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Abstract We study weak versus strong symplectic �llability of some tight
contact structures on torus bundles over the circle. In particular, we prove
that almost all of these tight contact structures are weakly, but not strongly
symplectically �llable. For the 3{torus this theorem was established by
Eliashberg.
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1 Introduction

A coorientable 2{plane �eld on an oriented 3{manifold M is called a (positive)
contact structure if, for any 1{form � de�ning � as � = ker�, the 3{form
� ^ d� is a (positive) volume form on M . Notice that the sign of � ^ d� only
depends on � , not on the choice of �. In this paper, our contact structures are
always understood to be positive. We do not consider non-coorientable contact
structures (where the corresponding � only exists locally).

There are various notions of �llability of contact structures, see the survey [3].
The two that we are concerned with in the present paper are weak and strong
symplectic �llability. Given a 4{dimensional symplectic manifold (W;!), we
orient it by regarding !2 as a positive volume form. If W has boundary @W;
an orientation of @W is de�ned by the volume form iY !

2 , where Y is any
vector �eld de�ned along the boundary and pointing outwards. Recall that the
condition for a vector �eld X on a symplectic manifold (W;!) to be a Liouville
vector �eld is that LX! = ! . By the Cartan formula for the Lie derivative this
may be rewritten as d(iX!) = ! , and this easily implies that iX! de�nes a
contact structure on any hypersurface transverse to X .
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154 Fan Ding and Hansjörg Geiges

De�nition (a) A contact manifold (M; �) is weakly symplectically �llable if
M is the boundary of a symplectic manifold (W;!) with !j� nondegenerate
along @W = M , and the orientations on M induced by W and � agree.

(b) A contact manifold (M; �) is strongly symplectically �llable if M is the
boundary of a symplectic manifold (W;!) admitting a Liouville vector �eld
X near the boundary @W = M , pointing outwards along @W; and such that
� = ker(iX!jM).

Recall that a contact structure � on a 3{manifold M is called overtwisted if
there is an embedded 2{disc D ,! M such that @D is tangent to � , but D
is transverse to � along @D ; such a disc is called an overtwisted disc. If no
such D exists, then � is called tight. Any weakly symplectically �llable contact
structure is tight, as was shown by Eliashberg and Gromov, cf. [3].

Clearly strong symplectic �llability implies weak symplectic �llability. The
converse was shown to be false by Eliashberg [2]. On the 3{torus T 3 = R3=Z3

with coordinates (x; y; t) and orientation given by dx ^ dy ^ dt, consider, for
non-negative integers n, the contact structures �n , de�ned by

cos(2�(n + 1)t) dx − sin(2�(n + 1)t) dy = 0:

The �n , n 2 N0 , are pairwise nondi�eomorphic and constitute a complete list,
up to di�eomorphism, of the tight contact structures on T 3 .

As observed by Giroux [7], the �n are all weakly symplectically �llable. Eliash-
berg [2] showed that �n is strongly symplectically �llable if and only if n = 0.
Our aim in the present paper is to prove an analogous result for more general
T 2{bundles over S1 .

We begin with a description of these torus bundles. For each matrix A 2
SL2(Z), let TA denote the quotient of T 2�R = (R2=Z2)�R with coordinates

(x; t) =
(� x

y

�
; t
�

by the transformation (x; t) ! (Ax; t + 1). We orient

TA by the 3{form dx ^ dy ^ dt. The T 2{bundle TA over S1 depends, up to
di�eomorphism, only on the conjugacy class of A in SL2(Z). If A is of the form�

1 0
k 1

�
, k 2 Z, then we denote the corresponding manifold TA by T (k).

Let ’ : R! R be a smooth function whose derivative is strictly positive. The
equation

cos’(t) dx − sin’(t) dy = 0; (x; y; t) 2 R3;
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Fillability of tight contact structures 155

de�nes a contact structure on R3 which we denote by e�(’). For each � 2 R
let �� denote the ray

�� s sin �
s cos �

�
: s � 0

}
� R2:

If A(�’(t)) = �’(t+1) for all t 2 R, then the contact structure e�(’) on R3

is invariant under the action of the deck transformation group of TA and thus
descends to a contact structure on TA which we denote by �(’).

By [8], for each non-negative integer n there exists a smooth function ’ : R!
R with strictly positive derivative, satisfying A(�’(t)) = �’(t+1) for all t 2 R
and

2n� < sup
t2R

(
’(t + 1)− ’(t)

�
� 2(n+ 1)�:

Up to �bre preserving isotopy, the contact structure �(’) on TA depends only
on n. Thus we denote this contact structure simply by �n . In [8] it was shown
that the �n are tight and pairwise nondi�eomorphic.

The main result of the present paper is the following.

Theorem 1 For each A 2 SL2(Z) and n 2 N0 (non-negative integers), the
contact manifold (TA; �n) is weakly symplectically �llable. There exists n(A) 2
N0 such that (TA; �n) is not strongly symplectically �llable for n > n(A).

Combining this with the classi�cation of tight contact structures on T 3
A due to

Giroux [9] and Honda [14], we obtain the following corollary.

