The slicing number of a knot

Charles Livingston

Abstract

An open question asks if every knot of 4-genus g_{s} can be changed into a slice knot by g_{s} crossing changes. A counterexample is given.

AMS Classification 57M25; 57N70
Keywords Slice genus, unknotting number
A question of Askitas, appearing in [O, Problem 12.1], asks the following: Can a knot of 4 -genus g_{s} always be sliced (made into a slice knot) by g_{s} crossing changes? If we let $u_{s}(K)$ denote the slicing number of K, that is, the minimum number of crossing changes that are needed to convert K into a slice knot, one readily shows that $g_{s}(K) \leq u_{s}(K)$ for all knots, with equality if $g_{s}(K)=0$. Hence, the problem can be restated as asking if $g_{s}(K)=u_{s}(K)$ for all K.
We will show that the knot 7_{4} provides a counterexample; $g_{s}\left(7_{4}\right)=1$ but no crossing change results in a slice knot: $u_{s}\left(7_{4}\right)=2$. It is interesting to note that 7_{4} already stands out as an important example. The proof that its unknotting number is 2 , not 1 , resisted early attempts [N]; ultimately, Lickorish [L] succeeded in proving that it cannot be unknotted with a single crossing change.

As noted by Stoimenow in [O], if one attempts to unknot a knot of 4-ball genus g_{s} instead of converting it into a slice knot, more than g_{s} crossing changes may be required. This is obviously the case with slice knots. For a more general example, let T denote the trefoil knot. One has $g_{s}(n(T \#-T) \# m T)=m$, but $u(n(T \#-T) \# m T)=m+2 n$, where u denotes the unknotting number.
The unknotting number, though itself mysterious, appears much simpler than the slicing number. Many of the three-dimensional tools that are available for studying the unknotting number do not apply to the study of the slicing number. As we will see, even for this low crossing knot, 7_{4}, the computation of its slicing number is far more complicated than its unknotting number.
In the last section of this paper we introduce a new slicing invariant, $U_{s}(K)$, that takes into account the sign of crossing changes used to convert a knot K
into a slice knot. This invariant is more closely related to the 4-genus and satisfies

$$
g_{s}(K) \leq U_{s}(K) \leq u_{s}(K)
$$

It seems likely that there are knots K for which $g_{s}(K) \neq U_{s}(K)$, and 7_{4} seems a good candidate, but we have been unable to verify this.

A good reference for the knot theory used here, especially surgery descriptions of knots, crossing changes and branched coverings, is [R]. A reference for 4dimensional aspects of knotting and also for the linking form of 3 -manifolds is [G]. A careful analysis of the interplay between crossing changes and the linking form of the 2 -fold branched cover of a knot appears in [L], which our work here generalizes. Different aspects of the relationship between crossing changes and 4 -dimensional aspects of knotting appear in [CL]. A general discussion of slicing operations is contained in [A].

1 Background

Our goal is to prove that a single crossing change cannot change 7_{4} into a slice knot. The key results concerning slice knots that we will be using are contained in the following theorem; details of the proof can be found in $[C G, G, R]$.

Theorem 1.1 If K is slice then:
(1) $\Delta_{K}(t)= \pm f(t) f\left(t^{-1}\right)$ for some polynomial f, where $\Delta_{K}(t)$ is the Alexander polynomial.
(2) $\left|H_{1}(M(K), \mathbf{Z})\right|=n^{2}$ for some odd n, where $M(K)$ is the 2 -fold branched cover of S^{3} branched over K.
(3) There is a subgroup $H \subset H_{1}(M(K), \mathbf{Z})$ such that $|H|^{2}=\left|H_{1}(M(K), \mathbf{Z})\right|$ and the \mathbf{Q} / \mathbf{Z}-valued linking form β defined on $H_{1}(M(K), \mathbf{Z})$ vanishes on H.

Our analysis of 7_{4} will focus on the 2 -fold branched cover, $M\left(7_{4}\right)$, and its linking form. This is much as in Lickorish's unknotting number argument. However, in our case the necessary analysis of the 2 -fold branched cover can only be achieved by a close examination of the infinite cyclic cover. In the next two sections we examine the 2 -fold branched cover; in Section 4 we consider the infinite cyclic cover.

