Algebraic \& Geometric Topology
Volume 2 (2002) 499\{518
Published: 25 J une 2002
AGG

A note on the Lawrence\{K rammer\{B igelow representation

Luisa Paol uzzi
Luis Par is

Abstract

A very popular problem on braid groups has recently been solved by Bigelow and K rammer, namely, they have found a faithful linear representation for the braid group B_{n}. In their papers, Bigelow and K rammer suggested that their representation is the monodromy representation of a certain bration. Our goal in this paper is to understand this monodromy representation using standard tools from the theory of hyperplane arrangements. In particular, we prove that the representation of Bigelow and Krammer is a sub-representation of the monodromy representation which we consider, but that it cannot be the whole representation.

AMS Classi cation 20F36; $52 \mathrm{C} 35,52 \mathrm{C} 30,32 \mathrm{~S} 22$
Keywords Braid groups, linear representations, Salvetti complexes

1 Introduction

Consider the ring $R=\mathbb{Z}\left[x^{1} ; y^{1}\right]$ of Laurent polynomials in two variables and the (abstract) free R-module

$$
V=M_{1 i<j n}^{M} R e_{j}
$$

For $\mathrm{k} 2 \mathrm{f} 1 ;::: ; \mathrm{n}-1 \mathrm{~g}$ de nethe R-homomorphism k : V ! V by

$$
k\left(e_{j}\right)=\begin{array}{ll}
x e_{-1 j}+(1-x) e_{j} & \text { if } k=i-1 \\
\Theta_{+1 j}-x y(x-1) e_{k k+1} & \text { if } k=i<j-1 \\
-x^{2} y e_{k+1} & \text { if } k=i=j-1 \\
e_{j}-y(x-1)^{2} e_{k+1} & \text { if } i<k<j-1 \\
e_{j-1}-x y(x-1) e_{k+1} & \text { if } i<j-1=k \\
x e_{j+1}+(1-x) e_{j} & \text { if } k=j \\
e_{j} & \text { otherwise }
\end{array}
$$

The starting point of the present work is the following theorem due to Bigelow [1] and Krammer [5, 6].

Theorem 1.1 (Bigelow, [1]; K rammer, [5, 6]) Let B_{n} be the braid group on n strings, and let $1 ;::: ;{ }_{n-1}$ be the standard generators of B_{n}. Then the mapping ${ }_{k} \nabla \quad k$ induces a well-de ned faithful representation $: B_{n}$! $A t_{R}(V)$. In particular, the braid group B_{n} is linear.

Let V be an R -module A representation of B_{n} on V is a homomorphism $: B_{n}$! $A u t_{R}(V)$. By abuse of notation, we may identify the underlying module V with the representation if no confusion is possible Two representations ${ }_{1}$ and 2 on V_{1} and V_{2}, respectively, are called equivalent if there exist an automorphism : $\mathrm{R}!\mathrm{R}$ and an isomorphism $\mathrm{f}: \mathrm{V}_{1}!\mathrm{V}_{2}$ of abelian groups such that:
$f\left({ }_{1}(b) v\right)=2(b) f(v)$ for all $b 2 B_{n}$ and all $v 2 V_{1} ;$
$f(v)=() f(v)$ for all $2 R$ and all $v 2 v_{1}$.

An LKB representation is a representation of B_{n} equivalent to the one of T he orem 1.1 (LKB stands for Lawrence\{K rammer \{Bigelow).

Let \mathbf{D} be a disc embedded in \mathbb{C} such that $1 ;::: ; \mathrm{n}$ lie in the interior of \mathbf{D} (say $\mathbf{D}=\mathrm{fz} 2 \mathbb{C} \mathrm{j} j z-(\mathrm{n}+1)=2 \mathrm{j} \quad(\mathrm{n}+1)=2 \mathrm{~g})$, and choose a basepoint P_{b} on the boundary of \mathbf{D} (say $\mathrm{P}_{\mathrm{b}}=(\mathrm{n}+1)(1-\mathrm{i})=2$). De ne a fork to be a tree embedded in \mathbf{D} with four vertices $P_{b} ; p ; q ; z$ and three edges, and such that $T \backslash \mathbb{C D}=f P_{b} g, T \backslash f 1 ;::: ; n g=f p ; q$, and all three edges have z as vertex. The LKB representation V de ned in [5] is the quotient of the free R -module generated by the isotopy classes of forks by certain relations. One can easily verify that these relations are invariant by the action of B_{n}, viewed as the mapping class group of $\mathbf{D} n f 1 ;::: ; n g$, thus V is naturally endowed with a B_{n}-action. K rammer in [5] stated that a monodromy representation of B_{n} on a twisted homology, $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right)$, is an LKB representation and referred to Lawrence's paper [8] for the proof. The object of the present paper is the study of this monodromy representation on $\mathrm{H}_{2}\left(\mathrm{~F}_{n} ; \Gamma\right)$. Let R ! \mathbb{C} be an embedding. The representation considered by Lawrence [7, 8] is isomorphic to $\mathrm{V} \otimes \mathbb{C}$, but her geometric construction is slightly di erent from the construction suggested by K rammer [5]. In his proof of the linearity of braid groups, Bigelow [1] associated to each fork T an element $S(T)$ of $H_{2}\left(F_{n} ; \Gamma\right)$, and used this correspondence to compute the action of B_{n} on $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right)$. A consequence of his calculation is that $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right) \otimes \mathbb{Q}(\mathrm{x} ; \mathrm{y})$ is isomorphic to $\mathrm{V} \otimes \mathbb{Q}(\mathrm{x} ; \mathrm{y})$.
In [3] and [2], Digne, Cohen and Wales introduced a new conceptual approach to the LKB representations based on the theory of root systems, and extended the results of [6] to all spherical type Artin groups. Using the same approach, linear representations have been de ned for all Artin groups [9], but it is not
known whether the resulting representations are faithful in the non-spherical case

The formulae in our de nition of the LKB representations are those of [3]; the formulae of [5], [1] and [7] can be obtained by a change of basis which will be given in Section 5 . We choose this basis because it is the most natural basis in our construction and, as pointed out before, it has an interpretation in terms of root systems which can be extended to all Artin groups.

Our goal in this paper is to understand the monodromy action on $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}}\right.$; Γ) using standard tools from the theory of hyperplane arrangements, essentially the so-called Salvetti complexes. These tools are especially interesting in the sense that they are less speci c to the case \braid groups" than the tools of Lawrence, Krammer and Bigelow, and we hope they will be used in the future for constructing linear representations of other groups like Artin groups. The main result of the paper is the following:

Theorem 1.2 There is a sub-representation V of $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right)$ such that:
(i) V is an LKB representation;
(ii) $V G H_{2}\left(F_{n} ; \Gamma\right)$ if $n 3$;
(iii) if V^{0} is a sub-representation of $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}}\right.$; Γ) and V^{0} is an LKB representation, then $\mathrm{V}^{0} \mathrm{~V}$, if $\mathrm{n} \quad 4$;
(iv) $V \otimes \mathbb{Q}(x ; y)=H_{2}\left(F_{n} ; \Gamma\right) \otimes \mathbb{Q}(x ; y)$.

We also prove that $H_{2}\left(F_{n} ; \Gamma\right)$ is a free R-module of rank $n(n-1)=2$ and give a basis for $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right.$). Note that (ii) and (iii) imply that $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right.$) is not an LKB representation if n 4. This fact is still true if $n=3$ but, in this case, one has two minimal LKB representations in $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right)$. The proof of this fact is left to the reader. Note also that the equality $V \otimes \mathbb{Q}(x ; y)=H_{2}\left(F_{n} ; \Gamma\right) \otimes \mathbb{Q}(x ; y)$ is already known and can be found in [1].

Weend this section with a detailed description of themonodromy representation $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right)$.