Corollary 2 If A 2 SL2(Z) with trace(A) 6= −2, then there are only �nitely
many strongly symplectically �llable contact structures on TA up to di�eomor-
phism.

Proof By [9, Thm. 1.3], cf. [8, Thm. 6], TA admits only �nitely many tight
contact structures next to the �n , provided that trace(A) 6= −2. In the case
trace(A) = −2 there is a further in�nite family of tight contact structures.

Additional results for the T (k) are given in Corollary 12 and Proposition 13.
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2 Preliminaries

In this section, we review some basic concepts and results needed later. See [6]
and [13] for details.

Let (M; �) be a contact 3{manifold. Let � be an orientable surface embedded
in (M; �). Let Y be the vector �eld on � de�ned by the equation iY Ω = �j� ,
where � is a global 1{form which de�nes � , and Ω is an area form on �.
The characteristic foliation �j� on � induced by � is the singular foliation
represented by Y .

A vector �eld on M is called contact if its flow preserves � . A closed orientable
surface � embedded in (M; �) is called convex if there is a contact vector �eld
X transverse to �. This contact vector �eld X allows us to �nd a vertically
invariant neighbourhood ��R �M of �, where � is identi�ed with ��f0g.
The dividing set Γ� for X is the set of points x 2 � where X(x) 2 �(x). This
dividing set Γ� is a disjoint union of simple closed curves which are transverse
to the characteristic foliation �j� . The isotopy type of Γ� is independent of
the choice of X . Hence we will slightly abuse notation and call Γ� the dividing
set of �. Denote the number of connected components of Γ� by #Γ� .

Let T be a convex torus in a tight contact 3{manifold. Then the dividing
set ΓT consists of an even number #ΓT of parallel essential curves. Fix an
identi�cation of T with R2=Z2 . After a di�eomorphism isotopic to the identity,
we may assume that the dividing curves are linear. We call the slope of the
dividing curves the slope of the convex torus T and denote it by s(T ).

Let V be a solid torus. A speci�ed homeomorphism h : S1�D2 ! V is called
a framing of V . Fixing such a framing, we identify @V with T 2 = R2=Z2

by letting f
�
t
0

�
: 0 � t � 1g correspond to the meridian of the solid torus

V , and f
�

0
t

�
: 0 � t � 1g correspond to the longitude determined by the

framing. With these identi�cations, the meridian has slope 0, the longitude
slope 1.

The following proposition will prove useful later; see [15, Thm. 8.2] and [13,
Prop. 4.3].

Proposition 3 For any integer k (including 0) there exists a unique (up to
isotopy �xed at the boundary) tight contact structure on S1�D2 with a �xed
convex boundary with #Γ@(S1�D2) = 2 and slope s(@(S1 �D2)) = 1=k .

Algebraic & Geometric Topology, Volume 1 (2001)



Fillability of tight contact structures 157

Remark In [13] this is stated for integers k of a particular sign only. But
if slope 1=k can be realised (uniquely), then slope 1=(k + l) can be realised
(uniquely) for any integer l , since the two slopes are related to each other by
an l{fold Dehn twist along the meridian, which extends to a di�eomorphism of
the solid torus.

Let F be a closed orientable surface and F be a singular foliation on F . Let Γ
be a disjoint union of simple closed curves embedded in F which are transverse
to F . Let FΓ denote the compact surface with boundary obtained by cutting
F along Γ. We say that Γ divides F if there is a vector �eld Y on FΓ such
that

� Y represents the singular foliation on FΓ induced by F ;

� LY Ω > 0 for an area form Ω on FΓ ;

� Y goes outward along @FΓ .

Here is an important result concerning convex surfaces:

Proposition 4 (Giroux [6, Prop. II.3.6]) Let � be a closed convex surface
in a contact 3{manifold (M; �) with contact vector �eld X and dividing set Γ
for X . If F is a singular foliation on � divided by Γ, then there is an isotopy
�s , s 2 [0; 1], of � such that �0 = id�; �j�1(�) = �1(F) and �s(�) is transverse
to X for each s.

We state two other results, essentially due to Giroux, which will be used in
Section 4.

Proposition 5 Let F be a closed orientable surface embedded in a contact
3{manifold (M; �). If Γ divides �jF , then F is convex with dividing set Γ.

This proposition is a consequence of [6], Propositions I.3.4 and II.1.2(b).

Proposition 6 Let F be a compact orientable surface with boundary. Let
�0; �1 be two contact structures on F �R. Let U be a collar neighbourhood
of @F in F . Assume that �0jF�f0g coincides with �1jF�f0g and �0 = �1 on
U�(−�; �), where � is a positive real number. Then there exist a neighbourhood
V of F �f0g in F �R and a contact embedding f : (V; �0)! (F �R; �1) such
that f is the identity on V \ (U � (−�; �)) and f(F � f0g) = F � f0g.

