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Abstract We introduce a norm on the real 1-cohomology of �nite 2-
complexes determined by the Euler characteristics of graphs on these com-
plexes. We also introduce twisted Alexander-Fox polynomials of groups and
show that they give rise to norms on the real 1-cohomology of groups. Our
main theorem states that for a �nite 2-complex X , the norm on H1(X ;R)
determined by graphs on X majorates the Alexander-Fox norms derived
from �1(X).
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Introduction

We introduce a (possibly degenerate) norm on the real 1-cohomology of �nite
2-complexes. The de�nition of this norm is similar to Thurston’s de�nition of
a norm on the 2-homology of 3-manifolds. The key di�erence is that instead of
surfaces in 3-manifolds we consider graphs on 2-complexes. In many instances
the resulting theory is similar to but simpler than the one of Thurston.

In generalization of the standard Alexander-Fox polynomial of groups we intro-
duce twisted Alexander-Fox polynomials. We show that they determine norms
on the real 1-cohomology of groups.

Our main result is a comparison theorem which states that for a �nite 2-
complex X , the norm on H1(X;R) determined by graphs on X majorates
the Alexander-Fox norms derived from �1(X).

This result is a cousin of the classical Seifert inequality in knot theory which
says that the genus of a knot K � S3 is greater than or equal to the half of the
span of the Alexander polynomial of K . A more general estimate from below
for the Thurston norm appeared in the Seiberg-Witten theory in dimension 3,
see [1], [3], [4], [5]. This estimate is a 3-dimensional version of the much deeper
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adjunction inequality in dimension 4. A related (weaker) result in dimension 3
appeared also in [6].

We state here a sample application of our main theorem to codimension 1
submanifolds of triangulated manifolds. Let M be a closed connected oriented
triangulated manifold of dimension m � 3. Let S � M be a closed oriented
(m − 1)-dimensional submanifold of M representing a non-zero element s 2
Hm−1(M ;Z) = H1(M ;Z). Let n be the maximal positive integer dividing
s in H1(M ;Z). Assume that S intersects the 2-skeleton M (2) transversely
along a (�nite 1-dimensional) CW-space Γ = S \M (2) . If �1(M) = �1(S3nK)
where K is a knot in S3 then j�(Γ)j � n(d − 1) where d is the span of the
Alexander polynomial of K . For example, if �1(M) = hx; y : xpyq = 1i is
the group of a torus (p; q)-knot with relatively prime integers p; q � 2 then
j�(Γ)j � n(pq − p− q).

1 A norm on the 1-cohomology of a 2-complex

1.1 Two-complexes By a graph we mean a �nite CW-complex of dimen-
sion � 1. By a �nite 2-complex we mean the underlying topological space of a
�nite 2-dimensional CW-complex such that each its point has a neighborhood
homeomorphic to the cone over a graph. The latter condition is aimed at elim-
inating all kinds of local wilderness. Examples of �nite 2-complexes: compact
surfaces; 2-skeletons of �nite simplicial spaces; products of graphs with a closed
interval.

We de�ne two subspaces IntX and @X of a �nite 2-complex X . The subspace
IntX � X consists of the points which have a neighborhood homeomorphic to
R2 . Clearly, IntX is a 2-manifold with �nite number of components. Its comple-
ment XnIntX is a graph contained in the 1-skeleton of any CW-decomposition
of X .

The boundary @X of X is the closure in X of the set of all points of XnIntX
which have an open neighborhood in X homeomorphic to R or to R2

+ =
f(a; b) 2 R2; b � 0g. A simple local analysis shows that @X is a graph con-
tained in the 1-skeleton of any CW-decomposition of X . If X is a compact
surface then @X is its boundary in the usual sense and IntX = Xn@X .

1.2 Graphs on 2-complexes A graph Γ embedded in a �nite 2-complex X
is regular if Γ � Xn@X and there are a closed neighborhood U of Γ in Xn@X
and a homeomorphism U � Γ� [−1; 1] sending any point x 2 Γ to x� 0. If Γ
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A norm for the cohomology of 2-complexes 139

is connected then UnΓ has two components. A choice of one of them is called
a coorientation of Γ. If Γ is not connected then a coorientation of Γ is a choice
of coorientation for all components of Γ.

Any vertex of a regular graph Γ � X is incident to at least two edges of Γ
(counting with multiplicity). Hence �(Γ) � 0. Set �−(Γ) = −�(Γ) � 0.

A cooriented regular graph Γ � X determines a 1-dimensional cohomology class
sΓ 2 H1(X;@X) = H1(X;@X;Z) as follows. Choose a neighborhood U of Γ
and a homeomorphism f : U ! Γ� [−1; 1] as above so that the coorientation
of Γ is determined by the components of UnΓ lying in f−1(Γ � (0; 1]). We
de�ne a map g : X=@X ! S1 = fz 2 C ; jzj = 1g by g(XnU) = −1 2 S1

and g(x) = exp(�i ~f(x)) for x 2 U where ~f(x) 2 [−1; 1] is the projection of
f(x) 2 Γ � [−1; 1] to [−1; 1]. Set sΓ = g�(s0) where s0 is the generator of
H1(S1) = Z determined by the counterclockwise orientation of S1 . It is clear
that sΓ does not depend on the choice of U and f . To evaluate sΓ on the
homology class of a path in X whose endpoints either coincide or lie in @X ,
one should count the algebraic number of intersections of this path with Γ. If
Γ = ;, then sΓ = 0.

A simple transversality argument shows that for any s 2 H1(X;@X) there is
a cooriented regular graph Γ � X such that s = sΓ . It can be constructed
as follows. First, one realises s as g�(s0) for a certain map g : X ! S1

sending @X to −1 2 S1 . Secondly, one �xes a CW-decomposition of X and
deforms g so that it maps the 0-skeleton X(0) of X into S1nf1g. Then one
deforms g(relX(0)) so that its restriction to the 1-skeleton X(1) of X becomes
transversal to the point 1 2 S1 . Finally, one deforms g(relX(1)) so that its
restriction to any 2-cell of X becomes transversal to 1 2 S1 . Then Γ = g−1(1)
is a regular graph on X and g determines its coorientation such that sΓ = s.

1.3 A norm on H1(X;@X;R) By a norm on a real vector space V we mean
an R-valued function jj:::jj on V such that jjsjj � 0 and jjs+ s0jj � jjsjj+ jjs0jj
for any s; s0 2 V . A norm is allowed to be degenerate, i.e., to vanish on
nonzero vectors. A norm jj:::jj on V is homogeneous, if jjksjj = jkj jjsjj for any
k 2 R; s 2 V . One similarly de�nes norms on lattices, the only di�erence is
that in the de�nition of homogeneity k 2 Z.

