}} \mathrm{u}_{\mathrm{r}}^{-1} \mathrm{u}_{\mathrm{r}-1} \tag{10}
\end{array}
$$

and $u_{r} \mathfrak{a}_{j}=\mathfrak{a}_{j} \quad \mathfrak{a}_{j}\left(u_{r}\right), v_{r} a_{j}=\mathfrak{a}_{j} \quad \mathfrak{a}_{j}\left(v_{r}\right)$, for $1 \quad j \quad p-1$ and $1 \quad r \quad p$.
Let \mathbf{A} be the Alexander matrix obtained from this presentation, and $\mathbf{A}(2)$ the evaluation at the character $\mathbf{t}(2)$. This evaluation is given by $\gamma_{1} \nabla-1$,
 A, and A_{j} denote the evaluations at $\mathbf{t}(2)$ of the Fox J acobians of the actions of the pure braids $\mathfrak{z}, \mathfrak{a}$, and $\mathfrak{a}_{\mathfrak{j}}$, respectively. With this notation, we have

$$
\mathbf{A}(2)=\begin{array}{llllllll}
0 & (2) & 0 & & 0 & 0 & \mathbb{I}_{2 p}+M & 1 \\
\mathrm{~B} & 0 & (2) & & 0 & 0 & \mathbb{I}_{2 p}-A_{1} & \\
\vdots & & \ddots & & & \vdots & \\
\mathrm{~B} & & & 0 & & (2) & 0 & \mathbb{I}_{2 p}-A_{p-1} \\
0 & 0 & & 0 & (2) & \mathbb{I}_{2 p}-A
\end{array}
$$

where $(2)=0 \quad 0 \quad-2 \quad-2^{>}$is the evaluation of at $\mathbf{t}(2)$. Note that the entries of $\mathbf{A}(2)$ are integers, and recall that $\mathbf{A}(2)$ has size $2 p(p+1)$ $(3 p+1)$.

To establish Proposition 6.2, we must show that $\operatorname{rank}_{\mathbb{K}} \mathbf{A}(2)=3 p-1$ or $3 p$, according to whether the edd \mathbb{K} has characteristic p or not (recall that char $\mathbb{K} \mathcal{G} 2$ by assumption). In the case char $\mathbb{K}=p$, we already know that $\mathbf{t}(2)$ belongs to ${ }_{1}^{1}\left(M\left(d A_{p}\right) ; \mathbb{K}\right)$, so the inequality $\operatorname{rank}_{\mathbb{K}} \mathbf{A}(2) \quad 3 p-1$ holds. Thus, it su ces to prove the next result.

Lemma 6.5 The (integral) Smith normal form of the matrix $\mathbf{A}(2)$ has diagonal entries $2 ;::: ; 2$ (repeated $3 p-1$ times) and $2 p$.

Proof The matrix $\mathbf{A}(2)$ is equivalent, via row and column operations, to the matrix

$$
\left.\begin{array}{rlllll}
0 & 0 & & 0 & 0 & 2 \mathbb{I}_{2 p}+M-A^{1} \tag{11}\\
0 & 0 & & 0 & 0 & \mathbb{I}_{2 p}-A_{1} \\
0 & (2) & & 0 \\
\vdots & & \ddots & & & \vdots \\
@_{0} & 0 & & (2) & 0 & \mathbb{I}_{2 p}-A_{p-1} \\
0 & 0 & & 0 & (2) & \mathbb{I}_{2 p}-A
\end{array}\right\}:
$$

A Fox calculus exercise using (10) shows that all entries of the matrices $\mathbb{I}_{2 p}$ - A and $\mathbb{I}_{2 p}-A_{j}, 1$ j $p-1$, are divisible by 2 , and that

$$
2 \mathbb{I}_{2 p}+M-A=2 \quad \mathbb{I}_{p} \quad \begin{aligned}
& P \\
& L-\mathbb{I}_{p}
\end{aligned}
$$

where $L_{i ; j}={ }_{i ; j+1}$ (Kronecker delta), $Q_{i j j}=(-1)^{j+1}$, and

$$
P_{i ; j}=\begin{array}{ll}
8 \\
\gtrless(-1)^{j} & \text { if } \mathrm{i} \text { odd and } \mathrm{j}>\mathrm{i} ; \\
\stackrel{(-1)^{j+1}}{ } & \text { if } \mathrm{i} \text { even and } \mathrm{j} \\
0 & \text { otherwise: }
\end{array}
$$

