Linking rst occurrence polynomials over \mathbb{F}_{p} by Steenrod operations

Pham Anh Minh
Grant Wal ker

Abstract

This paper provides analogues of the results of [16] for odd primes p. It is proved that for certain irreducible representations $\mathrm{L}($) of the full matrix semigroup $M_{n}\left(\mathbb{F}_{\mathrm{p}}\right)$, the rst occurrence of $\mathrm{L}(\mathrm{)}$ as a composition factor in the polynomial algebra $\mathbf{P}=\mathbb{F}_{\mathrm{p}}\left[\mathrm{x}_{1} ;::: ; \mathrm{x}_{\mathrm{n}}\right]$ is linked by a Steenrod operation to the rst occurrence of $L()$ as a submodule in \mathbf{P}. This operation is given explicitly as the image of an admissible monomial in the Stennrod algebra A_{p} under the canonical anti-automorphism . The rst occurrences of both kinds are also linked to higher degree occurrences of $L()$ by elements of the Milnor basis of A_{p}.

AMS Classi cation 55S10; 20C20
Keywords Steenrod algebra, anti-automorphism, p-truncated polynomial algebra \mathbf{T}, \mathbf{T}-regular partition/ representation

1 Introduction

Our aim is to obtain results corresponding to those of [16] for the case where the prime p>2. In this we are only partly successful. The main theorem of [16] gives a Steenrod operation which links the rst occurrence of each irreducible representation $L()$ of the full matrix semigroup $M_{n}\left(\mathbb{F}_{2}\right)$ in the polynomial algebra $\mathbf{P}=\mathbb{F}_{2}\left[x_{1} ;::: ; x_{n}\right]$ with the rst occurrence of $L()$ as a submodule in \mathbf{P}. Here $M_{n}\left(\mathbb{F}_{2}\right)$ acts on \mathbf{P} on the right by linear substitutions, which commute with the action of the Steenrod algebra A_{2} on $P \mathbf{P}$ on the left. By ' rst occurrence' we have in mind the decomposition $\mathbf{P}={ }_{\text {d }}{ }_{0} \mathbf{P}^{\mathrm{d}}$, where \mathbf{P}^{d} is the module of homogeneous polynomials of total degree d, and the known facts that there are minimum degrees $d_{c}()$ and $d_{s}()$ in which $L()$ occurs, uniquely in each case, as a composition factor and as a submodule respectively.
For an odd prime p, we have again the commuting actions of $M_{n}=M_{n}\left(\mathbb{F}_{p}\right)$ on the right of the polynomial algebra $\mathbf{P}=\mathbb{F}_{p}\left[x_{1} ;::: ; x_{n}\right]$ and the algebra A_{p}
of Steenrod pth powers (no Bocksteins) on the left. We refer to A_{p}, somewhat inaccurately, as the Steenrod algebra, and grade it so that P^{r} raises degree by $r(p-1)$. There are p^{n} isomorphism classes of irreducible $\mathbb{F}_{p}\left[M_{n}\right]$-modules $L()$, indexed by partitions $=(1 ; 2 ;::: ; n)$, which are column p-regular, i.e 0 $i^{-}{ }_{i+1} \quad p-1$ for 1 i n, where $n+1=0[8,9,10]$. The problem solved in [16] is certainly more di cult in this context. The submodule degree $\mathrm{d}_{5}(\mathrm{)}$ has recently been determined [12] for every irreducible representation $\mathrm{L}(\mathrm{)}$) of M_{n}, but $d_{c}()$ is not known in general. In particular, the rst occurrence problem appears to bedi cult even for the 1-dimensional representations det ${ }^{k}$, $1 \mathrm{k} \quad \mathrm{p}-3, \mathrm{p}>3$, se $[2,3]$, although it is solved for det^{p-2} [1]. (The partition indexing det^{k} is $(\mathrm{k} ;::: ; \mathrm{k})=\left(\mathrm{k}^{\mathrm{n}}\right)$, i.e k repeated n times.) Further, it is not known in general whether $\mathbf{P}^{\mathrm{d}_{c}()}$ has a unique composition factor isomorphic to $\mathrm{L}(\mathrm{)}$. Here we identify a dass of irreducible representations $\mathrm{L}(\mathrm{)}$ which behave systematically. Since they arise naturally by considering tensor powers of the p-truncated polynomial algebra $\mathbf{T}=\mathbf{P}=\left(x_{1}^{p} ;::: ; x_{n}^{p}\right)$, we call them \mathbf{T}-regular.
Our main result, Theorem 5.7, gives a Steenrod operation () which links the rst occurrence and the rst submodule occurrence in \mathbf{P} of a \mathbf{T}-regular L(). This determines $d_{c}()$ in the \mathbf{T}-regular case. The operation () is given explicitly as the image of an admissible monomial under the canonical antiautomorphism of A_{p}. Calculations for n 3 suggest that such an operation () may exist for every irreducible representation $L\left(\right.$) of M_{n}, but we do not pursuethis here Tri [14] has given an 'algebraic' alternative to this 'topological' method of nding $\mathrm{d}_{\mathrm{c}}\left(\mathrm{)}\right.$, using coe cient functions of $\mathbb{F}_{\mathrm{p}}\left[\mathrm{M}_{\mathrm{n}}\right]$-modules.
For $p=2, \mathbf{T}$ may be identi ed with the exterior algebra ($x_{1} ;::: ; x_{n}$), and all the irreducible representations $L()$ of M_{n} are \mathbf{T}-regular. For $p>2$, the only irreducible 1-dimensional \mathbf{T}-regular representations of M_{n} are the 'trivial' representation, in which all matrices act as 1 , and the $\operatorname{det}^{\mathrm{p}-1}$ representation, in which non-singular matrices act as 1 and singular matrices as 0 . The 'trivial' representation, for which $=(0)$, occurs in \mathbf{P} only as \mathbf{P}^{0}, the constant polynomials. Our key example is the de ${ }^{p-1}$ representation. This occurs rst as a composition factor as the top degree $\mathbf{T}^{n(p-1)}$ of \mathbf{T}, where it is generated by the monomial $\left(\begin{array}{ll}x_{1} x_{2} & x_{n}\end{array}\right)^{p-1}$ modulo $p t h$ powers, and r rst as a submodule in degree $p_{n}=\left(p^{n}-1\right)=(p-1)$, where it is generated by the Vandermonde determinant

$$
w(n)=\begin{array}{llll}
x_{1} & x_{2} & & x_{n} \\
x_{1}^{p} & x_{2}^{p} & & x_{n}^{p} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}^{p^{n-1}} & x_{2}^{p^{n-1}} & & x_{n}^{p^{n-1}}
\end{array}:
$$

Theorem 1.1 Let be the canonical anti-isomorphism of A_{p}. Then for n 1,

$$
\left(P^{p_{n}-n}\right)\left(x_{1} x_{2} \quad x_{n}\right)^{p-1}=w(n)^{p-1} ;
$$

where $p_{n}=\left(p^{n}-1\right)=(p-1)$.
This result is true for $p=2$ if we interpret P^{r} as $S q^{r}$ [16]. The operation ($\mathrm{P}^{\mathrm{p}_{\mathrm{n}}-\mathrm{n}}$) may be replaced by theadmissiblemonomial $\mathrm{P}^{\mathrm{p}^{\mathrm{n}-1}-1} \quad \mathrm{P}^{\mathrm{p}^{2}-1} \mathrm{P}^{\mathrm{p}-1}$, which is identical to the Milnor basis element $P(p-1 ;::: ; p-1)$ of length
 Theorem 5.7 can not be replaced by an admissible monomial or a Milnor basis element.

The structure of the paper is as follows. Section 2 contains basic facts about the action of (P^{r}) and Milnor basis elements on polynomials. Section 3 contains independent proofs of Theorem 1.1 using invariant theory and by direct computation. In Section 4 we introduce the class of \mathbf{T}-regular partitions to which our main results apply, and extend Theorem 1.1 to \mathbf{T}^{d} for all d. The main results are stated in Section 5 and proved in Section 6. Section 7 relates these results to the $\mathbb{F}_{\mathrm{p}}\left[\mathrm{M}_{\mathrm{n}}\right]$-module structure of \mathbf{P}. Section 8 gives Milnor basis elements which link the rst occurrence and (in certain cases) the rst submodule occurrence of a \mathbf{T}-regular representation of M_{n} with submodules in higher degrees.

The remarks which follow are intended to place our results in topological, combinatorial and algebraic contexts. As for topology, recall (eg. [17]) that there is an A_{p}-module decomposition $\mathbf{P}=() \mathbf{P}()$, wherethe -isotypical summand $\mathbf{P}()$ is an indecomposable A_{p}-module, and where () = $\operatorname{dimL}()$, the dimension of L() . Identifying \mathbf{P} with the cohomology algebra $\mathrm{H}\left(\mathbb{C P}{ }^{1}\right.$
$\mathbb{C} P^{1} ; \mathbb{F}_{p}$), this decomposition can be realized (after localization at p) by a homotopy equivalence ($\mathbb{C} P^{1} \quad \mathbb{C} P^{1}$) ()Y , which splits the suspension of the product of n copies of in nite complex projective space $\mathbb{C P}{ }^{1}$ as a topological sum of spaces Y such that $H\left(Y ; \mathbb{F}_{p}\right)=\mathbf{P}()$. The family of A_{p}-modules $\mathbf{P}()$ is of major interest in algebraic topology. From this point of view, we determine the connectivity of Y for \mathbf{T}-regular (Corollary 5.8) and nd a nonzero cohomology operation () on its bottom class (Theorem 5.7).

As for combinatorics and algebra, our aim is to provide information relating the A_{p}-module structure of $\mathbf{P}()$ to combinatorial properties of and representation theoretic properties of $\mathrm{L}(\mathrm{)}$. The operation () and its source and target polynomials are combinatorially determined by . The target polynomial is
de ned by $w\left(9=Q_{j=1}^{1} w\binom{0}{j}\right.$, where 0 is the conjugate of, so that $w(9$ is a product of determinants corresponding to the columns of the diagram of
. This polynomial has already appeared in various forms in the literature. In Green's description [8, (5.4d)] of the highest weight vector of the dual Weyl module H^{0} () , w(9 appears as a 'bideterminant' in the coordinate ring of $M_{n}(K)$, where K is an in nite eld of characteristic p. A proof that $w(9$ generates a submodule of $\mathbf{P}^{d_{s}()}$) isomorphic to L() was given in [7, Proposition 1.3], and a proof that this is the rst occurrence of $L()$ as a submodule in \mathbf{P} was given in [12].
We would like to thank the referee of this paper for a very careful reading and for a number of helpful suggestions.

2 Preliminary results

In this section we use variants of the Cartan formula $P^{r}(f g)=P_{r=s+t} P^{s f} P^{t} g$ to study the action on polynomials of the elements (P^{r}) and Milnor basis elements $P(R)$ in the Steenrod al gebra A_{p}. We begin with the standard formula

$$
P^{i}\left(x^{p^{b}}\right)=\begin{array}{ll}
x^{p^{b+1}} & \text { if } i=p^{b} ; \tag{1}\\
0 & \text { otherwise for } i>0:
\end{array}
$$

In particular, we wish to evaluate Steenrod operations on Vandermonde determinants of the form

$$
\left[x_{i_{1}}^{s_{1}} ; x_{i_{2}}^{s_{2}} ;::: ; x_{i_{n}}^{s_{n}}\right]=\begin{array}{cccc}
x_{i_{1}}^{s_{1}} & x_{i_{2}}^{s_{1}} & ::: & x_{i_{1}}^{s_{1}} \\
x_{i_{1}}^{s_{2}} & x_{i_{2}}^{s_{2}} & :: & x_{i_{n}}^{s_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
x_{i_{1}}^{s_{n}} & x_{i_{2}}^{s_{n}} & :: & x_{i_{n}}^{s_{n}}
\end{array} ;
$$

where the exponents $s_{1} ;:: ; s_{n}$ are powers of p. As above, we shall abbreviate such determinants by listing their diagonal entries in square brackets: in particular, $w(n)=\left[x_{1} ; x_{2}^{p} ;:: ; x_{n}^{p_{n}^{n-1}}\right]$. As in Theorem 1.1, we write $p_{n}=\left(p^{n}-1\right)=(p-1)$, so that $p_{0}=0$ and $p_{n}-p_{j}=\left(p^{n}-p^{j}\right)=(p-1)$. The following result is a straightforward calculation using the Cartan formula and (1).

Lemma 2.1 If $r=p_{n}-p_{j}, 0 \quad j \quad n$, then

$$
P^{r} w(n)=\left[x_{1} ; x_{2}^{p} ;::: ; x_{j}^{\mathrm{p}^{j}-1} ; x_{j+1}^{\mathrm{p}+1} ;::: ; x_{n}^{\mathrm{p}^{\mathrm{n}}}\right] ;
$$

and $P^{r} W(n)=0$ otherwise. In particular, $P^{r} w(n)=0$ for $0<r<p^{n-1}$.

