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DISCRIMINANT AND THE  LOJASIEWICZ EXPONENT

by Arkadiusz P loski

Abstract. An effective formula for the  Lojasiewicz exponent of a plane
curve singularity is given.

1. Introduction. Suppose that a polynomial f = f(x, y) in two complex
variables defines an isolated singularity at the origin 0 ∈ C2, i.e., f(0) = 0 and
the gradient ∇f =

(
∂f
∂x ,

∂f
∂y

)
has an isolated zero at 0 ∈ C2. The  Lojasiewicz

exponent L0(f) of f at 0 ∈ C2 is by definition, the smallest θ > 0 such that
there exist a neighborhood U of 0 ∈ C2 and a constant c > 0 such that

|∇f(z)| ≥ c|z|θ for each z ∈ U .

For the basic properties of the  Lojasiewicz exponent we refer to Teissier’s
paper [11] (see also [8]). In [3] Ch ↪adzyński and Krasiński gave a formula for the
 Lojasiewicz exponent (in a more general setting of polynomial mappings of C2),
which allows to calculate L0(f) by using the resultant R(x, u, v) = resy(∂f∂x −
u, ∂f∂y−v) depending on two parameters u, v. The aim of this note is to calculate
L0(f) in terms of the discriminant ∆(x, t) = discy(f(x, y)− t) which depends
on one parameter t. Our proof is based on the fact discovered independently
by Bogus lawska [1] and Kuo and Parusiński [7] that the  Lojasiewicz exponent
L0(f) is attained along the polar curve α∂f∂x + β ∂f∂y = 0, provided that the
line βx− αy = 0 is not tangent to the curve f = 0.

2. Preliminaries. In the sequel, we need some basic properties of plane
curve singularities. Our main reference is [4] (Chapter I, Section 3). By an
algebraic curve we mean a nonconstant polynomial f up to multiplication by a
nonzero scalar. If f = 0 is an algebraic curve passing through 0 ∈ C2, then by
µ0(f) and ord0 f we denote the Milnor number and the order (the multiplicity)
of f = 0 at the origin, respectively. If f = 0 and g = 0 are two algebraic curves
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then i0(f, g) is the intersection number of f = 0 and g = 0 at 0 ∈ C2. Recall
that µ0(f) = i0(∂f∂x ,

∂f
∂y ) and i0(f, ∂f∂y ) = µ0(f)+i0(f, x)−1 (Teissier’s formula).

Let C{x} be the ring of convergent power series. We extend it to the
ring of convergent fractional power series C{x}∗ =

⋃
p≥1 C{x1/p}. For any

y(x) ∈ C{x}∗, ord y(x) and y(0) are defined. There is ord y(x) > 0 if and only
if y(0) = 0. Now let f(x, y) = a0(x)yN + a1(x)yN−1 + · · · + aN (x), N > 0,
be a polynomial such that a0(0) 6= 0, so that 1

a0(x) exists in C{x}. Then

f(x, y) = a0(x)
∏N
i=1(y−yi(x)), where yi(x) ∈ C{x}∗ (Puiseux Theorem). Let

I = { i : ord yi(x) > 0 }. Then for any polynomial g = g(x, y), Zeuthen’s rule
holds: i0(f, g) =

∑
i∈I ord g(x, yi(x)).

3. Main result. Let f = f(x, y) be a polynomial defining an isolated
singularity at the origin. We say that the line x = 0 is in general position with
respect to the curve f = 0 if the following conditions are satisfied

(i) degy f = deg f(0, y),
(ii) ord0 f = ord f(0, y),
(iii) all nonzero roots of the equation f(0, y) = 0 are simple.