Then one can check that $\operatorname{det} R=\operatorname{det} S=1$, and that $U\left(2 \mathbb{I}_{2 p}+M-A\right) V$ is a $2 p 2 p$ diagonal matrix with diagonal entries $2 ;::: ; 2 ; 2 p$ (in this order). Using these facts, further row and column operations reduce the matrix (11) to

$$
\begin{array}{ccc}
0 & 2 \pi_{3 p-1} & 0^{1} \\
0 & \pi_{3 p} & 2 p^{2} ; \\
0 & 0 & \mathrm{~V}
\end{array}
$$

where v is a column vector whose entries are even integers. Now recall that if \mathbb{K} is a eld of characteristic p, then $\operatorname{rank}_{\mathbb{K}} \mathbf{A}(2) 3 p-1$. Consequently, the entries of v must be divisible by p. The result follows.

7 Proof of Theorem 2

We are now in position to complete the proof of Theorem 2 from the Introduction. Recall we aregiven a prime p and the homogenous polynomial f_{p} speci ed in (1), and we need to compute the rst homology group of the Milnor ber $F_{p}=f_{p}^{-1}(1)$. We shall treat the cases of odd and even primes p separately.

7.1 The case pf 2

Recall that A_{p} is the arrangement in \mathbb{C}^{3} de ned by the polynomial $Q\left(A_{p}\right)=$ $x_{1} x_{2}\left(x_{1}^{p}-x_{2}^{p}\right)\left(x_{1}^{p}-x_{3}^{p}\right)\left(x_{2}^{p}-x_{3}^{p}\right)$. The choice of multiplicities

$$
\mathbf{a}=(1 ; 1 ; 2 ;::: ; 2 ; 1 ;:: ; ; 1 ; 1 ;:: ; 1)
$$

yiedds the homogeneous polynomial $f_{p}=x_{1} x_{2}\left(x_{1}^{p}-x_{2}^{p}\right)^{2}\left(x_{1}^{p}-x_{3}^{p}\right)\left(x_{2}^{p}-x_{3}^{p}\right)$. This gives rise to a Milnor bration $f_{p}: M\left(A_{p}\right)!\mathbb{C}$, with ber $F_{p}=F_{a}$. Let \mathbb{Z}_{N} be the cyclic group of order $N=\operatorname{deg}\left(f_{p}\right)=4 p+2$, with generator g. The N-fold cyclic cover F_{p} ! $M\left(d A_{p}\right)$ is classi ed by the epimorphism $: G\left(d A_{p}\right)!\mathbb{Z}_{N}$ given by $\quad\left(\gamma_{1}\right)=g, \quad\left(\gamma_{12: r}\right)=g^{2}, \quad\left(\gamma_{i 3: r}\right)=g$.
Let \mathbb{K} be an algebraically closed edd, of characteristic not dividing N . The homology group $\mathrm{H}_{1}\left(\mathrm{~F}_{\mathrm{p}} ; \mathbb{K}\right)$ may be calculated using Theorem 4.4:

$$
\operatorname{dim}_{\mathbb{K}} H_{1}\left(F_{p} ; \mathbb{K}\right)=3 p+1+\underbrace{\wedge}_{1 \in \mathrm{kjN}} \quad(\mathrm{k}) \operatorname{depth}_{\mathbb{K}} \mathbf{t}(\mathrm{k}) ;
$$

where $\mathbf{t}(\mathrm{k})$ are the characters de ned in (9). Using Propositions 6.1 and 6.2, we nd:

$$
\operatorname{dim}_{\mathbb{K}} H_{1}\left(F_{p} ; \mathbb{K}\right)=\begin{array}{ll}
\left(\begin{array}{ll}
3 p+1 ; & \text { if char } \mathbb{K}+2 p(2 p+1), \\
3 p+2 ; & \text { if char } \mathbb{K}=p
\end{array}\right. \tag{12}
\end{array}
$$