To simplify signs, we usually write Pr^{r} for $(-1)^{r}\left(P^{r}\right)$. Thus if v is one of the generators x_{i} of \mathbf{P}, or more generally any linear form $v={ }_{i=1}^{n} a_{i} x_{i}$ in \mathbf{P}^{1},

$$
\pitchfork^{\mathrm{or}} \mathrm{v}=\begin{array}{ll}
v^{\mathrm{v}^{\mathrm{b}}} & \text { if } r=p_{\mathrm{b}}, \mathrm{~b} \quad 0 ; \tag{2}\\
0 & \text { otherwise: }
\end{array}
$$

Formula (2) follows from (1) by using the identity ${ }_{P}^{P}{ }_{i+j=r}(-1)^{i} P^{i}$ ®j $^{i+j}=0$ in A_{p} and induction on r. Using the identity $\quad i+j=r(-1)^{i} \operatorname{mi}^{j}=0$ and induction on k, (2) can be generalized to

$$
\operatorname{por}^{x^{p^{k}}}=\begin{array}{ll}
\left(x^{p^{b}}\right. & \text { if } r=p_{b}-p_{k}, b \quad k ; \tag{3}\\
0 & \text { otherwise: }
\end{array}
$$

This leads to the following generalization of [16, Lemma 2.2].

Lemma 2.2

$$
\mathrm{Dr}^{\mathrm{r}}\left[\mathrm{x}_{1}^{\mathrm{p}^{\mathrm{k}}} ; \mathrm{x}_{2}^{\mathrm{p}^{\mathrm{k}+1}} ;::: ; \mathrm{x}_{n}^{\mathrm{p}^{\mathrm{k}+n-1}}\right]=\begin{array}{ll}
\left(x_{1}^{\mathrm{p}^{\mathrm{k}}} ;::: ; \mathrm{x}_{n-1}^{\mathrm{p}^{\mathrm{k}+n-2}} ; \mathrm{x}_{n}^{\left.\mathrm{p}^{\mathrm{p}}\right]}\right] & \text { if } \mathrm{r}=\mathrm{p}_{\mathrm{b}}-\mathrm{p}_{\mathrm{k}+\mathrm{n}-1} ; \\
0 & \text { otherwise: }
\end{array}
$$

The modi cations required to the proof given in [16] are straightforward.
In evaluating the operations 叩r, we shall frequently make use of the Cartan formula expansion for polynomials f; $\mathrm{X} 2 \mathbf{P}$:
which holds because is a coal gebra homomorphism.
Lemma 2.3 For all polynomials $f ; \operatorname{gin}_{X}$ in and all $r \quad 0$,

Proof By (4) it su ces to prove the case $g=1$, i.e.
 sum is over all ordered decompositions $r=p_{i=1}^{p} r_{i}, r_{i} \quad 0$. Except in the case where $r_{1}=:::=r_{p}=s$, cyclic permutation of $r_{1} ;::: ; r_{p}$ gives p equal terms which cancel in the sum.

Algebraic \& Geometric Topology, Volume 2 (2002)

We write (k) for thessum of the digits in the base p expansion of appositive integer k, i.e if $k=\quad i{ }_{0} a_{i} p^{i}$ where $0 \quad a_{i} \quad p-1$, then $(k)={ }_{i} 0_{0} a_{i}$. Thus (k) is the minimum number of powers of p which have sum k, and
(k) $k \bmod p-1$. Formula (2) leads to the following simple su cient

Lemma 2.4 If $(\mathrm{r}(\mathrm{p}-1)+\mathrm{d})>\mathrm{d}$, then ゆr $\mathrm{f}=0$ for all $\mathrm{f} 2 \mathbf{P}^{\mathrm{d}}$.
Proof Since the action of pr is linear and commutes with specialization of the variables, it is su cient to prove this when $f=x_{1} x_{2} \quad x_{d}$. By (4) 內r $f=$
${ }^{\not)_{1} x_{1}}{ }_{1}{ }^{\not r_{2}} x_{2} \quad{ }^{\text {br }}{ }_{d} x_{d}$, where the sum is over all ordered decompositions $r=$ $r_{1}+r_{2}+:::+r_{d}$ with $r_{1} ; r_{2} ;::: ; r_{d} \quad 0$. By (2), the only non-zero terms are those in which $p_{i}=p_{k_{i}}$ for some non-negative integers $k_{1} ; \mathrm{k}_{2} ;::: ; \mathrm{k}_{\mathrm{d}}$. But then $r(p-1)+d={ }_{i} p^{k_{i}}$, and the result follows by de nition of .
Lemma 2.5 Let $k \quad 0$ and let $v={ }^{P}{ }_{i=1}^{n} a_{i} x_{i}$ be a linear form in \mathbf{P}^{1}. Then

$$
\not \mapsto^{\mathrm{k}}-1 \mathrm{v}^{\mathrm{p}-1}=\mathrm{v}^{\mathrm{v}^{\mathrm{k}}(\mathrm{p}-1)} \text { : }
$$

Proof There is a unique way to write $p^{k}-1$ as the sum of $p-1$ integers of the form p_{i} for $i \quad 0$, namely $p^{k}-1=(p-1) p_{k}$. The result now follows from (2) and the Cartan formula (4).
 result is

$$
\text { ør }^{\mathrm{v}} \mathrm{v}^{\mathrm{p}-1}=\begin{array}{ll}
\left(\mathcal{C}_{r} v^{(r+1)(p-1)}\right. & \text { if } \quad((r+1)(p-1))=p-1 \\
0 & \text { otherwise; }
\end{array}
$$

phere if $(r+1)(p-1)=j_{1} p^{a_{1}}+:::+j_{s} p^{a_{s}}$, with $a_{1}>:::>a_{s} \quad 0$ and

$$
\stackrel{s}{i=1} j_{i}=p-1 \text {, then } c_{r}=(p-1)!=\left(j_{1}!j_{2}!\quad j_{s}!\right) .
$$

The following result, the 'Cartan formula for Milnor basis elements' is wellknown (cf. [16, Lemma 5.3]).

Lemma 2.7 For a Milnor basis element $P(R)=P\left(r_{1} ;:: ; ; r_{n}\right)$ and polynomialsf;g2 \mathbf{P},

$$
P(R)(f g)=X_{R=S+T}^{X} P(S) f \quad P(T) g ;
$$

where the sum is over all sequences $S=\left(s_{1} ;::: ; s_{n}\right)$ and $T=\left(t_{1} ;::: ; t_{n}\right)$ of non-negative integers such that $r_{i}=s_{i}+t_{i}$ for $1 \quad n$.

In the same way as for Lemma 2.3, this gives the following result.
Lemma 2.8 Let $P(R)=P\left(r_{1} ;:: ; r_{n}\right)$ be a Milnor basis element and let $f ; g 2 \mathbf{P}$ be polynomials. Then

$$
P(R)\left(f^{p} g\right)=\underbrace{X}_{R=p S+T}(P(S) f)^{p} P(T) g:
$$

Here $\mathrm{R}=\mathrm{pS}+\mathrm{T}$ means that $\mathrm{r}_{\mathrm{i}}=\mathrm{ps} \mathrm{s}_{\mathrm{i}}+\mathrm{t}_{\mathrm{i}}$ for 1 in.

3 The det ${ }^{p-1}$ representation

In this section we give thre proofs of Theorem 1.1. The rst uses the results of [12] on submodules, while the second is a variant of this which uses only classical invariant theory. The third proof is computational. The rst two proofs use the following preliminary result, which shows that the operation $\mathrm{bp}_{\mathrm{n}}-\mathrm{n}$ maps to 0 all monomials of degree $n(p-1)$ other than the generating monomial $\left(\begin{array}{ll}x_{1} x_{2} & x_{n}\end{array}\right)^{p-1}$ for det^{p-1}.

Lemma 3.1 Let f be a polynomial in $\mathbf{P}^{n(p-1)}$ which is divisible by x^{p} for some variable $x=x_{i}, 1 \quad i \quad n$. Then øp $_{n}-n_{f}=0$.

Proof Let $f=x^{p} g$, where $g 2 \mathbf{P}$. Then by Lemma 2.3

By (2), ${ }^{\oplus s} x=0$ if $s \in p_{k}$ for some k with $0 \quad k \quad n-2$. Thus it is su cient to prove that ${ }^{\text {bt }} \mathrm{g}=0$ for $\mathrm{t}=\mathrm{p}_{\mathrm{n}}-\mathrm{n}-\mathrm{p} \mathrm{p}_{\mathrm{k}}$, where $\mathrm{g} 2 \mathbf{P}^{\mathrm{n}(\mathrm{p}-1)-\mathrm{p}}$. By Lemma 2.4, this holds when $((t+n)(p-1)-p)>n(p-1)-p$. Now $(t+n)(p-1)-p=p_{n}(p-1)-p \quad p_{k}(p-1)-p=p^{n}-p^{k+1}-1$, hence
$((t+n)(p-1)-p)=n(p-1)-1>n(p-1)-p$ as required. Thus ${ }^{\text {bt }} \mathrm{g}=0$ in all terms of (5) in which 㠶 $x \in 0$, and so $巾^{\circ} p_{n}-n_{f}=0$.

First Proof of Theorem 1.1 We rst show that themonomial $m=\left(x_{1} x_{2}^{p}\right.$ $\left.x_{n}^{p_{n}^{n-1}}\right)^{p-1}$ appears in $\operatorname{mp}_{n}-n\left(x_{1} \quad x_{n}\right)^{p-1}$ with coe cient 1 . In the Cartan formula expansion (4), m can appear only in the term arising from the decomposition $p_{n}-n=r_{1}+r_{2}+:::+r_{n}$, where $r_{k}=p^{k-1}-1$ for $1 \quad k \quad n$. By Lemma 2.5, m appears in this term with coe cient 1.

By Lemma 3.1, $\not \mathrm{Dp}_{\mathrm{n}}-\mathrm{n}$ maps all other monomials in degree $\mathrm{n}(\mathrm{p}-1)$ to 0 . Hence
 Since ($\left.\mathrm{x}_{1} \quad \mathrm{x}_{\mathrm{n}}\right)^{\mathrm{p}-1}$ generates the 1-dimensional quotient $\mathbf{T}^{\mathrm{n}(\mathrm{p}-1)}$ of $\mathbf{P}^{\mathrm{n}(\mathrm{p}-1)}$ and since $\mathbf{T}^{\mathrm{n}(\mathrm{p}-1)}=\operatorname{det}^{\mathrm{p}-1}$, this submodule of $\mathbf{P}^{\mathrm{p}-1}$ is also isomorphic to $\operatorname{det}^{\mathrm{p}-1}$.

It is known [12] that the rst submodule occurrence of det ${ }^{p-1}$ for M_{n} in \mathbf{P} is generated by $\mathrm{w}(\mathrm{n})^{\mathrm{p}-1}$, and that this is the unique submodule occurrence of det^{p-1} in degree $\mathrm{p}^{n}-1$. Since m is the product of the leading diagonal terms in $w(n)^{p-1}=\left[x_{1} ; x_{2}^{p} ;::: ; x_{n}^{p^{n-1}}\right]^{p-1}, m$ also has coe cient 1 in $w(n)^{p-1}$

Second Proof of Theorem 1.1 Werecall that $\mathrm{D}(\mathrm{n} ; \mathrm{p})$ is thering of $G L_{n}\left(\mathbb{F}_{p}\right)$ invariants in \mathbf{P}, and that it is a polynomial algebra over \mathbb{F}_{p} with generators $Q_{n} ;$ i in degree $p^{n}-p^{i}$ for $0 \quad i \quad n-1$. We may identify $Q_{n ; 0}$ with $w(n)^{p-1}$. Since $\mathbf{T}^{n(p-1)}$ is isomorphic to the trivial $G L_{n}\left(\mathbb{F}_{p}\right)$-module, it follows as in our rst proof that 円p $_{n}-\mathrm{n}\left(\mathrm{x}_{1} \quad \mathrm{x}_{\mathrm{n}}\right)^{\mathrm{p}-1} 2 \mathrm{D}(\mathrm{n} ; \mathrm{p})$.
We shall prove that $w(n)$ divides $\operatorname{Dpp}_{n}-n\left(x_{1} \quad x_{n}\right)^{p-1}$. Recall that $w(n)$ is the product of linear factors $c_{1} x_{1}+:::+c_{n} x_{n}$, where $c_{1} ;::: ; c_{n} 2 \mathbb{F}_{p}$. If wespecialize the variables in $\left(\begin{array}{ll}x_{1} & x_{n}\end{array}\right)^{p-1}$ by imposing the relation $c_{1} x_{1}+:::+c_{n} x_{n}=0$, then every monomial in the resulting polynomial is divisible by x^{p} for some variable $x=x_{i}$. By Lemma 3.1, such a monomial is in the kernel of $\mathrm{p}_{\mathrm{n}}-\mathrm{n}$. Thus ®op $_{n}-n\left(x_{1} \quad x_{n}\right)^{p-1}$ is divisible by $c_{1} x_{1}+:::+c_{n} x_{n}$, and so it is divisible by $w(n)$.
Now an element of $D(n ; p)$ in degree $p^{n}-1$ which is divisible by $w(n)$ must be a scalar multiple of $\mathrm{Q}_{\mathrm{n} ; 0}=\mathrm{w}(\mathrm{n})^{\mathrm{p}-1}$. For if a polynomial in the remaining generators $Q_{n ; 1} ;::: ; Q_{n ; n-1}$ of $D(n ; p)$ is divisible by $w(n)$, the quotient would be $S L_{n}\left(\mathbb{F}_{p}\right)$-invariant, giving a non-trivial polynomial relation between
 algebraically independent generators of the polynomial algebra of $S L_{n}\left(\mathbb{F}_{p}\right)$ invariants in \mathbf{P}.