2 Crossing Changes and Surgery

If a knot K^{\prime} is obtained from K by changing a crossing, surgery theory as described in $[\mathrm{R}]$ quickly gives that the 2 -fold cover of $K^{\prime}, M\left(K^{\prime}\right)$, can be obtained from $M(K)$ by performing integral surgery on a pair curves, say S_{1} and S_{2}, in S^{3}. It is also known [L, Mo that $M\left(K^{\prime}\right)$ can be obtained from $M(K)$ by performing $p / 2$ surgery on a single curve, say T, in S^{3}. Here it will be useful to observe that T can be taken to be S_{1}, as we next describe.

A crossing change is formally achieved as follows. Let D be a disk meeting K transversely in two points. A neighborhood of D is homeomorphic to a 3 -ball, B, meeting K in two trivial arcs. In one view, a crossing change is accomplished by performing ± 1 surgery on the boundary of D, say S. Then S lifts to give the curves S_{1} and S_{2} in $M(K)$. In the other view, the crossing change is accomplished by removing B from S^{3} and sewing it back in with one full twist. The 2 -fold branched cover of B is a single solid torus, a regular neighborhood of its core T. A close examination shows the surgery coefficient in this case is $p / 2$ for some odd p.

The lift of D to the 2 -fold branched cover is an annulus with boundary the union of S_{1} and S_{2} and core T (the lift of an arc, τ, on D with endpoints the two points of intersection of D with K). Clearly T is isotopic to either S_{i}, as desired.

The following generalization of these observations will be useful. Rather than put a single full twist between the strands when replacing B, n full twists can be added. This is achieved by performing $\pm 1 / n$ surgery on S and hence the 2 -fold branched cover is obtained by performing p / n surgery on the S_{i} for some p, or, by a similar analysis, by performing $p^{\prime} / 2 n$ surgery on T for some p^{\prime}.

3 Results based on the 2-fold branched cover of 7_{4}

On the left in Figure 1 the knot 7_{4} is illustrated. Basic facts about 7_{4} include that it has 3 -sphere genus 1 and that its Alexander polynomial is $\Delta_{7_{4}}=4 t^{2}$ $7 t+4$. Since the Alexander polynomial is irreducible, 7_{4} is not slice, so we have $g_{s}\left(7_{4}\right)=1$. Also, 7_{4} is the 2 -bridge $B(4,-4)$, and hence from the continued fraction expansion it has 2 -fold branched cover the lens space, $L(15,4)$.

The right diagram in Figure 1 represents a surgery diagram of 7_{4}. According to $[\mathrm{R}]$, surgery on the link $K \amalg K^{\prime}$ with coefficient -1 and -2 yields S^{3}. Also

Figure 1: The knot 74
according to $[\mathrm{R}]$ the component K^{\prime} could be ignored in the diagram if $-1 / 2$ surgery is performed on K instead. In both cases the effect is to put two full right handed twists in the two strands passing through K.

Notice that U is unknotted. After surgery is performed, U is converted into the knot 7_{4}.

If a knot J is obtained from 7_{4} by a single crossing change, that change is achieved via a disk D meeting 7_{4} in two points, marked schematically by the two dots in the right hand diagram. The path on D joining those two points is denoted τ, a portion of which is also indicated schematically. By sliding τ over K repeatedly it can be arranged that τ misses the small disk bounded by K^{\prime} meeting K in one point. The boundary of D will be denoted S and one of its lift to the 2 -fold branched cover of S^{3} over U (this cover is again S^{3} since U is unknotted) will be denoted S_{1}. Neither D nor S is drawn in the figure.

Since two full twists on the unknot U convert it into 7_{4}, the 2 -fold branched cover of S^{3} branched over 7_{4} is, by our earlier discussion, obtained from S^{3} by surgery on a single lift of K, say K_{1}, with surgery coefficient of the form $p / 4$ for some p. Since we know that the cover is $L(15,4)$, we actually know that $p=15$, though for the argument that follows, simply knowing that $p= \pm 15$ would be sufficient.