Now recall that we have an isomorphism $H_{1}\left(F_{p} ; \mathbb{Z}\right)=H_{1}\left(G ; \mathbb{Z}\left[\mathbb{Z}_{N}\right]\right)$ between the rst homology of F_{p} and that of $G=G\left(d A_{p}\right)$, with coe cients in the Gmodule $\mathbb{Z}\left[\mathbb{Z}_{N}\right]$ determined by the epimorphism : G ! \mathbb{Z}_{N}. Let $\mathbb{Z}_{2} \quad \mathbb{Z}_{N}$ be the subgroup generated by $\mathrm{g}^{\mathrm{N}=2}$, and let $\mathbb{Z}\left[\mathbb{Z}_{2}\right] \mathbb{Z}\left[\mathbb{Z}_{N}\right]$ be the corresponding G-submodule. Denote by J the kernel of the augmentation map : $\mathbb{Z}\left[\mathbb{Z}_{2}\right]!\mathbb{Z}$. Notice that $g^{N=2}$ acts on $\mathrm{J}=\mathbb{Z}$ by multiplication by -1 . Hence, the induced G-module structure on J is given by the composite $G \xrightarrow[a]{a b} \mathbb{Z}^{3 p+1} \xrightarrow{\mathbf{t}(2)} f 1 g$, which shows that J is the integral analogue of the local system $\mathbb{K}_{\mathbf{t}(2)}$. Let $\mathrm{Q}=\mathbb{Z}\left[\mathbb{Z}_{N}\right] \neq$ bethequotient G -module, and consider the homology long exact sequence corresponding to the coe cient sequence $0!J!\mathbb{Z}\left[\mathbb{Z}_{N}\right]!Q!0$:

$$
\begin{equation*}
!H_{2}(G ; Q)!H_{1}(G ; J)!H_{1}\left(G ; \mathbb{Z}\left[\mathbb{Z}_{N}\right]\right)!H_{1}(G ; Q)! \tag{13}
\end{equation*}
$$

By Lemma 6.5, we have $H_{1}(G ; J)=\left(\mathbb{Z}_{2}\right)^{3 p} \quad \mathbb{Z}_{p}$. Over an algebraically closed eld \mathbb{K} with char $\mathbb{K} \nmid \mathrm{N}$, the G -module Q decomposes as the direct sum of the modules $\mathbb{K}_{\mathbf{t}(\mathrm{k})}, \mathrm{k} \in 2$, together with the trivial module. So Proposition 6.1 implies that that $H_{1}(G ; Q)$ has no q-torsion, for any odd prime q not dividing $2 p+1$. Notethat $\mathrm{H}_{2}(\mathrm{G} ; \mathrm{Q})$ is freeabelian, since the cohomological dimension of $\mathrm{G}=\mathbf{F}_{2 p} \rtimes \mathbf{F}_{p+1}$ is 2. Applying these observations to the long exact sequence (13) reveals that the map $H_{1}(G ; J)!H_{1}\left(G ; \mathbb{Z}\left[\mathbb{Z}_{N}\right]\right)$ induces an isomorphism on p-torsion. Therefore:

$$
\begin{equation*}
H_{1}\left(F_{p} ; \mathbb{Z}\right)=\mathbb{Z}^{3 p+1} \quad \mathbb{Z}_{p} \quad T ; \tag{14}
\end{equation*}
$$

where T is a nite abelian group such that $T \otimes \mathbb{Z}_{q}=0$ if $q \nmid 2(2 p+1)$. This nishes the proof of Theorem 2 in the case $p \in 2$.

Remark 7.2 The p-torsion in (14) appears in the (-1)-eigenspace of the algebraic monodromy h, seeLemma 3.4. Since an automorphism of $H_{1}\left(F_{p} ; \mathbb{Z}\right)$ must preserve the p -torsion elements, h acts on the \mathbb{Z}_{p} direct summand by $x 7-x$.