The proof of this proposition is similar to that of [6], Proposition II.1.2(b).
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3 Contact surgery

A smooth knot K : S1 ! M in a contact 3{manifold (M; �) is called Legen-
drian if its tangent vectors all lie in � . Any di�eomorphism between Legendrian
knots extends to a contactomorphism (i.e. a di�eomorphism preserving contact
structures) on some neighbourhoods of the knots. A Legendrian knot K comes
equipped with a canonical framing of its normal bundle, which is induced by any
vector �eld transverse to � , or equivalently, by a vector �eld in �jK transverse
to K . We call this the contact framing of K . There is a canonical bijection
from (normal) framings of K to the integers Z = �1(SO(2)), given by identify-
ing the contact framing with 0 2 Z and counting right-handed twists positively.
Note that for any nullhomologous Legendrian knot K , the linking number of
K with its push-o� determined by framing k is tb(K) + k , where tb(K) is the
Thurston-Bennequin invariant of K .

Rational surgery on K with coe�cient r = p=q 2 Q[ f1g (with p; q coprime)
is de�ned as follows: Denote a tubular neighbourhood of K (di�eomorphic to a
solid torus) by �K . Let (�; �) be a positively oriented basis for H1(@�K; Z) �=
Z � Z, where � is determined up to sign as the class of a parallel copy of K
determined by the contact framing, and � is determined by a suitably oriented
meridian (i.e. a nullhomologous circle in �K ), cf. [10, p. 672]. We obtain a new
manifold M 0 by cutting �K out of M and regluing it by a di�eomorphism of
@(�K) sending � to p�+ q�. This procedure determines M 0 up to orientation-
preserving di�eomorphism.

Consider N = R2 � (R=Z) with coordinates (x; y; z) and contact structure �
de�ned by

cos(2�z) dx − sin(2�z) dy = 0:

For each � > 0, let

N� = f(x; y; z) 2 N : x2 + y2 � �2g:
We identify @N� with R2=Z2 , using the contact framing, and write (�; �) for
a positively oriented basis for H1(@N�; Z) �= Z � Z, with � corresponding
to a meridian and � to a longitude determined by this framing. A possible
representative of � would be

f(� sin(2�z); � cos(2�z); z) : z 2 R=Zg:

Note that the vector �eld x @
@x + y @

@y is a contact vector �eld for � which is
transverse to @N� , with dividing set

Γ@N� = f(�� sin(2�z);�� cos(2�z); z) : z 2 R=Zg:
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Thus for each � > 0 the torus @N� is a convex surface with #Γ@N� = 2 and
s(@N�) =1.

Let K be a Legendrian knot in a contact manifold (M; �). Write

C = f(x; y; z) 2 N : x = y = 0g
for the spine of N . Then there is a contact embedding f : (N2; �) ! (M; �)
such that f(C) = K . We want to construct a contact structure �0 on the
manifold M 0 obtained from M by rational surgery on K with coe�cient r =
p=q 2 Q [ f1g, where we only consider r 6= 0. Let

P = f(x; y; z) 2 N : 1 � x2 + y2 � 4g = N2 n IntN1:

Let g : P ! P be an orientation-preserving di�eomorphism sending @N� to
@N� , � = 1; 2, and � to p� + q�. The fact that p 6= 0 implies that (g�)−1(�)
is a contact structure on P with respect to which @N� is a convex torus of
non-zero slope. By [13, Thm. 2.3], which gives an enumeration of tight contact
structures on the solid torus with convex boundary as in our situation (and in
particular shows this set of contact structures to be non-empty), the contact
structure (g�)−1(�) on P can be extended to a tight contact structure � 0 on N2 .
De�ne

M 0 = (M − f(N1)) [N2= �;
where x 2 P � N2 is identi�ed with f(g(x)) 2 M . Topologically, M 0 is
obtained from M by rational surgery on K with coe�cient r . It inherits a
contact structure �0 from (M; �) and (N2; �

0). We say that (M 0; �0) is obtained
from (M; �) by contact r{surgery on K .

Remark (1) In this construction the assumption r 6= 0 is essential. The
g : P ! P corresponding to p = 0, q = 1 leads to a contact structure (g�)−1(�)
on P whose extension to N2 (if such exists) is overtwisted; the overtwisted disc
being given essentially by a meridianal disc in the solid torus N1 .

(2) It is not clear a priori that (M 0; �0) is tight, even if (M; �) was. In the
application of this construction (Proposition 11, in particular) we deal with a
situation where one knows two tight contact manifolds (M; �) and (M 0; �0) to
be contactomorphic outside certain solid tori, and we can conclude there that
one is obtained from the other by contact surgery as described.

(3) By analysing the framing conditions in the surgery theorems of [1] and [18],
cf. [10, Thm. 1.3] and [4], one sees that contact (−1){surgery corresponds to
a symplectic handlebody construction. In particular, if (M 0; �0) is obtained
from a closed contact manifold (M; �) by contact (−1){surgery and (M; �)
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is strongly symplectically �llable, then (M 0; �0) is also strongly symplectically
�llable. Given a Legendrian knot, one can add left-twists to its contact framing
by performing a suitable isotopy (non-contact and C0{small). That way one
can realise topological surgeries with negative integer framing (relative to a
given contact framing) as ‘handlebody’ surgeries. Adding positive twists is not,
in general, possible, unless the contact structure is overtwisted. We are mostly
concerned with contact (1=k){surgeries, k 2 Z n f0g, which do not correspond
to a handlebody construction unless 1=k = −1.