Theorem 3.1 If the linking number of K_{1} and S_{1} in S^{3} is divisible by 15 then J is not slice.

Proof Suppose that the linking number is divisible by 15 . Since $15 / 4$ surgery is performed on K_{1}, after repeatedly sliding S_{1} over K_{1} it can be arranged that the linking number of K_{1} and S_{1} is 0 . The 2 -fold cover of S^{3} branched
over J, that is $M(J)$, is obtained from S^{3} by performing $15 / 4$ surgery on K_{1} and $p / 2$ surgery on S_{1} for some odd p.

If J is slice, the order of the homology of $M(J)$ is an odd square and hence $p= \pm 5^{2 k+1} 3^{2 j+1} q^{2}$, where q is relatively prime to 30 .

We have that $H_{1}(M(J), \mathbf{Z})=\mathbf{Z}_{15} \oplus \mathbf{Z}_{|p|}$ generated by the meridians of K_{1} and S_{1}, denoted m_{1} and m_{2}, respectively.

The \mathbf{Q} / \mathbf{Z}-valued linking form, β, on $H_{1}(M(J), \mathbf{Z})$ is orthogonal with respect to this direct sum decomposition since the linking number is now 0. Furthermore, from the surgery description we have that $\beta\left(m_{1}, m_{1}\right)=4 / 15$ and $\beta\left(m_{2}, m_{2}\right)=$ $2 / p$. The 5 -torsion in $H_{1}(M(J), \mathbf{Z})$ is isomorphic to $\mathbf{Z}_{5} \oplus \mathbf{Z}_{5^{2 k+1}}$, generated by $n_{1}=3 m_{1}$ and $n_{2}=3^{2 j+1} q^{2} m_{2}$. A quick calculation shows that $\beta\left(n_{1}, n_{1}\right)=2 / 5$ and $\beta\left(m_{2}, m_{2}\right)=2\left(3^{2 j+1} q^{2}\right)^{2} / p= \pm 2\left(3^{2 j+1} q^{2}\right) / 5^{2 k+1}$.

If J is slice, the linking form on the 5 -torsion vanishes on a subgroup of order 5^{k+1}. Suppose that $n_{1}+x 5^{l} n_{2}$ has self-linking $0 \in \mathbf{Q} / \mathbf{Z}$, where x is relatively prime to 5 . Then we would have

$$
\frac{2}{5} \pm \frac{2 x^{2} 5^{2 l}\left(3^{2 j+1} q^{2}\right)}{5^{2 k+1}}=0 \in \mathbf{Q} / \mathbf{Z}
$$

This implies that $l=k$, and hence that $2 \pm 2 x^{2} 3^{2 j+1} q^{2} \equiv 0 \bmod 5$. Letting $q^{\prime}=$ $x 3^{j} q$, this can be rewritten as $2 \pm 2\left(3 q^{\prime 2}\right) \equiv 0 \bmod 5$, or that $2 \equiv \mp q^{\prime 2} \bmod 5$. However, the only squares modulo 5 are ± 1, so this is impossible.

It follows from this that any element of self-linking 0 must be of the form $x 5^{l} n_{2}$ for some l and x relatively prime to 5 . One quickly computes that $l>k$, but such elements generate a subgroup of order 5^{k}, which is not large enough to satisfy the condition of Theorem 1.1, Statement 3.

4 The Infinite Cyclic Cover of 7_{4}

The goal of this section is to prove the following result. It, along with Theorem 3.1, shows that 7_{4} cannot be changed into a slice knot with a single crossing change.

Theorem 4.1 If a crossing change converts 7_{4} into a slice knot J, then the corresponding curve S_{1} in $M\left(7_{4}\right)$ is null homologous in $H_{1}(L(15,4), \mathbf{Z})$.

Before beginning the proof we need to set up notation and prove a lemma.