Assumptions (i)–(iii) have simple geometrical interpretation. Let x∞ be
the point at infinity of the line x = 0. Then condition (i) means that the line
x = 0 is not tangent at x∞ to the projective closure of the curve f(x, y) = 0,
while (ii) means that x = 0 is not tangent to f(x, y) = 0 at 0. Finally, (iii)
means that the line x = 0 and the curve f(x, y) = 0 are transverse at points
of C2 different from 0. We can always obtain conditions (i)–(iii) by using a
linear automorphism of C2, provided that f has no multiple factor.

Let t be a new variable and let ∆(x, t) = discy(f(x, y)− t) be the discrim-
inant of the polynomial f(x, y) − t ∈ C[x, t][y]. The main result of this note
is

Theorem 3.1. Suppose that the line x = 0 is in general position with re-
spect to the curve f = 0 and let ∆(x, t) =

∑
i≥0 ∆i(t)xi. Then p = ord ∆(x, 0)

is finite and

L0(f) =
(
p−1

min
i=0

{
ord ∆i

p− i

})−1

− 1.

Moreover, p = µ0(f) + ord0 f − 1.

The proof of Theorem 3.1 is given in Section 6 of this note. Now let us com-
pare our theorem with the main result of Ch ↪adzyński and Krasiński paper [3].
Let u, v be two new variables and let R(x, u, v) = resy

(
∂f
∂x − u,

∂f
∂x − v

)
be the

y-resultant of the polynomials ∂f
∂x−u, ∂f∂y−v ∈ C[x, u, v][y]. Using Theorem 3.1

of [3], we get
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Theorem 3.2. (cf. [3]) Let f be a polynomial with a finite number of
critical points. Suppose that the axes are in general position with respect to the
curve f = 0 and that the line x = 0 intersects the set of critical points of f at
the origin only. Let R(x, u, v) =

∑
i≥0Ri(u, v)xi. Then m = ordR(x, 0, 0) is

finite and

L0(f) =
(
m−1
min
i=0

{
ord0Ri
m− i

})−1

.

Moreover, m = µ0(f).

4. Discriminant. Let f = f(x, y) be a polynomial defining an isolated
singularity at the origin. We assume that the line x = 0 is in general posi-
tion with respect to the curve f = 0 and set ∆(x, t) = discy(f(x, y) − t) =
a0(x)−1 resy(f(x, y) − t, ∂f∂y (x, y)). Let N = degy f and n = ord0 f . We may
write

f(x, y) = a0(x)yN + a1(x)yN−1 + · · ·+ aN (x),
where a0(0)aN−n(0) 6= 0 and aj(0) = 0 for j > N − n.

Lemma 4.1. ord ∆(x, 0) = µ0(f) + n− 1, ord ∆(0, t) = n− 1.

Proof. By Puiseux’ Theorem, we get ∂f
∂y (x, y) = Na0(x)

∏N−1
i=1 (y− zi(x))

with zi(x) ∈ C{x}∗ for i = 1, . . . , N − 1.
Since ord ∂f

∂y (0, y) = ord f(0, y) − 1 = n − 1, we may assume that z1(0) =
· · · = zn−1(0) = 0 and zj(0) 6= 0 for j ≥ n. Moreover, f(0, zj(0)) 6= 0 for j ≥ n,
because the nonzero roots of the equation f(0, y) = 0 are simple.

By the classical formula for the resultant, we get

∆(x, t) = Nna0(x)N−1(f(x, z1(x))− t) · · · (f(x, zN−1(x))− t).
Thus we get ∆(0, t) = tn−1ε(t), where ε(0) 6= 0 and ord ∆(0, t) = n−1. On the
other hand, ∆(x, 0) = f(x, z1(x)) · · · f(x, zn−1(x))η(x), η(0) 6= 0 in C{x}∗
and ord ∆(x, 0) =

∑n−1
j=1 ord f(x, zj(x)) = i0(f, ∂f∂y ) = µ0(f) + i0(f, x) − 1 =

µ0(f) + n− 1 by Zeuthen’s rule and Teissier’s formula.