Let X be a �nite 2-complex. For s 2 H1(X;@X) = H1(X;@X;Z), set

jjsjj = min
Γ;sΓ=s

�−(Γ)

where Γ runs over cooriented regular graphs in X such that s = sΓ . The next
lemma shows that jj:::jj is a homogeneous norm on H1(X;@X). It extends
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uniquely to a homogeneous continuous norm on H1(X;@X;R) denoted jj:::jjX
or simply jj:::jj.

1.4 Lemma jj:::jj is a homogeneous norm on H1(X;@X).

Proof We verify that jjs + s0jj � jjsjj + jjs0jj for any s; s0 2 H1(X;@X). Let
Γ;Γ0 be cooriented regular graphs in X such that s = sΓ; s

0 = sΓ0 . We slightly
deform Γ so that Γ \ Γ0 � IntX and each point γ 2 Γ \ Γ0 is a transversal
intersection of an (open) edge of Γ with an (open) edge of Γ0 . A smoothing of
Γ [ Γ0 at γ replaces the crossing at γ by the ��-type con�guration. There is
a unique smoothing at γ such that the coorientations of Γ;Γ0 induce (locally)
a coorientation of the resulting graph. Applying this smoothing at all points
of Γ \ Γ0 we transform Γ [ Γ0 into a cooriented regular graph, Γ00 , in X . It is
obvious that sΓ00 = s + s0 and jjsΓ00 jj � �−(Γ00) = �−(Γ) + �−(Γ0). Therefore
jjs+ s0jj � jjsjj+ jjs0jj.
The homogeneity of jj:::jj is proven by the same argument as in [7], p.103.
The key point is that if a cooriented regular graph Γ in X represents ks with
integer k � 1 and s 2 H1(X;@X) then Γ splits as a disjoint union of k graphs
representing s. This implies that jjksjj � kjjsjj. The opposite inequality is
obvious since for any Γ � X representing s a union of k parallel copies of Γ
represents ks.

1.5 Properties of jj:::jjX (1) Replacing everywhere embedded graphs in
X by immersed graphs, we obtain the same norm. (By an immersed graph
we mean a graph in X which locally looks like an embedded graph or like a
transversal crossing of two embedded arcs in IntX .) The immersed graphs lead
to the same norm because the smoothing of an immersed graph at all its double
points yields an embedded graph with the same Euler characteristic.

(2) It is easy to describe the subset of H1(X;@X) consisting of the vectors
with zero norm. Indeed, for a regular graph Γ � X we have �(Γ) = 0 if and
only if Γ is a closed 1-dimensional submanifold of IntX . Therefore the set
of vectors in H1(X;@X) with zero norm coincides with the set of vectors sΓ

corresponding to cooriented closed 1-manifolds Γ � IntX . The argument in
[7], p.105 shows that the set of vectors in H1(X;@X;R) with zero norm is the
R-linear span of such sΓ .

(3) If all components of IntX are open 2-discs or Möbius bands then the norm
jjsjjX vanishes only for s = 0. The unit ball fs 2 H1(X;@X;R); jjsjj � 1g
is then a compact convex polytope symmetric in the origin. It can be de�ned
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by a system of inequalities j�(s)j � 1 where � runs over a �nite subset of
H1(X;@X). This follows from general properties of norms taking integral values
on a lattice of maximal rank, see [7], p. 106.

(4) If p : ~X ! X is an n-sheeted covering with n � 2 then @ ~X = p−1(@X) and
for any s 2 H1(X;@X;R), we have jjp�(s)jj = n jjsjj where p� is the induced
homomorphism H1(X;@X;R) ! H1( ~X;@ ~X ;R). Indeed, if Γ is a cooriented
regular graph in X representing s then the graph p−1(Γ) � ~X represents p�(s).
Therefore jjp�(s)jj � n jjsjj. On the other hand, if Γ0 is a cooriented regular
graph in ~X representing p�(s) then deforming if necessary Γ0 we can assume
that p(Γ0) is an immersed graph. Smoothing it at all crossing points we obtain
a cooriented regular graph Γ � X such that �(Γ) = �(Γ0) and sΓ = ns. Hence
n jjsjj = jjnsjj � jjp�(s)jj.

1.6 A computation from cocycles For any �nite 2-complex X and s 2
H1(X;@X), we can compute jjsjjX in terms of 1-cocycles on X . Fix a CW-
decomposition of X and orient all its edges (= open 1-cells). Consider a Z-
valued cellular 1-cocycle k on (X;@X). Set jkj =

P
e(ne=2− 1)jk(e)j where e

runs over all edges of X not lying on @X , ne � 2 is the number of 2-cells of
X adjacent to e (counted with multiplicity), and k(e) 2 Z is the value of k on
e. We claim that jjsjjX = mink jkj where k runs over all cellular 1-cocycles on
(X;@X) representing s. This reduces the computation of jjsjj to a standard
algorithmically solvable minimization problem on a lattice.

We �rst prove that jjsjj � jkj for any k as above. Choose jk(e)j distinct points
on each edge e of X not lying on @X . Provide these points with positive
coorientation on e if k(e) > 0 and with negative coorientation on e if k(e) < 0
(recall that e is oriented). The boundary of each 2-cell of X meets a certain
number of these distinguished points. By the cocycle condition, their algebraic
number is 0 so that we can join these points in the 2-cell by disjoint cooriented
intervals compatible with the coorientation at the endpoints. Proceeding in
this way in all 2-cells of X we obtain a cooriented regular graph Γ � X . It is
clear that Γ represents s. Therefore jjsjj � �−(Γ) = −�(Γ) = jkj. Conversely,
any cooriented regular graph Γ � XnX(0) representing s de�nes a Z-valued
1-cocycle k on (X;@X) whose value on an (oriented) edge e is equal to the
intersection number e � Γ. This cocycle represents s and an easy computation
shows that �−(Γ) = −�(Γ) � jkj. Therefore jjsjj � mink jkj.

The formula jjsjj = mink jkj is especially useful in the cases where either all
0-cells of X lie on @X or @X = ; and X has only one 0-cell. In both cases
every cohomology class s 2 H1(X;@X) is represented by a unique cocycle.
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1.7 Examples (1) If X is a compact surface then all elements of H1(X;@X)
are represented by regular graphs consisting of disjoint embedded circles. There-
fore the norm jj:::jjX on H1(X;@X;R) vanishes.