Our third proof of Theorem 1.1 is by direct calculation. We shall evaluate the Milnor basis element $P(p-1 ;::: ; p-1)$ of length $n-1$ on $\left(x_{1} \quad x_{n}\right)^{p-1}$. The following result relates the element $P(p-1 ;::: ; p-1 ; b)$ of length n to admissible monomials and to the anti-automorphism . In particular, we show that $P(p-1 ;::: ; p-1)$ and $\phi p_{n}-n$ have the same action on $\left(x_{1} \quad x_{n}\right)^{p-1}$.

Proposition 3.2 For 1 b $p-1$,
(i) $P(p-1 ;::: ; p-1 ; b)=P^{(b+1) p^{n-1}-1} \quad p^{(b+1) p-1} p^{b}$ for $n \quad 1$,
（ii）$ゆ(b+1) p_{n}-n g=P(p-1 ;::: ; p-1 ; b) g$ if degg $n(p-1)+b$ for $n \quad 1$ ，
（iii）$\quad \varnothing^{(b+1)} p_{n}-n=P^{(b+1) p^{n-1} \pitchfork(b+1) p_{n-1}-n}+P(p-1 ;::: ; p-1 ; b)$ for $n \quad 2$ ．

Proof Statement（i）is a special case of［4，Theorem 1．1］．For（ii），recall［11］ that $円^{d}$ is the sum of all Milnor basis elements $P(R)$ in degree $d(p-1)$ ．Here $R=\left(r_{1} ; r_{2} ;: \ddot{p}:\right)$ is a nite sequence of non－pegative integers，and $P(R)$ has degre $j R j=\left(p^{i}-1\right) r_{i}$ and excess $e(R)=\quad r_{i}$ ．In particular，$P^{d}=P(d)$ is the unique Milnor basis element of maximum excess d in degre $d(p-1)$ ，but in general there may be more than one element of minimum excess in a given degree．

We will show that $P(p-1 ;::: ; p-1 ; b)$ is the uniquedement of minimum excess $e=(n-1)(p-1)+b$ in degree $d(p-1)$ when $d=(b+1) p_{n}-n$ ．By［11，Lemma 8］ a bijection $P\left(r_{1} ; r_{2} ;::: ; r_{m}\right) \$ P^{t_{1}} P^{t_{2}} \quad P^{t_{m}}$ between theMilnor basis and the admissible basis of A_{p} is de ned by $t_{m}=r_{m}$ and $t_{i}=r_{i}+p t_{i+1}$ for $1 \quad i<m$ ． This preserves both the degree and the excess．Thus it is equivalent to prove that $m=P^{(b+1) p^{n-1}-1} \quad P(b+1) p-1 p b$ is the unique admissible monomial of minimum excess in degree $d(p-1)$ ．Now the pxcess of an admissible monomial $P^{t_{1}} P^{t_{2}} \quad P^{t_{m}}$ is $p t_{1}-d(p-1)$ where $d=i_{i}$ ，and so it is minimal when t_{1} is minimal．It is easy to verify that m is the unique admissible monomial in degre $d(p-1)$ for which $t_{1}=(b+1) p^{n-1}-1$ ，and that this value of t_{1} is minimal．
Notethat p divides $j R j+e(R)$ for all R．Hence ® $^{(b+1) p_{n}-n-P(p-1 ;::: ; p-1 ; ~ b) ~}$ has excess＞$e+p-1=n(p-1)+b$ ，and so 申（b＋1）$p_{n}-n g=P(p-1 ;::: p-1 ; b) g$ when g is a polynomial of degree $n(p-1)+b$ ．
（iii）Recall Davis＇s formula［5］

$$
P^{u 円 v}=\sum_{j R j=(p-1)(u+v)}^{X} \quad \begin{array}{cc}
j R j+e(R) \tag{6}\\
p u
\end{array} P(R) ;
$$

which we may apply in the case $u=(b+1) p^{n-1}, v=(b+1) p_{n-1}-n$ to show that P ußv is the sum of all Milnor basis elements in degree $d(p-1)$ other than the element $P(p-1 ;::: ; p-1 ; b)$ of minimal excess．

For $R=(p-1 ;::: ; p-1 ; b)$ we have $j R j+e(R)=(b+1) p^{n}-p$ ，and since $p u=(b+1) p^{n}$ the coe cient in（6）is zero．Since p divides $j R j+e(R)$ for all $R, j R j+e(R) \quad(b+1) p^{n}$ for all other R with $j R j=d(p-1)$ ．As remarked above，the unique element of maximal excess is P^{d} itself，and so for all R we have $j R j+e(R) \quad p d=(b+1)\left(p+p^{2}+:::+p^{n}\right)-p n$ ．It is clear from this inequality that the coe cient in（6）is 1 for all $R \in(p-1 ;::: ; p-1 ; b)$ ．

Third Proof of Theorem 1.1 Let $n=P^{p^{n}-1} \quad P^{p^{2}-1} P^{p-1}$ for $n \quad 1$, and $0=1$. We assume that ${ }_{n-1}\left(x_{1} \quad x_{n}\right)^{p-1}=w(n)^{p-1}$ as induction hypothesis on n , the case $\mathrm{n}=1$ being trivial.
The cofactor expansion of $w(n+1)=\left[x_{1} ; x_{2}^{p} ;::: ; x_{n+1}^{p^{n}}\right]$ by the top row gives $w(n+1)=P_{i=1}^{n+1}(-1)^{i} x_{i} p_{i}^{p}$, where $i=\left[x_{1} ;::: ; i_{i-1}^{p^{i-2}} ; x_{i+1}^{p^{i-1}} ;::: ; x_{n+1}^{p_{n}^{n-1}}\right]$. Hence $\left.w(n+1)\left(x_{1} \quad x_{n+1}\right)^{p-1}=\begin{array}{rlll}\mathrm{i}=1 \\ i=1 \\ (-1)^{i} & x_{i}^{p} & p\left(x_{1}\right. & x_{i-1} x_{i+1}\end{array} x_{n+1}\right)^{p-1}$. By Proposition 3.2(i), $\quad n=P\left(p_{\bar{p}} 1 ;:: ; ; p-1\right)$ of length n, and so by Lemma 2.8
 Since $n=P p^{n-1} n-1, \quad n\left(x_{1} \quad x_{i-1} x_{i+1} \quad x_{n+1}\right)^{p-1}=P p^{n-1} \quad i^{p-1}$ by the induction hypothesis. Since i_{i}^{p-1} has degree $p^{n}-1, P^{p^{n}-1} \quad i^{p-1}=i_{i}^{p(p-1)}$. Hence $n\left(w(n+1) \quad\left(x_{1} \quad x_{n+1}\right)^{p-1}\right)={ }_{i=1}^{n+1}(-1)^{i} x_{i}^{p} \quad p^{2}=w(n+1)^{p}$. By Lemma 2.1, $\mathrm{P}^{r} w(n+1)=0$ for $0<r<p^{n}$. As ${ }_{n}=P^{p^{n}-1} \quad P^{p^{2}-1} p^{p-1}$, iterated application of theCartan formula gives $n\left(w(n+1)\left(x_{1} \quad x_{n+1}\right)^{p-1}\right)=$ $w(n+1) \quad n\left(x_{1} \quad x_{n+1}\right)^{p-1}$. Hence $w(n+1) \quad n\left(x_{1} \quad x_{n+1}\right)^{p-1}=w(n+1)^{p}$. Cancelling the factor $w(n+1)$, the inductive step is proved.

4 T-regular partitions

In this section we de ne the special class of \mathbf{T}-regular partitions, and extend Theorem 1.1 to give a Steenrod operation \ddagger or which links the rst occurrence and rst submodule occurrence of \mathbf{T}^{d} for all d. In fact we prove a more general result which links the rst occurrence to a family of higher degree occurrences.
The truncated polynomial module $\mathbf{T}^{d}=\mathbf{P}^{d}=\left(\mathbf{P}^{d} \backslash\left(x_{1}^{p} ;:: ; ; x_{n}^{p}\right)\right)$ has a \mathbb{F}_{p}-basis reprosented in \mathbf{P}^{d} by the set of all monomials $x_{1}^{S_{1}} x_{2}^{s_{2}} \quad x_{n}^{\text {sn }}$ of total degree $d=\quad{ }_{i} s_{i}$ with $s_{i}<p$ for $1 \quad i \quad n$. By [2, Theorem 6.1] $\mathbf{T}^{d}=L\left((p-1)^{n-1} b\right)$, where $d=(n-1)(p-1)+b$ and $1 \quad b \quad p-1$. We regard the corresponding diagram as a block of $p-1$ columns, in which the rst b columns have length n and the remaining $p-b-1$ columns have length $n-1$. Given a partition , we can divide its diagram into m blocks of $p-1$ columns and compare the blocks with the diagrams corresponding to these. (The mth block may have $<p-1$ columns.) For 1 j m, let (j) be the partition whose diagram is the j th block, and let $\gamma_{j}=\operatorname{deg}{ }_{(\mathrm{j})}$ be the number of boxes in the j th block.

De nition 4.1 A column p-regular partition is \mathbf{T}-regular if $\mathrm{L}\left({ }_{(j)}\right)=\mathbf{T}^{\gamma_{j}}$ for all j . Equivalently, for all a 1 , there is at most one value of i for which $(a-1)(p-1)<i<a(p-1)$. If is \mathbf{T}-regular, we call γ the \mathbf{T}-conjugate of

In the case $p=2$, all column 2-regular partitions are \mathbf{T}-regular, and $\gamma=0$, the conjugate of . If is column 2-regular, then the partition $=(p-1)$ obtained by multiplying each part of by $\mathrm{p}-1$ is \mathbf{T}-regular. Since is column p-regular, $\gamma_{j}-\gamma_{j+1} \quad p-1$ for all j, and $m \quad n$. Thus there is a bijection
$\$ \mathrm{\gamma}$ between the set of \mathbf{T}-regular partitions $=(1 ;::: ; n)$ and the set of partitions $\gamma=\left(\gamma_{1} ;::: ; \gamma_{n}\right)$ whid satisfy $\gamma_{1} n(p-1)$ and $\gamma_{j}-\gamma_{j+1} \quad p-1$ for 1 j $n-1$. In terms of the Mullineux involution M on the set of all row p-regular partitions, and γ are related by $M(\gamma)={ }^{0}$ [15, Proposition 3.13].

We next extend Theorem 1.1 to give linking formulae for the representations \mathbf{T}^{d}. It will be convenient to introduce abbreviated notation for some further Vandermonde determinants. Let $w(n ; a)=\left[x_{1} ;::: ; x_{a}^{p^{a-1}} ; x_{a+1}^{p^{a+1}} ;::: ; x_{n}^{p^{n}}\right]$ for 0 a n, where the exponent p^{a} is omitted. In particular, $w(n ; n)=w(n)$ and $w(n ; 0)=w(n)^{p}$.

Proposition 4.2 For $n \quad 1$ and $1 \quad i \quad p-1$, let $i=i_{1}+\quad+i_{s}$ where $i_{1} ;::: ; i_{s}>0$, and let $j=i_{1} p_{a_{1}}+\quad+i_{s} p_{a_{5}}$, where $a_{1}>:::>a_{s} \quad 0$. Then $\not 巾^{p n-n-j} \quad\left(x_{1} x_{2} \quad x_{n-1}\right)^{p-1} x_{n}^{p-i-1}=(-1)^{i(n-1)-j} w(n)^{p-i-1} Y_{r=1}^{s} w\left(n-1 ; a_{r}\right)^{i_{r}}$:

$$
r=1
$$

Specializing to the case $s=1, j=i p_{n-1}$ and putting $b=p-1-i$, we obtain an operation linking the rst occurrence and the rst submodule occurrence of the representation \mathbf{T}^{d}, as follows. Theorem 1.1 can betaken as the case $\mathrm{b}=0$ or as the case $\mathrm{b}=\mathrm{p}-1$; we choose $\mathrm{b}=\mathrm{p}-1$ to t notation later.