For $1 \quad \mathrm{i}<\mathrm{j} \quad r_{s}$ let H_{ij} be the hyperplane of \mathbb{C}^{n} with equation $\mathrm{z}_{\mathrm{i}}=\mathrm{z}_{\mathrm{j}}$, and let $M_{n}^{0}=\mathbb{C}^{n} n\left({ }_{1 i<j}{ }_{n} H_{i j}\right)$ denote the complement of these hyperplanes. The symmetric group ${ }_{n}$ acts frely on M_{n}^{0} and B_{n} is the fundamental group of $M_{n}^{0}={ }_{n}=M_{n}$. By [4], the map $p^{0}: M_{n+2}^{0}!M_{n}^{0}$ which sends $\left(z_{1} ;::: ; z_{n+2}\right)$ to ($z_{1} ;::: ; z_{n}$) is a locally trivial bration. Let

$$
L_{1 t}=f z 2 \mathbb{C}^{2} j z_{1}=\mathrm{tg} ; \mathrm{L}_{2 \mathrm{t}}=\mathrm{fz} 2 \mathbb{C}^{2} \mathrm{j} \mathrm{z}_{2}=\mathrm{tg} ; \quad \mathrm{t}=1 ;::: ; \mathrm{n} ;
$$

$$
L_{3}=f z 2 \mathbb{C}^{2} j z_{1}=z_{2} g:
$$

The bre of p^{0} at $(1 ;::: ; n)$ is the complement of the above $2 n+1$ complex lines:

$$
F_{n}^{0}=\mathbb{C}^{2} n\left({ } _ { t = 1 } ^ { [n } L _ { 1 t } \left[{ }_{t=1}^{[n} L_{2 t}\left[L_{3}\right)\right.\right.
$$

Let $N_{n}=M_{n+2}^{0}=\left({ }_{n} \quad\right.$ 2). Then $p^{0}: M_{n+2}^{0}!M_{n}^{0}$ induces a locally trivial bration $\mathrm{p}: \mathrm{N}_{\mathrm{n}}$! M_{n} whose bre is $\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}}^{0}=2$.
Write kzk $=\operatorname{maxfj} z_{i} j \mathrm{j} i=1 ;::: ; n g$ for $z 2 \mathbb{C}^{n}$. The map $s^{0} \cdot M_{n}^{0}!M_{n+2}^{0}$ given by

$$
s^{9}(z)=\begin{array}{lll}
(z ; n+1 ; n+2) & \text { if kzk } & n \\
\left(z ; \frac{n+1}{n} k z k ; \frac{n+2}{n} k z k\right) & \text { if kzk } & n
\end{array}
$$

is a well-de ned section of p^{0} and moreover induces a section $s: M_{n}!N_{n}$ of p. So, by the homotopy long exact sequence of p, the group ${ }_{1}\left(N_{n}\right)$ can be written as a semi-direct product ${ }_{1}\left(F_{n}\right) \rtimes B_{n}$.
To construct the monodromy representation we need the following two propositions whose proofs will be given in Sections 3 and 4, respectively.

Proposition 1.3 $\quad H_{1}\left(F_{n}\right)$ is a free \mathbb{Z}-module of rank $n+1$.
In fact, we shall see that $H_{1}\left(F_{n}\right)$ has a natural basis $f\left[a_{1}\right] ;::: ;\left[a_{n}\right] ;\left[c_{1}\right] g$. Let H be the free abelian group freely generated by $f x ; y g$, let $o: H_{1}\left(F_{n}\right)$! H be the homomorphism which sends $\left[\mathrm{a}_{\mathrm{i}}\right.$] to x for $\mathrm{i}=1 ;::: ; \mathrm{n}$, and $\left[\mathrm{c}_{1}\right]$ to y , and let : ${ }_{1}\left(F_{n}\right)!H_{1}\left(F_{n}\right)!H$ bethe composition of the natural projection ${ }_{1}\left(F_{n}\right)$! $H_{1}\left(F_{n}\right)$ with 0 .

Proposition 1.4

(i) The kerne of is invariant for the action of B_{n}. In particular, the action of B_{n} on ${ }_{1}\left(F_{n}\right)$ induces an action of B_{n} on H.
(ii) The action of B_{n} on H is trivial.

Let $\boldsymbol{F}_{\mathrm{n}}$! F_{n} be the regular covering space associated to . One has ${ }_{1}\left(\boldsymbol{F}_{\mathrm{n}}\right)=$ ker , H acts freely and discontinuously on $\boldsymbol{F}_{\mathrm{n}}$, and $\boldsymbol{F}_{\mathrm{n}}=\boldsymbol{H}=\mathrm{F}_{\mathrm{n}}$. The action of H on $\boldsymbol{F}_{\mathrm{n}}$ endows $\mathrm{H}\left(\mathbf{F}_{\mathrm{n}}\right)$ with a structure of $\mathbb{Z}[\mathrm{H}]$-module. This homology group is called the homology of F_{n} with local coe cients associated to , and is denoted by $\mathrm{H}\left(\mathrm{F}_{\mathrm{n}} ; \Gamma\right.$).
Now, Proposition 1.4 implies that the bration $p: N_{n}$! M_{n} induces a repre sentation : ${ }_{1}\left(M_{n}\right)=B_{n}$! $\operatorname{Aut}_{\mathbb{Z}[H]}\left(H\left(F_{n} ; \Gamma\right)\right)$, called monodromy representation on $H\left(F_{n} ; \Gamma\right)$. In this paper, we shall consider the monodromy representation $\quad:{ }_{1}\left(M_{n}\right)=B_{n}!\quad A u t_{\mathbb{Z}[H]}\left(H_{2}\left(F_{n} ; \Gamma\right)\right)$ which is the one re ferred to by Krammer and Bigelow.

2 The Salvetti complex

An arrangement of lines in \mathbb{R}^{2} is a nite family A of a ne lines in \mathbb{R}^{2}. The complexi cation of a line L is the complex line $L_{\mathbb{C}}$ in \mathbb{C}^{2} with the same equation as L. The complement of the complexi cation of A is

$$
M(A)=\mathbb{C}^{2} n\left(L_{\mathbb{L} 2 A}\right)
$$

Let A be an arrangement of lines in \mathbb{R}^{2}. Then A subdivides \mathbb{R}^{2} into facets. We denote by $F(A)$ the set of facets and, for $h=0 ; 1 ; 2$, we denote by $F_{h}(A)$ the set of facets of dimension h. A vertex is a facet of dimension 0 , an edge is a facet of dimension 1, and a dhamber is a facet of dimension 2. We partially order $F(A)$ with the relation $F<G$ if $F \quad \bar{G}$, where \bar{G} denotes the closure of G.

We now de ne a CW-complex of dimension 2, called the Salvetti complex of A, and denoted by Sal(A). This complex has been introduced by Salvetti in [10] in the more general setting of hyperplane arrangements in \mathbb{R}^{n}, n being any positive integer, and Theorem 2.1, stated below for the case $\mathrm{n}=2$, is proved in [10] for any n.

To every chamber C $2 \mathrm{~F}_{2}(\mathrm{~A})$ we associate a vertex w_{C} of Sal(A). The 0skeleton of $\operatorname{Sal}(A)$ is $\operatorname{Sal}_{0}(A)=f w_{C} j C 2 F_{2}(A) g$.

Let $F 2 F_{1}(A)$. There exist exactly two chambers C; $2 F_{2}(A)$ satisfying $C ; D>F$. We associate to F two oriented 1-cells of $\operatorname{Sal}(A)$: a(F;C) and $a(F ; D)$. The source of $a(F ; C)$ is w_{C} and its target is w_{D} while the source of $a(F ; D)$ is w_{D} and its target is w_{C} (se Figure 1). The 1-skeleton of Sal(A) is the union of the $a(F ; C)$'s, where $F 2 F_{1}(A), C 2 F_{2}(A)$ and $F<C$.

Figure 1: Edges in $\operatorname{Sal}(\mathrm{A})$

Let $P 2 F_{0}(A)$ and let $F_{P}(A)$ betheset of dnambers $C 2 F_{2}(A)$ such that $P<$ C. Fix some C $2 F_{p}(A)$ and write $F_{p}(A)=f C ; C_{1} ;:: ; C_{n-1} ; D ; D_{n-1} ;::: ;$ $D_{1} g$ (see Figure 2). The set $F_{p}(A)$ has a natural cyclic ordering induced by the
orientation of \mathbb{R}^{2}, so weshall assumethelist given aboveto becydically ordered in this way. Write $C=C_{0}=D_{0}$ and $D=C_{n}=D_{n}$. For all $i=1 ;:: ; n$, there is a unique edge a_{i} of $\operatorname{Sal}_{1}(\mathrm{~A})$ with source $\mathrm{w}_{\mathrm{C}_{\mathrm{i}-1}}$ and target $\mathrm{w}_{\mathrm{C}_{\mathrm{i}}}$ and a unique edge b of $\mathrm{Sal}_{1}(\mathrm{~A})$ with source $\mathrm{w}_{\mathrm{D}_{i-1}}$ and target $\mathrm{w}_{\mathrm{D}_{i}}$. We associate to the pair $(P ; C)$ an oriented 2-cell $A(P ; C)$ of $\operatorname{Sal}(A)$ whose boundary is

$$
\text { ©A }(P ; C)=a_{1} a_{2}::: a_{n} b_{n}^{-1}::: b_{2}^{-1} b_{1}^{-1}:
$$

The 2-skeleton of $\operatorname{Sal}(A)$ is the union of the $A(P ; C)$'s, where $P 2 F_{0}(A)$ and C $2 \mathrm{~F}_{\mathrm{p}}(\mathrm{A})$.

Figure 2: A 2-cell in Sal(A)
Theorem 2.1 (Salvetti, [10]) Let A bean arrangement of lines in \mathbb{R}^{2}. There exists an embedding : Sal(A)! M (A) which is a homotopy equivalence.