(2) Let Γ be a graph such that all its vertices are incident to at least two edges
(counted with multiplicity). Let f be a homeomorphism of Γ onto itself. The
mapping torus, X , of f is a 2-complex with void boundary. The �bers of the
natural �bration X ! S1 determine a class, s 2 H1(X). Clearly, jjsjj � �−(Γ).
We show in Sect. 3 that jjsjj = �−(Γ). This example can be generalised to
maps Γ! Γ whose mapping torus is a 2-complex.

(3) Let Γ be a graph as in the previous example. The cylinder X = Γ� [−1; 1]
is a �nite 2-complex with @X = Γ� f−1; 1g. The graph Γ� 0 � X endowed
with a coorientation represents a certain s 2 H1(X;@X). The cylinder X
embeds in Γ�S1 in the obvious way and therefore it follows from the previous
example that jjsjj = �−(Γ).

1.8 Two-complexes associated with group presentations Let � be a
group presented by a �nite number of generators and relations hx1; :::; xm :
r1; :::; rni where r1; :::; rn are words in the alphabet x�1

1 ; :::; x�1
m . In this sub-

section we consider only presentations such that each generator appears in the
relations at least twice. The presentation hx1; :::; xm : r1; :::; rni gives rise in the
usual way to a 2-dimensional CW-complex X with one 0-cell, m one-cells and
n two-cells. Let #(xi) be the total number of appearances of xi in the words
r1; :::; rn . (A power xki appearing in these words contributes jkj to #(xi)). It
is clear that #(xi) is the number of 2-cells of X adjacent to the i-th 1-cell of
X . By assumption, #(xi) � 2 for all i so that @X = ;. Using the formulas
of Sect. 1.6, we can compute the norm jj:::jjX on H1(X;R) = H1(�;R) by
jjsjjX =

Pn
i=1(#(xi)=2−1)js(xi)j for any s 2 H1(�;R). This norm depends on

the presentation of � . It is easy to increase this norm for instance by adding a
tautological relation xix

−1
i = 1.

We say that a �nite presentation of � by generators and relations is minimal if
the corresponding norm on H1(�;R) (considered as a function) is smaller than
or equal to the norm on H1(�;R) determined by any other �nite presentation
of � . For instance, if each generator appears in the relations exactly twice, then
the corresponding norm is zero and the group presentation is minimal. Another
example: � = hx; y : xpyq = 1i where p; q � 2 are relatively prime integers. A
generator s 2 H1(�) = Z takes values −q and p on x; y , respectively. The norm
of s with respect to this presentation equals (p=2−1)q+(q=2−1)p = pq−p−q .
We shall show in Sect. 3 that this presentation is minimal.
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1.9 A related construction We describe a related construction which de-
rives a norm on the cohomology of a compact surface � from a family of loops on
�. Let � = f�igi be a �nite family of closed curves in Int� whose all crossings
and self-crossings are transversal double intersections. We de�ne a norm j:::j�
on H1(�; @�;R) as follows. For any s 2 H1(�; @�), set jsj� = minS #(S\[i�i)
where S runs over cooriented closed 1-dimensional submanifolds of � represent-
ing s and meeting [i�i transversely (in the complement of the set of double
points of [i�i ). Here #(S \ [i�i) is the number of points in S \ [i�i . It
is easy to check that j:::j� is a homogeneous norm on H1(�; @�). As usual
it extends uniquely to a homogeneous continuous norm, also denoted j:::j� , on
H1(�; @�;R). This norm is preserved under the �rst and third Reidemeister
moves on the loops f�igi but in general is not preserved under the second Rei-
demeister move. A simple example is provided by a small loop � � � bounding
a disc in �. The norm j:::j� on H1(�; @�;R) is zero. On the other hand we
can deform � into an immersed loop � in S which splits � into 2-discs. The
norm j:::j� is then non-degenerate.

The norm j:::j� on H1(�; @�;R) is related to the norm on the 1-cohomology
of 2-complexes as follows. Let � = f�igi be a �nite family of loops in Int�
as above. Let X be the 2-complex obtained by gluing 2-discs to � along
these loops. It is clear that @X = @�. We can identify H1(X;@X;R) with
the linear subspace of H1(�; @�;R) consisting of cohomology classes whose
evaluation on the loops f�igi is 0. Then the norm jj:::jjX on H1(X;@X;R)
is the restriction of (1=2)j:::j� . Indeed, any regular graph Γ � X consists of
a closed 1-manifold S = Γ \ � and several intervals lying in the glued 2-discs
and connecting the points of S \ [i�i . All vertices of Γ are trivalent and
therefore �−(Γ) = −�(Γ) = (1=2) #(S \ [i�i). The 2-complexes obtained in
this way from homotopic systems of loops are (simply) homotopy equivalent.
The example above implies that the norm jj:::jj in general is not preserved under
(simple) homotopy equivalences of 2-complexes.

2 The Alexander-Fox polynomials and norms

The Alexander polynomial is mostly known in the context of knot theory. Fox
observed that this polynomial depends only on the knot group and in fact can
be de�ned for an arbitrary �nitely generated group. In this section we recall the
relevant de�nitions following [2]. In generalisation of the standard Alexander-
Fox polynomial, we introduce twisted Alexander-Fox polynomials and consider
the associated norms on 1-cohomology of groups.
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Fix throughout this section a �nitely generated group � . Set H = H1(�)
and G = H=TorsH . The ring homomorphism Z[H] ! Z[G] induced by the
projection H ! G will be denoted by pr.

2.1 The elementary ideals The group � determines an increasing sequence
of ideals E0(�) � E1(�) � E2(�) � ::: of the group ring Z[H] called the
elementary ideals of � . They can be computed from an arbitrary presentation
of � by generators and relations hx1; :::; xm : r1; r2; :::i with �nite m � 1. Here
each ri is viewed as an element of the free group, F , generated by x1; :::; xm ;
the number of relations can be in�nite. Every f 2 F can be uniquely expanded
in Z[F ] as 1+

Pm
j=1 fj(xj−1) with f1; :::; fm 2 Z[F ]. The element fj 2 Z[F ] is

called the j -th Fox derivative of f and denoted by @f=@xj . Consider the matrix
[@ri=@xj ]i;j over Z[F ]. Applying the natural projections Z[F ]! Z[�] ! Z[H]
to the entries of this matrix we obtain a matrix, A, over Z[H] called the
Alexander-Fox matrix of the presentation hx1; :::; xm : r1; r2; :::i. It has m
columns and possibly in�nite number of rows. Adding if necessary to r1; r2; :::
several copies of the neutral element 1 2 F we can assume that A has at
least m rows. For d = 0; 1; :::, the ideal Ed(�) � Z[H] is generated by the
minor determinants of A of order m − d. This ideal does not depend on the
presentation of � . We shall be interested only in the ideal E1(�) which will be
denoted E(�).