The infinite cyclic cover of J is built from the infinite cyclic cover of the unknot, U, by performing equivariant surgery on three families of curves: $\left\{\tilde{K}_{i}\right\},\left\{\tilde{K}_{i}^{\prime}\right\}$ and $\left\{\tilde{S}_{i}\right\}$, using the notation as before. (In each case, $i=-\infty, \ldots, \infty$.)
Following Rolfsen $[\mathrm{R}]$, one can draw that cover with the $\left\{\tilde{K}_{i}\right\},\left\{\tilde{K}_{i}^{\prime}\right\}$ drawn explicitly, and the $\left\{\tilde{S}_{i}\right\}$ unknown curves. From this one finds the presentation matrix of the infinite cyclic cover of J as a $\mathbf{Z}\left[t, t^{-1}\right]$ module, with respect to the basis given by the meridians of $\tilde{K}_{0}, \tilde{K}_{0}^{\prime}$ and \tilde{S}_{0}, say k_{0}, k_{0}^{\prime}, and s_{0}. The resulting presentation is given by the matrix

$$
A=\left(\begin{array}{ccc}
-2 t+3-2 t^{-1} & 1 & g(t) \\
1 & -2 & 0 \\
g\left(t^{-1}\right) & 0 & f(t)
\end{array}\right) .
$$

Here $g(t)$ is an unknown polynomial describing the linking between the lifts of S and those of K. (Notice that the lifts of S do not link the lifts of K^{\prime}, since τ (and so S) misses the small disk bounded by K^{\prime} and this disk lifts to a series of disjoint disks bounded by the \tilde{K}_{i}^{\prime} in the infinite cyclic cover.) Also, $f(t)$ is an unknown symmetric polynomial describing the self-linking of the lifts of S. (It might be helpful for the reader to note that if $g=0$ and $f=1$ then the determinant of the matrix is $4 t-7+4 t^{-1}$, the Alexander polynomial of 7_{4}.)

Although g and f are unknown, two observations are possible. The first is that $f(1)= \pm 1$; this is because ± 1 surgery is being performed on S. The second is that $g(1)=0$, or that $(t-1)$ divides g, which follows from the fact that S and K have 0 linking number, since S bounds the disk D in the complement of K.

Lemma 4.2 If J is slice, then $4 t-7+4 t^{-1}=\Delta_{7_{4}}$ divides g.

Proof The determinant of A is given by

$$
\Delta_{J}(t)=f(t) \Delta_{T_{4}}(t)+2 g(t) g\left(t^{-1}\right) .
$$

Since J is assumed to be slice we can rewrite this as

$$
\pm H(t) H\left(t^{-1}\right)=f(t) \Delta_{7_{4}}(t)+2 g(t) g\left(t^{-1}\right)
$$

for some $H(t)$. Clearly, if H is divisible by $\Delta_{7_{4}}$ then $g(t)$ would also be and we would be done. So, assume that neither H or g has factor $\Delta_{7_{4}}$.

Working modulo $\Delta_{7_{4}}$ we now have the equation:

$$
\text { (*) } \quad 2 g(t) g\left(t^{-1}\right)= \pm H(t) H\left(t^{-1}\right) \in \mathbf{Z}\left[t, t^{-1}\right] /\left\langle 4 t-7+4 t^{-1}\right\rangle .
$$

There is an injection $\phi: \mathbf{Z}\left[t, t^{-1}\right] /\left\langle 4 t-7+4 t^{-1}\right\rangle \rightarrow \mathbf{Q}(\sqrt{-15})$ with $\phi\left(t^{ \pm 1}\right)=$ $(7 \pm \sqrt{-15}) / 4$. It follows that if equation $(*)$ holds then we could factor $2=$ $\pm\left(\frac{a}{c}+\frac{b}{c} \sqrt{-15}\right)\left(\left(\frac{a}{c}-\frac{b}{c} \sqrt{-15}\right)\right.$ with a, b, and c integers with $\operatorname{gcd}(a, b, c)=1$. Simplifying we would have

$$
\pm 2 c^{2}-a^{2}-15 b^{2}=0 .
$$

Working modulo 5 and using that ± 2 is not a quadratic residue modulo 5 , one sees immediately that a and c are both divisible by 5 , which implies (working modulo 25) that b is divisible by 5 as well. Write $a=5^{s} a^{\prime}, b=5^{t} b^{\prime}$ and $c=5^{r} c^{\prime}$, with a^{\prime}, b^{\prime}, and c^{\prime} relatively prime to 5 . Hence:

$$
\pm 2\left(5^{2 s} c^{\prime 2}\right)-5^{2 t} a^{\prime 2}-3\left(5^{2 r+1} b^{\prime 2}\right)=0
$$