Corollary 4.3 For $n \quad 1$ and 1 b $p-1$,

$$
\boldsymbol{m}^{(b+1) p_{n-1}-(n-1)} \quad\left(x_{1} x_{2} \quad x_{n-1}\right)^{p-1} x_{n}^{b}=w(n)^{b} \quad w(n-1)^{p-b-1}:
$$

Proof of Proposition 4.2 We introduce a parameter into Theorem 1.1, by working in $\mathbb{F}_{\mathrm{p}}\left[\mathrm{x}_{1} ;::: ; \mathrm{x}_{\mathrm{n}+1}\right]$ and writing $\mathrm{x}_{\mathrm{n}+1}=\mathrm{t}$ in order to distinguish this variable Since the action of A_{p} commutes with the linear substitution which maps x_{n} to $x_{n}+t$ and $x e s x_{i}$ for $i \leqslant n$, we obtain

$$
\begin{equation*}
巾^{p_{n}-n}\left(x_{1} \quad x_{n-1}\left(x_{n}+t\right)\right)^{p-1}=\left[x_{1} ; x_{2}^{p} ;::: ; x_{n-1}^{p_{n}^{n-2}} ;\left(x_{n}+t\right)^{p^{n-1}}\right]^{p-1}: \tag{7}
\end{equation*}
$$

Expanding the left hand side of (7) by the binomial theorem, we obtain

$$
\mathbb{x}^{\mathbb{x}^{-1}}(-1)^{i}{ }^{\Phi p_{n}-n}\left(\left(x_{1} \quad x_{n-1}\right)^{p-1} x_{n}^{p-1-i} t^{i}\right):
$$

The right hand side of（7）is
$\left[x_{1} ; x_{2}^{p} ;::: ; x_{n-1}^{p^{n}-2} ; x_{n}^{p_{n}^{n-1}}+t^{p^{n-1}}\right]^{p-1}={ }_{i=0}^{x-1}(-1)^{i} w(n)^{p-1-i}\left[x_{1} ; x_{2}^{p} ;::: ; x_{n-1}^{p^{n-2}} ; t^{p^{n-1}}\right]^{i} ;$ since $w(n)=\left[x_{1} ; x_{2}^{p} ;::: ; x_{n}^{p_{n-1}^{n}}\right]$ ．The summands in（7）corresponding to $i=0$ give the original result，Theorem 1．1，and so are equal．In fact we can equate the i th summands for all i ．This happens because 円or raises degree by $r(p-1)$ ， so that the powers t^{k} which occur in the ith summand on the left have $k \quad i$ $\bmod p-1$ ，while if t^{k} occurs in the ith summand on the right，then k is the sum of i powers of p ，so that again $k i \bmod p-1$ ．Hence for $1 \quad i \quad p-1$ we have

$$
\begin{equation*}
\mathrm{p}^{\mathrm{p}_{n}-\mathrm{n}}\left(\left(\mathrm{x}_{1} \quad \mathrm{x}_{\mathrm{n}-1}\right)^{\mathrm{p}-1} \mathrm{x}_{n}^{\mathrm{p}-1-\mathrm{i}} \mathrm{t}^{\mathrm{i}}\right)=\mathrm{w}(\mathrm{n})^{\mathrm{p}-1-\mathrm{i}}\left[\mathrm{x}_{1} ; \mathrm{x}_{2}^{\mathrm{p}} ;::: ; x_{\mathrm{n}-1}^{\mathrm{p}^{\mathrm{n}-2} ; \mathrm{tp}^{\mathrm{n}-1}}\right]^{\mathrm{i}}: \tag{8}
\end{equation*}
$$

Since the powers t^{k} of t which can appear here are such that k is the sum of i powers of p ，we can write $k=i_{1} p^{a_{1}}+:::+i_{s} p^{a_{s}}$ ，where $a_{1}>:::>a_{s} \quad 0$ and $\mathrm{i}_{1}+:::+\mathrm{i}_{\mathrm{s}}=\mathrm{i}$ ．Using the expansion

$$
\left[x_{1} ; x_{2}^{\mathrm{p}} ;::: ; x_{n-1}^{\mathrm{p}^{\mathrm{n}-2}} ; t^{\mathrm{p}^{\mathrm{n}-1}}\right]={ }_{a=0}^{\mathbb{x}-1}(-1)^{\mathrm{n}-1-\mathrm{a}} w(\mathrm{n}-1 ; a) t^{\mathrm{p}^{\mathrm{a}}}
$$

we can evaluate the coe cient of t^{k} on the right hand side of（8）as

$$
(-1)^{i(n-1)-j} \frac{i!}{i_{1}!\quad i_{s}!} w(n)^{p-1-i} w\left(n-1 ; a_{1}\right)^{i_{1}} \quad w\left(n-s ; a_{s}\right)^{i_{s}} ;
$$

where we have simpli ed the sign by noting that $a_{1} i_{1}+:::+a_{s} i_{s} j \bmod 2$ since p_{a} a mod 2，．By the Cartan formula（4），the left hand side of（8）is

$$
\begin{aligned}
& \text { P-n } \\
& \text { 円 } p_{n}-n-j \quad\left(x_{1} \quad x_{n-1}\right)^{p-1} x_{n}^{p-1-i} \quad \text { Ф } t^{i} \\
& \mathrm{j}=0
\end{aligned}
$$

 $\mathrm{i}_{1} \mathrm{p}_{\mathrm{a}_{1}}+:::+\mathrm{i}_{\mathrm{s}} \mathrm{p}_{\mathrm{a}_{5}}$ ，and since this decomposition of j as a sum of at most i powers of p is unique，formulas（2）and（4）give 㠶 $t^{i}=\left(i!\dot{F}_{1}!\quad i_{5}!\right)^{k}$ ．Thus equating coe cients of t^{k} in（8）gives the result．

5 Linking for T－regular representations

In this section we state our main results．We x an odd prime p and a positive integer n throughout．As in［16］，our results will be statements about polyno－ mials in n variables when has length n ，i．e has n nonzero parts．There
is no loss of generality, since the projection in M_{n} which sends x_{n} to 0 and x_{i} to x_{i} for $\mathrm{i}<\mathrm{n}$ maps L() to zero if $\mathrm{n}>0$ and on to the corresponding $\mathbb{F}_{\mathrm{p}}\left[\mathrm{M}_{\mathrm{n}-1}\right]$-module $\mathrm{L}(\mathrm{)}$ if $\mathrm{n}=0$ (cf. [2, Section 3]). Hence we shall always assume that ${ }_{\mathrm{n}} \in 0$.

We rst establish some notation. Given a \mathbf{T}-regular partition of length n, we de ne a polynomial $\mathrm{v}\left(\mathrm{)}\right.$ whose degree $\mathrm{d}_{\mathrm{c}}()$ is given by (9) and which 'represents' L(), in the sense that the submodule of $\mathbf{P}^{\mathrm{d}_{\mathrm{c}}()}$ generated by $\mathrm{v}(\mathrm{)}$ has a quotient module isomorphic to $\mathrm{L}(\mathrm{)}$. We index the diagram of using matrix coordinates $(i ; j)$, so that $1 \quad n$ and $1 \quad j$.

De nition 5.1 The kth antidiagonal of the diagram of is the set of boxes such that $j+i(p-1)=k+p-1$. If the lowest box is in row i and the highest ${ }_{j} s$ in row $i-s+1$, let $v_{k}()=\left[x_{i-s+1} ; x_{i-s+2}^{p} ;::: ; x_{i}^{p^{s-1}}\right]$, and let $v()=\underset{k=1}{Y_{1}} v_{k}()$.

Thus an antidiagonal is the set of boxes which lie on a line of slope $1=(p-1)$ in the diagram, and $v()$ is a product of corresponding Vandermonde determinants. Indenting successive rows by p-1 columns, we obtain a shifted diagram whose columns correspond to these antidiagonals. The \mathbf{T}-conjugate γ of records the number of antidiagonals γ_{s} of length s for all $s 1$.

Example 5.2 Let $p=5, \quad=(9 ; 6 ; 3)$, so that $\gamma=(11 ; 6 ; 1)$. The shifted diagram
gives $v()=x_{1}^{4}\left[x_{1} ; x_{2}^{5}\right]^{4}\left[x_{1} ; x_{2}^{5} ; x_{3}^{25}\right]\left[x_{2} ; x_{3}^{5}\right] x_{3}$.
Recall [12] that $w(9)={ }^{Q}{ }_{j=1}^{1} w\binom{0}{j}$ generates the rst occurrence of $L()$ as a submodule in \mathbf{P}. Thus we can rewrite the linking theorem for \mathbf{T}^{d}, Corollary 4.3, as follows.

Theorem 5.3 Let $\mathrm{d}=(\mathrm{n}-1)(\mathrm{p}-1)+\mathrm{b}$, where $\mathrm{n} \quad 1$ and $1 \quad \mathrm{~b} \quad \mathrm{p}-1$, so that $\mathbf{T}^{d}=L()$ where $=\left((p-1)^{n-1} b\right)$. Then 仿 $v()=w(9$, where $r=(b+1) p_{n-1}-(n-1)$ and $\left.p_{n-1}=\left(p^{n-1}-1\right) \neq p-1\right)$.

By the leading monomial of a polynomial we mean the monomial $Q_{i=1} x_{i}^{s_{i}}$ occurring in it (ignoring the nonzero coe cient) whose exponents are highest in left lexicographic order. The leading monomial $s()$ of $v()$ is obtained by
multiplying the principal antidiagonals in the determinants $\mathrm{v}_{\mathrm{k}}\left(\mathrm{)}, 1 \mathrm{k} \quad \mathrm{V}_{1}\right.$. (In Example 5.2, $s()=x_{1}^{49} x_{2}^{14} x_{3}^{3}$.) The base p expansion of every exponent in $s()$ has the form $s_{i}=c_{k} p^{k}+(p-1) p^{k-1}+:::+(p-1) p+(p-1)$, i.e. $s_{i} \quad-1 \bmod p^{k}$, where $p^{k}<s_{i}<p^{k+1}$. We adapt the terminology introduced by Singer [13], by calling such a monomial a 'spike'. In the case $p=2, s()=$ $x_{1}^{2^{1-1}} x_{n}^{2 n-1}$. A polynomial which contains such a spike can not be 'hit', i.e. it can not be the image of a polynomial of lower degree under a Steenrod operation. This is easily seen by considering the 1 -variable case Hence the polynomial $v()$ is not hit.

Proposition 5.4 Let be \mathbf{T}-regular with \mathbf{T}-conjugate γ.
(i) If ${ }_{i}=a_{i}(p-1)+b, a_{i} \quad 0,1 \quad b \quad p-1$, then $s()={ }_{n}^{Q_{i=1}} x_{i}^{(b+1) p^{a_{i}-1}}$.
(ii) With (j) as in De nition 4.1, s() = v($\left.{ }_{(1)}\right) \quad v\left({ }_{(2)}\right)^{p} \quad v\left({ }_{(m)}\right)^{p^{m-1}}$.
(iii) Thecoe cient of $s()$ in $v()$ is $(-1)()$, with ()$={ }^{P}{ }_{j=1}^{[m=2]}(-1)^{j-1} \gamma_{2 j}$.

Proof Formulae (i) and (ii) are easily read o from a tableau obtained by entering $\mathrm{p}^{\mathrm{j}-1}$ in each box in the j th block of $\mathrm{p}-1$ columns of the diagram of , and reading this according to rows and to blocks of columns. For (iii), note that the sign of the term arising from the leading antidiagonal in the expansion of an $s \quad s$ determinant is +1 for $s \quad 0 ; 1 \bmod 4$ and -1 for $s \quad 2 ; 3 \bmod 4$, and that the diagram of has γ_{j} antidiagonals of length j.

In Theorem 5.5 we establish (i) a 'level 0 formula', which gives a su cient condition for $\operatorname{~®r}_{\mathrm{v}}(\mathrm{)}=0$, and (ii) a 'leved 1 formula', which gives a su cient condition for $\operatorname{br}_{\mathrm{r}} \mathrm{v}()$ to bea product related to the decomposition $=(1)+-$ which splits o the rst $p-1$ columns of thediagram. Thus ${ }_{(1)}=\left((p-1)^{n-1} b\right)$, where $\gamma_{1}=(n-1)(p-1)+b$ and $1 \quad b \quad p-1$, and - is de ned by ${ }_{i}^{-}={ }_{i}-(p-1)$ if $\quad p-1$, and $i_{i}^{-}=0$ otherwise Our main linking result, Theorem 5.7, follows from Theorem 5.5 by induction on m, the length of γ. The proofs of Theorems 5.5 and 5.7 are deferred to Section 6.

Theorem 5.5 Let be \mathbf{T}-regular with \mathbf{T}-conjugate γ, let d_{c} be de ned by (9) below, and let $R(r ;)=r(p-1)+d_{c}()-d_{c}\left({ }^{-}\right)$. Recall that (k) is the sum of the digits in the base p expansion of k.
(i) If $(R(r ;))>\gamma_{1}$, then 円r $v()=0$.
(ii) If $(R(r ;))=\gamma_{1}$, then $\operatorname{br} v()=\not \operatorname{br}^{+d_{c}\left({ }^{-}\right)} v\left({ }_{(1)}\right) v\left({ }^{-}\right)$.

Remark 5.6 Taking $p=2$ and $P^{r}=S q^{r}$, this reduces to [16, Theorem 2.1], since that theorem can be applied to (1) $=\left(1^{n}\right)$ to obtain $S q^{r+d_{c}(-)} v\left({ }_{(1)}\right)=$ $\left[x_{1}^{2^{a}} ;::: ; x_{n}^{2^{a n}}\right]$, where $a_{1}<:::<a_{n}$. The hypothesis on r is satis ed since $r+d_{c}\left(^{-}\right)+n=r+d_{c}()-d_{c}\left({ }^{-}\right)=2^{a_{1}}+:::+2^{a_{n}}$.

Combining Theorem 5.3 with Theorem 5.5, we obtain our main theorem.
Theorem 5.7 Let be T-regular with \mathbf{T}-conjugate Y of length m . For 1 $k \quad m$, let $\gamma_{k}=\left(n_{k}-1\right)(p-1)+b_{k}$, where $n_{k} \quad 1$ and $1 \quad b_{k} p-1$. Then $\not \mathrm{br}_{\mathrm{m}} \quad \not \mathrm{r}_{2}$ br $^{1} \mathrm{~V}(\mathrm{~F})=\mathrm{w}(\mathrm{g}$;
where $r_{k}=\left(b_{k}+1\right) p_{n_{k}-1}-\left(n_{k}-1\right)-P_{j=k+1}^{m} p^{j-k-1} Y_{j}$.
This theorem determines the rst occurrence degree $d_{c}()$ when is \mathbf{T}-regular.
Corollary 5.8 Let be \mathbf{T}-regular with \mathbf{T}-conjugate γ. Then the degree in which the irreducible module L() rst occurs as a composition factor in the polynomial algebra \mathbf{P} is given by

$$
\begin{equation*}
d_{c}()={ }_{i=1}^{X^{m}} p^{i-1} Y_{i} ; \tag{9}
\end{equation*}
$$

and the $\mathbb{F}_{\mathrm{p}}\left[\mathrm{M}_{\mathrm{n}}\right]$-submodule of $\mathbf{P}^{\mathrm{d}_{\mathrm{c}}()}$ generated by $\mathrm{v}(\mathrm{)}$ has a quotient module isomorphic to L().