2.2 The Alexander-Fox polynomials Consider the ideal pr(E(�)) �
Z[G]. Since Z[G] is a unique factorization domain, one can consider the great-
est common divisor of the elements of pr(E(�)). This gcd is an element of Z[G]
de�ned up to multiplication by �G. It is called the Alexander-Fox polynomial
of � and denoted �(�).

The obvious inclusion pr(E(�)) � �(�)Z[G] can be slightly improved provided
rkH � 2. Namely, if rkH � 2, then

pr(E(�)) � �(�)J (2:a)

where J is the augmentation ideal of Z[G]. This inclusion goes back to [2],
Prop. 6.4 at least in the case TorsH = 0. We give a proof of (2.a) at the end
of Sect. 2.

In generalisation of �(�), we de�ne twisted Alexander-Fox polynomials of �
numerated by � 2 (TorsH)� = Hom(TorsH;C �). Fix a splitting H = TorsH�
G. For � 2 (TorsH)� , consider the ring homomorphism ~� : Z[H] ! C [G]
sending fg with f 2 TorsH; g 2 G to �(f)g where �(f) 2 C � � C . The ring
C [G] is a unique factorization domain and we can set ��(�) = gcd ~�(E(�)).
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This gcd is an element of C [G] de�ned up to multiplication by elements of
G and nonzero complex numbers. Under a di�erent choice of the splitting
H = TorsH � G, the polynomial ��(�), represented say by

P
g2G cgg with

cg 2 C , is replaced by
P

g2G cg�( (g))g where  2 Hom(G;TorsH). For
� = 1, we have �1(�) = C ��(�).

2.3 The Alexander-Fox polytopes and norms Fix � 2 (TorsH)� . In
analogy with the Newton polytope of a polynomial, we can derive from ��(�)
an Alexander-Fox polytope (or briefly AF-polytope) P �(�) � H1(�;R). Pick
a representative

P
g2G cgg 2 C [G] of ��(�). Set

P �(�) = HULL (f 1
2

(greal − (g0)real) j g; g0 2 G; cg 6= 0; cg0 6= 0 g)

where greal 2 H1(�;R) is the real homology class represented by g 2 G and
for a subset S of a linear space, HULL(S) denotes the convex hull of S . By
convention, if ��(�) = 0 then P �(�) = f0g. The polytope P �(�) is a compact
convex polytope symmetric in the origin and independent of the representativeP

g cgg . Its vertices lie on the half-integral lattice (1=2)G where G � H1(�;R)
consists of integral homology classes.

We de�ne the Alexander-Fox norm (or briefly AF-norm) jj:::jj� on H1(�;R) by

jjsjj� = 2 max
x2P�(�)

js(x)j = max
g;g02G;cgcg0 6=0

js(g) − s(g0)j

where s 2 H1(�;R) and s(x) 2 R is the evaluation of s on x. This norm is
continuous and homogeneous. It was �rst considered in the case � = 1 by C.
McMullen [6].

The AF-norms are natural with respect to group isomorphisms: For a group
isomorphism ’ : �0 ! � and s 2 H1(�;R); � 2 (TorsH1(�))� , we have jjsjj� =
jj’�(s)jj�’� where ’� and ’� are the induced homomorphisms H1(�;R) !
H1(�0;R) and TorsH1(�0)! TorsH1(�), respectively.

2.4 Examples (1) If � has a presentation with m generators and � m− 2
relations then E(�) = 0 and the AF-norms on H1(�;R) are 0.

(2) Let p; q � 2 be relatively prime integers and � = hx; y : xpyq = 1i. Let t
be a generator of H1(�) = Z. Set n = pq − p − q + 1. The polynomial �(�)
is represented by the Laurent polynomial (tpq − 1)(t − 1)(tp − 1)−1(tq − 1)−1

with lowest term 1 and highest term tn . The AF-polytope in H1(�;R) = R is
the interval with endpoints −(n=2)treal and (n=2)treal . The AF-norm of both
generators of H1(�) = Z is equal to n = pq − p− q + 1.
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(3) Let � = hx; y : xkylx−ky−l = 1; ym = 1i where k; l � 1;m � 2. It is
clear that H1(�) = Z � (Z=mZ) with generators [x]; [y] represented by x; y .
A direct computation shows E(�) is generated by 3 elements: 1 + [y] + ::: +
[y]m−1; (1+[x]+ :::+[x]k−1)([y]l−1), and ([x]k−1)(1+[y]+ :::+[y]l−1). Setting
[y] = 1 we obtain that �(�) = gcd(l;m). The corresponding AF-norm is zero.
Let � be a nontrivial character of TorsH1(�) = Z=mZ. Then � = �([y]) 6= 1
is a complex root of unity of order m. If � l = 1 then ��(�) = 0 and the
corresponding AF-norm is zero. If � l 6= 1 then ��(�) = 1 + t+ :::+ tk−1 where
t is the generator of H1(�)=TorsH1(�) represented by x. The corresponding
AF-norm of both generators of H1(�) = Z is equal to k − 1. This example
shows that the twisted AF-polynomials may provide more interesting norms
than the untwisted AF-polynomial.

2.5 Remark The structure of the ideal E(�) can be sometimes described
using the theory of Reidemeister torsions. Suppose that � = �1(X) where X
is a �nite connected 2-complex with �(X) = 0. As above, set H = H1(X) =
H1(�); G = H=TorsH . The maximal abelian torsion �(X) is an element of the
commutative ring Q(H) obtained from Z[H] by inverting all non-zerodivisors
(see [8],[9]). The natural homomorphism Z[H] ! Q(H) is an inclusion and
we can identify Z[H] with its image. Then E(�) = �(X)I where I is the
augmentation ideal of Z[H] (for a proof, see [8], p. 689). If rkH � 2, then
�(X) 2 Z[H] and for any � 2 (TorsH)� , the twisted AF-polynomial ��(�)
is represented by ~�(�(X)) 2 C [G]. If rkH = 1, then �(X) splits as a sum
a+ (t− 1)−1� where a 2 Z[H], � =

P
f2TorsH f 2 Z[H], and t is any element

of H whose projection pr(t) 2 G = Z is a generator. Then for any non-trivial
character � 2 (TorsH)� , the polynomial ��(�) is represented by ~�(a) 2 C [G].
The polynomial �(�) corresponding to � = 1 is represented by pr((t− 1)a) +
jTorsHj 2 Z[G].