Proposition 7 If r = 1=k , where k is an integer, then, up to contactomor-
phism, the contact manifold (M 0; �0) depends only on r (and (M; �) and K , of
course). That is, it is independent of the choices of f; g and � 0 .

Proof The scaling map (x; y; z) 7! (sx; sy; z) de�nes a contactomorphism
(N�; �)! (Ns�; �). Hence, given two contact embeddings fi : (N2; �)! (M; �),
i = 1; 2, we can compare either with a third such embedding that maps N2 into
the interior of fi(N1).

We may therefore assume that K = C � N , the contact embedding f1 is the
inclusion map N2 � N , and the contact embedding f = f2 sends N2 into the
interior IntN1 of N1 .

Note that if r = 1=k , then the di�eomorphism g may be assumed to have the
following e�ect on � and �, since gj@N� is determined up to isotopy by its
action on homology, corresponding to an element of SL2(Z):

� 7−! �+ k�; � 7−! �− l(�+ k�);

where l is some integer. (Di�erent choices of l correspond to Dehn twists along
a meridian of the solid torus that is glued back; these Dehn twists extend to
di�eomorphisms of the solid torus and hence have no topological e�ect.) Then
g−1 sends � to l� + �. This implies that as we pull back � to (g�)−1� , we
obtain a contact structure on N2 n Int(N1) with #Γ@N2 = 2 and s(@N2) = 1=l .
So by Proposition 3 the extension of (g�)−1� to a tight contact structure � 0 on
the copy of N2 to be glued back is unique.

Let (M 01; �
0
1) be the contact manifold obtained from N2 by contact r{surgery

along C � N2 using the inclusion N2 � N2 , and let (M 02; �
0
2) be the contact

manifold obtained similarly using the contact embedding f : N2 ! IntN1 �
N2 .

By what we have just observed, the tight contact structure �01 is uniquely de-
termined by the fact that it coincides with � near @N2 = @M 01 . We also know
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that �02 coincides with � outside f(N1), and the manifolds M 01 and M 02 are
di�eomorphic under a di�eomorphism that is the identity near @M 01 = @M 02 .

By the de�nition of contact r{surgery, the contact manifold

(M 02 n (N2 n f(N2)); �02)

is tight. It now su�ces to show that (M 02; �
0
2) is tight, because we then know

that it is completely determined by its boundary data, which coincide with
those of (M 01; �

0
1).

Recall that if a contact structure � on a manifold M is written as the kernel of
a 1{form �, there is a one-to-one correspondence between contact vector �elds
X and functions on M given by X 7! �(X), cf. [16]. The function H = �(X)
is called the Hamiltonian function corresponding to X .

So the contact vector �eld X = −(x @
@x + y @

@y ) for � on N2 corresponds in
this way to some Hamiltonian function. By multiplying this function with a
bump function that is identically 1 on N1 and identically zero near @N2 we
can construct a contactomorphism N2 ! N2 that is the identity near @N2

and sends N1 into N� for any given � > 0. By precomposing f with such a
di�eomorphism, we may assume that

f(N1) � IntN�; N� � Int f(N2)

for a suitable � > 0.

By multiplying the Hamiltonian function of X with a bump function that is
identically 0 on f(N1) and identically 1 outside N� , we get a Hamiltonian
function de�ned also on M 02 whose contact flow will ultimately move N2 into
f(N2). So this will de�ne a contact embedding

(M 02; �
0
2) ,! (M 02 n (N2 n f(N2)); �02):

This completes the proof of the proposition.

Proposition 8 If (M 0; �0) is obtained from (M; �) by contact (1=k){surgery,
then (M; �) is obtained from (M 0; �0) by contact (−1=k){surgery.

Proof By the preceding proposition it su�ces to consider the following situ-
ation: Let (M 0; �0) be the manifold obtained from (N; �) by contact (1=k){
surgery along C � N , using the inclusion N2 � N . Let (M; �) be the manifold
obtained from (M 0; �0) by contact (−1=k){surgery along a spine of the solid
torus N1 that was attached to N n N1 to form M 0 . We want to show that
(M; �) is contactomorphic to (N; �).
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We can obtain (M 0; �0) by gluing N2 to N nN1 using the attaching map g : P !
P described by

� 7−! �+ k�; � 7−! �;

and then extending (g�)−1� over N2 to a unique tight contact structure � 0 .
We observed in the proof of the preceding proposition that the torus @N1 in
(N2; �

0) is a convex surface with #Γ@N1 = 2 and s(@N1) =1.

By Propositions 3 and 4 and arguments similar to those in the preceding proof,
we can �nd a contact embedding (N2; �) ,! (N2; �

0) isotopic to the identity and
sending P into P . Now perform the (−1=k){contact surgery on (M 0; �0) using
this embedding (composed with g), and call the resulting contact manifold
(M; �). The gluing for this surgery may be described by

� 7−! �− k�; � 7−! �:

It is a straightforward check that the topological e�ect of this second surgery
is to cancel the �rst surgery, because the composition of these maps sends � to
� (in fact, it is the identity map). A further application of Proposition 3 shows
that (M; �) is indeed contactomorphic to (N; �).