Let A be an arrangement of lines in \mathbb{R}^{2}, and let G be a nite subgroup of A $\left(\mathbb{R}^{2}\right)$ which satis es:
$g(A)=A$ for all g2 G;
G acts freedy on $\mathbb{R}^{2} n\left({ }^{S}{ }_{L 2 A} L\right)$.
Then G acts frely on Sal(A) and acts freely on M (A), and the embedding : Sal(A) ! M(A) can be chosen to be equivariant with respect to these actions. Such an equivariant construction can befound in [11] for the particular case where G is a Coxeter group, and can be carried out in the same way for any group G which satis es the above two conditions. So, : Sal(A)! M(A) induces a homotopy equivalence : $\operatorname{Sal}(A)=G!M(A)=G$.
Recall now the spaces F_{n} and F_{n}^{0} de ned in Section 1. Let

$$
\begin{gathered}
L_{1 t}=f \times 2 \mathbb{R}^{2} j x_{1}=t g ; L_{2 t}=f \times 2 \mathbb{R}^{2} j x_{2}=t g ; t=1 ;::: ; n ; \\
L_{3}=f \times 2 \mathbb{R}^{2} j x_{1}=x_{2} g ;
\end{gathered}
$$

$$
A_{n}=f L_{11} ;::: ; L_{1 n} ; L_{21} ;::: ; L_{2 n} ; L_{3} g:
$$

Then $F_{n}^{0}=M\left(A_{n}\right)$ and $F_{n}=M\left(A_{n}\right)=2$. The action of 2 on \mathbb{R}^{2} satis es:
$g\left(A_{n}\right)=A_{n}$ for all $g 2$;
2 acts fredy on $\mathbb{R}^{2} n\left(S_{L 2 A_{n}} L\right)$.
It follows that the embedding : $\mathrm{Sal}\left(\mathrm{A}_{n}\right)!M\left(A_{n}\right)$ induces a homotopy equivalence : $\operatorname{Sal}\left(A_{n}\right)=2!M\left(A_{n}\right)={ }_{2}=F_{n}$.
We now de ne a new CW-complex, denoted by $\operatorname{Sal}\left(F_{n}\right)$, obtained from the complex $\operatorname{Sal}\left(A_{n}\right)=2$ by collapsing cells, and having the same homotopy type as F_{n}. Most of our calculations in Sections 3 and 4 will be based on the description of this complex.
The complex $\operatorname{Sal}\left(A_{n}\right)=2$ can be formally described as follows (se Figure 3):
The set of vertices of $\operatorname{Sal}\left(A_{n}\right)=2$ is

$$
f P_{i j} j 1 \quad i \quad j \quad n+1 g
$$

The set of edges of $\operatorname{Sal}\left(A_{n}\right)=2$ is
$f c_{i} j 1$ i $n+1 g\left[f a_{i j} ; a_{i j} j 1\right.$ i \quad j $n g\left[f b_{j} ; b_{j} j 1\right.$ i \quad j $n g:$
One has:

$$
\begin{array}{ll}
\operatorname{source}\left(a_{i j}\right)=\operatorname{target}\left(a_{i j}\right)=P_{i j} & \operatorname{source}\left(b_{j}\right)=\operatorname{target}\left(b_{j}\right)=P_{i+1 j+1} \\
\operatorname{source}\left(a_{i j}\right)=\operatorname{target}\left(a_{i j}\right)=P_{i j+1} & \operatorname{source}\left(b_{j}\right)=\operatorname{target}\left(b_{j}\right)=P_{i j+1} \\
\operatorname{source}\left(c_{i}\right)=\operatorname{target}\left(c_{i}\right)=P_{i i} &
\end{array}
$$

The set of 2-cells of $\operatorname{Sal}\left(A_{n}\right)=2$ is

$$
f A_{i j r} j 1 \quad i<j \quad n \text { and } 1 \quad r \quad 4 g\left[f B_{i r} j 1 \quad i \quad n \text { and } 1 \quad r \quad 3 g:\right.
$$

One has:

$$
\begin{aligned}
& @ A_{i j 1}=\left(b_{j-1} a_{i j}\right)\left(a_{i+1 j} b_{j}\right)^{-1} \quad \quad B_{i 1}=\left(a_{i i} b_{i} c_{i+1}\right)\left(c_{i} a_{i j} b_{i}\right)^{-1} \\
& @_{A} A_{i j}=\left(a_{i+1 j} b_{j-1}\right)\left(b_{j} a_{i j}\right)^{-1} \quad ~ © b_{i 2}=\left(b_{i} c_{i+1} b_{i}\right)\left(a_{i i} c_{i} a_{i i}\right)^{-1} \\
& @ A_{i j}=\left(a_{i j} b_{j}\right)\left(b_{j-1} a_{i+1 j}\right)^{-1} \quad G_{i 3}=\left(c_{i+1} b_{i} a_{i j}\right)\left(b_{i} a_{i i} c_{i}\right)^{-1} \\
& @ A_{i j 4}=\left(b_{j} a_{i+1 j}\right)\left(a_{i j} a_{j-1}\right)^{-1}
\end{aligned}
$$

Let K bethe union of all the $A_{i j}$'s. The set K is a subcomplex of $\operatorname{Sal}\left(A_{n}\right)=2$ which contains all the vertices and all the edges of $f a_{i j} ; b_{j} j 1 \quad i \quad j \quad n g$, and which is homeomorphic to a disc. Collapsing K to a single point, we obtain a new CW-complex denoted by $\operatorname{Sal}^{9}\left(F_{n}\right)$. The complex $\operatorname{Sal}^{9}\left(F_{n}\right)$ has a unique vertex, its set of edges is

$$
f c_{i} j 1 \quad i \quad n+1 g\left[f a_{i j} ; b_{j} j 1 \quad i \quad j \quad n g ;\right.
$$

Figure 3: 1-skeleton of $\operatorname{Sal}\left(\mathrm{A}_{3}\right)=2$
and its set of 2-cells is
$f_{i j r} \mathrm{f}_{\mathrm{i}} \mathrm{i}<\mathrm{j} \quad \mathrm{n}$ and $1 \quad \mathrm{r} \quad 3 \mathrm{~g}\left[\mathrm{fB}_{\mathrm{ir}} \mathrm{j} 1 \quad \mathrm{i} \quad \mathrm{n}\right.$ and $1 \quad \mathrm{r} \quad 3 \mathrm{~g}$:
Note that, in $\operatorname{Sal}^{1}\left(F_{n}\right)$, the cell $A_{i j 2}$ is a bigon with boundary @ $A_{i j 2}=$ $\mathrm{b}_{\mathrm{j}-1} \mathrm{~b}_{\mathrm{j}}^{-1}$, and $\mathrm{A}_{\mathrm{ij} 3}$ is a bigon with boundary $@ A_{i j}=a_{i j} a_{i+1 j}^{-1}$. The complex $\operatorname{Sal}\left(F_{n}\right)$ is obtained from $\operatorname{Sal}^{1}\left(F_{n}\right)$ by collapsing all the $A_{i j} 2^{\prime} s$ for $j=$ $i+1 ;::: ; n$ to a single edge, $b=b_{i}$, and by collapsing all the $A_{i j} 3$'s for $i=1::: ; j-1$ to a single edge, $a_{j}=a_{j j}$. The complex $\operatorname{Sal}\left(F_{n}\right)$ has a unique vertex, its set of edges is

$$
f c_{i} j 1 \quad i \quad n+1 g\left[f a_{i} ; \text { b } j 1 \text { i } \quad n g ;\right.
$$

and its set of 2-cells is

$$
f A_{i j}=A_{i j 1} j_{1} \quad i<j \quad n g\left[f B_{i r} j 1 \quad i \quad n \text { and } 1 \quad r \quad 3 g:\right.
$$

One has:
$@ A_{i j}=\left(b a_{j}\right)\left(a_{j} b\right)^{-1}$
$G_{B_{2}}=\left(c_{i+1} b\right)\left(c_{i} a_{i}\right)^{-1}$
$@_{B_{i 1}}=\left(a_{i} G_{i+1}\right)\left(c_{i} a_{i}\right)^{-1}$
$G_{i 3}=\left(c_{i+1} b\right)\left(b c_{i}\right)^{-1}$

3 C omputing the homology

For a loop in $\mathrm{Sal}_{1}\left(\mathrm{~F}_{\mathrm{n}}\right)$, we denote by [] the element of $\mathrm{H}_{1}\left(\mathrm{Sal}\left(\mathrm{F}_{\mathrm{n}}\right)\right)$ repre sented by . Now, standard methods in homology of CW-complexes immediately show:

Proposition $3.1 \mathrm{H}_{1}\left(\mathrm{~F}_{\mathrm{n}}\right)=\mathrm{H}_{1}\left(\mathrm{Sal}\left(\mathrm{F}_{\mathrm{n}}\right)\right)$ is the fre abelian group with basis $\mathrm{f}\left[\mathrm{a}_{1}\right] ;::: ;\left[\mathrm{a}_{\mathrm{n}}\right] ;\left[\mathrm{c}_{1}\right] \mathrm{g}$.