2.6 Proof of (2.a) Consider a presentation hx1; :::; xm : r1; r2; :::i of � by
generators and relations with �nite m � 1 and at least m relations. Let A be
the Alexander matrix of this presentation. It is enough to show that for any
minor determinant D of A of order m−1, we have pr(D) 2 �(�)J . Assume for
concreteness that D is the determinant of a submatrix of the �rst m− 1 rows
of A. Let �0 be the group hx1; :::; xm : r1; r2; :::; rm−1i. Set H 0 = H1(�0). The
natural surjection H 0 ! H = H1(�) induces a ring homomorphism Z[H 0] !
Z[H] denoted  . It follows from de�nitions that D 2  (E(�0)) � E(�). Note
that rkH 0 � rkH � 2.

Consider the 2-dimensional CW-complex X determined by the presentation
hx1; :::; xm : r1; r2; :::; rm−1i. Clearly, �1(X) = �0 and �(X) = 0. By Remark
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2.5, E(�0) = �I 0 where � 2 Z[H 0] and I 0 is the augmentation ideal of Z[H 0].
Applying pr �  we obtain that

(pr �  )(�)J = (pr �  )(�I 0) = (pr �  )(E(�0)) � pr(E(�)) � �(�)Z[G]:

Since rkH � 2, we have gcd J = 1 and hence �(�) is a divisor of (pr � )(�) 2
Z[G]. Therefore pr(D) 2 (pr �  )(E(�0)) = (pr �  )(�)J � �(�)J .

3 Main theorem

To state our main theorem it is convenient to introduce a trivial norm j:::j0 on
the real 1-cohomology H1(X;R) of any CW-space X . If the �rst Betti number
of X is 6= 1 then jsj0 = 0 for all s 2 H1(X;R). If the �rst Betti number of X
is 1, then j:::j0 is the unique homogeneous norm on H1(X;R) taking value 1
on both generators of Z = H1(X;Z) � H1(X;R).

3.1 Theorem Let X be a connected �nite 2-complex with @X = ;. For any
s 2 H1(X;R) and any � 2 (TorsH1(X))� ,

jjsjjX � jjsjj� − �1
�jsj0 (3:a)

where jj:::jj� is the Alexander-Fox norm on H1(X;R) = H1(�1(X);R) deter-
mined by � and �1

� = 1 if � = 1 and �1
� = 0 otherwise.

Theorem 3.1 will be proven in Sect. 4. Note that the norm jj:::jj� on H1(X;R)
does not depend on the choice of a base point in X because of the invariance
of the AF-norms under group isomorphisms. In the case rkH1(X) � 2, (3.a)
simpli�es to jjsjjX � jjsjj� .

Inequality (3.a) has a version for 1-cohomology classes on 3-manifolds, where
on the left hand side appears the Thurston norm of s and the right hand side
is jjsjj� − 2�1

� jsj0 . The author plans to discuss this version of Theorem 3.1
elsewhere.

3.2 Corollary Let M be a connected manifold (possibly with boundary)
of dimension � 3. Let X be a connected �nite 2-complex with @X = ;
embedded in M such that the inclusion homomorphism �1(X) ! �1(M) is
an isomorphism. Let S � M be a cooriented compact submanifold of M
of codimension 1 intersecting @M along @S and intersecting X transversely
along a regular graph Γ = S \X . Let s 2 H1(M ;Z) be the cohomology class
represented by S . Then

j�(Γ)j � max
�2(TorsH1(M))�

(jjsjj� − �1
�jsj0) (3:b)

where jj:::jj� is the Alexander-Fox norm on H1(M ;R) determined by � .
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The assumption �1(X) = �1(M) ensures that �1(M) is �nitely generated so
that the AF-norms on H1(M ;R) are well de�ned.

To deduce Corollary 3.2 from Theorem 3.1, set s0 = sjX 2 H1(X;R). Clearly,
s0 = sΓ . Therefore j�(Γ)j = �−(Γ) � jjs0jj. By Theorem 3.1 and the assumption
�1(X) = �1(M),

jjs0jj � max
�2(TorsH1(X))�

(jjs0jj� − �1
�js0j0) = max

�2(TorsH1(M))�
(jjsjj� − �1

�jsj0):

The statement of Corollary 3.2 is not speci�c about the category of manifolds.
In fact the corollary extends to a much broader setting where M is an arcwise
connected space and S is a subspace of M which has a cylinder neighborhood
U = S � [−1; 1] � M such that S = S � 0. A coorientation of S is de�ned
in the obvious way and determines a cohomology class s 2 H1(M) as in Sect.
1.2. As above, X � M is a connected �nite 2-complex with @X = ; such
that the inclusion homomorphism �1(X) ! �1(M) is an isomorphism and
U \X = Γ� [−1; 1] where Γ = S \X is a graph in X . Then we have (3.b).

Corollary 3.2 can be applied in various geometric situations. For instance, if
M is a compact triangulated manifold of dimension � 3 then we can take X
to be the 2-skeleton of M . If M is a compact 3-manifold then we can take X
to be a spine of M or a spine of punctured M .

3.3 Corollary Let � be a group presented by a �nite number of generators
and relations hx1; :::; xm : r1; :::; rni where r1; :::; rn are words in the alphabet
x�1

1 ; :::; x�1
m such that (in the notation of Sect. 1.8) #(xi) � 2 for i = 1; :::;m.

Then for any s 2 H1(�;R),

nX
i=1

(#(xi)=2 − 1) js(xi)j � max
�2(TorsH1(�))�

(jjsjj� − �1
�jsj0): (3:c)

This corollary is obtained by an application of Theorem 3.1 to the 2-complex
determined by the presentation hx1; :::; xm : r1; :::; rni.

3.4 Examples (1) The computations in Sect. 1.8 and 2.4.2 show that for
the group presentation hx; y : xpyq = 1i the inequality (3.c) is an equality.
Thus, this presentation is minimal in the sense of Sect. 1.8. (It would be
interesting to extend this fact to groups of other �bered knots in S3 ).

(2) Let � = hx; y : xkylx−ky−l = 1; ym = 1i where k; l � 1;m � 2. We claim
that if m does not divide l then this presentation is minimal. Indeed, there is
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a nontrivial character � of TorsH1(�) = Z=mZ such that (�([y]))l 6= 1. The
computations in Sect. 2.4.3 show that jjsjj� = k − 1 where s is a generator of
H1(�) = Z. The left hand side of (3.c) is (2k)=2 − 1 = k − 1. Hence (3.c) is
an equality for this presentation of � which is therefore minimal. Examples 1
and 2 show that the estimate in Theorem 3.1 is sharp.