Figure 2: Decone of deleted B_{3} arrangement, with multiplicities

7.3 The case $p=2$

Now consider the arrangement A_{2} in \mathbb{C}^{3} de ned by the polynomial $Q\left(A_{2}\right)=$ $x_{1} x_{2}\left(x_{1}^{2}-x_{2}^{2}\right)\left(x_{1}^{2}-x_{3}^{2}\right)\left(x_{2}^{2}-x_{3}^{2}\right)$. This is a deletion of the B_{3} reflection arrangement, and appears as Example 4.1 in [21] and Example 9.3 in [14]. The polynomial $f_{2}=x_{1}^{2} x_{2}\left(x_{1}^{2}-x_{2}^{2}\right)^{3}\left(x_{1}^{2}-x_{3}^{2}\right)^{2}\left(x_{2}-x_{3}\right)$ corresponds to the choice of multiplicities $\mathbf{a}=(2 ; 1 ; 3 ; 3 ; 2 ; 2 ; 1 ; 1)$, shown in Figure 2 (the hyperplane at in nity has multiplicity 1).
The variety ${ }_{1}^{1}\left(\mathrm{M}\left(\mathrm{A}_{2}\right) ; \mathbb{C}\right)$ contains a 1-dimensional component $\mathbf{s T}$, where $\mathrm{T}=\left(u^{2} ; v^{2} ; 1 ; 1 ; v ; v ; u ; u\right) j u v=1$ and $\mathbf{s}=(1 ; 1 ;-1 ;-1 ;-1 ;-1 ; 1 ; 1)$, se Theorem 5.7. The subtorus T is not a component. For example, the point t $2 T$ given by $u=\exp (2 i=3)$ and $v=u^{2}$ is not in ${ }_{1}^{1}\left(M\left(A_{2}\right) ; \mathbb{C}\right)$.

The Milnor ber $\mathrm{F}_{2}=\mathrm{f}_{2}^{-1}(1)$ is an N -fold cover of $\mathrm{M}\left(\mathrm{dA}_{2}\right)$, with $\mathrm{N}=15$. Using Theorem 4.4 as before, we nd that $\operatorname{dim}_{\mathbb{K}} \mathrm{H}_{1}\left(\mathrm{~F}_{2} ; \mathbb{K}\right)=7$ if char $\mathbb{K} \in 2 ; 3$, or 5 , and $\operatorname{dim}_{\mathbb{K}} \mathrm{H}_{1}\left(\mathrm{~F}_{2} ; \mathbb{K}\right)=9$ if char $\mathbb{K}=2$. Direct computation with the Alexander matrix of $\mathrm{G}\left(\mathrm{dA}_{2}\right)$ (see [21, Ex. 4.1]) gives the precise answer:

$$
\begin{equation*}
H_{1}\left(F_{2} ; \mathbb{Z}\right)=\mathbb{Z}^{7} \quad \mathbb{Z}_{2} \quad \mathbb{Z}_{2}: \tag{15}
\end{equation*}
$$

This nishes the proof of Theorem 2 in the remaining case $p=2$.
Remark 7.4 Once again, the monodromy action preserves the torsion part in (15), so \mathbb{Z}_{15} acts on $\mathbb{Z}_{2} \quad \mathbb{Z}_{2}$. Since the torsion in $H_{1}\left(F_{2} ; \mathbb{Z}\right)$ appears in the eigenspaces of order 3, the monodromy acts via an automorphism of order 3, which, in a suitable basis, has matrix $\begin{array}{lll}0 & 1 \\ 1 & 1\end{array}$.