Remark 3.2 We also have the equalities:

$$
\begin{array}{llll}
{\left[c_{i}\right]=\left[c_{1}\right]} & \text { for } 1 & \mathrm{i} & \mathrm{n}+1 \\
{[\mathrm{~b}]=\left[a_{i}\right]} & \text { for } 1 & \mathrm{i} & \mathrm{n}
\end{array}
$$

Recall that H denotes the free abelian group generated by fx ; yg. De ne ${ }_{0}: H_{1}\left(F_{n}\right)$! H to be the homomorphism which sends $\left[a_{i}\right]$ to x for $\mathrm{i}=$ $1 ;::: ; n$, and sends $\left[c_{1}\right]$ to y, and let : ${ }_{1}\left(F_{n}\right)!H_{1}\left(F_{n}\right)!H$ be the composition.
In the following we shall describe a chain complex $C\left(F_{n} ; \Gamma\right)$ whose homology is $H\left(F_{n} ; \Gamma\right)$, de ne a family $f E_{i j} j 1 \quad i<j \quad n g$ in $H_{2}\left(F_{n} ; \Gamma\right)$, and prove that $f E_{i j} \mathrm{j} 1 \quad \mathrm{i}<\mathrm{j} \quad \mathrm{ng}$ is a basis for $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right) \otimes \mathbb{Q}(\mathrm{x} ; \mathrm{y})$. The sub-module generated by this family will be the LKB representation V of the statement of 1.2. We shall end Section 3 by showing that $H_{2}\left(F_{n} ; \Gamma\right)$ is a free $\mathbb{Z}[H]$-module.

For $h=0 ; 1 ; 2$, let C_{h} be the set of h-cells in $\operatorname{Sal}\left(F_{n}\right)$, and let $C_{h}\left(F_{n} ; \Gamma\right)$ be the fre $\mathbb{Z}[H]$-module with basis C_{h}. De ne the di erential $d: C_{2}\left(F_{n} ; \Gamma\right)$! $\mathrm{C}_{1}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right)$ as follows. Let D $2 \mathrm{C}_{2}$. Write @ $=1_{1}^{11}::$, |', where i is an (oriented) 1-cell and "i 2 f 1 g . Set

Then

$$
d D=X_{i=1}^{X_{i}^{\prime}}{ }^{(i)}(D) \quad i:
$$

The following lemma is a straightforward consequence of this construction.

Lemma 3.3

(i) $\operatorname{kerd}=\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right)$.
(ii) Let $d_{\mathbb{Q}}=d \otimes \mathbb{Q}(x ; y): C_{2}\left(F_{n} ; \Gamma\right) \otimes \mathbb{Q}(x ; y)!C_{1}\left(F_{n} ; \Gamma\right) \otimes \mathbb{Q}(x ; y)$. Then $k e r d_{\mathbb{Q}}=H_{2}\left(F_{n} ; \Gamma\right) \otimes \mathbb{Q}(x ; y)$.

It is easy to obtain the following formulae:

$$
\begin{aligned}
\mathrm{dA}_{\mathrm{ij}} & =(\mathrm{x}-1)\left(\mathrm{a}_{\mathrm{j}}-\mathrm{b}\right) \\
\mathrm{dB}_{\mathrm{i} 1} & =(1-\mathrm{y}) \mathrm{a}_{\mathrm{i}}-\mathrm{c}_{\mathrm{i}}+x \mathrm{c}_{\mathrm{i}+1} \\
\mathrm{~dB}_{\mathrm{i} 2} & =-\mathrm{ya} \mathrm{a}_{\mathrm{i}}+\mathrm{yb}-\mathrm{c}_{\mathrm{i}}+\mathrm{c}_{\mathrm{i}+1} \\
\mathrm{~dB}_{\mathrm{i} 3} & =(\mathrm{y}-1) \mathrm{b}-\mathrm{x} \mathrm{c}_{\mathrm{i}}+\mathrm{c}_{\mathrm{i}+1}
\end{aligned}
$$

Now, we de ne the family $f E_{i j} \mathrm{j} 1 \quad \mathrm{i}<\mathrm{j} \quad \mathrm{ng}$. For $1 \quad \mathrm{i} \quad \mathrm{n}$ set:

$$
\begin{aligned}
& V_{i b}=-x y B_{i 1}+x(y-1) B_{i 2}+B_{i 3} \\
& V_{i a}=B_{i 1}+x(y-1) B_{i 2}-x y B_{i 3} \\
& V_{i 0}=-y B_{i 1}+(y-1) B_{i 2}-y B_{i 3}
\end{aligned}
$$

For $1 \quad \mathrm{i}<\mathrm{j} \quad \mathrm{n}$ set

$$
E_{i j}=(y-1)(x y+1) A_{i j}+(x-1) V_{i b}+(x-1) V_{j a}+{\underset{k=i+1}{x-1}(x-1)^{2} V_{k 0}: ~ . ~}_{x}
$$

The chains $V_{i b}, V_{i a}$ and $V_{i o}$ have ben found with algebraic manipulations. Their interest lies in thefact that the support of each of them is $f B_{i 1} ; B_{i 2} ; B_{i 3} g$, the boundary of $V_{i b}$ is a multiple of c_{i+1} minus a multiple of b, the boundary of $V_{i a}$ is a multiple of c_{i} minus a multiple of a_{i}, and the boundary of $V_{i o}$ is a multiple of $c_{i}-c_{i+1}$. More precisely, one has:

$$
\begin{aligned}
& d V_{i b}=(y-1)(x y+1) b-(x-1)(x y+1) c_{i+1} \\
& d V_{i a}=-(y-1)(x y+1) a_{i}+(x-1)(x y+1) c_{i} \\
& d V_{i 0}=(x y+1)\left(c_{i}-c_{i+1}\right)
\end{aligned}
$$

Another fact which will be of importance in our calculations is that all the A_{IS}-coordinates of E_{ij} are zero except the A_{ij}-one.

Proposition 3.4 The set $\mathrm{fE}_{\mathrm{ij}} \mathrm{j} 1 \quad \mathrm{i}<\mathrm{j} \quad \mathrm{ng}$ is a basis for ker $\mathrm{d}_{\mathbb{Q}}=$ $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right) \otimes \mathbb{Q}(\mathrm{x} ; \mathrm{y})$.

Proof It is easy to see that $\mathrm{dE}_{\mathrm{ij}}=0$ for all $1 \quad \mathrm{i}<\mathrm{j} \quad \mathrm{n}$. Moreover, since $E_{i j}$ is the only dement of $f E_{I s} j 1 \quad l<s \quad$ ng such that the $A_{i j}$-coordinate is nonzero, the set $\mathrm{f}_{\mathrm{ij}} \mathrm{j} \quad \mathrm{i}<\mathrm{j} \quad$ ng is linearly independent.

So, to prove Proposition 3.4, it su ces to show that $\operatorname{dim}\left(\operatorname{ker}_{\mathrm{Q}}\right) \quad n(n-1)=2$. To do so, we exhibit a linear subspace W of $\mathrm{C}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right) \otimes \mathbb{Q}(\mathrm{x} ; \mathrm{y})$ of codimension $n(n-1)=2$ and prove that $d_{Q} j_{w}$ is injective.

Let $B=f B_{i r} j 1$ i n and $1 \quad r \quad 3 \mathrm{~g}$, and let W be the linear subspace of $C_{2}\left(F_{n} ; \Gamma\right) \otimes \mathbb{Q}(x ; y)$ generated by B. The codimension of W is clearly $\mathrm{n}(\mathrm{n}-1)=2$. Let $: \mathrm{C}_{1}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right) \otimes \mathbb{Q}(\mathrm{x} ; \mathrm{y})$! W bethe linear map de ned by
$\left(a_{i}\right)=-(x y-y+1) B_{i 1}-(y-1) B_{i 2}+y B_{i 3}$
$(b)=-x y B_{i 1}+x(y-1) B_{i 2}+B_{i 3}$
$\left(c_{i}\right)=\begin{array}{ll}-y(y-1) B_{i 1}+(y-1)^{2} B_{i 2}-y(y-1) B_{i 3} & \text { if } 1 \quad i \quad n \\ 0 & \text { if } i=n+1\end{array}$
Choose a linear ordering of B which satis es $B_{i r}>B_{i+1 s}$ for $1 \quad r ; s \quad 3$. A straightforward calculation shows that the matrix of ($\mathrm{d}_{\mathrm{Q}} \mathrm{jw}_{\mathrm{w}}$) with respect to the ordered basis B is a triangular matrix with nonzero entries on the diagonal, thus ($d_{Q} j_{w}$) is invertible and, therefore, $d_{Q} j_{w}$ is injective.

Remark 3.5 Let $U 2 \mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right) \otimes \mathbb{Q}(x ; y)$. As pointed out before, E_{ij} is the only element of $f E_{I s} j 1 \quad l<s \quad$ ng such that the $A_{i j}$-coordinate is nonzero. So, if ${ }_{i j}$ is the $E_{i j}$-coordinate of U, then ${ }_{i j}(y-1)(x y+1)$ is the A_{ij}-coordinate of U .