Let (M 0; �0) be obtained from (M; �) by contact (1=n){surgery on a Legendrian
knot K , where n > 1. Let (M 00; �00) be obtained from (M; �) by contact
(1=(n−1)){surgery on the same knot K . By the same methods as in the proof of
the preceding proposition one sees that (M 0; �0) can be obtained from (M 00; �00)
by contact (+1){surgery. Similarly, contact (1=n){surgery with n < −1 can be
realised as a contact (1=(n + 1)){surgery followed by a contact (−1){surgery.
Thus, by induction we have:

Proposition 9 If (M 0; �0) is obtained from (M; �) by contact (1=n){surgery,
n 6= 0, it may also be obtained by jnj times contact "{surgery, where " =
n=jnj = sign(n) 2 f−1; 1g.

Combined with remark (3) above, the two preceding propositions yield the
following result.

Proposition 10 Let (M; �) be a closed contact 3{manifold. Let n be a pos-
itive integer. If (M 0; �0) is obtained from (M; �) by contact (−1=n){surgery
and (M; �) is strongly symplectically �llable, then (M 0; �0) is strongly symplec-
tically �llable. If (M 0; �0) is obtained from (M; �) by contact (1=n){surgery
and (M; �) is not strongly symplectically �llable, then (M 0; �0) is not strongly
symplectically �llable.
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4 Proof of the main result

The key step in the proof of Theorem 1 is contained in the following proposition.

Proposition 11 Let A0 2 SL2(Z), let Ek =
�

1 0
k 1

�
, k 2 Z n f0g, and

let n0 be a positive integer. Then contact (−1=k){surgery on (TA0 ; �n0) yields
(TA; �n), where A = EkA0 and n 2 fn0; n0 − 1g for k > 0, or n 2 fn0; n0 + 1g
for k < 0. If A0 is of type El , then n is determined explicitly as follows.

k A0 n

> 0 El, l < −k or l � 0 n0

El, −k � l < 0 n0 − 1
< 0 El, l � −k or l < 0 n0

El, 0 � l < −k n0 + 1

Remark An exact determination of the value of n corresponding to any given
A0 is feasible and would allow an estimate on the bound n(A) in Theorem 1.

Using this proposition, we can formulate a strengthening of Theorem 1 in the
case A = Ek , k < 0.

Corollary 12 The contact manifold (T (k); �n) is not strongly symplectically
�llable for k � 0 and n � 2.

Proof For k = 0, that is, T (0) = T 3 , this is the result of Eliashberg mentioned
in the introduction, which holds true even for n = 1. By the preceding proposi-
tion, (T (k); �n+1), k < 0, is obtained from (T 3; �n) by contact (−1=k){surgery.
The result now follows from Proposition 10.

Here is a complementary result.

Proposition 13 The contact manifold (T (k); �0) is strongly symplectically
�llable for all k 2 Z.

Proof For k = 0 this is well-known, see [2]. For positive k it is a consequence
of Propositions 10 and 11 (which holds true also for n0 = 0 and A0 = E0 ).

For negative k we use a construction analogous to [17, Lemma 2.6]. Let ’ : R!
R be a smooth function with strictly positive derivative, Ek(�’(t)) = �’(t+1)
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for all t 2 R, and ’(0) = �=2. Notice that k < 0 then implies 0 < ’(t) < � for
all t 2 R. So we may de�ne �0 as kernel of the contact form � = dy−cot’(t) dx
(de�ned on T (k)).

Projection onto the x{ and t{coordinate gives T (k) the structure of a princi-
pal S1 {bundle � : T (k) ! T 2 . Let L be the associated complex line bundle
T (k) �S1 C, and write L0 for its zero section. Write � for the angular co-
ordinate and r for the radial coordinate in the C{�bre, so that @

@y = @
@� on

T (k) � L. The vector �elds @
@� and @

@r are de�ned on L n L0 , and � extends
to an S1{invariant 1{form on L n L0 satisfying �( @@� ) = 1 and �( @@r ) = 0. We
then have

d� = ��
(
’0(t) csc2 ’(t) dt ^ dx

�
:

Set

! = d((r2 + 1)�) = (r2 + 1)d� + 2r dr ^ d�:
It is a straightforward check that ! is a symplectic form de�ned on all of L,
and that X = r2+1

2r
@
@r is a Liouville vector �eld for ! de�ned on L n L0 , and

iX! = (r2 +1)� . So the unit disc bundle T (k)�S1D2 gives a strong symplectic
�lling of (T (k); �0) for k < 0.

Assuming Proposition 11, we can now prove the part of Theorem 1 concerned
with strong symplectic �llability.

Proposition 14 For each A 2 SL2(Z) there exists an n(A) 2 N0 such that
(TA; �n) is not strongly symplectically �llable for n > n(A).