If among the three exponents of 5 that appear in this equation there is a unique smallest exponent, then factoring out that power of 5 leaves an equation that clearly cannot hold modulo 5 . Hence, there must be two exponents that are equal, and these must be the two even exponents. Factoring these out leaves the equation:

$$
\pm 2{c^{\prime}}^{2}-a^{\prime 2}-3\left(5^{2 r^{\prime}+1} b^{\prime 2}\right)=0 .
$$

Again using that ± 2 is not a quadratic residue modulo 5 gives a contradiction.

We can now prove Theorem 4.1.

Proof of Theorem 4.1 The polynomial g determines the linking numbers of the lifts of K and S to the n-fold cyclic branched cover of S^{3} branched over U as follows. Call the lifts \bar{K}_{i} and \bar{S}_{i} with i running from 0 to $n-1$. The linking numbers are given by equivariance and

$$
\operatorname{lk}\left(\bar{K}_{0}, \bar{S}_{i}\right)=\bar{g}_{i}
$$

where \bar{g}_{i} is the coefficient of t^{i} in the reduction \bar{g} of g to $\mathbf{Z}\left[t, t^{-1}\right] /\left\langle t^{n}-1\right\rangle$.
In the case of the 2 -fold cover we are hence interested in the even and odd index coefficients. For any integral polynomial $F(x)=\sum a_{i} t^{i}$ the sum of the even index coefficients is given by $(F(1)+F(-1)) / 2$ and the sum of the odd index coefficients is $(F(1)-F(-1)) / 2$. In our case we have seen that $g(t)=(t-1)\left(4 t^{2}-7 t+4\right) h(t)$ for some h. Hence, the sum of the even (or odd) coefficients is given by $\pm 15 h(-1)$. In particular, the linking number is divisible by 15 . Hence $\bar{S}_{i}=S_{i}$ is null homologous in the $L(15,4)$ obtained by surgery on K_{1}.

5 Extensions

The proof that 7_{4} has slicing number 2 clearly generalizes to other knots, though a general statement is somewhat technical. On the other hand, these methods seem not to apply effectively in addressing the next level of complexity-finding a knot K with $g_{s}(K)=2$ but with slicing number 3 .

Conjecture 5.1 The difference $u_{s}(K)-g_{s}(K)$ can be arbitrarily large.
In fact, this gap should be arbitrarily large even for knots with $g_{s}=1$.
In retrospect, Askitas's question was optimistic. It is easily seen that if a knot can be converted into a slice knot by making n positive and n negative crossing changes, then $g_{s}(K) \leq n$. More generally, we have the following signed unknotting number.

Definition 5.2 For a knot K, let I denote the set of pairs of nonnegative integers (m, n) such that some collection of m positive crossing changes and n negative crossing changes converts K into a slice knot. Define the invariant $U_{s}(K)$ by

$$
U_{s}(K)=\min _{(m, n) \in I}\{\max (m, n)\}
$$

The following result has an elementary proof.
Theorem 5.3 For all $K, g_{s}(K) \leq U_{s}(K)$.
The only bounds that we know of relating to U_{s} are those arising from g_{s}, and so it is possible that $U_{s}(K)=g_{s}(K)$ for all K. However, a more likely conjecture is the following.

Conjecture 5.4 The difference $U_{s}(K)-g_{s}(K)$ can be arbitrarily large.

Even the following example is unknown.
Question Does $U_{s}\left(7_{4}\right)=1$?
The example we describe below indicates that proving that $U_{s}\left(7_{4}\right)=2$ may be quite difficult.