Proof By [7] or [12] w(9 generates a submodule of $\mathbf{P}^{d_{s}()}$) isomorphic to $\mathrm{L}(\mathrm{)}$. By Theorem 5.7, thereis a Stenrod operation = () and a polynomial $v() 2 \mathbf{P}^{d}$, where d is given by (9), such that $(\mathrm{v}(\mathrm{)})=\mathrm{w}(9)$. Hence the quotient of the submodule generated by v() in \mathbf{P}^{d} by the intersection of this submodule with the kerne of is a composition factor of \mathbf{P}^{d} which is isomorphic to $L\left(\right.$). Hence the rst occurrence degree $d_{c}() d$. But $d_{c}() d$ by $[3$, Proposition 2.13], and hence $d_{c}()=d$.

As an example, for $\mathrm{p}=3$ the partition $=(5 ; 3 ; 2)$ is \mathbf{T}-regular with \mathbf{T} conjugate $\gamma=(6 ; 3 ; 1)$. The module $L(5 ; 3 ; 2)$ rst occurs as a composition factor in degree 6+3 3+19=24, and as a submodule in degree $5+33+29=$ 32. The calculations of [1] and [6] for $n 3$ support the conjecture that the the rst occurrence degree $d_{c}()$ is given by the formula above if and only if is \mathbf{T}-regular.

The integers r_{i} in Theorem 5.7 can be calculated from a tableau Tab() obtained by entering integers into the diagram of as follows: if a box in row i is the highest box in its antidiagonal, write $\mathrm{p}_{\mathrm{i}-1}$ in that box and continue down the antidiagonal, multiplying the number entered at each step by p.

Lemma 5.9 The sum of the numbersentered in the k th block of $p-1$ columns using the above rule is r_{k}. The element $P^{r_{1}} P^{r_{2}} \quad P^{r_{m}}$ is an admissible monomial in A_{p}, i.e $r_{k} \quad p r_{k+1}$ for $1 \quad k \quad m-1$.

Example 5.10 For $p=3, \quad=(6 ; 5 ; 4 ; 3 ; 2)$, weobtain $\left(r_{1} ; r_{2} ; r_{3}\right)=(100 ; 20 ; 1)$ using the tableau below.

Tab() =

0	0	0	0	0	0
0	0	0	0	1	
0	0	3	4		
9	12	13			
39	40				

Noting that $\not{ }^{\mathrm{r}}=(-1)^{\mathrm{r}}\left(\mathrm{P}^{\mathrm{r}}\right)$, in this case Theorem 5.7 states that in \mathbf{P}^{300},

$$
\begin{aligned}
& \left(P^{100} P^{20} P^{1}\right) x_{1}^{2}\left[x_{1} ; x_{2}^{3}\right]^{2}\left[x_{1} ; x_{2}^{3} ; x_{3}^{9}\right]^{2}\left[x_{2} ; x_{3}^{3} ; x_{4}^{9}\right]\left[x_{3} ; x_{4}^{3}\right]\left[x_{4} ; x_{5}^{3}\right] x_{5} \\
& \quad=-\left[x_{1} ; x_{2}^{3} ; x_{3}^{9} ; x_{4}^{27} ; x_{5}^{81}\right]^{2}\left[x_{1} ; x_{2}^{3} ; x_{3}^{9} ; x_{4}^{27}\right]\left[x_{1} ; x_{2}^{3} ; x_{3}^{9}\right]\left[x_{1} ; x_{2}^{3}\right] x_{1}:
\end{aligned}
$$

Proof of Lemma 5.9 The inequality $r_{k} \quad \mathrm{pr}_{\mathrm{k}+1}$ for $1 \quad \mathrm{k} \quad \mathrm{m}-1$ is clear from the algorithm, and can also be checked directly from the de nition of r_{k}. Since $r_{2}()=r_{1}\left({ }^{-}\right)$, and so on, we need only check the algorithm for r_{1}.
To do this, we introduce a second tableau by entering p_{i-1} in the i th row of the rst block of $p-1$ columns and $-p^{j-2}$ in all the boxes in the j th block of $p-1$ columns for $j>1$. In Example 5.10 this is as follows.

0	0	-1	-1	-3	-3
1	1	-1	-1	-3	
4	4	-1	-1		
13	13	-1			
40	40				

The entries in a antidiagonal running from the ($\mathrm{i} ; \mathrm{j}$) box for $1 \quad \mathrm{j} \quad \mathrm{p}-1$ are then $p_{i-1} ;-1 ;-p_{;}::: ;-p^{s-2}$, and their sum $p_{i-1}-p_{s-1}=p^{s-1} p_{i-s}$ is the number entered in this box in Tab().
It remains to check that the sum of all the entries in the second tableau is $r_{1}=\left(b_{1}+1\right) p_{n-1}-(n-1)-d_{c}\left(^{-}\right)$. To seethis, notethat the entries in ${ }^{-}$sum to $-\mathrm{d}_{\mathrm{c}}\left({ }^{-}\right)$, whiletheentries in the last row of (1) sum to $\mathrm{bp}_{\mathrm{n}-1}$ and theentries in the rst $n-1$ rows sum to $(p-1)\left(p_{0}+p_{1}+:::+p_{n-2}\right)=p_{n-1}-(n-1)$.

Since $w(n)$ is a product of linear factors, so also is $v($), and by Theorems 5.3 and 5.5 so al so is ${ }^{\not r^{r}}{ }^{1} \mathrm{v}()$. The following calculation shows that v() divides ${ }^{\not \mathrm{br}_{1}}{ }^{\mathrm{v}} \mathrm{V}()$, and that the quotient can be read o from Tab() as follows: replace the entry $p_{i-1}-p_{s-1}$ in the ($i ; j$) $b_{p} x_{1} 1 \quad j \quad p-1$, by the product of all linear polynomials of the form $x_{i}+{ }_{k<i} c_{k} x_{k}$, excluding those where $c_{k}=0$ for 1 k i-s.

Corollary 5.11 Let be a \mathbf{T}-regular partition. Let the kth antidiagonal in the diagram of have length s_{k} and lowest box in row n_{k}. Then

$$
\frac{\operatorname{pr}_{1} v()}{v()}={ }_{k=1 ~ c}^{Y_{1}} Y\left(c_{1} x_{1}+:::+c_{n_{k}-1} x_{n_{k}-1}+x_{n_{k}}\right) ;
$$

where the inner product is over all vectors $\mathbf{c}=\left(c_{1} ;::: ;{c_{n_{k}-1}}\right) 2 \mathbb{F}_{p}^{n_{k}-1}$ such that ($\left.c_{1} ;::: ; c_{n_{k}-s_{k}}\right) \in(0 ;::: ; 0)$.

In Theorem 1.1, $=\left((p-1)^{n}\right), v()=\left(\begin{array}{ll}x_{1} x_{2} & x_{n}\end{array}\right)^{p-1}$ and 㠶 ${ }_{1} v()=$ $\left[x_{1} ; x_{2}^{p} ;::: ; x_{n}^{p_{n}^{n-1}}\right]^{p-1}$. Since $s_{k}=1$ for $1 \quad k \quad n(p-1)$, the quotient is the product of all linear polynomials in $x_{1} ;::: ; x_{n}$ which are not monomials.

Proof of Corollary 5.11 The proof is by induction on the number of antidiagonals γ_{1}. Let ()$=\operatorname{Mr~}_{1} v()=v()$, where $r_{1}=r_{1}()$. Let s denote the length of the last antidiagonal in the diagram of , and let bethe \mathbf{T}-regular partition obtained by removing this antidiagonal from the diagram of . Then by Theorems 5.3 and 5.5,

$$
\frac{()}{()}=\frac{\left[x_{1} ; x_{2}^{\mathrm{p}} ;::: ; x_{n}^{\mathrm{p}^{\mathrm{n}-1}}\right]}{\left[\mathrm{x}_{1} ; x_{2}^{\mathrm{p}} ;::: ; x_{n-1}^{\mathrm{p}^{\mathrm{n}-2}}\right]} \frac{\mathrm{v}(-)}{\mathrm{v}\left({ }^{-}\right)} \frac{\mathrm{v}()}{\mathrm{v}()}:
$$

dote that $-=-$ when $s=1$. Now $\left.\left[x_{1} ; x_{2}^{p} ;:: ; ; x_{n}^{p_{n}^{n-1}}\right] \neq x_{1} ; x_{2}^{p} ;::: ; x_{n-1}^{p^{n-2}}\right]=$ ${ }_{c}\left(c_{1} x_{1}+:::+c_{n-1} x_{n-1}+x_{n}\right)$, where the product is taken over all vectors $\mathbf{c}=$ $\left(c_{1} ;::: ; c_{n-1}\right) 2 \mathbb{F}_{p}^{n-1}$. Also $v()=v()=v_{y_{1}}()=\left[x_{n-s+1} ; x_{n-s+2}^{p} ;:: ; x_{n}^{p_{s}^{s-1}}\right]$. Similarly $v\left({ }^{-}\right) \neq\left({ }^{-}\right)=\left[x_{n-s+1} ; x_{n-s+2}^{p} ;::: ; x_{n-1}^{p^{s-2}}\right]$. The quotient of these determinants is the product of all $\mathrm{p}_{\mathrm{Q}}^{s-1}$ linear polynomials $\mathrm{c}_{\mathrm{n}-\mathrm{s}+1} \mathrm{X}_{\mathrm{n}-\mathrm{s}+1}+$ $:::+c_{n-1} x_{n-1}+x_{n}$, so ()$=()={ }_{c}\left(c_{1} x_{1}+:::+c_{n-1} x_{n-1}+x_{n}\right)$, where the product is over all $\mathbf{c}=\left(c_{1} ;::: ; c_{n-1}\right) 2 \mathbb{F}_{p}^{n-1}$ with $c_{i} \in 0$ for some i such that 1 i $n-s$.

6 Proof of the linking theorem

In this section we prove Theorems 5.5 and 5.7. The following lemma will help in checking conditions on the numerical function

Lemma 6.1 (i) Let $R \quad 1$ have base p expansion $R=j_{1} p^{a_{1}}+:::+j_{t} p^{a_{t}}$, where $1 \quad j_{1} ;::: ; j_{t} \quad p-1,0 \quad a_{1}<:::<a_{t}$, and let $k \quad 0$. Then $\left(R-p^{k}\right) \quad(R)-1$, with equality if and only if $k=a_{i}, 1$ i t.
(ii) With notation as in Theorem 5.5, and with and s as in the proof of Corollary 5.11, for $r \quad 1$ and $k \quad 0$ we have

$$
R\left(r-p_{k}+p_{s-1} ;\right)=R\left(r-p_{k}+d_{c}(-) ;(1)\right)=R(r ;)-p^{k}:
$$

Proof If $k \in a_{i}$ for $1 \quad i \quad t$, then subtraction of p^{k} must yield at least one new term $(p-1) p^{a}$ in the base p expansion. This proves (i). For (ii), since $d_{c}()=d_{c}\left({ }_{(1)}\right)+\mathrm{pd}_{\mathrm{c}}\left(^{-}\right.$) and $\mathrm{d}_{\mathrm{c}}\left({ }_{(1)}\right)=\gamma_{1}$ we have $\mathrm{R}=\mathrm{R}(\mathrm{r} ;)=$ $(p-1)\left(r+d_{c}(-)\right)+\gamma_{1}$. Comparing the rst occurrence degrees for $L()$ and $\mathrm{L}(\mathrm{)}$ given by (9),

$$
\begin{equation*}
d_{c}()=d_{c}()+p_{s} ; \quad d_{c}\left({ }^{-}\right)=d_{c}\left({ }^{-}\right)+p_{s-1} ; \quad d_{c}(\quad(1))=d_{c}(\quad(1))+1: \tag{10}
\end{equation*}
$$

Hence we have $R\left(r-p_{k}+p_{s-1} ;\right)=(p-1)\left(r-p_{k}+p_{s-1}+d_{c}\left({ }^{-}\right)\right)+d_{c}(\quad(1))=$ $(p-1)\left(r-p_{k}+d_{c}(-)\right)+d_{c}\left({ }_{(1)}\right)=R\left(r-p_{k}+d_{c}(-) ;(1)\right)=R-(p-1) p_{k}-1=$ $R-p^{k}$.

Proof of Theorem 5.5(i) We argue by induction on γ_{1}, the number of antidiagonals of . With and s as above, $v()=\left[x_{n-s+1} ; x_{n-s+2}^{p} ;::: ; x_{n}^{p^{s-1}}\right]$ $\mathrm{v}(\mathrm{)}$. Using formula (4) and Lemma 2.2, for all r 1 we have

$$
\not \operatorname{ør}_{v}()=\underbrace{X}_{k s-1}\left[x_{n-s+1} ; x_{n-s+2}^{p} ;::: ; x_{n-1}^{p^{s-2}} ; x_{n}^{p^{k}}\right] \text { ør }-p_{k}+p_{s-1} v():
$$

By Lemma 6.1, if $(R(r ;))>\gamma_{1}$ then $\left(R\left(r-p_{k}+p_{s-1} ;\right)\right)>\gamma_{1}-1$ for all $k \quad 0$. Since has $\gamma_{1}-1$ antidiagonals, the second factor in each term of
 completing the induction.