Proof It is well-known (and easy to prove) that SL2(Z) is generated by

E−1 and E01 =
�

1 1
0 1

�
. Moreover, the product E−1E

0
1 is of order 6 in

SL2(Z), which implies that E−1
−1 and (E01)−1 can be expressed as a product

in E−1 and E01 . Thus, with A 2 SL2(Z) given, we may write it in the
form A = A1 � � �Am with m 2 N and Ai 2 fE−1; E

0
1g. Set A0m = E0 and

A0i = Ai+1 � � �Am for i = 1; : : : ;m− 1, so that A0i−1 = AiA
0
i .

If Ai = E−1 , then by Proposition 11 we know that (TA0i−1
; �n) is obtained from

(TA0i ; �n0) by contact (+1){surgery, where n 2 fn0; n0 + 1g is chosen suitably.

If Ai = E01 , we observe that with B =
�

0 1
−1 0

�
we can write

A0i−1 = AiA
0
i = B(E−1(B−1A0iB))B−1:
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Since conjugate matrices B0 and B1 = BB0B
−1 give rise to contactomorphic

torus bundles (TB0 ; �n) and (TB1 ; �n), we conclude once again that (TA0i−1
; �n) is

obtained from (TA0i ; �n0) by contact (+1){surgery for a suitable n 2 fn0; n0+1g.

By induction, there exists n(A) 2 N0 such that (TA; �n+n(A)) is obtained from
(T 3; �n) by m times contact (+1){surgery. Thus, Eliashberg’s theorem and
Proposition 10 imply that (TA; �n+n(A)) is not strongly symplectically �llable
for n � 1.

To prove the part of Theorem 1 concerned with weak symplectic �llability, we
�rst make the following observation.

Proposition 15 For each A 2 SL2(Z) there exists a compact symplectic man-
ifold (W;!) such that TA is the oriented boundary of W and ! is nondegenerate
on each torus �bre of TA .

Proof Given A 2 SL2(Z), we write it in the form A = A1 � � �Am with each
Ai equal to E−1 or E01 . Let � : S ! CP 1 be a nodal elliptic surface with a
section, without multiple �bres, and with Euler number (or number of singular
�bres) equal to 12d � 2m. For the existence of such a surface see [5, p. 64].
This surface is algebraic [5, p. 34] and thus Kähler; in particular we �nd a
symplectic from ! on S that restricts to an area form on each nonsingular
�bre (since these are complex submanifolds).

By the arguments in Section 2.3 of [5] we �nd a simple closed loop γ in CP 1

along which the monodromy of the �bration � equals A. Let D � CP 1 be
the disc whose oriented boundary is γ . Then (W = �−1(D); !) is the desired
symplectic manifold.

Here is an alternative and slightly more direct argument: Observe that E−1

and E01 correspond to positive Dehn twists of T 2 . This implies that there is an
orientable Lefschetz �bration W ! D2 with generic �bre a torus, m singular
�bres, and monodromy along @D2 equal to A, cf. [11, Section 8.2]. Such a
Lefschetz �bration admits a symplectic form ! with the described properties,
see [11, Thm. 10.2.18]. Since the base of the �bration is D2 , the second homo-
logy group of the total space is generated by the fundamental class of the �bre
(this remains true in the presence of singular �bres). So the homological con-
dition in the cited theorem, necessary to apply Thurston’s symplectic �bration
construction, is trivially satis�ed.

Here is the part of Theorem 1 concerned with weak symplectic �llability:
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Proposition 16 For each A 2 SL2(Z) and n 2 N0 , the contact manifold
(TA; �n) is weakly symplectically �llable.

Proof Represent �n by �(’), i.e.

cos’(t) dx − sin’(t) dy = 0;

where ’ is as described in the introduction. The properties of ’ imply that we
can �nd a smooth function � : R! R+ such that the contact 1{form

� = �(t)(cos’(t) dx − sin’(t) dy)

is invariant under the transformation (x; t) 7! (Ax; t+ 1) and thus descends to
a contact form (which we continue to denote �) on TA representing �n .

Observe that the 1{form �" = (1−") dt+"� is a contact form for any " 2 (0; 1],
and in view of the well-known Gray stability theorem [12] it de�nes a contact
structure equivalent to �n . For " & 0 the contact planes ker�" approach the
tangent spaces along the �bres of TA . Hence, the symplectic form ! on W
constructed in the preceding proposition will have the property that !j ker�"
is nondegenerate for " > 0 su�ciently small.

To complete the proof of our main theorem it remains to prove Proposition 11.
We only do this for the case k = 1; the other cases are analogous.

Let A0 2 SL2(Z) be given and set A = E1A0 . Let ’0 : R ! R be a smooth
function with strictly positive derivative, and satisfying A(�’0(t)) = �’0(t+1) ,
where �� was de�ned in the introduction. The non-negative integer n0 deter-
mined by

2n0� < sup
t2R

(
’0(t + 1)− ’0(t)

�
� 2(n0 + 1)�

will be referred to as the twisting of ’0 . Assume in addition that ’0(0) = 0.

