ON LEBESGUE MEASURABILITY OF HENSTOCK-KURZWEIL INTEGRABLE FUNCTIONS

by Arkadiusz Lewandowski

Abstract

Every Henstock-Kurzweil integrable function on a compact interval in \mathbb{R} is Lebesgue measurable. We give a new elementary proof.

1. Introduction. The following result is well-known.

Theorem 1.1. Every function that is Henstock-Kurzweil integrable on a compact interval in \mathbb{R} is also Lebesgue measurable.

Standard proofs of this result use advanced tools, like the Vitali Covering Theorem and the Fundamental Theorem of Calculus (see for example [1, 3]). We shall prove Theorem 1.1 using definition of Henstock-Kurzweil integrability and some basic properties of the Lebesgue measure only. A proof of a more general theorem can be found in $\mathbf{2}$.
2. Some definitions and notations. Let \mathcal{L}^{*} denote the outer Lebesgue measure in \mathbb{R} and let $\mathcal{L}: \mathfrak{L} \longrightarrow[0,+\infty]$ be the Lebesgue measure, where \mathfrak{I} denotes the σ-algebra of Lebesgue measurable sets in \mathbb{R}. We consider a closed interval $P=[a, b] \subset \mathbb{R}, a<b$, and $\mathcal{M}(P, \mathcal{L})$, the collection of all Lebesgue measurable functions $f: P \longrightarrow \mathbb{R}$.

In the rest of this note we use the following notation. If $P=\bigcup_{i=1}^{n} P_{i}$, where $P_{i}=\left[x_{i-1}, x_{i}\right], a=x_{0}<x_{1}<\ldots<x_{n}=b$, then we say that $\left\{P_{i}\right\}_{i=1}^{n}$ is a partition of P. If $\xi_{i} \in P_{i}, i=1, \ldots, n$, then the set of ordered pairs $\left\{\left(P_{i}, \xi_{i}\right): \quad i=1, \ldots, n\right\}=\left(P_{i}, \xi_{i}\right)_{i=1}^{n}$ is called a tagged partition of P. We denote by $\mathcal{T}(P)$ the collection of all tagged partitions of P.

For any function $\delta: P \longrightarrow \mathbb{R}_{>0}$, let

$$
\mathcal{S}(\delta):=\left\{\left(P_{i}, \xi_{i}\right)_{i=1}^{n} \in \mathcal{T}(P):\left|P_{i}\right|:=x_{i}-x_{i-1} \leq \delta\left(\xi_{i}\right), i=1, \ldots, n\right\}
$$

Definition 2.1. We say that a function $f: P \longrightarrow \mathbb{R}$ is Henstock-Kurzweil integrable on P if there exists a number $I \in \mathbb{R}$ such that for every $\varepsilon>0$ there exists a function $\delta: P \longrightarrow \mathbb{R}_{>0}$ such that if $\left(P_{i}, \xi_{i}\right)_{i=1}^{n} \in \mathcal{S}(\delta)$, then

$$
\left|\sum_{i=1}^{n} f\left(\xi_{i}\right)\right| P_{i}|-I| \leq \varepsilon
$$

In this case we say that I is the Henstock-Kurzweil integral of f and put $\int_{P} f:=I$. We denote by $\mathcal{H} \mathcal{K}(P)$ the collection of all Henstock-Kurzweil integrable functions on P.
3. Proof of Theorem 1.1. First we shall show that if the following lemma holds true, then we can prove Theorem 1.1.

Lemma 3.1. If $f \notin \mathcal{M}(P, \mathcal{L})$, then there exist an $A \in \mathfrak{\&}$ such that $0<\mathcal{L}(A)<\infty$ and numbers $\alpha<\beta$ such that $\mathcal{L}^{*}(A \cap\{f \leq \alpha\})=\mathcal{L}^{*}(A \cap$ $\{f \geq \beta\})=\mathcal{L}(A)$.