Remark 4.2. Usually, Lemma 4.1 is stated for the local case, i.e., when ∆
is the discriminant of a distinguished polynomial f .

5. Newton polygon. Let f = f(x, y) be a polynomial (a convergent
power series) such that f(0, 0) = 0. We call f convenient if f(x, 0)f(0, y) 6= 0.
For any convenient power series f , by N (f) we denote the set of all compact
segments of the Newton polygon of f (see [12], p. 16 for the detailed description
of the Newton polygon). For any S ∈ N (f), by i(S) we denote the inclination
of S defined to be the negative of the reciprocal of its slope.

Proposition 5.1 (Newton–Puiseux Theorem). Let m = ord f(x, 0) and
n = ord f(0, y).
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I. If y1(x), . . . , yn(x) are Puiseux roots of order > 0 of the equation
f(x, y) = 0 with unknown y then { ord y1(x), . . . , ord yn(x) } = {i(S) :
S ∈ N (f) }.

II. If x1(y), . . . , xm(y) are Puiseux roots of order > 0 of the equation
f(x, y) = 0 with unknown x then { ordx1(y), . . . , ordxm(y) } = {i(S)−1 :
S ∈ N (f) }.

Proof. Part I follows from [12], Lemma 2.4.4. Since the Newton polygons
of the polynomials (power series) f(x, y) and f(y, x) are symmetrical with
respect to the diagonal of the first quarter, Part II follows from Part I.

6. Proof of the Main Theorem. To prove Theorem 3.1 we need two
lemmas.

Lemma 6.1. Let ∆(x, t) be a polynomial such that p = ord ∆(x, 0) and
q = ord ∆(0, t) are positive and finite. Let t1(x),. . . , tq(x) be the Puiseux
roots of order > 0 of the equation ∆(x, t) = 0 with unknown t. Let ∆(x, t) =∑

i≥0 ∆i(t)xi. Then

q
max
k=1
{ord tk(x)} =

(
p−1

min
i=0

{
ord ∆i

p− i

})−1

.

Proof. SetN = N (∆). If x1(t),. . . , xp(t) are the Puiseux roots of positive
order of the equation ∆(x, t) = 0 with unknown x, then by Proposition 5.1

q
max
k=1
{ord tk(x)} =

(
p

min
j=1
{ordxi(t)}

)−1

.

Let F ∈ N be the first segment (with a vertex on the vertical axis) of the
Newton polygon of ∆. Then again by Proposition 5.1, we get

p

min
j=1
{ordxi(t)} = i(F ).

It suffices to observe that

i(F ) =
p−1

min
i=0

{
ord ∆i

p− i

}
and the lemma follows.

Lemma 6.2. Suppose that the polynomial f defines an isolated singularity
at the origin and that the line x = 0 is not tangent to the curve f = 0 at
0 ∈ C2. Put n = ord0 f and let z1(x),. . . , zn−1(x) be the Puiseux roots of
order > 0 of the equation ∂f

∂y = 0. Then

L0(f) =
n−1
max
j=1
{ ord f(x, zj(x)) } − 1.
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Proof. According to [1] and [7] (see also [10]), the  Lojasiewicz exponent
is attained along the curve ∂f

∂y = 0, that is L0(f) is the smallest θ > 0 such
that there exist a neighborhood U of 0 ∈ C2 and a constant c > 0 such that
|∇f(z)| ≥ c|z|θ for each z ∈ U lying on the curve ∂f

∂y = 0.
Let rj ≥ 1 be integers such that zj(urj) ∈ C{u} and let pj(u) = (urj, zj(urj ))

for j = 1, . . . , n − 1. Then pj are parameterizations of the branches of the
curve ∂f

∂y = 0 centered at 0 ∈ C2 and it is easy to check (see [10], Lemma 2.1)
that

L0(f) =
n−1
max
j=1

{
ord(∇f ◦ pj)

ord pj

}
.

where ord(∇f ◦ p) = inf
{

ord ∂f
∂x ◦ p, ord ∂f

∂y ◦ p
}

. Differentiating and taking
orders show that ord(∇f ◦ pj) = ord(f ◦ pj)− ord pj and we get

L0(f) =
n−1
max
j=1

{
ord(f ◦ pj)

ord pj
− 1
}

=
n−1
max
j=1
{ ord f(x, zj(x)) } − 1.