(3) Consider Γ; f;X; s from the mapping torus of Example 1.7.2. We will
deduce the equality jjsjj = �−(Γ) from Theorem 3.1. We need only to prove
that jjsjj � �−(Γ). It is enough to consider the case of connected Γ. By
(3.a), it is enough to show that �−(Γ) = jjsjj1 − jsj0 . To this end we shall
compute the (untwisted) AF-polynomial �(X) = �(�1(X)). We can deform
f : Γ ! Γ so that it �xes a point γ 2 Γ. Let x1; :::; xn be free generators
of the free group �1(Γ; γ) where n � 1. The group �1(X) can be presented
by n+ 1 generators x1; :::; xn; T subject to n relations TxiT−1(f#(xi))−1 = 1
where i = 1; :::; n and f# is the endomorphism of �1(Γ; γ) induced by f . Set
G = H1(X)=TorsH1(X) and let G0 be the corank 1 sublattice of G generated
by the classes [x1]; :::; [xn] 2 G of x1; :::; xn . Set � = 1 if rkG � 2 and � = 0
if rkG = 1. A direct computation using the Fox di�erential calculus gives
�(X) = (t−1)−�det(tEn−A) where t = [T ] 2 G is the class of T , En is the unit
(n� n)-matrix, and A is the (n� n)-matrix over Z[G0] obtained as the image
of the matrix (@f#(xi)=@xj)i;j=1;:::;n under the natural ring homomorphism
Z[�1(Γ; γ)]! Z[G0] sending each xi to [xi]. Clearly, det(tEn−A) = a0 +a1t+
:::+ an−1t

n−1 + tn where a0; :::; an−1 2 Z[G0]. Since f# is an isomorphism, the
sum of coe�cients of a0 = �detA 2 Z[G0] is �1 and therefore a0 6= 0. By
de�nition, s(G0) = 0 and s(t) = �1. If rkG � 2 then �(X) = −a0 + :::+ tn−1

and jjsjj1− jsj0 = jjsjj1 = n− 1 = �−(Γ). If rkG = 1 then �(X) = a0 + :::+ tn

and jjsjj1 − jsj0 = n− 1 = �−(Γ).

4 Proof of Theorem 3.1

4.1 Preliminaries on modules Let � be a commutative ring with unit. For
a �nitely generated �-module X consider a �-linear homomorphism f : �n !
�m with �nite m and Cokerf = X . The i-th elementary ideal Ei(X) � �
with i = 0; 1; ::: is generated by the (m − i)-minors of the matrix of f . If
m − i > n then Ei(X) = 0; if m − i � 0, then Ei(X) = �. The ideal
Ei(X) is independent of f . If � is a unique factorization domain then the i-th
Alexander invariant �i(X) 2 � of X is the greatest common divisor of the
elements of Ei(X). It is well-de�ned up to multiplication by units of �. Note
that �i(X � �) = �i−1(X) for i � 1.
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Let � = C [t�1]. The Alexander invariants of a �nitely generated �-module
X can be computed as follows. Since � is a principal ideal domain, X =
�mr=1(�=�r) where �1; :::; �m 2 � and �i+1 divides �i for all i. Then �i(X) =Qm
r=i+1 �r for i < m and �i(X) = 1 for i � m. The maximal r such that

�1 = ::: = �r = 0 is called the rank of X and denoted rk�X . It is clear that
rk� X = dimQ(t) (Q(t) ⊗� X) where Q(t) is the �eld of fractions of �. We
have rk�X = 0 , Q(t) ⊗� X = 0 , �0(X) 6= 0. If rk�X = 0 then X is a
�nite dimensional C -linear space and dimC X = span�0(X) where the span of
a nonzero Laurent polynomial

P
n ant

n 2 � is maxm;n;aman 6=0 jm− nj.

4.2 Preliminaries on twisted homology We recall the notion of twisted
homology. Let X be a connected CW-space and H = H1(X). Let � be a
commutative ring with unit and ’ be a ring homomorphism Z[H] ! �. We
view � as a (right) Z[H]-module via �z = �’(z) for � 2 �; z 2 Z[H]. Let
p : X̂ ! X be the maximal abelian covering of X (with induced CW-structure)
corresponding to the commutant of �1(X). The action of H on X̂ by deck
transformations makes the cellular chain complex C�(X̂) a complex of (free)
left Z[H]-modules. By de�nition,

H’
� (X) = H�(�⊗Z[H] C�(X̂)):

Note that H’
� (X) is a �-module. The twisted homology extends to cellular

pairs Y � X by

H’
� (X;Y ) = H�(�⊗Z[H] C�(X̂)=C�(p−1(Y )))

where C�(p−1(Y )) is the chain subcomplex of C�(X̂) generated by cells of X̂
lying in p−1(Y ).

The twisted homology is invariant under cellular subdivisions and forms the
usual exact homology sequences such as the Mayer-Vietoris homology sequence
and the homology sequence of a pair. Using a CW-decomposition of X with
one 0-cell, one can check that H’

0 (X) = �=’(I)� where I is the augmentation
ideal of Z[H].

4.3 Preliminaries on weighted graphs The notion of weighted graphs
formalizes graphs with parallel components. A weighted graph in a 2-complex
X is a cooriented regular graph Γ � X such that each its component Γi is
endowed with a positive integer wi called the weight of Γi . We write Γ =
[i(Γi; wi). A weighted graph Γ = [i(Γi; wi) in X gives rise to an (unweighted)
cooriented regular graph Γu � X obtained by replacing each Γi by wi parallel
copies in a small neighborhood of Γi . We say that Γ represents the cohomology
class sΓ = sΓu =

P
iwisΓi 2 H1(X). Set �−(Γ) = �−(Γu) =

P
iwi �−(Γi).
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4.4 Lemma Let X be a connected �nite 2-complex with @X = ;. Every
nonzero s 2 H1(X) can be represented by a weighted graph Γ � X such that
�−(Γ) = jjsjj and XnΓ is connected.

Proof Consider �rst an arbitrary weighted graph Γ = [i(Γi; wi) in X . By
\decreasing the weight of Γi by 1" we mean the transformation which reduces
wi by 1 and keeps the other weights. If wi = 1, then this transformation
removes Γi from Γ.