Indeed, assume for a while that Lemma 3.1 holds.
Proof of Theorem 1.1. Without loss of generality, assume that $P=[0,1]$. Fix an $f \in \mathcal{H} \mathcal{K}(P)$. Suppose that $f \notin \mathcal{M}(P, \mathcal{L})$. Then, by Lemma 3.1. we find an $A \in \mathbb{E}$ such that $0<\mathcal{L}(A)<\infty$, and numbers $\alpha<\beta$ such that $\widetilde{\mathcal{L}^{*}}(A \cap\{f \leq \alpha\})=\mathcal{L}^{*}(A \cap\{f \geq \beta\})=\mathcal{L}(A)$.

Fix an $\bar{\varepsilon}>0$ satisfying $\mathcal{L}(A)>\frac{2 \varepsilon}{\beta-\alpha}+2 \varepsilon$. Let $\delta: P \longrightarrow \mathbb{R}_{>0}$ be such that

$$
\left|\sum_{i=1}^{n} f\left(\xi_{i}\right)\right| P_{i}\left|-\int_{P} f\right| \leq \varepsilon \quad \text { for every } \quad\left(P_{i}, \xi_{i}\right)_{i=1}^{n} \in \mathcal{S}(\delta) .
$$

Define

$$
\begin{aligned}
& A_{m}:=A \cap\{f \leq \alpha\} \cap\left\{x \in P: \frac{1}{m} \leq \frac{\delta(x)}{2}\right\}, \\
& B_{m}:=A \cap\{f \geq \beta\} \cap\left\{x \in P: \frac{1}{m} \leq \frac{\delta(x)}{2}\right\}, \quad m \in \mathbb{N}, m \neq 0
\end{aligned}
$$

Then there exists an $m_{0} \geq 1$ such that $\mathcal{L}^{*}\left(A_{m_{0}}\right) \geq \mathcal{L}(A)-\varepsilon$ and $\mathcal{L}^{*}\left(B_{m_{0}}\right) \geq \mathcal{L}(A)-\varepsilon$.
Indeed, suppose that $\mathcal{L}^{*}\left(A_{m}\right)<\mathcal{L}(A)-\varepsilon$ for every $m \in \mathbb{N}, m \neq 0$. Thanks to the regularity of \mathcal{L}, for every $m \in \mathbb{N}, m \neq 0$, there exists a $C_{m} \in \mathfrak{l}$ such that $\mathcal{L}\left(C_{m}\right)=\mathcal{L}^{*}\left(A_{m}\right)$ and $A_{m} \subset C_{m} \subset A$. We may assume that the sequence $\left\{C_{m}\right\}_{m=1}^{\infty}$ is increasing.

To see this, for given C_{1}, C_{2}, \ldots define $D_{j}^{m}:=C_{m} \backslash C_{j}, m \in \mathbb{N}, m \neq 0$, $j \geq m+1$, and $C_{m}^{\prime}:=C_{m} \backslash \bigcup_{j=m+1}^{\infty} D_{j}^{m}$. Then $\left\{C_{m}^{\prime}\right\}_{m=1}^{\infty}$ is increasing and $A_{m} \subset C_{m}^{\prime} \subset A$, as well as $\mathcal{L}\left(C_{m}^{\prime}\right)=\mathcal{L}\left(C_{m}\right)=\mathcal{L}^{*}\left(A_{m}\right)$.

Finally we obtain $\mathcal{L}\left(\bigcup_{m=1}^{\infty} C_{m}\right) \leq \mathcal{L}(A)-\varepsilon$, but $A \cap\{f \leq \alpha\} \subset \bigcup_{m=1}^{\infty} C_{m} \subset A$, which implies $\mathcal{L}(A)=\mathcal{L}\left(\bigcup_{m=1}^{\infty} C_{m}\right)$; a contradiction. Thus, there exists an $m_{1} \geq 1$ such that $\mathcal{L}^{*}\left(A_{m_{1}}\right) \geq \mathcal{L}(A)-\varepsilon$. Analogously, there exists an $m_{2} \geq 1$ such that $\mathcal{L}^{*}\left(B_{m_{2}}\right) \geq \mathcal{L}(A)-\varepsilon$.
Then $m_{0}:=\max \left\{m_{1}, m_{2}\right\}$.
Define $\delta^{\prime}:=\min \left\{\delta, \frac{1}{2 m_{0}}\right\}$. Fix an $\left(P_{i}, \xi_{i}\right)_{i=1}^{n} \in \mathcal{S}\left(\delta^{\prime}\right)$ and finally let $I_{1}:=\left\{i \in\{1, \ldots, n\}: P_{i} \cap A_{m_{0}}=\varnothing\right\}, \quad I_{2}:=\left\{i \in\{1, \ldots, n\}: P_{i} \cap B_{m_{0}}=\varnothing\right\}$,