Proof of Theorem 5.5(ii) As in Lemma 6.1, let $R=R(r ; ~)$ have base p expansion $R=j_{1} p^{a_{1}}+:::+j_{t} p^{a_{t}}$, let $(R)=\gamma_{1}$ and let $R^{0}=R\left(r-p_{k}+p_{s-1}\right.$;). Then the lemma gives ($R 9=\gamma_{1}-1$ if $k=a_{i}, 1 \quad i \quad t$, and $\quad\left(R 9>\gamma_{1}-1\right.$ otherwise. Hence, applying part (i) of the theorem to (11), we have

$$
\not \operatorname{ør}_{v}()={ }_{i=1}^{X^{t}}\left[x_{n-s+1} ; x_{n-s+2}^{p} ;::: ; x_{n-1}^{p_{s}^{s-2}} ; x_{n}^{p_{i}}\right] \text { 円r }-p_{a_{i}}+p_{s-1} v():
$$

Since $\left(R\left(r-p_{a_{i}}+p_{s-1} ;\right)=\gamma_{1}-1=d_{c}\left({ }_{(1)}\right)\right.$ by the lemma, and $p_{s-1}+$ $d_{c}\left({ }^{-}\right)=d_{c}\left({ }^{-}\right)$, the inductive hypothesis on gives

We can similarly use the lemma to simplify the right hand side of the required identity. Since $v\left({ }_{(1)}\right)=x_{n} v($ (1) $)$, from (4) and (2) we have

By the lemma, $R\left(r+d_{c}\left({ }^{-}\right)-p_{k}\right.$; (1) $)=R-p^{k}$, so that by (i) we can again re ducetothesumover $k=a_{i}, 1 \quad i \quad$ t. Asv($\left.{ }^{-}\right)=\left[x_{n-s+1} ; x_{n-s+2}^{p} ;:: ; x_{n-1}^{p s-2}\right]$ $\mathrm{v}\left({ }^{-}\right)$, it remains after cancelling the factor $\mathrm{v}\left({ }^{-}\right)$and rearranging terms to prove that
X^{t}

$$
\left[x_{n-s+1} ; x_{n-s+2}^{p} ;::: ; x_{n-1}^{p^{s-2}} ; x_{n}^{p^{a_{i}}}\right]-\left[x_{n-s+1} ; x_{n-s+2}^{p} ;::: ; x_{n-1}^{p^{s-2}}\right] x_{n}^{p^{a_{i}}} \quad f_{i}=0 ;
$$ $\mathrm{i}=1$

where $\mathrm{f}_{\mathrm{i}}=\not \operatorname{br}^{-}-\mathrm{p}_{\mathrm{i}}+\mathrm{d}_{\mathrm{c}}\left({ }^{-)} \mathrm{v}\left({ }_{(1)}\right)\right.$. The expansion of the s s determinant in the $\mathrm{p}^{a_{i}}$ powers of the variables is

$$
\begin{aligned}
& X^{s}(-1)^{s-j}\left[x_{n-s+1} ;::: ; x_{n-s+j-1}^{p^{j-2}} ; x_{n-s+j+1}^{p^{j-1}} ;::: ; x_{n}^{p^{s-2}}\right] x_{n-s+j}^{p^{a_{i}}}: \\
&
\end{aligned}
$$

Thus the term with $\mathrm{j}=\mathrm{s}$ cancels, and interchanging the i and j summations, the required formula becomes

Since $\operatorname{brr}^{+d_{c}\left({ }^{-}\right)}\left(x_{n-s+j} v\left({ }_{(1)}\right)\right)={ }^{P_{t}^{t}}{ }_{i=1}^{p_{n-s+j}^{p_{i}}} f_{i}$ by a similar argument using (4), (1) and Lemma 6.1, it su ces to prove that the monomial $x_{n-s+j} v\left({ }_{(1)}\right)$ is in the kernel of $\operatorname{pr}+\mathrm{d}_{\mathrm{c}}\left({ }^{-}\right)$for $1 \mathrm{j} \quad \mathrm{s}-1$. This monomial is divisible by x_{n-s+j}^{p}. By permuting the variables, it su ces to consider the case where it is divisible by x_{1}^{p}. Hence the proof of Theorem 5.5 is completed by the following calculation.

Proposition 6.2 Let $R=R(r ;)$ and let $(R)=\gamma_{1}$, where $\gamma_{1}=(n-1)(p-$ $1)+b$ and 1 b $p-1$. Then

$$
\not \operatorname{br}^{r+d_{c}(-)}\left(x_{1}^{p}\left(x_{2} \quad x_{n-1}\right)^{p-1} \quad x_{n}^{b-1}\right)=0:
$$

Proof By Lemma 2.3, with $f=x_{1}$ and $g=\left(\begin{array}{ll}x_{2} & x_{n-1}\end{array}\right)^{p-1} \quad x_{n}^{b-1}$,

Note that $\mathrm{g}=\mathrm{v}\left(\mathrm{)}\right.$ where $=\left((\mathrm{p}-1)^{\mathrm{n}-2}(\mathrm{~b}-1)\right)$. By (2), $\mathrm{b}^{\mathrm{v}} \mathrm{x}_{1}=0$ for $v \in p_{k}, k \quad 0$, so we may assume that $w=u-p v=r+d_{c}\left({ }^{-}\right)-p p_{k}$. Since $p p_{k}=p_{k+1}-1$ and $d_{c}\left({ }_{(1)}\right)=p-1+d_{c}(), R(w ;)=R\left(r-p_{k+1}+\right.$ $\left.d_{c}\left({ }^{-}\right) ;(1)\right)=R-p^{k+1}$ by Lemma 6.1(ii). Since $(R)=\gamma_{1}$, Lemma 6.1(i) gives ($R(w ;)$) $\quad \gamma_{1}-1>\gamma_{1}-p$. Since $d_{c}()=\gamma_{1}-p$, 円ow $g=0$ by Theorem 5.5(i).

Proof of Theorem 5.7 This follows from Theorem 5.5 by induction on m. Let $\gamma_{1}=(n-1)(p-1)+b, 1 \quad b \quad p-1$. We wish to apply Theorem 5.5 with $r=r_{1}$, sopwe must check that $\left(R\left(r_{1} ;\right)\right)=\gamma_{1}$. For this, note that (9) gives $d_{c}\left({ }^{-}\right)=\sum_{j=2}^{m} p^{j-2} \gamma_{j}$, so that $r_{1}+d_{c}\left({ }^{-}\right)=(b+1) p_{n-1}-(n-1)$. Thus $R\left(r_{1} ;\right)=(p-1)\left(r_{1}+d_{c}(-)\right)+\gamma_{1}=(b+1)\left(p^{n-1}-1\right)-(p-1)(n-1)+\gamma_{1}=$ $\mathrm{bp}^{n-1}+\left(\mathrm{p}^{n-1}-1\right)$. Hence r_{1} satis es the hypothesis of Theorem 5.5 , so that
 $w\binom{0}{(1)}$.
Now $r_{i}()=r_{i-1}\left({ }^{-}\right)$for 2 i m, and so the inductive step reduces to showing that

Recall from Lemma 5.9 that $r_{1} ;::: ; r_{m}$ is an admissible sequence, i.e r_{k} $\mathrm{pr}_{\mathrm{k}+1}$ for $\mathrm{k} \quad$. Since $\mathrm{r}_{1} \quad(\mathrm{~b}+1) \mathrm{p}_{\mathrm{n}-1}, \mathrm{r}_{1}<\mathrm{p}^{n-1}$ if $b<\mathrm{p}-1$ and $\mathrm{r}_{1}<\mathrm{p}^{\mathrm{n}}$ if $b=p-1$. Thus we can deduce (12) from Lemma 2.2 and the coproduct formula (4), as follows. We have $w\binom{0}{(1)}=w(n)^{b} w(n-1)^{p-1-b}$. Now 円r $^{p} w(n)=0$ for $0<r<p^{n-1}$ and $\emptyset^{\circ} w(n-1)=0$ for $0<r<p^{n-2}$. If there are any factors $w(n-1)$ in $w(\underset{(1)}{0})$, then $r_{2}<p^{n-2}$, and otherwiseit su cesto have $r_{2}<p^{n-1}$.

7 First occurrence submodules

For a \mathbf{T}-regular partition , the $\mathbb{F}_{p}\left[\mathrm{M}_{\mathrm{n}}\right]$-submodule of $\mathbf{P}^{\mathrm{d}_{c}()}$ generated by the rst occurrence polynomial $v()$ is a 'representative polynomial' for $L()$ in the sense that this module has a quotient isomorphic to $\mathrm{L}($) (see Corollary 5.8). In the case where $=(p-1)$ for a column 2-regular partition, the leading monomial $s()=x_{1}^{p 1-1} \quad x_{n}^{p^{n}-1}$ has the same property. This is implicit in
the work of Carlisle and Kuhn [2], who identify a subquotient \mathbf{T}^{\curlyvee} of $\mathbf{P}^{\mathrm{d}_{c}()}$ such that $\mathbf{T}^{\gamma}=\mathbf{T}^{\gamma_{1}} \otimes::: \otimes \mathbf{T}^{\gamma_{m}}$, where γ is the \mathbf{T}-conjugate of . Explicitly, if $\mathrm{v}_{\mathrm{i}} 2 \mathbf{T}^{\gamma_{i}}$ corresponds to a monomial in $\mathrm{x}_{1} ;::: ; \mathrm{x}_{\mathrm{n}}$ with all exponents $<\mathrm{p}$, then $\mathrm{v}_{1} \otimes::: \otimes \mathrm{v}_{\mathrm{m}} 2 \mathbf{T}^{\mathrm{V}_{1}} \otimes::: \otimes \mathbf{T}^{\mathrm{V}_{\mathrm{m}}}$ corresponds to the equivalence class of $\mathrm{v}_{1} \mathrm{v}_{2}^{\mathrm{p}} \quad \mathrm{v}_{\mathrm{m}}^{\mathrm{m}-1}$ in the appropriate subquotient of $\mathbf{P}^{\mathrm{d}_{\mathrm{c}}()}$). Proposition $5.4(\mathrm{ii})$ shows that, taking $v_{j}=v\left({ }_{(j)}\right)$, this monomial is $s()$. Tri [14] has recently proved that if is \mathbf{T}-regular, then $\mathrm{L}\left(\mathrm{)}\right.$ is a composition factor in \mathbf{T}^{γ}.
We recall from [16, Section 4] the notion of a base $p!$-vector.
De nition 7.1 Given a prime p, the base p!-vector!(s) of a sequence of non-negative integers $s=\left(s_{1} ;:: ; s_{n}\right)$ is de ned as follows. Write each s_{i} in base p as $s_{i}={ }_{j}{ }_{1} s_{i ; j} p^{j-1}$, where $0 \quad s_{i ; j} \quad p-1$, and let $!{ }_{j}(s)=$
$\mathrm{n}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{s}_{\mathrm{i}, j}$, i.e. add the base p expansions without 'carries'. Then!(s) = $\left.p_{1} 1_{n}(s) ;::: p_{1}!(s)\right)$, with length $I=\operatorname{maxfj}:!_{j}(s)>0 g$ and degree $d=$ $n_{i=1}^{n} s_{i}={ }_{j=1}!!_{j}(s) p^{j-1}$.

Given ! -vectors and , we say phat $_{k}$ dominates, and write or , if and on $\bigotimes_{n}^{\text {if }} \underset{\substack{i=1}}{k} p^{i-1}{ }_{i}{ }_{i=1}^{k} p^{i-1} \quad$ for all $k \quad 1$. By the $!$-vector of a monomial $n_{i=1}^{n} x_{i}^{s_{i}}$ we mean the!-vector of its sequence of exponents $s=\left(s_{1} ;::: ; s_{n}\right)$. The dominance order on !-vectors of the same degree is compatible with left lexicographic order.

Example 7.2 The lattice of base p!-vectors of degree $1+p+p^{2}$ is shown below.

$(1 ; 1 ; 1)$
Proposition 7.3 Let be a T-regular partition. Then the!-vector of the spike monomial $s()$ is the partition $\gamma \mathbf{T}$-conjugate to , and the polynomial $v()$ is the sum of $(-1)^{()} s()$ and monomials f such that! (f) γ.

Proof The proof is the same as that given in [16, proposition 4.5], with 2 replaced by p and ${ }^{0}$ replaced by γ. For (), see Proposition $5.4(\mathrm{iii})$.

Corollary 5.8 and Proposition 7.3 together provide a 'topological' proof that the $\mathbb{F}_{\mathrm{p}}\left[\mathrm{M}_{\mathrm{n}}\right]$-submodule of $\mathbf{P}^{d_{c}()}$ generated by $\mathrm{s}(\mathrm{)}$ has a quotient module isomorphic to $\mathrm{L}(\mathrm{)}$. The next result provides a further comparison between the spike monomial $s()$ and the polynomial $v()$ in a special case We conjecture that the corresponding statement holds for all T-regular partitions .