Assume that XnΓ is not connected. For a component N of XnΓ, we de-
�ne a reduction of Γ along N . Let �+ (resp. �− ) be the set of all i such
that N is adjacent to Γi only on the positive (resp. negative) side. The
sets �+; �− are disjoint. Since N 6= XnΓ, at least one of these two sets is
non-void. Counting the number of entries and exits in N of a loop on X we
observe that

P
i2�+

sΓi =
P

i2�− sΓi 2 H1(X). We modify Γ as follows. If
�+ 6= ; and

P
i2�+

�−(Γi) �
P

i2�− �−(Γi), then we decrease by 1 the weights
of all fΓigi2�+ and increase by 1 the weights of all fΓigi2�− . If �+ = ; orP

i2�+
�−(Γi) <

P
i2�− �−(Γi) then we increase by 1 the weights of all fΓigi2�+

and decrease by 1 the weights of all fΓigi2�− . This yields another weighted
graph Γ0 such that sΓ0 = sΓ and �−(Γ0) � �−(Γ). Iterating this transforma-
tion, we eventually remove from Γ at least one component incident to N on one
side. Let us call this iteration the reduction of Γ along N . The reduction does
not increase �− , preserves sΓ and strictly decreases the number of components
of XnΓ. If @N is connected then the reduction along N removes @N from Γ.

To prove the lemma, represent s by a cooriented regular graph S � X such
that �−(S) = jjsjj. We view S as a weighted graph with weights of all com-
ponents equal to 1. If XnS is connected then S satis�es the requirements of
the lemma. If XnS is not connected then iteratively applying to S reductions
along components of XnS we eventually obtain a weighted graph, Γ, such that
XnΓ is connected. Clearly, sΓ = s. We have �−(Γ) = jjsjj, since

jjsjj � �−(Γu) = �−(Γ) � �−(S) = jjsjj:

4.5 Proof of Theorem 3.1 Set � = �1(X), H = H1(X), G = H=TorsH .
If ��(�) = 0 then jjsjj� = 0 and jjsjj� − �1

�jsj0 � 0 � jjsjj. Assume from now
on that ��(�) 6= 0.

Fix a splitting H = TorsH � G and consider the ring homomorphism ~� :
Z[H] ! C [G] sending fg with f 2 TorsH; g 2 G to �(f)g . By assump-
tion, gcd ~�(E(�)) = ��(�) 6= 0 so that ~�(E(�)) 6= 0. Pick a representative
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P
g2G cgg of ��(�). Pick a nonzero � =

P
g2G �gg 2 ~�(E(�)) where �g 2 C .

We call s 2 H1(X) regular if s(g) 6= s(g0) for any distinct g; g0 2 G such that
cgcg0 6= 0 or �g�g0 6= 0. (For rkG � 2, this notion depends on the choice of
�. In the case rkG = 1 all nonzero s are regular). The set of regular s is
the complement in H1(X) of a �nite set of sublattices of corank 1. We call
s 2 H1(X) primitive if its evaluation on a certain element of H equals 1.

Since the norms jj:::jj; jj:::jj� , and j:::j0 on H1(X;R) are continuous and ho-
mogeneous, it su�ces to prove that jjsjj � jjsjj� − �1

�jsj0 for primitive regular
s 2 H1(X). Fix a primitive regular s 2 H1(X). (In the case rkG = 1, s is any
generator of H1(X) = Z). Let ’ : Z[H] ! C [t�1] = � be the composition of
~� : Z[H]! C [G] and the C -linear ring homomorphism ~s : C [G]! � = C [t�1]
sending any g 2 G to ts(g) . Recall the �-module H’

� (X) (see Sect. 4.2).

Claim 1 �0(H’
1 (X)) 2 � is non-zero and divisible by (t − 1)�

P
g2G cgt

s(g)

where � = 1 if � = 1 and rkG � 2 and � = 0 otherwise.

By the regularity of s, the polynomial (t − 1)�
P

g cgt
s(g) is nonzero and its

span equals � + jjsjj� . Claim 1 implies that

dimCH
’
1 (X) = span�0(H’

1 (X)) � � + jjsjj� = �1
�(1− jsj0) + jjsjj�:

The inequality jjsjj � jjsjj� − �1
� jsj0 follows now from the next claim.

Claim 2 jjsjj � dimC H
’
1 (X)− �1

� .

Now we prove Claims 1 and 2.

Proof of Claim 1 Contracting recursively the 1-cells of X with distinct end-
points we obtain a �nite 2-dimensional CW-complex homotopy equivalent to
X and having only one 0-cell. Since H’

1 (X) and ��(�) are homotopy invari-
ants, we can assume in the proof of Claim 1 that X has only one 0-cell, x.
Consider the presentation of � = �1(X;x) determined by the cellular structure
of X . The corresponding Alexander matrix is nothing but the matrix of the
Z[H]-linear boundary homomorphism C2(X̂) ! C1(X̂) where X̂ is the max-
imal abelian covering of X . Applying ’ : Z[H] ! � to the entries of this
matrix we obtain a presentation matrix of the �-module H’

1 (X;x). Therefore
E1(H’

1 (X;x)) = C � ’(E(�)) � �.

Recall that ’ = ~s� ~� . By de�nition of ��(�), we have ~�(E(�)) � ��(�)C [G].
If � = 1 and rkG � 2, then (2.a) implies a stronger inclusion ~�(E(�)) �
��(�)J where J is the augmentation ideal of C [G]. Applying ~s, we obtain
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that ’(E(�)) = (~s � ~�)(E(�)) is contained in the principal ideal generated
by (t − 1)�~s(��(�)) = (t − 1)�

P
g cgt

s(g) . The regularity of s implies that
’(E(�)) 6= 0. Hence �1(H’

1 (X;x)) = gcd’(E(�)) is non-zero and divisible by
(t− 1)�

P
g2G cgt

s(g) . It remains to observe that �0(H’
1 (X)) = �1(H’

1 (X;x)).
Indeed, consider the exact sequence

0! H’
1 (X)! H’

1 (X;x)! H’
0 (x)! H’

0 (X):

Clearly, H’
0 (x) = � and H’

0 (X) = �=’(I)� where I is the augmentation ideal
of Z[H]. The kernel ’(I)� � � of the inclusion homomorphism H’

0 (x) !
H’

0 (X) is a free �-module of rank 1. Hence H’
1 (X;x) = H’

1 (X) � � and
�0(H’

1 (X)) = �1(H’
1 (X;x)).

Proof of Claim 2 Consider the ring homomorphism � = aug � ~� : Z[H]! C
mapping G � H to 1 and mapping any f 2 TorsH to �(f) 2 C � . We call a
cellular set S � X bad if � is trivial on H1(S), i.e., if the composition of the
inclusion homomorphism H1(S)! H with � maps H1(S) to 1.