$$
I_{3}:=\{1, \ldots, n\} \backslash\left(I_{1} \cup I_{2}\right) .
$$

We see that $\mathcal{L}\left(A \cap \bigcup_{i \in I_{1}} P_{i}\right) \leq \mathcal{L}(A)-\mathcal{L}\left(A \cap\left(\bigcup_{i \in I_{1}} P_{i}\right)^{c}\right) \leq \mathcal{L}(A)-\mathcal{L}^{*}\left(A_{m_{0}}\right) \leq \varepsilon$ and similarly $\mathcal{L}\left(A \cap \bigcup_{i \in I_{2}} P_{i}\right) \leq \varepsilon$. For $i \in I_{3}$, there is $\sum_{i \in I_{3}}\left|P_{i}\right| \geq \mathcal{L}(A)-2 \varepsilon$ and $P_{i} \cap A_{m_{0}} \neq \varnothing, P_{i} \cap B_{m_{0}} \neq \varnothing$, so. Thus, for $i \in I_{3}$, we find $\xi_{i}^{\prime} \in P_{i} \cap A_{m_{0}}$, $\xi_{i}^{\prime \prime} \in P_{i} \cap B_{m_{0}}$. For $i \notin I_{3}$, let $\xi_{i}=\xi_{i}^{\prime}=\xi_{i}^{\prime \prime}$. Consider tagged partitions $\left(P_{i}, \xi_{i}^{\prime}\right)_{i=1}^{n},\left(P_{i}, \xi_{i}^{\prime \prime}\right)_{i=1}^{n}$. We observe that $\left(P_{i}, \xi_{i}^{\prime}\right)_{i=1}^{n},\left(P_{i}, \xi_{i}^{\prime \prime}\right)_{i=1}^{n} \in \mathcal{S}(\delta) \rrbracket^{\mathbb{1}}$. Now, since f is integrable, we get

$$
\left|\sum_{i=1}^{n} f\left(\xi_{i}^{\prime}\right)\right| P_{i}\left|-\sum_{i=1}^{n} f\left(\xi_{i}^{\prime \prime}\right)\right| P_{i}| | \leq 2 \varepsilon .
$$

On the other hand, $\left|\sum_{i=1}^{n} f\left(\xi_{i}^{\prime}\right)\right| P_{i}\left|-\sum_{i=1}^{n} f\left(\xi_{i}^{\prime \prime}\right)\right| P_{i}| |=\sum_{i \in I_{3}}\left(f\left(\xi_{i}^{\prime \prime}\right)-f\left(\xi_{i}^{\prime}\right)\right)\left|P_{i}\right|$ and

$$
\sum_{i \in I_{3}}\left(f\left(\xi_{i}^{\prime \prime}\right)-f\left(\xi_{i}^{\prime}\right)\right)\left|P_{i}\right| \geq(\beta-\alpha) \sum_{i \in I_{3}}\left|P_{i}\right| \geq(\beta-\alpha)(\mathcal{L}(A)-2 \varepsilon)>2 \varepsilon,
$$

which is a contradiction.
To prove Lemma 3.1, suppose for a while that the following lemma holds.
Lemma 3.2. For every $A \notin \mathbb{\&}$ there exists a $B \in \mathbb{\&}$ such that $A \subset B$ and $\mathcal{L}^{*}(A \cap C)=\mathcal{L}(B \cap C)$ for every $C \in \mathbb{E}$ (then we will write $B \in A^{\mathfrak{\ell}}$).