Proposition 3.6 $H_{2}\left(F_{n} ; \Gamma\right.$) is a free $\mathbb{Z}[H]$-module of rank $n(n-1)=2$.
Proof Let

$$
X_{i j}=\begin{array}{cl}
\left.\left(E_{12}+E_{23}-E_{13}\right) \neq y-1\right) & \text { if } j=i+1 \\
\left(x y E_{i-1 i}+(x-1) y E_{i j+1}\right. \\
-E_{i+1 i+2}-x y E_{i-1 i+1} \\
\left.+E_{i j+2}\right)(y-1)(x y+1) & \text { if } i \quad 2 \text { and } j=i+2 \\
\left(E_{i+1 j-1}-E_{i j}-1-E_{i+1 j}\right. \\
\left.\left.+E_{i j}\right)=y-1\right)(x y+1) & \text { if } j>i+2
\end{array}
$$

and let $X=f X_{i j} j 1 \quad i<j \quad n g$. We shall prove that X is a $\mathbb{Z}[H]$-basis for $H_{2}\left(F_{n} ; \Gamma\right)$.
Since $X_{i j}$ is a linear combination (with coe cients in $\mathbb{Q}(x ; y)$) of $f E_{\text {Is }} j 1$ $\mathrm{I}<\mathrm{s} \quad \mathrm{ng}$, one has $\mathrm{d}_{\mathrm{Q}} \mathrm{X}_{\mathrm{ij}}=0$. Moreover, one can easily verify

$$
x_{i j}=\begin{array}{cl}
(x y+1) A_{12}+(x y+1) A_{23}-(x y+1) A_{13} & \\
-(x-1) B_{21}+\left(x^{2}-1\right) B_{22}-(x-1) B_{23} & \text { if } i=1 \text { and } j=3 \\
x y A_{i-1 i}+y(x-1) A_{i+1}-A_{i+1 i+2} & \\
-x y A_{i-1 i+1}+A_{i j+2} & \\
+x(x-1) B_{i 2}-(x-1) B_{i j} & \\
-(x-1) B_{i+12}+(x-1) B_{i+13} & \text { if } i \quad 2 \text { and } j=i+2 \\
A_{i j}-A_{i j-1}-A_{i+1 j}+A_{i+1 j-1} & \text { if } j>i+2,
\end{array}
$$

Algebraic \& Geometric Topology, Volume 2 (2002)
thus $X_{i j} 2 \mathrm{C}_{2}\left(\mathrm{~F}_{\mathrm{n}}\right.$; Γ). So, $\mathrm{X}_{\mathrm{ij}} 2 \mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}}\right.$; Γ).
Let $<$ be the linear ordering on $f A_{i j} j 1 \quad i<j \quad n g$ de ned by $A_{i j}<A_{I S}$ if either $\mathrm{j}-\mathrm{i}<\mathrm{s}-\mathrm{I}$, or $\mathrm{j}-\mathrm{i}=\mathrm{s}-\mathrm{I}$ and $\mathrm{i}<\mathrm{I}$. The A_{ij}-coordinate of X_{ij} is nonzero and, for $A_{I s}>A_{i j}$, the $A_{I s}$-coordinate of $X_{i j}$ is zero, thus X is linearly independent.
It remains to show that any element of $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right)$ can be written as a linear combination of X with coe cients in $\mathbb{Z}[H]$. Suppose that there exists $\mathrm{U} 2 \mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right)$ which cannot be written as a linear combination of X with coe cients in $\mathbb{Z}[\mathrm{H}]$. Write

$$
U=X_{i j}^{X} A_{i j}+X_{i r} B_{i r}
$$

where i_{j}; ir $2 \mathbb{Z}[\mathrm{H}]$. By Remark 3.5, we have

$$
U={ }^{X} \frac{i j}{(y-1)(x y+1)} E_{i j}:
$$

Moreover, $U \in 0$. Let $A_{i j}$ besuch that $i_{i j} \in 0$ and $i s=0$ for $A_{I s}>A_{i j}$. We choose U so that $A_{i j}$ is minimal (with respect to the ordering de ned above).
Suppose $\mathrm{j}>\mathrm{i}+2$. The A_{ij}-coordinate of X_{ij} is 1 and, for $\mathrm{A}_{\mathrm{Is}}>\mathrm{A}_{\mathrm{ij}}$, the $\mathrm{A}_{I \mathrm{~s}}$-coordinate of X_{ij} is 0 , thus $\mathrm{U}-{ }_{\mathrm{ij}} \mathrm{X}_{\mathrm{ij}}$ would contradict the minimality of $A_{i j}$.

Suppose i 2 and $\mathrm{j}=\mathrm{i}+2$. Again, the A_{ij}-coordinate of X_{ij} is 1 and, for $A_{I s}>A_{i j}$, the $A_{I s}$-coordinate of $X_{i j}$ is 0 , thus $U-{ }_{i j} X_{i j}$ would contradict the minimality of $A_{i j}$.
Suppose $i=1$ and $j=3$. Recall the equality $\left.U={ }^{P} \quad{ }_{\mathrm{Is}} \neq(y-1)(x y+1)\right) E_{\text {Is }}$. The $B_{n 1}$-coordinate of U is $\left.n_{1}=(x-1) n_{n-1 n}=(y-1)(x y+1)\right)$, thus $x y+1$ divides $n-1 n$. For $k=4 ;::: ; n-1$, the $B_{k 1}$-coordinate of U is $\left.k_{1}=(x-1)\left(k_{k-1 k}-x y k k+1\right)=(y-1)(x y+1)\right)$. It succesively follows, for $k=n-1 ; n-2 ;::: ; 4$, that $x y+1$ divides $k-1 k$. The $B_{3 ; 1}$-coordinate, $\mathrm{B}_{2 ; 1}$-coordinate, and $\mathrm{B}_{1 ; 1}$-coordinate of U are respectively:

$$
\begin{aligned}
& 31=(x-1)(23+13-x y 34)=(y-1)(x y+1)) \\
& 21=(x-1)(12+y 13-x y 13-x y 23)=((y-1)(x y+1)) \\
& 11=-x y(x-1)(12+13)=(y-1)(x y+1))
\end{aligned}
$$

Thus

$$
\begin{array}{rrr}
23+13 & 0(\bmod x y+1) \\
12+\begin{aligned}
23+(y+1) & 13
\end{aligned} & 0(\bmod x y+1) \\
12+ & 13 & 0(\bmod x y+1):
\end{array}
$$

Hence $x y+1$ divides 13 . Let ${ }_{13}^{0} 2 \mathbb{Z}[H]$ besuch that ${ }_{13}=(x y+1) 1_{13}^{0}$. The A_{13}-coordinate of X_{13} is $-(x y+1)$ and, for $A_{I S}>A_{13}$, the $A_{I S}$-coordinate of X_{13} is 0 , thus $\mathrm{U}+{ }_{13}^{0} \mathrm{X}_{13}$ would contradict the minimality of $\mathrm{A}_{\mathrm{ij}}=\mathrm{A}_{13}$.
Suppose $j=i+1$. The B_{i+11}-coordinate of U is ${ }_{i+11}=(x-1) \quad i i+1=(y-$ 1) $(x y+1))$, thus $(y-1)(x y+1)$ divides $i i+1$. Let $i_{i+1} 2 \mathbb{Z}[H]$ such that $i \mathrm{i}+1=(\mathrm{y}-1)(\mathrm{xy}+1){ }_{\mathrm{ii}+1}^{0}$. The $\mathrm{A}_{\mathrm{i} i+1}$-coordinate of $\mathrm{X}_{\mathrm{i} i+1}$ is $(\mathrm{y}-1)(\mathrm{xy}+1)$ and, for $A_{I s}>A_{i i+1}$, the $A_{1 s}$-coordinate of $X_{i i+1}$ is 0 , thus $U-{ }_{i i+1}^{0} X_{i i+1}$ would contradict the minimality of $A_{i j}=A_{i i+1}$.

4 Computing the action

We shall see in the next section how to interpret the \forks" of Krammer and Bigelow in our terminology, and, from this interpretation, how to use Bigelow's calculations [1, Sec.4] to recover theaction of B_{n} on $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right.$). In this section, we shall apply our techniques for calculating the action of B_{n} on $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right)$. Since most of the results of the section are well-known, some technical details will be left to the reader.
Let k 2 f1;:::; $\mathrm{n}-1 \mathrm{~g}$. Choose some small " > 0 (say " < 1=4) and an embedding V: $\mathbf{S}^{1} \quad[0 ; 1]!\mathbb{C}$ which satis es:

$$
\begin{aligned}
& \operatorname{imV}=\mathrm{fz} \mathrm{2} \mathbb{C} ; 1=2-{ }^{\prime \prime} \quad j z-k-1=2 j \quad 1=2+" g ; \\
& V(; 1=2)=k+1=2+\Rightarrow 2, \text { for all } \quad 2 \mathbf{s}^{1} .
\end{aligned}
$$

Consider the Dehn twist $T_{k}^{0}: \mathbb{C}!\mathbb{C}$ de ned by

$$
\left(T_{k}^{0} \quad V\right)(; t)=V\left(e^{-2 i t} ; t\right)
$$

for all $(; t) 2 \mathbf{S}^{1} \quad[0 ; 1]$, and T_{k}^{0} is the identity outside the image of V. Note that T_{k}^{0} interchanges k and $k+1$ and xes the other points of $f 1 ;::: ; n g$. Consider now the diagonal homeomorphism ($T_{k}^{0} \quad T_{k}^{0}$): $\mathbb{C}^{2}!\mathbb{C}^{2}$. One has ($T_{k}^{0} \quad T_{k}^{0}$) $\left(F_{n}^{0}\right)=F_{n}^{0}$, and ($T_{k}^{0} T_{k}^{0}$) commutes with the action of 2 (namely, ($T_{k}^{0} \quad T_{k}^{0}$) $\quad g=g\left(T_{k}^{0} \quad T_{k}^{0}\right)$ for all $g 2 \quad 2$), thus ($T_{k}^{0} \quad T_{k}^{0}$) induces a homeomorphism $T_{k}: F_{n}^{0}={ }_{2}=F_{n}!F_{n}$. Recall that $1 ;::: ;{ }_{n-1}$ denote the standard generators of the braid group B_{n}. Then T_{k} represents k, namely $\left(T_{k}\right)={ }_{k}:{ }_{1}\left(F_{n}\right)!{ }_{1}\left(F_{n}\right)$.
We assume that $P_{b}=(n+1 ; 0)$ is the basepoint of F_{n}, we denote by the unique vertex of $\operatorname{Sal}\left(F_{n}\right)$, and choose a homotopy equivalence: $\operatorname{Sal}\left(F_{n}\right)!F_{n}$ which sends to P_{b}.