By Lemma 4.4, there is a weighted graph Γ = [i(Γi; wi) � X such that XnΓ
is connected, sΓ = s, and �−(Γ) = jjsjj. We �rst compute the ’-twisted
homology H’

� (Γi) of a component Γi of Γ. Observe that s annihilates H1(Γi)
and therefore ’jH1(Γi) is the composition of �jH1(Γi) with the inclusion C � �.
Hence H’

� (Γi) = �⊗C H�
� (Γi). If Γi is bad then H�

� (Γi) is the usual untwisted
homology of Γi with complex coe�cients. If Γi is not bad then H�

0 (Γi) = 0
and dimC H

�
1 (Γi) = −�(Γi) = �−(Γi) � 0.

Let U = Γ � [−1; 1] be a closed regular neighborhood of Γ in X such that
Γ = Γ� 0. We can assume that the given coorientation of Γ is determined by
Γ� (0; 1] � U . Set N = XnU . By our assumptions, N is connected. Clearly,
N \ U = @N = @U contains two copies Γ�i = Γi � (�1) of each Γi .

The Mayer-Vietoris homology sequence of the triple (X = N [ U;N;U), gives
an exact sequence

H’
1 (X)! H’

0 (N \ U)! H’
0 (N)�H’

0 (U):

It is clear that s annihilates H1(N) and therefore H’
0 (N) = �⊗C H�

0 (N) = ��

where � = 1 if N is bad and � = 0 otherwise. The computations above show
that H’

0 (U) = H’
0 (Γ) = �� where � is the number of bad components of Γ.

Similarly, H’
0 (N \ U) = �2� . Therefore,

0 = rk�H
’
1 (X) � 2�− (�+ �) = �− �:

Hence � � � = 0; 1.
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Case � = 1 In this case N is bad and therefore all its boundary components
Γ�i are bad. Thus, all the components of Γ are bad. The inequality � � � = 1
implies that Γ is connected. Since the dual class s is primitive, the weight of
(the only component of) Γ is equal to 1. Thus jjsjj = �−(Γ).

Since Γ and its complement in X are bad, the group homomorphism �jH : H !
C � is a composition of s : H ! Z with a certain group homomorphism Z! C � .
Such a composition is trivial on TorsH . Hence � = 1. Then H’

1 (X) =
H1( ~X ;C ) where ~X ! X is the in�nite cyclic covering determined by s. To
prove Claim 2, it su�ces to prove the inequality �−(Γ) � dimC H1( ~X;C )− 1.
Observe that the graph Γ lifts to a homeomorphic graph ~Γ � ~X splitting ~X into
two connected pieces, ~X− and ~X+ . Let t be the generating deck transformation
of the covering ~X ! X such that t ~X+ � ~X+ . The characteristic polynomial of
the action of t on H1( ~X;C ) is �0(H1( ~X;C )) = �0(H’

1 (X)) 6= 0. Applying to
any compact subset of ~X a su�ciently big positive (resp. negative) power of t we
can translate this subset into ~X+ (resp. ~X− ). This implies that the inclusion
homomorphisms H1( ~X−;C ) ! H1( ~X;C ) and H1( ~X+;C ) ! H1( ~X;C ) are
surjective. The Mayer-Vietoris homology sequence for ~X = ~X+[ ~X− implies the
surjectivity of the inclusion homomorphism H1(~Γ;C ) ! H1( ~X;C ). Comput-
ing the dimensions, we obtain �−(Γ) + 1 = dimC H1(Γ;C ) � dimC H1( ~X ;C ).

Case � = 0 In this case N is not bad and � = � = 0 so that Γ has no bad
components. In particular, � 6= 1.

Now we compute H’
1 (X). Let Γ1; :::;Γn be the components of Γ with weights

w1; :::; wn . As we know H’
0 (N \ U) = �2� = 0. The Mayer-Vietoris ho-

mology sequence of the triple (X = N [ U;N;U) yields that the inclusion
homomorphism H’

1 (N) ! H’
1 (X) is surjective and its kernel is generated

by the vectors in(twix − f’i (x)) where i = 1; :::; n; x runs over H’
1 (Γ+

i );
f’i : H’

1 (Γ+
i ) ! H’

1 (Γ−i ) is the isomorphism induced by the natural homeo-
morphisms Γ+

i � Γi � Γ−i ; and in is the inclusion homomorphism H’
1 (@N)!

H’
1 (N). We claim that in is surjective. Indeed, since s annihilates H1(N)

we have H’
1 (N) = � ⊗C H�

1 (N) and H’
1 (@N) = � ⊗C H�

1 (@N). Moreover,
in = id�⊗C j where j : H�

1 (@N)! H�
1 (N) is the inclusion homomorphism. If

j is not surjective then the cokernel of in is a free �-module of rank � 1. On
the other hand, this cokernel is a quotient of the �nite dimensional C -linear
space H’

1 (X). This contradiction shows that both j and in must be surjective.
Therefore H’

1 (X) is the quotient of

H’
1 (@N) =

nM
i=1

(H’
1 (Γ+

i )�H’
1 (Γ−i )) = �⊗C

nM
i=1

(H�
1 (Γ+

i )�H�
1 (Γ−i ))
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by Ker in = �⊗CKer j and the vectors twix−f�i (x) where i runs over 1; :::; n; x
runs over H�

1 (Γ+
i ); f�i : H�

1 (Γ+
i )! H�

1 (Γ−i ) is the isomorphism induced by the
homeomorphism Γ+

i � Γ−i . Hence H’
1 (X) is a quotient of � ⊗C (�iH�

1 (Γ+
i ))

by vectors of type x1 + :::+ xn + tw1y1 + :::+ twnyn where xi; yi 2 H�
1 (Γ+

i ) for
all i. Consider the corresponding presentation matrix of H’

1 (X) with respect
to certain bases in the C -linear spaces H�

1 (Γ+
1 ); :::;H�

1 (Γ+
n ). The column of

this matrix corresponding to any basis vector in H�
1 (Γ+

i ) has entries of type
a+twib with a; b 2 C . Therefore the ideal E0(H’

1 (X)) is generated by Laurent
polynomials whose span does not exceed

nX
i=1

wi dimC H
�
1 (Γ+

i ) =
nX
i=1

wi �−(Γ+
i ) = �−(Γ) = jjsjj:

Therefore

dimC H
’
1 (X) − �1

� = dimC H
’
1 (X) = span �0(H’

1 (X)) � jjsjj:
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