ON THE MULTIPLICITY OF A QUASI-HOMOGENEOUS ISOLATED SINGULARITY

by Maciej Sękalski

Abstract

We give a formula for the multiplicity of a quasi-homogeneous isolated singularity in terms of its weights.

Let $f=f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}$ be a convergent power series. We call f an isolated singularity at the origin $0 \in \mathbb{C}^{n}$ if $f(0)=0$ and $0 \in \mathbb{C}^{n}$ is an isolated solution of the system of equations $\frac{\partial f}{\partial x_{1}}=\cdots=\frac{\partial f}{\partial x_{n}}=0$. By the multiplicity ord f of a series f, we mean the lowest degree of a monomial which appears in f with nonzero coefficient. Moreover, let us recall that f is quasi-homogeneous of type $\left(w_{1}, \ldots, w_{n}\right)$ if it is a polynomial of the form

$$
f=\sum_{\frac{i_{1}}{w_{1}}+\cdots+\frac{i_{n}}{w_{n}}=1} c_{i_{1} \ldots i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

for some positive rationals w_{1}, \ldots, w_{n}.
The quasi-homogeneous isolated singularities have been studied by many authors. Milnor and Orlik ([2], Theorem 1) proved that the Milnor number of a quasi-homogeneous isolated singularity of type $\left(w_{1}, \ldots, w_{n}\right)$ equals $\prod_{i=1}^{n}\left(w_{i}-\right.$ 1). Thus this product is an integer, even though the $w_{i}^{\prime} s$ themselves may not be integers.

The main result of this note is
Theorem. If f is a quasi-homogeneous isolated singularity of type $\left(w_{1}, \ldots, w_{n}\right)$ then

$$
\operatorname{ord} f=\min \left\{m \in \mathbb{N}: m \geqslant \min \left\{w_{i}: i=1, \ldots, n\right\}\right\} .
$$

S. S.-T. Yau proved the above formula for $n=3$ (see [4], Theorem 6). His proof is based on the classification of quasi-homogeneous isolated singularities given in [1] and in 3 and it does not generalize to the case of an arbitrary n.

Proof. Since ord f is an integer, it suffices to show that

$$
\min \left\{w_{i}: i=1, \ldots, n\right\} \leqslant \operatorname{ord} f<\min \left\{w_{i}: i=1, \ldots, n\right\}+1 .
$$

To check the first inequality, let us note that

$$
\operatorname{ord} f=\min \left\{i_{1}+\cdots+i_{n}: c_{i_{1} \ldots i_{n}} \neq 0\right\} .
$$

For any i_{1}, \ldots, i_{n} such that $c_{i_{1}, \ldots, i_{n}} \neq 0$, there holds

$$
1=\frac{i_{1}}{w_{1}}+\cdots+\frac{i_{n}}{w_{n}} \leqslant \frac{i_{1}+\cdots+i_{n}}{\min \left\{w_{i}: i=1, \ldots, n\right\}},
$$

hence

$$
1 \leqslant \frac{\operatorname{ord} f}{\min \left\{w_{i}: i=1, \ldots, n\right\}}
$$

and the first inequality follows.
In order to prove the inequality $\operatorname{ord} f<\min \left\{w_{i}: i=1, \ldots, n\right\}+1$, we need the following observation due to Arnold (see [1).

Lemma. Fix an $i \in\{1, \ldots, n\}$. For an isolated singularity f, at least one of the monomials of the form $x_{i}^{a} x_{j}, a \geqslant 1, j=1, \ldots, n$ appears in the series f with a nonzero coefficient.

Proof. We may assume that $i=1$. Let us write

$$
f\left(x_{1}, \ldots, x_{n}\right)=a_{0}\left(x_{2}, \ldots, x_{n}\right)+x_{1} a_{1}\left(x_{2}, \ldots, x_{n}\right)+\cdots .
$$

There is ord $a_{0} \geqslant 2$ and ord $a_{1} \geqslant 1$ as ord $f \geqslant 2$. We will show that there exists a $k \geqslant 1$ such that ord $a_{k}=0$ or ord $a_{k}=1$.

To obtain a contradiction, suppose that ord $a_{k} \geqslant 2$ for all $k \geqslant 1$. This gives $\operatorname{ord} \frac{\partial a_{k}}{\partial x_{j}} \geqslant 1$ for $j=2, \ldots, n$ and hence

$$
a_{k}(0, \ldots, 0)=0 \quad \text { and } \quad \frac{\partial a_{k}}{\partial x_{j}}(0, \ldots, 0)=0 \text { for all } k \geqslant 1 \text { and } j \geqslant 2,
$$

thus

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{1}}\left(x_{1}, 0, \ldots, 0\right)=a_{1}(0)+2 x_{1} a_{2}(0)+\cdots=0, \\
& \frac{\partial f}{\partial x_{j}}\left(x_{1}, 0, \ldots, 0\right)=\frac{\partial a_{0}}{\partial x_{j}}(0)+x_{1} \frac{\partial a_{1}}{\partial x_{j}}(0)+\cdots=0 \text { for } j=2, \ldots, n
\end{aligned} \quad \text { in } \mathbb{C}\left\{x_{1}\right\}
$$

and this implies the inclusion $\left\{x_{2}=\cdots=x_{n}=0\right\} \subset\left\{\frac{\partial f}{\partial x_{1}}=\cdots=\frac{\partial f}{\partial x_{n}}=0\right\}$. We get a contradiction because $0 \in \mathbb{C}^{n}$ is an isolated critical point of f.

Now let us suppose that $w_{1}=\min \left\{w_{i}: i=1, \ldots, n\right\}$. According to Lemma, at least one of the monomials of the form $x_{1}^{a} x_{j}, a \geqslant 1, j=1, \ldots, n$
appears in f with nonzero coefficient. Thus ord $f \leqslant a+1$ and for some $j \in$ $\{1, \ldots, n\}$ there is $\frac{a}{w_{1}}+\frac{1}{w_{j}}=1$. This gives

$$
\operatorname{ord} f \leqslant w_{1}\left(1-\frac{1}{w_{j}}\right)+1=w_{1}+1-\frac{w_{1}}{w_{j}}<w_{1}+1
$$

and the proof is complete.

References

1. Arnold V. I., Normal forms of functions in the neighbourhood of degenerate critical points, Russian Math. Surveys, 29 (1974), 19-48.
2. Milnor J., Orlik P., Isolated singularities defined by weighted homogeneous polynomials, Topology, 9 (1970), 385-393.
3. Orlik P., Wagreich P., Isolated singularities of algebraic surfaces with C^{*}-action, Ann. of Math. (2), 93 (1971), 205-228.
4. Yau S. S.-T., Topological types and multiplicities of isolated quasi-homogeneous surface singularities, Bulletin of the AMS, Vol. 19, No. 2 (Oct 1988), 447-454.
Received November 21, 2008
Department of Mathematics
Technical University
Al. 1000 L PP 7
25-314 Kielce, Poland
e-mail: matms@tu.kielce.pl