Let γ_{h} denote two loops in F_{n} based at P_{b} that are homotopic.

Lemma 4.1 Let $\mathrm{k} 2 \mathrm{fl} ;:: ; ; \mathrm{n}-1 \mathrm{~g}$. Then
$<\left(a_{i-1}\right) \quad$ if $k=i-1$
$T_{k}\left(\left(a_{i}\right)\right) \quad n: \begin{array}{ll}\left(a_{i} a_{i+1} a_{i}^{-1}\right) & \text { if } k=i \\ \left(a_{i}\right) & \text { otherwi }\end{array}$
$8\left(a_{i}\right) \quad$ otherwise
$<\left(b b_{-1} b^{-1}\right)$ if $k=i-1$
$T_{k}((b)) \quad n:(b+1) \quad$ if $k=i$
(b) otherwise

$$
T_{k}\left(\begin{array}{lll}
\left.\left(c_{i}\right)\right) & h & \left(a_{i-1} b c_{i} b^{-1} a_{i-1}^{-1}\right) \\
\left(c_{i}\right) & \text { if } k=i-1 \\
\text { otherwise. }
\end{array}\right.
$$

Proof The homotopy relations for $\left(a_{i}\right)$ follow from the fact that $\left(a_{i}\right)$ can be drawn in the plane $\mathbb{C} \quad \mathrm{fOg}$ as shown in Figure $4, \mathbb{C} f 0 g$ is invariant by T_{k}, and T_{k} acts on $\mathbb{C} \quad f 0 g$ as the Dehn twist T_{k}^{0}. The other homotopy relations can be proved in the same way.
$\left(a_{i}\right)$
1

Figure 4: The curve $\left(a_{i}\right)$ in $\mathbb{C} \quad f 0 g$

A straightforward consequence of Lemma 4.1 is:
Corollary 4.2 The action of B_{n} on $H_{1}\left(F_{n}\right)$ is given by:

$$
k\left(\left[a_{i}\right]\right)=\begin{array}{ll}
<\left[a_{i-1}\right] & \text { if } k=i-1 \\
{\left[a_{i+1}\right]} & \text { if } k=i \\
{\left[a_{i}\right]} & \text { otherwise }
\end{array}
$$

$$
\mathrm{k}\left(\left[\mathrm{c}_{\mathrm{i}}\right]\right)=\left[\mathrm{c}_{\mathrm{i}}\right]
$$

We now consider the homomorphism : ${ }_{1}\left(F_{n}\right)!H$ de ned in Section 3.

Corollary 4.3

(i) ker is invariant by the action of B_{n}. In particular, the action of B_{n} on ${ }_{1}\left(F_{n}\right)$ induces an action of B_{n} on H.
(ii) The action of B_{n} on H is trivial.

So, as pointed out in Section 1, this implies:
Corollary 4.4 The locally trivial bration $p: N_{n}$! M_{n} induces a representation $: B_{n}={ }_{1}\left(M_{n}\right)$! $\operatorname{Aut}_{\mathbb{Z}[H]}\left(H\left(F_{n} ; \Gamma\right)\right)$.

We turn now to compute the action of B_{n} on $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right)$.
Let k 2 f ; : : : ; $\mathrm{n}-1 \mathrm{~g}$. De ne the map S_{k} : $\operatorname{Sal}_{1}\left(\mathrm{~F}_{\mathrm{n}}\right)$! $\operatorname{Sal}\left(\mathrm{F}_{\mathrm{n}}\right)$ by:

$$
\begin{aligned}
& S_{k}()= \\
& a_{i-1} \text { if } k=i-1 \\
& S_{k}\left(a_{i}\right)=a_{i} a_{i+1} a_{i}^{-1} \text { if } k=i \\
& 8^{a_{i}} \quad \text { otherwise } \\
& S_{k}(\mathrm{~b})=\begin{array}{ll}
<\mathrm{b} \mathrm{~b}_{-1} \mathrm{~b}^{-1} & \text { if } \mathrm{k}=\mathrm{i}-1 \\
\mathrm{~b}+1 & \text { if } \mathrm{k}=\mathrm{i} \\
\mathrm{~b} & \text { otherwise }
\end{array} \\
& S_{k}\left(c_{i}\right)=\begin{array}{ll}
a_{i-1} b c_{i} b^{-1} a_{i-1}^{-1} & \text { if } k=i-1 \\
c_{i} & \text { otherwise }
\end{array}
\end{aligned}
$$

By Lemma 4.1, S_{k} induces a homomorphism

$$
\left(S_{k}\right):{ }_{1}\left(\operatorname{Sal}\left(F_{n}\right)\right)!\quad{ }_{1}\left(\operatorname{Sal}\left(F_{n}\right)\right)
$$

which is equal to ${ }_{k}$. Moreover, by [4], $\operatorname{Sal}\left(F_{n}\right)$ is aspherical, thus S_{k} extends to a map S_{k} : $\operatorname{Sal}\left(F_{n}\right)!\operatorname{Sal}\left(F_{n}\right)$ which is unique up to homotopy.

Let K and K^{0} be two CW-complexes. Call a map f:K! K ${ }^{0}$ a combinatorial map if:
the image of any cell C of K is a cell of K^{0};
if $\operatorname{dim} C=\operatorname{dimf}(C)$, then $f j_{c}: C!f(C)$ is a homeomorphism.
We can, and will, suppose that every cell D of $\operatorname{Sal}\left(F_{n}\right)$ is endowed with a cellular decomposition such that $\mathrm{S}_{\mathrm{k}} \mathrm{j}_{\mathrm{D}}: \mathrm{D}$! $\mathrm{Sal}\left(\mathrm{F}_{\mathrm{n}}\right)$ is a combinatorial map. Under this assumption, the map S_{k} determines a $\mathbb{Z}[\mathrm{H}]$-homomorphism $\left(S_{k}\right): C_{2}\left(F_{n} ; \Gamma\right)!C_{2}\left(F_{n} ; \Gamma\right)$ as follows.

Let D $2 \mathrm{C}_{2}$ be a 2-cell of $\operatorname{Sal}\left(\mathrm{F}_{\mathrm{n}}\right)$. Recall that D is endowed with the cellular decomposition such that $S_{k} j_{D}: D$! $\operatorname{Sal}\left(F_{n}\right)$ is a combinatorial map. Let $C_{2}^{0}(D)$ denote the set of 2-cells R in D such that $S_{k}(R)$ is a 2-cell of $\operatorname{Sal}\left(F_{n}\right)$.
Let $\mathbf{D}^{2}=\mathrm{fz} 2 \mathbb{C} \mathrm{j} \mathrm{jzj} \quad 1 \mathrm{~g}$ be the standard disc. In the de nition of the differential d: $\mathrm{C}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right)$! $\mathrm{C}_{1}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right.$), for a given 2-cell $\mathrm{D} 2 \mathrm{C}_{2}$, the expression © $=1_{1}^{1}:::$,' $^{\prime}$ means that D is endowed with a cellular map $\mathrm{D}: \mathbf{D}^{2}!\mathrm{D}$ such that the restriction of D to the interior of \mathbf{D}^{2} is a homeomorphism onto
the interior of D, and $@_{D}=1_{1}^{1}::$: ${ }_{11}^{1}$, where $@_{D}:[0 ; 1]!D$ is de ned by $@_{D}(t)=D\left(e^{2 i} t\right)$. Now, every 2-cell R $2 C_{2}^{0}(\mathrm{D})$ is also endowed with a cellular map ${ }_{R}: D^{2}!R$ de ned by $S_{k} R_{R}=S_{k}(R)$. For $R 2 C_{2}^{0}(D)$, we set $Q_{R}={ }_{R}(1)$. This point should be understood as the starting point of the reading of the boundary of R.
For every $R 2 C_{2}^{0}(D)$ we set $(R)=1$ if $S_{k}: R!S_{k}(R)$ preserves the orientation and $(R)=-1$ otherwise, and we choose a path γ_{R} from to Q_{R} in the 1-skeleton of D. Then

$$
\left(S_{k}\right)(D)=X_{R 2 C_{2}^{0}(D)}^{X}(R)\left(\quad S_{k}\right)\left(Y_{R}\right) S_{k}(R)
$$

The sub-module kerd $=\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right)$ is invariant by $\left(\mathrm{S}_{\mathrm{k}}\right)$ and the restriction of $\left(S_{k}\right)$ to $H_{2}\left(F_{n} ; \Gamma\right)$ is equal to the action of k on $H_{2}\left(F_{n} ; \Gamma\right)$.