Lemma 17 There is a smooth function ’ : R ! R with strictly positive
derivative, satisfying A(�’(t)) = �’(t+1) , as well as ’(0) = ’0(0) = 0 and
’(−1) = ’0(−1). The twisting n of this function ’ depends on A0 and n0 as
described in Proposition 11.

Proof It is possible to choose the values of ’(t) equal to those of ’0(t) at
t = 0 and t = −1 and still satisfy the appropriate equivariance condition

because
�

0
1

�
=
�

sin’0(0)
cos’0(0)

�
is an eigenvector of E1 with eigenvalue 1.
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(i) First consider the case that
�

0
1

�
is an eigenvector of A0 with positive

eigenvalue. This is equivalent to saying that A0 is of type El . A straightforward
analysis shows that in this case

’0(−1) =
�
−2n0� if l < 0;
−2(n0 + 1)� if l � 0:

The same analysis applies to A = E1A0 = El+1 . That is, the function ’ with
the described properties has twisting n determined by

’(−1) =
�
−2n� if l + 1 < 0;
−2(n+ 1)� if l + 1 � 0:

Since ’(−1) = ’0(−1) by assumption, we have n = n0 for l 6= −1, and
n = n0 − 1 for l = −1.

(ii) Now assume that A0 is not of type El . Then ’0(−1) 62 2�Z, and one
veri�es that the twisting n0 of ’0 is determined by

2n0� < sup
t2[−1;0]

(
’0(t+ 1)− ’0(t)

�
� 2(n0 + 1)�;

cf. [8, p. 791]. Let h : S1 ! S1 (with S1 = R=2�Z) be the smooth function
de�ned by E1(��) = �h(�) , and let h : R! R be the lift of h with h(0) = 0.
One checks that h is strictly increasing and t − �=2 � h(t) � t for all t 2 R,
with equality h(t) = t for t 2 �Z.

The required function ’ can be de�ned by smoothing the function

’(t) =
�
’0(t) −3=4 � t � 0;
h(’0(t)) 0 � t � 3=4;

at t = 0, and then extending it to all t 2 R by imposing the appropriate
equivariance property.

Since the smoothing is done at t = 0, and
�

sin’0(0)
cos’0(0)

�
=
�

0
1

�
is not an

eigenvector of A0 with positive eigenvalue, we can ensure that this does not lead
to a twisting n larger than n0 . The properties of h imply that this twisting n,
determined by

2n� < sup
t2[−1;0]

(
’(t + 1)− ’(t)

�
� 2(n+ 1)�;

is equal to n0 or n0 − 1.
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The strategy in the proof of Proposition 11 is now as follows. Remove a tubular
neighbourhood T 2�I of a torus �bre in both (TA0 ; �n0) and (TA; �n), and show
that the complements are contactomorphic provided �n0 corresponds to ’0 and
�n to the ’ constructed in the preceding lemma. Extend this contactomorphism
over a solid torus inside T 2 � I , with complement another solid torus. Finally
show that the unique extensions (as tight contact structures) of the contact
structures �n0 resp. �n over this last solid torus correspond to a contact (−1){
surgery.

The next lemma will be essential for this �nal extension. Consider B = R �
(R=Z)�R with coordinates (x; y; t) and contact structure � 0 given by

cos(2�t) dx − sin(2�t) dy = 0:

For 0 < "; � < 1=4 let

V = f(x; y; t) 2 B : � � x � 1− �; −" � t � "g:

This will later be thought of as a tubular neighbourhood in (TA; �n) of a Le-
gendrian circle (t = 0, x = const.), which lies completely inside a torus �bre
of TA . Identify @V (with corners smoothed) with R2=Z2 by using the standard
framing of V . This means that the circles y = const. (oriented positively in
the (t; x){plane) correspond to the �rst coordinate direction in R2=Z2 ; circles
t = const., x = const. to the second.

Lemma 18 For every neighbourhood of @V in V (or likewise in B nV ), there
exists a convex torus T inside this neighbourhood, isotopic to @V and satisfying
#ΓT = 2 and s(T ) =1.

Proof The contact plane � 0 is spanned by @
@t and sin(2�t) @

@x + cos(2�t) @
@y .

We may choose T of the form

T = f(x; y; t) 2 B : (x; t) 2 γg;

where γ is a smooth convex curve in the (x; t){plane, close to @V \ fy = 0g.
Moreover, we may assume that @

@t is tangent to γ only at the two points on γ
with t = 0. The assumption " < 1=4 guarantees that the singular set of the
characteristic foliation � 0jT consists of the two circles T \ft = 0g. Furthermore,
the vector spanning � 0jT away from its singular points always has a non-zero
@
@x {component, and the coe�cient functions of this vector �eld may be chosen
not to depend on the y{coordinate. The two circles Γ = T \ fx = 1=2g divide
this singular foliation. Now apply Proposition 5.
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Proof of Proposition 11 (for k = 1). Let ’0; ’ be as in Lemma 17. Write
�(’0) resp. �(’) for the contact structures on TA0 resp. TA de�ned by these
functions. Fix a positive real number 0 < " < 1=2. Let f : [−1; 0] ! [−1; 0]
be the smooth function satisfying ’(f(t)) = ’0(t) for all t 2 [−1; 0]. Observe
that f(−1) = −1 and f(0) = 0, and f is strictly monotone increasing.