General Twisting One can think of performing a crossing change as grabbing two parallel strands of a knot with opposite orientation and given them one full twist. More generally, one can grab $2 k$ parallel strands of K with k of the strands oriented in each direction and giving them one full twist. Call this a generalized crossing change. With a little care, the proof that 7_{4} cannot be converted into a slice knot generalizes to show the following:

Theorem 5.5 The knot 7_{4} cannot be converted into a slice knot using a single generalized crossing change.

On the other hand, consider Figure 2. The illustrated knot is slice since the dotted curve on the Seifert surface is unknotted and has framing 0 . If a righthanded twist is put on the strands going through the circle labelled -1 and a left-handed twist is put on the strands going through the circle labelled +1 , then the knot 7_{4} results. Hence, 7_{4} can be converted into a slice knot by performing one positive and one negative generalized crossing change.

Figure 2: Twisting 7_{4} to a slice knot
Since all the relevant techniques that we know of do not distinguish between crossing changes and generalized crossing changes, the difficulty associated to disproving showing that $U_{s}\left(7_{4}\right)=2$ is now clear.

It is worth pointing out here that clearly 7_{4} can be converted into a slice knot (actually the unknot) using two negative crossing changes, but an analysis of signatures and a minor generalization of the results of [CL] shows that it cannot be converted into a slice knot (or a knot with signature 0) using two positive generalized crossing changes.

Related to this discussion we have the follow result. Its proof is a bit technical to include here and will be described in detail elsewhere.

Theorem 5.6 A knot K with 3 -sphere genus $g(K)$ can be converted into the unknot using $2 g(K)$ generalized crossing changes.

Addendum (December 15, 2002) It has been pointed out to the author that results of Murakami and Yasuhara (Four-genus and four-dimensional clasp number of a knot, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3693-3699) imply that $g_{s}\left(8_{16}\right)=1$ but $u_{s}\left(8_{16}\right)=2$. The methods used there are different from those of this paper.

References

[A] N. Askitas. Multi-\# unknotting operations: a new family of local moves on a knot diagram and related invariants of knots, J. Knot Theory Ramifications 7 (1998), no. 7, 857-871.
[CG] A. Casson and C. Gordon. Cobordism of classical knots. A la recherche de la Topologie perdue, ed. by Guillou and Marin, Progress in Mathematics, Volume 62, 1986. (Originally published as Orsay Preprint, 1975.)
[CL] T. Cochran and W. B. R. Lickorish. Unknotting information from 4-manifolds, Trans. Amer. Math. Soc. 297 (1986), no. 1, 125-142
[G] C. McA. Gordon. Some aspects of classical knot theory. Knot theory (Proc. Sem., Plans-sur-Bex, 1977), pp. 1-60 Lecture Notes in Math., 685, Springer, Berlin, 1978.
[K] A. Kawauchi. Distance between links by zero-linking twists, Kobe J. Math. 13 (1996), no. 2, 183-190.
[L] W. B. R. Lickorish. The unknotting number of a classical knot, Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982), 117-121, Contemp. Math., 44, Amer. Math. Soc., Providence, RI, 1985.
[Mo] J. Montesinos. Surgery on links and double branched covers of S^{3}, Knots, groups, and 3-manifolds (Papers dedicated to the memory of R. H. Fox), 227259. Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N.J., 1975.
$[\mathrm{Mu}] \quad$ K. Murasugi. On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965) 387-422.
[N] Y. Nakanishi. A note on unknotting number, Math. Sem. Notes Kobe Univ. 9 (1981), no. 1, 99-108.
[O] T. Ohtsuki. Problems on Invariants of Knots and 3-Manifolds, Invariants of Knots and 3-Manifolds, Kyoto University 2001. Geometry and Topology Monographs, Volume 4 (2002).
[R] D. Rolfsen. Knots and Links. Publish or Perish, Berkeley CA (1976).
Department of Mathematics, Indiana University, Bloomington, IN 47405, USA
Email: livingst@indiana.edu
Received: 13 June 2002