Lemma 4.5 One can choose S_{k} such that:

$$
\begin{aligned}
& \left(S_{k}\right)\left(A_{i j}\right)= \\
& \begin{array}{l}
8(1-x) A_{i j}+x A_{i-1} \\
A_{i+1 j}
\end{array} \\
& \text { if } k=i-1 \\
& \text { if } k=i<j-1 \\
& \text { if } k=i=j-1 \\
& \text { if } i<j-1=k \\
& \begin{array}{l}
A_{i j-1} \\
(1-x) A_{i j}+x A_{i j+1} \quad \text { if } k=j
\end{array} \\
& A_{i j} \quad \text { otherwise } \\
& x B_{i 3} \quad \text { if } k=i-1 \\
& \left(S_{k}\right)\left(B_{i 1}\right)=B_{i 1}+x B_{i+11}-x^{2} B_{i+13} \quad \text { if } k=i \\
& \left(\begin{array}{ll}
B_{i 1} & \text { otherwise } \\
U_{i-1}+B_{i 3}-x B_{i-11}+x B_{i-12} & \text { if } k=i-1
\end{array}\right. \\
& \left(S_{k}\right)\left(B_{i 2}\right)=B_{i 1}+x B_{i+12}-x B_{i+13}+y U_{i} \quad \text { if } k=i \\
& 8^{B_{i 2}} \\
& \text { otherwise } \\
& <B_{i 3}+x B_{i-13}-x^{2} B_{i-11}-x(y-1) U_{i-1} \quad \text { if } k=i-1 \\
& \left(S_{k}\right)\left(B_{i 3}\right)=:(y-1) U_{i}+x B_{i 1} \quad \text { if } k=i \\
& \text { otherwise }
\end{aligned}
$$

where

$$
U_{i}=(x-1)\left(B_{i 1}-B_{i 2}-B_{i+12}+B_{i+13}\right)-y A_{i+1}:
$$

Proof The method for constructing the extension of S_{k} : $\mathrm{Sal}_{1}\left(\mathrm{~F}_{\mathrm{n}}\right)$! $\operatorname{Sal}\left(\mathrm{F}_{\mathrm{n}}\right)$ is as follows. For every $D 2 C_{2}$, we compute $S_{k}(@ D)$, and, from this result, we construct a cellular decomposition of D and a combinatorial map $\mathrm{S}_{\mathrm{k} ; \mathrm{D}}: \mathrm{D}$! $\mathrm{Sal}\left(\mathrm{F}_{\mathrm{n}}\right)$ which extends the restriction of S_{k} to @D. This can be done case by case without any di culty. The maps $\mathrm{S}_{\mathrm{k} ; \mathrm{D}}, \mathrm{D} 2 \mathrm{C}_{2}$, determine the required
extension S_{k} : $\operatorname{Sal}\left(\mathrm{F}_{\mathrm{n}}\right)$! $\operatorname{Sal}\left(\mathrm{F}_{\mathrm{n}}\right)$. With this construction, it is easy to compute $\left(S_{k}\right)$ (D) from the de nition given above.

Now, from Lemma 4.5, one can easily computethe action of B_{n} on $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}}\right.$; Γ) and obtain the following formulae.

Proposition 4.6 Let $\mathrm{k} 2 \mathrm{f} 1 ;::: ; \mathrm{n}-1 \mathrm{~g}$ and $1 \mathrm{i}<\mathrm{j} \quad \mathrm{n}$. Then

$$
k\left(E_{i j}\right)=\begin{array}{ll}
x E_{i-1 j}+(1-x) E_{i j} & \text { if } k=i-1 \\
E_{i+1 j}-x y(x-1) E_{k k+1} & \text { if } k=i<j-1 \\
-x_{i j}^{2} y E_{k k+1}-y(x-1)^{2} E_{k k+1} & \text { if } k=i=j-1 \\
E_{i j-1}-x y(x-1) E_{k k+1} & \text { if } i<k<j-1 \\
x E_{i j+1}+(1-x) E_{i j} & \text { if } k=j \\
E_{i j} & \text { otherwise }
\end{array}
$$

Now we can prove our main theorem.
Proof of Theorem 1.2 Let V be the $\mathbb{Z}[H]$-submodule generated by $f E_{i j} j$ $1 \mathrm{i}<\mathrm{j}$ ng.

Proof of (i) By Proposition 3.4, V is a free $\mathbb{Z}[\mathrm{H}]$-modulewith basis $f \mathrm{E}_{\mathrm{ij}} \mathrm{j} 1$ $\mathrm{i}<\mathrm{j} \quad \mathrm{ng}$, and, by Proposition 4.6, V is a sub-representation of $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right)$, and is an LKB representation.

Proof of (ii) Theelement X_{13} of theproof of Proposition 3.6liesin $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right.$) but does not lie in V.

Proof of (iii) Let V^{0} bea sub-representation of $\mathrm{H}_{2}\left(\mathrm{~F}_{n}\right.$; Г) such that V^{0} is an LKB representation. By de nition, V^{0} is a free $\mathbb{Z}[\mathrm{H}]$-module, and there exist a basis $\mathrm{fE}_{\mathrm{ij}}^{0} \mathrm{j} 1 \quad \mathrm{i}<\mathrm{j} \quad \mathrm{ng}$ for V^{0} and an automorphism : $\mathbb{Z}[\mathrm{H}]!\mathbb{Z}[\mathrm{H}]$ such that

$$
\begin{array}{ll}
8(x) E_{i-1 j}^{0}+(1-x) E_{i j}^{0} & \text { if } k=i-1 \\
E_{i+1 j}^{0}-(x y(x-1)) E_{k k+1}^{0} & \text { if } k=i<j-1 \\
-\left(x^{2} y\right) E_{k k+1}^{0} & \text { if } k=i=j-1 \\
E_{i j}^{0}-\left(y(x-1)^{2}\right) E_{k k+1}^{0} & \text { if } i<k<j-1 \\
=E_{i j}^{0}-1-(x y(x-1)) E_{k}^{0} & \text { if } i<j-1=k \\
(x) E_{i j+1}^{0}+(1-x) E_{i j}^{0} & \text { if } k=j \\
E_{i j}^{0} & \text { otherwise }
\end{array}
$$

Note that V^{0} is generated as a $\mathbb{Z}[\mathrm{H}]$-module by the B_{n}-orbit of E_{12}^{0}, thus, in order to prove that $\mathrm{V}^{0} \mathrm{~V}$, it su ces to show that $\mathrm{E}_{12}^{0} 2 \mathrm{~V}$.

For $\mathrm{j}=3$;::: n , let

$$
\begin{aligned}
& F_{j}=(x y-1) E_{1 j}-(x y-1) E_{2 j}+y(1-x) E_{12} \\
& G_{j}=x\left(x^{2} y+1\right) E_{1 j}+\left(x^{2} y+1\right) E_{2 j}+x^{2} y(1-x) E_{12}:
\end{aligned}
$$

It is easy to see that:

$$
\begin{array}{ll}
{ }_{1}\left(E_{12}\right)=-x^{2} y E_{12} & \\
1\left(F_{j}\right)=-x F_{j} & \text { for } 3 \\
1 & \text { for } 3 \\
1\left(G_{j}\right)=G_{j} & n \\
1\left(E_{i j}\right)=E_{i j} & \text { for } 3 \\
i<j \quad n
\end{array}
$$

The set $f E_{12} g\left[f F_{j} ; G_{j} j 3 \quad j \quad n g\left[f E_{i j} j 3 \quad i<j \quad n g\right.\right.$ is a basis for $\mathrm{H}_{2}\left(\mathrm{~F}_{\mathrm{n}} ; \Gamma\right) \otimes \mathbb{Q}(\mathrm{x} ; \mathrm{y})$, thus the eigenvalues of $\quad 1$ are $-x^{2} y$ of multiplicity 1 , $-x$ of multiplicity $(n-2)$, and 1 of multiplicity $(n-1)(n-2)=2$. The same argument shows that $-\left(x^{2} y\right)$ is an eigenvalue of 1 of multiplicity 1 and E_{12}^{0} is an eigenvector associated to this eigenvalue. Since n 4, it follows that $\left(-x^{2} y\right)=-x^{2} y$ and E_{12}^{0} is a multiple of E_{12}.
Write $E_{12}^{0}=E_{12}$, where $2 \mathbb{Q}(x ; y)$. The A_{12}-coordinate of E_{12}^{0}, and $B_{13}-$ coordinate of E_{12}^{0} are $(y-1)(x y+1)$ and $(x-1)$, respectively, and both coordinates lie in $\mathbb{Z}[\mathrm{H}]$, thus $2 \mathbb{Z}[\mathrm{H}]$ and $\mathrm{E}_{12}^{0}=\mathrm{E}_{12} 2 \mathrm{~V}$.