Proof of Lemma 3.1. Step 1. If $B \notin \&$, then there exists a $D \in \mathbb{E}$ such that $0<\mathcal{L}(D)<\infty$ and $\mathcal{L}^{*}(D \cap B)=\mathcal{L}^{*}(D \backslash B)=\mathcal{L}(D)$.

[^0]Indeed, there exists a $C \in \mathfrak{\ell}$ of finite measure such that $B \cap C \notin \ell$. Thanks to Lemma 3.2, we find $A_{1}, A_{2} \in \mathfrak{Z}$ such that $A_{1} \in(B \cap C)^{\mathfrak{Z}}, A_{2} \in(C \backslash B)^{\mathfrak{Z}}$. Then

$$
\begin{equation*}
C \backslash A_{2} \subset C \cap B \subset C \cap A_{1} . \tag{1}
\end{equation*}
$$

Consider $D:=\left(C \cap A_{1}\right) \backslash\left(C \backslash A_{2}\right)=C \cap A_{1} \cap A_{2} \in \mathfrak{\ell}$. Then (1) and the fact that the Lebesgue measure is complete implies $\mathcal{L}(D)>0$. Also, $\mathcal{L}(D)<\infty$, because $D \subset C$. Finally, $\mathcal{L}^{*}(D \cap B)=\mathcal{L}^{*}(D \cap C \cap B)=\mathcal{L}\left(D \cap A_{1}\right)=\mathcal{L}(D)$ and $\mathcal{L}^{*}(D \backslash B)=\mathcal{L}^{*}(D \cap(C \backslash B))=\mathcal{L}\left(D \cap A_{2}\right)=\mathcal{L}(D)$.

Step 2. Choose an $f \notin \mathcal{M}(P, \mathcal{L})$. Then there exists an $\alpha \in \mathbb{R}$ such that $\{f \leq \alpha\} \notin \mathfrak{\ell}$. From Step 1, we find a $D \in \mathfrak{E}$ such that $0<\mathcal{L}(D)<\infty$ and $\mathcal{L}^{*}(D \cap\{f \leq \alpha\})=\mathcal{L}^{*}(D \backslash\{f \leq \alpha\})=\mathcal{L}(D)$. Thus, $D \in(D \cap\{f \leq \alpha\})^{\mathfrak{Z}}$. Consider an increasing family of sets $\mathcal{A}:=\left\{D \cap\left\{f \geq \alpha+\frac{1}{2^{n}}\right\}\right\}_{n \in \mathbb{N}}$. Then $\bigcup \mathcal{A}=D \backslash\{f \leq \alpha\}$. Thus, there exists a $\beta>\alpha$ for which $\mathcal{L}^{*}(D \cap\{f \geq \beta\})>0$. We find a measurable set $A \subset D$ such that $D \cap\{f \geq \beta\} \subset A$ and $\mathcal{L}(A)=\mathcal{L}^{*}(D \cap$ $\{f \geq \beta\})$. Finally, $\mathcal{L}^{*}(A \cap\{f \leq \alpha\})=\mathcal{L}^{*}(A \cap D \cap\{f \leq \alpha\})=\mathcal{L}(A \cap D)=\mathcal{L}(A)$ and $\mathcal{L}^{*}(A \cap\{f \geq \beta\})=\mathcal{L}^{*}(D \cap\{f \geq \beta\})=\mathcal{L}(A)$.

It remains to prove Lemma 3.2.
Proof of Lemma 3.2. Step 1. If $A \subset B \in \mathfrak{Q}$, then $B \in A^{\mathfrak{E}}$ iff for every $D \in \mathfrak{L}$ satisfying $D \subset B \backslash A$ there is $\mathcal{L}(D)=0$.

Assume first that $B \in A^{\mathfrak{Q}}$ and fix a measurable set $D \subset B \backslash A$. Then $\mathcal{L}(D)=\mathcal{L}(B \cap D)=\mathcal{L}^{*}(A \cap D)=0$.