Proposition 7.4 Assume that $i=(p-1)$ i for $1 \quad \mathrm{i}$, where $=$ ($1 ;::: ; n^{\prime}$) is a column 2-regular partition. Then the submodule of $\mathbf{P}^{\mathrm{d}_{\mathrm{C}}()}$ generated by the polynomial $\mathrm{v}(\mathrm{)}$ is contained in the submodule generated by the spike monomial $s()$.

The proof requires a preliminary lemma.
Lemma 7.5 If $f 2 \mathbb{F}_{p}\left[x_{2} ;::: ; x_{n}\right]$ and $1 \quad s \quad n$, then the $\mathbb{F}_{p}\left[M_{n}\right]$-submodule of \mathbf{P} generated by $x_{1}^{\mathrm{p}^{s}-1} \mathrm{f}$ contains $\left[\mathrm{x}_{1} ; \mathrm{x}_{2}^{\mathrm{p}} ;::: ; \mathrm{x}_{5}^{\mathrm{p}^{s-1}}\right]^{\mathrm{p}-1} \mathrm{f}$.

Proof For each linear form $v=a_{1} x_{1}+:::+a_{s} x_{s}$, where $a_{i} 2 \mathbb{F}_{p}$ for 1 i s, let $t_{v}: \mathbf{P}!\mathbf{P}$ bethetransvection mapping x_{1} to v and xing $x_{2} ;::: ; x_{n}$. We claim that the following equation holds in $\mathbb{F}_{p}\left[x_{1} ;::: ; x_{s}\right]$.

$$
\begin{equation*}
(-1)^{\mathrm{s}}\left[\mathrm{x}_{1} ; \mathrm{x}_{2}^{\mathrm{p}} ;::: ; x_{\mathrm{s}}^{\mathrm{p}^{\mathrm{s}-1}}\right]^{\mathrm{p}-1}=\mathrm{X}_{\mathrm{v}}^{\mathrm{v}^{\mathrm{p}-1}}: \tag{13}
\end{equation*}
$$

Since t_{v} does not change the variables $x_{2} ;::: ; x_{n}$ which can occur in f, it follows from (13) that ${ }_{v} t_{v}$ is an element of the semigroup algebra $\mathbb{F}_{p}\left[M_{n}\right]$ which maps $x_{1}^{p^{s}-1} \mathrm{f}$ to $(-1)^{5}\left[x_{1} ; x_{2}^{\mathrm{p}} ;::: ; \mathrm{x}_{\mathrm{s}}^{\mathrm{p}-1}\right]^{\mathrm{p}-1} \mathrm{f}$.

To prove (13), rst note that the right hand side is $\mathrm{GL}_{s}\left(\mathbb{F}_{\mathrm{p}}\right)$-invariant. Further, it is mapped to 0 by every singular matrix $g 2 M_{s}$, since vectors ($a_{1} ;::: ; a_{s}$) and ($a_{1}^{0} ;::: ; a_{s}^{0}$) in $\mathbb{F}_{\mathrm{p}}^{\mathrm{s}}$ in the same coset of the kernel of g yied terms in (13) with the same image under g, and p divides the order of this coset. Arguing as in the rst or second proof of Theorem 1.1, with s in place of n, it follows that (13) holds up to a (possibly zero) scalar.
Finally we verify that the monomial $m=x_{1}^{p-1} x_{2}^{p(p-1)} \quad x_{s}^{p_{s}^{s-1}(p-1)}$ has coefcient $(-1)^{s}$ in the right hand side of (13). For each linear form v, we have $v^{p^{s}-1}=v^{p^{s-1}(p-1)} \quad v^{p(p-1)} v^{p-1}$, where $v^{p^{j}(p-1)}=\left(a_{1} x_{1}^{p^{j}}+:::+a_{s} x_{s}^{p j}\right)^{p-1}$ for 0 j $s-1$. The exponent $p-1$ in m must come from the last factor in this
product, so we must choose theterm $\left(a_{1} x_{1}\right)^{p-1}=x_{1}^{p-1}$ from the last factor, and $a_{1} G 0$. In the same way, we must choose the term $\left(a_{2} x_{2}^{p}\right)^{p-1}=x_{2}^{p(p-1)}$ from the last but one factor, and $a_{2} \in 0$. Continuing in this way, we see that each of the $(p-1)^{s}$ linear forms v with all coe cients $a_{i} \in 0$ gives a term containing m (with coe cient 1), while other choices of v give terms not containing m. Thus the scalar coe cient in (13) is $(-1)^{\mathrm{s}}$.

The following example shows how to apply Lemma 7.5 to a partition of the form $(p-1)$, so as to generate $v()$ from $s()$.

Example 7.6 Let $p=3$ and let $=(6 ; 6 ; 4 ; 4 ; 2)$, so that $s(\quad)=x^{26} y^{26} z^{8} t^{8} u^{2}$ and $v()=x^{2}\left[x ; y^{3}\right]^{2}\left[x ; y^{3} ; z^{9}\right]^{2}\left[y ; z^{3} ; t^{9}\right]^{2}\left[t ; u^{3}\right]^{2}$.

Begin by permuting the variables, so as to work with the spike $u^{8} t^{26} z^{26} y^{8} x^{2}$. Apply Lemma 7.5 with $x_{1}=y$ and $s=2$ to generate $\left[y ; x^{3}\right]^{2} u^{8} t^{26} z^{26} x^{2}$. Repeat with $x_{1}=z$ and $s=3$ to generate $\left[z ; y^{3} ; x^{9}\right]^{2} u^{8} t^{26}\left[y ; x^{3}\right]^{2} x^{2}$, then with $x_{1}=t$ and $s=3$ to generate $\left[t ; z^{3} ; y^{9}\right]^{2} \quad u^{8}\left[z ; y^{3} ; x^{9}\right]^{2}\left[y ; x^{3}\right]^{2} x^{2}$, and nally with $x_{1}=u$ and $s=2$ to generate $v()$.

Proof of Proposition 7.4 We rst observe (see [16, Proposition 4.9]) that the (multi)set of lengths of the antidiagonals of the column 2-regular partition is equal to the (multi)set of lengths of the rows. Hence the spike monomial $s f)=x_{n}^{p^{5 n}-1} x_{n-1}^{p^{s n-1-1}} \quad x_{1}^{p^{s 1-1}}$, where s_{k} is the length of the k th antidiagonal of the diagram of , can be obtained from s() by a suitable permutation of the variables. We can now obtain v() from sf) by $n-1$ successive applications of Lemma 7.5, following the method illustrated by Example 7.6.

8 T-regular partitions and the Milnor basis

In this section we link the rst occurrene polynomial $v(~) ~ a n d ~ i t s ~ l e a d i n g ~$ monomial $s()$ to the polynomial $p\left(9=\sum_{j=1} w\binom{0}{(j)} p^{j-1}\right.$, which generates a submodule occurrence of $L($) in a higher degree. Here, as in Proposition 5.4,
(j) is the partition given by the j th block of $p-1$ columns in the diagram of the \mathbf{T}-regular partition , and m is the length of γ, the \mathbf{T}-conjugate of . In the case $=(p-1)$, we also link the rst submodule occurrence polynomial $w\left(9\right.$ to $p\left(9\right.$. The linking is achieved by Milnor basis elements in A_{p} which are combinatorially related to . We also obtain a relation between monomials in \mathbf{P} and Milnor basis elements in terms of $!$-vectors. These results extend some of the results of [16, Section 5].

As in Proposition 5.4, let $i=a_{i}(p-1)+b$, where $a_{i} \quad 0,1 \quad b \quad p-1$. Following [16], for $R=\left(\left(b_{1}+1\right) p^{a_{1}}-1 ;::: ;\left(b_{1}+1\right) p^{a_{n}}-1\right)$ we call the Milnor basis element $P(R)$ the Milnor spike associated to . We note that! (R) $=\gamma$. A Milnor spike is an admissible monomial [4]. For example, if $p=3$ and $=$ $(4 ; 3 ; 1)$ then the corresponding Milnor spike is $P(8 ; 5 ; 1)=P^{32} P^{8} P^{1}$, and for the \mathbf{T}-conjugate partition $\gamma=(5 ; 3)$ it is $P(17 ; 5)=P^{32} P^{5}$. In this example,
${ }_{(1)}^{0}=(3 ; 2)$ and $\quad \stackrel{0}{(2)}=(2 ; 1)$, so that $p\left(9=w(3) w(2) \quad(w(2) w(1))^{3}=\right.$ $\left[x_{1} ; x_{2}^{3} ; x_{3}^{9}\right]\left[x_{1} ; x_{2}^{3}\right]^{4} x_{1}^{3}$.

Theorem 8.1 Let be \mathbf{T}-regular with \mathbf{T}-conjugate γ.
(i) $P(R) s()=(-1)() P(R) v()=p(9$, where $P(R)$ is the Milnor spike associated to ($2 ;::: ; n$).
(ii) If $=(p-1)$, where is column 2-regular, $P(S) w(9=p(9$, where $P(S)$ is the Milnor spike associated to ($\gamma_{2} ;::: ; \gamma_{m}$).
(iii) There are formulae corresponding to (i) and (ii) for the Milnor spikes associated to and γ, with p(9 replaced by p(9 p.

Remark 8.2 (iii) follows immediately from (i) and (ii) for degree reasons. Theomission of the rst terms in R and S corresponds to omitting the highest Steenrod power P^{d} in the admissible monomial forms of $P(R)$ and $P(S)$. In fact $d=\operatorname{deg} p(9$, so that $P d p(9)=p(9 p$. In the example $p=3$, $=$ $(4 ; 3 ; 1)$ above, (i) states that $P^{8} P^{1}\left(x_{1}^{8} x_{2}^{5} x_{3}\right)=-P^{8} P^{1}\left(x_{1}^{2}\left[x_{1} ; x_{2}^{3}\right]^{2}\left[x_{2} ; x_{3}^{3}\right]\right)=$ $\left[x_{1} ; x_{2}^{3} ; x_{3}^{9}\right]\left[x_{1} ; x_{2}^{3}\right]^{4} x_{1}^{3}$. The case $=(4 ; 3 ; 1)$ is excluded from (ii), but in fact $P^{5} w(9=-p(9$. We believe that (ii) holds, up to sign, for all \mathbf{T}-regular .

We begin by proving the equivalence of the two statements in (i). For this we use the following generalization of [16, Theorem 5.9(i)]. The proof is based on Lemma 2.8, and follows that given in [16].

Theorem 8.3 Let $R=\left(r_{1} ;::: ; r_{t}\right)$ and let ! $(R)=$. If the!-vector of $x_{1}^{S_{1}} \quad x_{n}^{S_{n}}$ does not dominate , then $P(R)\left(x_{1}^{S_{1}} \quad x_{n}^{S_{n}}\right)=0$.

Proof of Theorem 8.1(i) By Proposition 7.3, if the monomial foccurs in $v()$ and $f \in s()$, then! (f) $\quad \gamma$. If $R=\left(r_{1} ;::: ; r_{n}\right)$ where $r_{i}=(b+1) p^{a_{i}}-$ 1, so that $P(R)$ is the Milnor spike associated to , then, as noted above, $!(R)=\gamma$. Hence, by Theorem 8.3, $P(R)$ takes the same value on $v()$ and on its leading term (-1$)^{()} \mathrm{s}(\mathrm{)}$.
Weevaluate $P(R) s()$ by induction on the length m of γ. Thebase case $m=1$ holds by our previous results, as follows. In this case $=(p-1 ;::: ; p-1 ; b)$,
with $1 \quad b \quad p-1$, and has length n, while (i) states that $P(R) s()=w(9$, where $R=(p-1 ;::: ; p-1 ; b)$ has length $n-1$. By Proposition 3.2(ii), $P(R) g=\emptyset^{(b+1) p_{n-1}-(n-1)} g$ when degg $(n-1)(p-1)+b$, and we may choose $g=s()$. Hence the result follows from Theorem 5.3.
For the inductive step, we use Proposition 5.4 (iip to write $s()=f^{p} g$, where $g=v\left({ }_{(1)}\right)$ and $f=s\left({ }^{-}\right)$. Hence $P(R) s()=(P(S) f)^{p} P(T) g$ by Lemma 2.8, where the sum is over sequences $S=\left(s_{2} ;::: ; \mathrm{s}_{n}\right), \mathrm{T}=\left(\mathrm{t}_{2} ;::: ; \mathrm{t}_{n}\right)$ such that $r_{i}=p s_{i}+t_{i}$ for $2 \quad i \quad n$. Thus $t_{n}=b_{1}, s_{n}=0$ and $t_{i} \quad p-1$ for $2 \quad \mathrm{i} \quad \mathrm{n}-1$. If $\mathrm{t}_{\mathrm{i}} \in \mathrm{p}-1$ for some $\mathrm{i}<\mathrm{n}$, then $\mathrm{P}(\mathrm{T})$ has excess ${ }_{i} t_{i}>\operatorname{degv}\left({ }_{(1)}\right)=\gamma_{1}$, so that $P(T)\left(v\left({ }_{(1)}\right)\right)=0$. Hence wemay assumethat $\mathrm{T}=\left(\mathrm{p}-1 ;::: ; \mathrm{p}-1 ; \mathrm{b}_{1}\right)$, so that $\mathrm{s}_{\mathrm{i}}=(\mathrm{b}+1) \mathrm{p}^{\mathrm{a}_{\mathrm{i}}-1}-1$ for $2 \mathrm{i} \quad \mathrm{n}-1$. By the argument for the case $\mathrm{m}=1, \mathrm{P}(\mathrm{T})\left(\mathrm{v}\left({ }_{(1)}\right)\right)=\mathrm{w}\binom{0}{(1)}$, and by the induction hypothesis applied to ${ }^{-}, P(S) s\left({ }^{-}\right)=p\left({ }^{-}\right)$. Since $p()=w\binom{0}{(1)} p\left({ }^{-}\right)^{p}$, the induction is complete