References

[1] D. A rapura, Geometry of cohomology support loci for local systems. I, J. AIgebraic Geom. 6 (1997), no. 3, 563\{597. MR 98m:32043
[2] T. Berry, In nitesimal deformations of cyclic covers, Acta Cient. Venezolana 35 (1984), no. 3-4, 177\{183. MR 86d:14011
[3] D. Cohen, Monodromy of ber-type arrangements and orbit con guration spaces, Forum Math. 13 (2001), no. 4, 505\{530. MR 2002i:52016
[4] D. C ohen, Triples of arrangements and local systems, Proc. Amer. Math. Soc. 130 (2002), 3025\{3031. MR 2003g:32044
[5] D. C ohen, A. Suciu, On Milnor brations of arrangements, J. London Math. Soc. (2) 51 (1995), no. 1, 105\{119. MR 96e:32034
[6] D. Cohen, A. Suciu, The braid monodromy of plane algebraic curves and hyperplane arrangements, Comment. Math. Hedvetici 72 (1997), no. 2, $285\{315$. MR 98f:52012
[7] D. Cohen, A. Suciu, Homology of iterated semidirect products of fre groups, J. Pure Appl. Algebra 126 (1998), no. 1-3, 87\{120. MR 99e:20064
[8] D. Cohen, A. Suciu, Characteristic varieties of arrangements, Math. Proc. Cambridge Phil. Soc. 127 (1999), no. 1, 33\{53. MR 2000m:32036
[9] G. Denham, The Orlik-Solomon complex and Milnor bre homology, Topology Appl. 118 (2002), no. 1-2, 45\{63. MR 2002k:32048
[10] A. Dimca, A. Nemethi, Hypersurface complements, Alexander modules and monodromy, nath. AG 0201291, Proceedings of the 7th Workshop on Real and Complex Singularities (Sao Carlos, 2002), to appear.
[11] A. Dimca, S. Papadima, Hypersurface complements, Milnor bers and minimality of arrangements, nath. AT/ 0101246, Ann. of Math., to appear.
[12] A. Libgober, On the homology of nite abelian coverings, Topology Appl. 43 (1992), no. 2, 157\{166. MR 93e:57003
[13] A. Libgober, S. Yuzvinsky, Cohomology of the Orlik-Solomon algebras and local systems, Compositio Math. 21 (2000), 337\{361. MR 2001j:52032
[14] D. Matei, A. Suciu, Hall invariants, homology of subgroups, and characteristic varieties, Int. Math. Res. Not. 2002, no. 9, 465\{503. MR 2003d:20055
[15] D. Northcott, A nesets and a negroups, CambridgeUniversity Press, Cambridge, 1980. MR 82c:14002
[16] P. Orlik, H. Terao, Arrangements of Hyperplanes, Grundlehren Math. Wiss., vol. 300, Springer-Verlag, Berlin, 1992. MR 94e:52014
[17] R . R andell, Homotopy and group cohomology of arrangements, Topology Appl. 78 (1997), no. 3, 201\{213. MR 98f:52014
[18] R. R andell, Morse theory, Milnor bers and mi inimality of hyperplane arrangements, Proc. Amer. Math. Soc. 130 (2002), no. 9, 2737\{2743. MR 2003e:32048
[19] M. Sakuma, Homology of abdian coverings of links and spatial graphs, Canad. J. Math. 47 (1995), no. 1, 201\{224. MR 96d:57008
[20] A. Suciu, Fundamental groups of line arrangements: Enumerative aspects, in: Advances in algebraic geometry motivated by physics, Contemporary Math., vol. 276, Amer. Math. Soc, Providence, RI, 2001, pp. 43\{79. MR 2002k:14029
[21] A. Suciu, Translated tori in the characteristic varieties of complex hyperplane arrangements, Topology Appl. 118 (2002), no. 1-2, 209\{223. MR 2002j:32027

Department of Mathematics, Louisiana State University
Baton Rouge, LA 70803, USA
Department of Mathematics, University of Western Ontario London, ON N6A 5B7, Canada
Department of Mathematics, Northeastern University, Boston, MA 02115, USA
Email: cohen@rat h. I su. edu, gdenhan@wo. ca, a. suci u@neu. edu
URL: http: // uww. nath. I su. edu/ -cohen, htt p: / / www nat h. uno. ca/ -gdenham, ht t p: / / waw nat h. neu. edu/ -suci u

Received: 14 February 2003