With B = R� (R=Z)�R as above, set

B�;� = f(x; y; t) 2 B : � � t � �g:

We continue to write �(’0), �(’) for the lift of those contact structures from
TA0 resp. TA to B .

De�ne contact embeddings F1 , F2 as follows:

F1 : (B−1+";−"; �(’0)) −! (B; �(’))
(x; y; t) 7−! (x; y; f(t));

F2 : (B";1−"; �(’0)) −! (B; �(’))
(x; y; t) 7−! (x; x+ y; f(t− 1) + 1):

Notice that F2 is the composition of contactomorphisms

(x; t) 7! (A−1
0 x; t− 1) F17−! (A−1

0 x; f(t− 1)) 7! (AA−1
0 x; f(t− 1) + 1):

Fix a positive real number 0 < � < 1=4. Choose " > 0 su�ciently small such
that

−�=2 < ’0(−") < ’0(") < �=2;

−�=2 < ’(f(−")) < ’(f("− 1) + 1) < �=2;

and

−� < tan’(f(−")) < tan’(f("− 1) + 1) < �:

Let g1 : [−"; "] ! R be a smooth, strictly monotone increasing function such
that

g1(t) =

8<:
f(t) for − " � t � −"=2;
f(t− 1) + 1 for "=2 � t � ";
0 for t = 0:

Let g2 : [−"; "]! R be a smooth, monotone increasing function such that

g2(t) =
�

0 for − " � t � −"=2;
1 for "=2 � t � ":
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It is easy to see that g2 can be chosen in such a way thatZ "

−"
g02(t) tan’(g1(t)) dt = 0:

For � 2 R set

B� = B�
−";" = f(x; y; t) 2 B : x = �; −" � t � "g:

De�ne h� : [−"; "]! R by

h�(t) = � + �

Z t

−"
g02(t) tan’(g1(t)) dt:

De�ne
 � : B� −! B

(�; y; t) 7−! (h�(t); y + g2(t)�; g1(t)):

Notice that  � coincides with F1 for t = −" and with F2 for t = ". Moreover,
one easily veri�es that  � is an injective immersion.

We compute

 ��(cos’(t) dx − sin’(t) dy) =
= cos’(g1(t))h0� dt− sin’(g1(t))(dy + �g02(t) dt)
= sin’(g1(t)) dy:

It follows that the singular foliation  −1
� (�(’)j �(B�)) is represented by the

vector �eld sin’(g1(t)) @@t .

The singular foliation �(’0)jB� , on the other hand, is represented by sin’0(t) @@t .
We claim that these two singular foliations are identical as smooth foliations.
Indeed, the two functions s1 = sin’(g1(t)) and s0 = sin’0(t) vanish only at
0 2 [−"; "] and have positive derivative there. It follows that either of them can
be written as si = t � si with si a smooth, nowhere zero function on [−"; "], so
s1=s0 is smooth and non-zero on all of [−"; "].
By Proposition 6 there exists a neighbourhood U of B� [ B1−� in B and a
contact embedding

F : (U; �(’0)) −! (B; �(’))

that coincides with F1 resp. F2 on the common domain of de�nition, and with
 � on B� for � = � or 1− � .

By Proposition 3 and Lemma 18, and with V as in that lemma (which holds
true for the contact structure �(’0) in place of � 0 ), this F extends to a contact
embedding

F : (V0; �(’0)) := (B−1+";−" [B";1−" [ V; �(’0)) −! (B; �(’)):
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Let K be the Legendrian circle in TA0 de�ned by

f(x; y; t) 2 TA0 : x = t = 0g:
Then F induces a contact embedding

(TA0 − �K; �(’0)) −! (TA; �(’));

where we may think of the tubular neighbourhood �K of K as

f(x; y; t) 2 TA0 : − � � x � �; −" � t � "g:
Again by Proposition 3 and Lemma 18 (adapted suitably), (TA; �(’)) is ob-
tained from the manifold (TA0 ; �(’0)) by contact (−1){surgery on K . To
verify the sign of this surgery we need to make the following observations.

Let � be a meridian of @�K de�ned by y = 0, say, and let � be a longitude
of @�K de�ned by x = � , t = 0. We take � to be oriented in positive y{
direction, and � to be oriented in counterclockwise direction with respect to
the oriented basis ( @@t ;

@
@x) of the (t; x){plane. This is consistent with our

orientation assumptions in the de�nition of contact surgery. Moreover, it is
this choice of longitude that gives s(@�K) =1, so the surgery coe�cient r is
determined by expressing the attaching map in terms of � and �.

The e�ect of the map F (up to isotopy) is to send � to �, and � to �+ �, as
can be checked from our explicit formulae. So �− � maps to �, which shows
that it is this curve � − � on @�K which becomes homologically trivial when
we glue in a solid torus in place of �K to obtain TA .
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