Proof of (iv) This follows directly from Proposition 3.4.

5 Computing the action with the forks

Recall that f_{n} ! F_{n} denotes the regular covering associated to : ${ }_{1}\left(F_{n}\right)$!
H. Choose some " >0 (say " < 1=4), and, for $p=1 ;:: ;$; n, write $v(p)=f z 2$ $\mathbb{C} j \mathrm{jz}-\mathrm{pj}<$ " g. Let T be a fork with vertices $P_{b} ; p ; q ; z$. Let $U(T)$ be the set of pairs $f x$; yg in F_{n} such that either x or y lies in $\mathrm{v}(\mathrm{p})[\mathrm{v}(\mathrm{q})$, and let $U(T)$ be the pre-image of $U(T)$ in F_{n}. Bigelow [1] associated to any fork T a disc $S^{(1)}(T)$ embedded in F_{n} whose boundary lies in $\mathcal{U}(T)$, and proved that $(x-1)^{2}(x y+1) \bigotimes^{(1)}(T)$ is a boundary in $\cup(T)$. Thus, there exists an immersed surface $S^{(2)}(T)$ whose boundary is equal to $(x-1)^{2}(x y+1) \varrho^{(1)}(T)$. Note that the surface $S^{(2)}(T)$ is unique since $H_{2}(G(T) ; \mathbb{Z})=0$. So, the element $S(T)=$ $S^{(2)}(T)-(x-1)^{2}(x y+1) S^{(1)}(T)$ is a well-de ned 2-cyclewhich represents a nontrivial element of $H_{2}\left(f_{n} ; \mathbb{Z}\right)=H_{2}\left(F_{n} ; \Gamma\right)$. Moreover, the mapping T \% $S(T)$ is equivariant by the action of B_{n}.
In [5], K rammer de ned a family $T=f T_{p q} j 1 \quad p<q \quad n g$ of forks, called standard forks, proved that T is a basis for the LKB representation V, de ned
as a quotient of the free $\mathbb{Z}[\mathrm{H}]$-module generated by the isotopy classes of forks, and explicitly computed the action of B_{n} on T. Let $\operatorname{Sal}\left(F_{n}\right)!\operatorname{Sal}\left(F_{n}\right)$ be the regular covering associated to : ${ }_{1}\left(\mathrm{Sal}\left(\mathrm{F}_{\mathrm{n}}\right)\right)$! H. Let T_{pq} bea standard fork with vertices $\mathrm{P}_{\mathrm{b}} ; \mathrm{p} ; q ; \mathrm{z}$, and assume $\mathrm{p}+1<\mathrm{q}$. Let

$$
\operatorname{Sal}\left(T_{p q}\right)=\left([\begin{array} { r }
{ 3 } \\
{ r = 1 }
\end{array} B _ { p r }) \left[\left(\left[\begin{array}{l}
\left.\underset{r=1}{3} B_{q r}\right)\left[A _ { p q } \left[\left([\begin{array} { c }
{ q - 1 } \\
{ k = p + 1 }
\end{array} A _ { k q }) \left[\left(\left[\begin{array}{c}
q-1 \\
k=p+1
\end{array} A_{p k}\right) ; ~\right.\right.\right.\right.\right.
\end{array}\right.\right.\right.\right.
$$

and let $\operatorname{Sal}\left(T_{p q}\right)$ be the preimage of $\operatorname{Sal}\left(T_{p q}\right)$ in $\operatorname{Sal}\left(F_{n}\right)$. Then the pair ($\left.\operatorname{Gal}\left(F_{n}\right) ; \operatorname{Sal}\left(T_{p q}\right)\right)$ is homotopy equivalent to $\left(F_{n} ; \cup\left(T_{p q}\right)\right)$. Let

$$
X_{p q}^{(1)}=\left[\begin{array}{l}
q-1 \\
k=p+1
\end{array} x^{k-1} B_{k 1}:\right.
$$

The set $X_{p q}^{(1)}$ is a disc embedded in $\operatorname{Sal}\left(F_{n}\right)$ whose boundary lies in $\operatorname{Sal}\left(T_{p q}\right)$, and one can choose the homotopy equivalence

$$
\left(\operatorname{Sal}\left(F_{\mathrm{n}}\right) ; \operatorname{Gal}\left(\mathrm{T}_{\mathrm{pq}}\right)\right)!\left(\mathbf{F}_{\mathrm{n}} ; \mathcal{U}\left(\mathrm{T}_{\mathrm{pq}}\right)\right)
$$

such that $X_{p q}^{(1)}$ is sent to $S^{(1)}\left(T_{p q}\right)$. Let

$$
\begin{gathered}
X_{p q}^{(2)}=x^{p}(x-1) V_{p b}+x^{q-1}(x-1) V_{q a}+x^{q-1}(y-1)(x y+1) A_{p q}+ \\
-{ }_{k-1}^{k^{-1}} x^{k-1}(x-1)(y-1)(x y+1) A_{p k}:
\end{gathered}
$$

$X_{p q}^{(2)}$ is a 2-chain in $\mathrm{C}_{2}\left(\operatorname{Gal}\left(\mathrm{~T}_{\mathrm{pq}}\right) ; \mathbb{Z}\right)$ and one has

$$
\begin{aligned}
& d X_{\mathrm{pq}^{1}}^{(2)}=(x-1)^{2}(x y+1) d X_{p q}^{(1)}= \\
& +1) @_{k=p+1}^{x^{-1}} x^{k-1}(y-1) a_{k}-x^{p} c_{p+1}+x^{q-1} c_{q} A:
\end{aligned}
$$

(Here, $X_{p q}^{(1)}={ }^{P} \underset{\mathrm{q}=\mathrm{p}+1}{\mathrm{q}-1} \mathrm{X}^{\mathrm{k}-1} \mathrm{~B}_{\mathrm{k} 1}$ is viewed as a 2-chain). In particular, one has the equality $S\left(T_{p q}\right)=X_{p q}^{(2)}-(x-1)^{2}(x y+1) X_{p q}^{(1)}$ in $H_{2}\left(F_{n} ; \Gamma\right)=$ $\mathrm{H}_{2}\left(\mathrm{Sal}\left(\mathrm{F}_{\mathrm{n}}\right) ; \Gamma\right)$.
A similar argument shows that $S\left(T_{p q}\right)=x^{p} E_{p q}$ if $q=p+1$.
Let

$$
X_{p q}=\begin{array}{ll}
x^{p} E_{p q} & \text { if } q=p+1 \\
X_{p q}^{(2)}-(x-1)^{2}(x y+1) X_{p q}^{(1)} & \text { if } q>p+1
\end{array}
$$

Note that, by Remark 3.5, one has

$$
X_{p q}=x^{q-1} E_{p q}-{\underset{k=p+1}{\mathbb{K}^{-1}} x^{k-1}(x-1) E_{p k}: ~ . ~}_{\text {: }}
$$

The set $f X_{p q} j 1 \quad p<q \quad n g$ is a $\mathbb{Z}[H]$-basis for the LKB representation V of the statement of 1.2 and, by the above remarks, the action of B_{n} on the $X_{p q}$'s is given by the formulae of [1, Thm. 4.1].

R eferences

[1] S. B igelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2001), 471\{486.
[2] A.M. C ohen, D. B. Wales, Linearity of Artin groups of nite type, Israel J. Math., to appear.
[3] F. Digne, On the linearity of Artin braid groups, J Algebra, to appear.
[4] E. Fadell, L. Neuwirth, Con guration spaces, Math. Scand. 10 (1962), 111 \{ 118.
[5] D. K rammer, The braid group B4 is linear, Invent. Math. 142 (2000), 451 \{486.
[6] D. K rammer, Braid groups are linear, Ann. Math. 155 (2002), 131-156.
[7] R . J. Lawrence, Homology representations of braid groups, Ph.D. Thesis, University of Oxford, 1989.
[8] R.J. Lawrence, Homological representations of the Hecke algebra, Commun. Math. Phys. 135 (1990), 141\{191.
[9] L. Paris, Artin monoids inject in their groups, Comm. Math. Helv., to appear.
[10] M. Salvetti, Topology of the complement of real hyperplanes in \mathbb{C}^{N}, Invent. Math. 88 (1987), 603\{618.
[11] M. Salvetti, The homotopy type of Artin groups, Math. Res. Lett. 1 (1994), 565-577.

Laboratoire de Topologie, UMR 5584 du CNRS

Universite de Bourgogne, 9, avenue Alain Savary \{ BP 47870
21078 Dijon CEDEX \{ France
Email: paol uzzi @-bour gogne. fr, I pari s@-bour gogne. fr
Received: 12 March 2002 Revised: 5 J une 2002