Conversely, assume that for every measurable set $D \subset B \backslash A$ there holds $\mathcal{L}(D)=0$. Suppose, seeking a contradiction, that $B \notin A^{\mathfrak{\ell}}$. Then there exists a $C \in \mathfrak{l}$ such that $\mathcal{L}^{*}(A \cap C)<\mathcal{L}(B \cap C)$. Choose a set $D \in \mathfrak{l}$ satisfying $A \cap C \subset D$ and $\mathcal{L}(D)=\mathcal{L}^{*}(A \cap C)$. Let $E:=(B \cap C) \backslash D$. Then $\mathcal{L}(D)<\mathcal{L}(B \cap C)$, which implies $\mathcal{L}(E)>0$. Obviously, $E \in \mathfrak{\&}$. But we have also $E \subset B$ and $A \cap E \subset(A \cap C) \backslash D=\varnothing$; a contradiction.

Step 2. If $A \subset \bigcup_{n=1}^{\infty} A_{n}$, where $A_{n} \in \mathfrak{Z}$ and $\mathcal{L}\left(A_{n}\right)<\infty, n=1,2, \ldots$, then there exists a set from A^{ℓ}. Indeed, thanks to the regularity of \mathcal{L}, for every $n=1,2, \ldots$, there exists a $B_{n} \in \mathbb{\&}$ such that $A \cap A_{n} \subset B_{n}$ and $\mathcal{L}\left(B_{n}\right)=\mathcal{L}^{*}\left(A \cap A_{n}\right)$. In fact, $B_{n} \in\left(A \cap A_{n}\right)^{\mathfrak{\ell}}$.

To see this, choose a measurable set $D \subset B_{n} \backslash\left(A \cap A_{n}\right)$. Then $\left(A \cap A_{n}\right) \subset$ $B_{n} \backslash D$, hence $\mathcal{L}\left(B_{n} \backslash D\right)=\mathcal{L}\left(B_{n}\right)$. But $\mathcal{L}\left(B_{n}\right)<\infty$, thus $\mathcal{L}(D)=0$ and Step 1 implies $B_{n} \in\left(A \cap A_{n}\right)^{\mathfrak{Z}}$.
Let $B=\bigcup_{n=1}^{\infty} B_{n}$. Obviously, $A \subset B$. Moreover, if we take a measurable set
$D \subset B \backslash A$, then $D \cap B_{n} \subset B_{n} \backslash\left(A \cap A_{n}\right)$. Therefore, from Step 1 there follows $\mathcal{L}\left(D \cap C_{n}\right)=0$, so $D=\bigcup_{n=1}^{\infty} D \cap B_{n}$ is of measure zero and Step 1 completes the proof of Step 2.

Step 3. Every set in \mathbb{R} satisfies the assumption of Step 2.
Theorem 1.1 is proved.
Acknowledgements. I am grateful to Professor Marek Jarnicki for his patience and valuable remarks.

References

1. Bartle R. G., A Modern Theory of Integration, American Mathematical Society, Providence, 2001.
2. Fremlin D. H., Measure theory, Vol. 4: Topological measure spaces, Part II, Torres Fremlin, Colchester, 2006.
3. Pfeffer W. F., The Riemann approach to integration: local geometric theory, Cambridge University Press, Cambridge, 1993.

Received June 6, 2008
Institute of Mathematics
Jagiellonian University
ul. Łojasiewicza 6
30-348 Kraków, Poland
e-mail: arkadiuslewandowski@wp.pl

[^0]: ${ }^{1}$ For example: since $\left|P_{i}\right| \leq \delta^{\prime}\left(\xi_{i}\right)$, then $\left|P_{i}\right| \leq \frac{1}{2 m_{0}}, i=1, \ldots, n$. For $i \in I_{3}$, there is $\frac{1}{m_{0}} \leq \frac{\delta\left(\xi_{i}^{\prime}\right)}{2}$. Therefore, $\left|P_{i}\right| \leq \delta\left(\xi_{i}^{\prime}\right)$ and $\left(P_{i}, \xi_{i}^{\prime}\right)_{i=1}^{n} \in S(\delta)$.