Now we can give

Proof of Theorem 3.1. Let tj(x) = f(x, zj(x)) for j = 1, . . . , n − 1.
Then t1(x),. . . , tn−1(x) is the sequence of Puiseux roots of order > 0 of the
equation ∆(x, t) = 0 (cf. proof of Lemma 4.1) and by Lemmas 6.2 and 6.1,
we get L0(f) = maxn−1

j=1 { ord f(x, zj(x)) } − 1 = maxn−1
j=1 { ord tj(x) } − 1 =(

minp−1
i=0

{
ord ∆i
p−i

})−1
− 1.

Remark 6.3. We could prove Lemma 6.2 by using properties of polar
invariants (see [11] and [9]).

7. Discriminant and the  Lojasiewicz exponent at infinity. Let f :
C2 → C be a polynomial with a finite number of critical points. By the
 Lojasiewicz exponent at infinity L∞(f), we mean the largest θ ∈ R such that
there exist a neighborhood V of infinity (i.e., an open subset V of C2 with
compact complement C2 \ V ) and a constant C > 0 such that

|∇f(z)| ≥ C|z|θ for all z ∈ V .

By a result of Hà [5] (see also [6]), L∞(f) > −1 if and only if f has no critical
points at infinity.

Suppose that degy f = deg f (this condition means that the line x = 0 does
not intersect the curve f = 0 at infinity) and consider ∆(x, t) = discy(f(x, y)−
t) = ∆P (t)xP + ∆P−1(t)xP−1 + · · ·+ ∆0(t), ∆P (t) 6= 0.

Then L∞(f) > −1 if and only if ∆P (t) is a constant (see [2, 6] and [10]).
The following global counterpart of our main result holds.
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Theorem 7.1. Suppose that L∞(f) > −1. Then

L∞(f) =
(
P−1
max
i=0

{
deg ∆i

P − i

})−1

− 1

and P = µ(f) + deg f − 1, where µ(f) is the total Milnor number (the sum of
all Milnor numbers of all algebraic curves f(x, y)− t = 0, t ∈ C).

We could prove Theorem 7.1 by modifying the proof of Theorem 3.1. The
formula P = µ(f) + deg f − 1 follows from [6], Theorem 3.3(ii). Note also that
Theorem 7.1 (as well as the formula for L∞(f) in the case of L∞(f) < −1) can
easily be obtained from [10], Theorem 1.2 and Proposition 3.4. The formulas
for L∞(f) in terms of resultant, analogous to Theorem 3.2, are given in [2],
Theorem 9.2.

An application of Theorems 3.1 and 7.1 follows.

Theorem 7.2. Let f : C2 → C be a polynomial with a finite number of
critical points. Then

L0(f) + 1 ≥ (µ(f)− µ0(f) + deg f − ord0f + 1)−1(L∞(f) + 1).

Proof. We may assume that L∞(f)+1 > 0 and that Theorems 3.1 and 7.1
apply to the polynomial f . By Theorem 3.1, (L0(f) + 1)−1 = ord ∆i0

p−i0 for some

i0 ∈ { 0, 1, . . . , p − 1 } and we get (L0(f) + 1)−1 ≤ deg ∆i0
p−i0 = P−i0

p−i0
deg ∆i0
P−i0 ≤

(P − p + 1)(L∞(f) + 1)−1 by Theorem 7.1. This finishes the proof, since
P − p = µ(f)− µ0(f) + deg f − ord0 f .
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