Proof of Theorem 8.1(ii) Let $=(p-1)$, where is column 2-regular. Then $\gamma=(p-1)^{0}$ has length $m=1$, and (i) $=\left((p-1) i^{i}\right)$, so that $w($ (i) $)=$ $w\left(i_{i}\right)^{p-1}$. Also $S=\left(p^{0}-1 ;::: ; p_{m}^{0}-1\right)$, so that $P(S)=P^{t_{2}} \quad P^{t_{m}}$, where $t_{m}=p{ }_{m}^{0}-1$ and $t_{i}=p t_{i+1}+p_{i}^{i}-1$ for $1 \quad i<m$. We shall argueby induction on m, the case $m=1$, where $P(S)=1$, being trivial. For 2 i m, let

$$
w_{i}\left(9=w\binom{(1)}{(1)} \quad w\binom{0}{(i)} w\binom{0}{(i+1)}^{p} \quad w\binom{0}{(m)}^{p^{m-i}} ;\right.
$$

so that $W_{1}\left(9=p(9)\right.$ and $W_{m}(9=w(9)$. We assume as inductive hypothesis on j that $\mathrm{P}^{\mathrm{t}_{\mathrm{j}}} \mathrm{W}_{\mathrm{j}}\left(\mathrm{g}=\mathrm{W}_{\mathrm{j}-1}(\mathrm{~g}\right.$ for $\mathrm{j}>\mathrm{i}$, and prove this for $\mathrm{j}=\mathrm{i}$.
It follows from Lemma 2.1 that $P^{r}\left(w(n)^{p^{i}}\right)=0$ unless $r=p^{i}\left(p_{n}-p_{j}\right)$, where 0 j n. The largest of these values, equal to the degree of $w(n)^{p^{i}}$, is $p^{i} p_{n}$. Since $w\left({ }_{(i)}^{0}\right)$ has degree $p i-1$, it follows by (downward) induction on i that t_{i} is the degre of $w(\underset{(i)}{0}) w\binom{0}{(i+1)}^{p} \quad w\binom{0}{(\mathrm{~m})}^{p^{m-i}}$. We may express t_{i} explicitly as the sum

$$
\begin{equation*}
t_{i}={ }_{k=i}^{x^{m}} p^{k-i}\left(p_{k}^{0}-1\right): \tag{14}
\end{equation*}
$$

Hence one term in the expansion of $\mathrm{P}^{\mathrm{t}_{\mathrm{i}}}\left(\mathrm{W}_{\mathrm{i}}(9)\right.$ using the Cartan formula is $\mathrm{W}_{\mathrm{i}-1}(9)$. We shall complete the proof by using Lemma 2.1 to show that all other terms in the expansion vanish. Thus we have to consider the possible ways to write t_{i} so that

$$
\begin{equation*}
(p-1) t_{i}=x_{v=1}^{x^{-1}} x_{k=1}^{-1}\left(p_{k}^{0}-p^{j_{k ; v}}\right)+x_{k=i}^{x^{m}} p^{k-i}\left(p^{\circ}-p^{j_{k ; v}}\right) \tag{15}
\end{equation*}
$$

where $0 \quad \mathrm{j}_{\mathrm{k} ; \mathrm{v}} \quad{\underset{\mathrm{k}}{0}}_{0}$ for $1 \quad \mathrm{k} \quad \mathrm{m}$. Equating (14) and (15) and simplifying, we obtain

$$
\begin{equation*}
(p-1){\underset{k=1}{x^{-1}} p_{k}^{0}+{ }_{k=i}^{x^{m}} p^{k-i}=\mathbb{x}^{-1} x^{-1} p^{j k ; v}+{ }_{k=1}^{x^{m}} p^{k-i} p^{j^{k ; v}}!}_{!} \tag{16}
\end{equation*}
$$

Since is column 2-regular, ${ }^{0}$ is strictly decreasing and so ${ }_{i-1}^{0}>{ }_{i}^{0}$ ${ }_{m}^{0}+m-i>m-i$. Hence the m powers of p occurring in the left side of (16) are distinct. By uniqueness of base p expansions, there are also m distinct powers on the right of (16) and these are a permutation of the powers on the left. The argument is now completed as in the case $p=2$ [16, Section 5].

We end with evaluations of certain Milnor basis elements on monomials. While [16, Lemma 5.6] generalizes easily to odd primes, this does not seem to be so useful here as the following (weak) generalization of [16, Proposition 5.8].

Proposition 8.4 Let $R=\left(r_{1} ; r_{2} ;:::\right)$ where $r_{i}=p-1$ if $i=b_{1} ;:: ; b_{m}$ and $r_{i}=0$ otherwise. Then

$$
P(R)\left(x_{1} \quad x_{n}\right)^{p-1}=\begin{array}{ll}
\left(x_{1}^{p_{1}} ;::: ; x_{n}^{p_{n}}\right]^{p-1} & \text { if } m=n ; \\
{\left[x_{1} ; x_{2}^{p_{1}} ;::: ; x_{n}^{p_{n}-1}\right]^{p-1}} & \text { if } m=n-1:
\end{array}
$$

Proof This is proved by induction on jRj . The base of the induction is Theorem 1.1, which is the case $m=n-1, b=i$ for $1 \quad \mathrm{i}-1$. Given a sequence $R=\left(r_{1} ;::: ; r_{j-1} ; 0 ; p-1 ; p-1 ;::: p-1\right)$, let $R^{0}=\left(r_{1} ;::: ; r_{j-1} ; p-1 ; 0 ; p-\right.$ $1 ;::: ; p-1)$, so that $j R j-j R 9=(p-1)\left(p^{j+1}-1\right)-(p-1)\left(p^{j}-1\right)=(p-1)^{2} p^{j}$. We claim that $P^{p(p-1)} P(R 9$ and $P(R)$ have the same value on any polynomial of degree $n(p-1)$. To prove this, we use Milnor's product formula to expand $\mathrm{P}^{\mathrm{j}}(\mathrm{p}-1) \mathrm{P}(\mathrm{R} 9)$ in the Milnor basis. The Milnor matrix

$$
\begin{array}{c|cccccccc}
& r_{1} & ::: & r_{j}-1 & 0 & 0 & p-1 & ::: & p-1 \\
\hline 0 & 0 & ::: & 0 & p-1 & 0 & 0 & :: & 0
\end{array}
$$

shows that $P(R)$ occurs with coe cient 1 in the product. Since $P(R)$ is the unique Milnor basis element of minimal excess $(n-1)(p-1)$ in degree $j R j$, this proves our claim.
Applying the induction hypothesis to $P\left(R 9\right.$, we have $P(R)\left(x_{1}::: x_{n}\right)^{p-1}=$ $P^{p^{j}(p-1)}\left[x_{1} ; x_{2}^{p^{b_{1}}} ;::: ; x_{i}^{p^{j}} ;::: ; x_{n}^{p_{n}^{b_{n}-1}}\right]^{p-1}$ where R and R^{0} di er in the ithterm, i.e. $b=j$ for R^{0} and $b=j+1$ for R. By the Cartan formula, this is $\left[x_{1} ; x_{2}^{p_{1}} ;::: ; x_{1}^{p^{j+1}} ;::: ; x_{n}^{p_{n}-1}\right]^{p-1}$, and this completes the induction for the case $m=n-1$. The case $m=n$ is proved similarly.

Proposition 8.4 serves as the base of induction for the following generalization of [16, Theorem 5.9 (ii)] to odd primes. The proof, by induction on the length of the! -vector , is essentially the same as in [16].

Theorem 8.5 Let $R_{0}=\left(r_{0} ; r_{1} ;::: ; r_{t}\right), R=\left(r_{1} ;::: ; r_{t}\right)$ and $f=x_{1}^{s_{1}} \quad x_{n}^{s_{n}}$, where the base p expansion of each term r_{i} and exponent s_{j} contains only the digits 0 and $p-1$. Assume that f and R_{0} have the same !-vector

Then $P(R) f=\mathrm{Q}_{\mathrm{k}=1} \mathrm{p}^{\mathrm{k}-1(p-1)}$, where m is the length of and $k=$ [$\left.x_{i_{1}}^{p^{1}} ;::: ; x_{i}^{p^{j}}\right]$ is the Vandermonde determinant of order $\left.={ }_{k} \neq p-1\right)$ de ned by the subsequences ($\mathrm{s}_{1} ;::: ; \mathrm{s}_{\mathrm{i}}$) of ($\mathrm{s}_{1} ;::: ; \mathrm{s}_{\mathrm{n}}$) and ($\mathrm{r}_{\mathrm{j}_{1}} ;::: ; \mathrm{r}_{\mathrm{j}}$) of R_{0} consisting of the terms whose k th base p place is $p-1$.

Example 8.6 Using the tables

| r_{0} | $p-1$ | 0 | $p-1$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | x_{1} | $p-1$ | 0 | $p-1$ | r_{0} | $p-1$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| r_{1} | $p-1$ | | | | | x_{2} |
| r_{2} | $p-1$ | | | | | r_{1} |

we obtain $P(p-1 ; p-1) x_{1}^{\left(p^{2}+1\right)(p-1)} x_{2}^{p-1} x_{3}^{p-1}=\left[x_{1} ; x_{2}^{p} ; x_{3}^{p^{2}}\right]^{p-1} x_{1}^{p^{2}(p-1)}$ and $P\left(\left(p^{2}+1\right)(p-1) ; p-1\right) x_{1}^{\left(p^{2}+1\right)(p-1)} x_{2}^{p-1} x_{3}^{p-1}=\left[x_{1} ; x_{2}^{p} ; x_{3}^{p^{2}} p^{p-1}\left(x_{1}^{p}\right)^{p^{2}(p-1)}\right.$.

References

[1] D. P. Carlisle, The modular representation theory of $\mathrm{GL}(\mathrm{n} ; \mathrm{p})$ and applications to topology, Ph.D. thesis, University of Manchester, 1985.
[2] D. P. Carlisle and N. J. Kuhn, Subalgebras of the Steenrod algebra and the action of matrices on truncated polynomial algebras, J. of Algebra 121 (1989), $370\{387$.
[3] D. P. Carlisle and G. Walker, Poincare series for the occurrence of certain modular representations of $G L(n ; p)$ in the symmetric algebra, Proc. Roy. Soc. Edinburgh 113A (1989), 27\{41.
[4] D. P. Carlisle, G. Walker and R. M. W. Wood, Theintersection of the admissible basis and the Milnor basis of the Steenrod algebra, J. P ure and Applied Algebra 128 (1998), 1\{10.
[5] D. M. Davis, The antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 44 (1974), $235\{236$.
[6] S. R. Doty and G. Walker, The composition factors of $F_{p}\left[x_{1} ; x_{2} ; x_{3}\right]$ as a GL (3; p)-module, J. Algebra 147 (1992), 411 \{441.
[7] S. R. Doty and G. Walker, Truncated symmetric powers and modular representations of GL_{n}, Math. Proc. Camb. Phil. Soc. 119 (1996), $231\{242$.
[8] J. A. Green, Polynomial representations of GL_{n}, Lecture Notes in Mathematics 830, Springer 1980.
[9] J. C. Harris and N. J. Kuhn, Stable decomposition of classifying spaces of nite abelian p-groups, Math. Proc. Camb. Phil. Soc. 103 (1988), 427\{449.
[10] G. D. J ames and A. Kerber, The representation theory of the symmetric group, Encyclopaedia of Mathematics, vol. 16, Addison-Wesley (1981).
[11] J. Milnor, The Steenrod algebra and its dual, Ann. Math. 67 (1958), 150\{171.
[12] P. A. Minh and T. T. Tri, The rst occurrence for the irreducible modules of general linear groups in the polynomial algebra, Proc. Amer. Math. Soc. 128 (2000), 401\{405.
[13] W. Singer, On the action of Steenrod squares on polynomial algebras, Proc. Amer. Math. Soc. 111 (1991), 577\{583.
[14] T. T. Tri, On the rst occurrence of irreducible representations of semigroup of all matrices as composition factors in the polynomial algebra, Acta Math. Vietnamica, to appear.
[15] G. Walker, Modular Schur functions, Trans. Amer. Math. Soc. 346 (1994), 569\{ 604.
[16] G. Walker and R. M. W. Wood, Linking rst occurrence polynomials over \mathbb{F}_{2} by Steenrod operations, J. Algebra 246 (2001), 739\{760.
[17] R. M. W. Wood, Splitting (CP ${ }^{1} \quad C P^{1}$) and the action of Steenrod squares on the polynomial ring $\mathbb{F}_{2}\left[x_{1} ;::: ; x_{n}\right]$, Algebraic Topology Barcelona 1986, Lecture Notes in Mathematics 1298, Springer-Verlag (1987), $237\{255$.

Department of Mathematics, College of Sciences University of Hue, Dai hoc Khoa hoc, Hue, Vietnam and Department of Mathematics, University of Manchester Oxford Road, Manchester M13 9PL, U.K.

Email: panninh@dng. vnn. vn, grant @m. nan. ac. uk
Received: 24J anuary 2002

