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SEARCH FOR HOMOGENEOUS POLYNOMIAL INVARIANTS

AND A CUBIC-HOMOGENEOUS MAPPING WITHOUT

QUADRATIC INVARIANTS

by Ricardo dos Santos Freire Jr., Gianluca Gorni and Gaetano

Zampieri

Abstract. The class of the cubic-homogenous mappings with nonzero con-
stant Jacobian determinant is interesting because if it were proved that all
mappings in this class are invertible, then the general Jacobian Conjecture
would follow. A secondary conjecture was that all mappings in this class
had linear invariants. De Bondt has recently put that to rest, with an
example that has no linear invariants. Still, de Bondt’s mapping has qua-
dratic invariants. In this paper we exhibit an example in dimension 11 that
has a cubic invariant but no quadratic (or linear) ones. We also provide
some simple Mathematica code that has supported us in our search, and
that may still be useful in further investigations.

1. Introduction. The celebrated Jacobian Conjecture asserts that all
polynomial mappings of Cn with everywhere invertible Jacobian matrix are
themselves invertible. Starting most notably with Bass, Connell and Wright [1],
people have found some special classes of polynomial mappings with the fol-
lowing property: if we prove that all mappings in the class are invertible,
then the full Jacobian Conjecture is true. One of these classes, introduced
by Yagzhev [5] and, independently, by Bass, Connell and Wright, is made
of the so-called “cubic-homogeneous,” or Yagzhev maps, which are the maps
f : Cn → Cn of the form

(1) f(x) = x− g(x) such that det f ′(x) = 1 for all x ∈ Cn,
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where g : Cn → Cn is a polynomial mapping homogeneous of degree 3. The
important subclass of the cubic-linear maps was introduced by Drużkowski [3].
For more results and conjectures on these classes maps we refer to van den
Essen’s book [4].

What we are concerned here are the invariants. We say that the (noncon-
stant) scalar function k : Cn → C is an invariant for a mapping f : Cn → Cn

if k ◦ f = k. Until recently, all known examples of Yagzhev mappings had
linear invariants, and so it was conjectured that all mappings in the class have
linear invariants too (“linear dependence conjecture”). However, De Bondt in
his 2006 paper [2] exhibited a Yagzhev mapping that has no linear invariants.

Zampieri [6] noticed that Bondt’s example still has quadratic and cubic
invariants, and that these invariants are very helpful in computing the inverse
mapping. So it seems relevant to the Jacobian Conjecture to ask whether there
are Yagzhev mappings that have no quadratic, or cubic polynomial invariants.

This paper gives a first answer in Section 2 by providing an example of
a Yagzhev mapping that has a homogeneous polynomial invariant of degree 3
but has neither linear nor quadratic invariants.

In Section 3 we give the listing of a Mathematica program that we used
extensively in our investigation; it may still be helpful in the future.

2. A cubic-homogeneous mapping without quadratic invariants.
Let us consider the following nilpotent matrix depending on two parameters:

(2) M(s, t) :=

 0 0 s2

0 0 t2

−t2 s2 0

 .

Define g : C11 → C11 in column form as

(3) g(x1, x2, . . . , x11) =



M(x10, x11)

x1

x2

x3


M(x10, x11)

x4

x5

x6


M(x10, x11)

x7

x8

x9


det

x1 x2 x3

x4 x5 x6

x7 x8 x9


x3

10



.
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For example, the first three components of g are the row-by-column product
of the matrix M(x10, x11) with the column of the variables x1, x2, x3. It is
clear that g is a polynomial mapping whose components are homogeneous of
degree 3 in the 11 variables x1, . . . , x11.

The example that we announced is the f : C11 → C11 defined as

(4) f(x) := x− g(x).

This mapping has the following k as a cubic invariant:

(5) k(x) := det

x1 x2 x3

x4 x5 x6

x7 x8 x9


as it is not too hard to check even by hand. Using this fact and the nilpotence
of M , one can compute the inverse of f , which is also a polynomial mapping.
Knowing that f is invertible, we can deduce that its Jacobian determinant
must be 1. Of course, a computer can perform these calculations too. It was
actually the computer that informed us first that there are no linear and no
quadratic homogeneous polynomials which are invariants for f . However, we
also managed to find a proof that can be made by pen and paper, and we are
going to outline it below.

Theorem 1. The function f defined in (4) is a polynomial automorphism
of C11 which admits the cubic homogeneous polynomial invariant k defined
in (5). Moreover, there are no homogeneous polynomial invariants of degree 1
or 2 for f .

Proof. We are only left to prove the absence of linear and quadratic in-
variants. Actually, since the square of a linear invariant is a quadratic invariant,
it is enough to deal with the degree 2. Suppose then that A is an 11× 11 sym-
metric complex matrix, and suppose that the quadratic form K(x) := xT Ax
(where the exponent T means transposition) is an invariant for f . By separat-
ing the homogeneous parts of the identity K ◦ f = K, we deduce that

(6) xT Ag(x) = 0, g(x)T Ag(x) = 0, for all x ∈ C11.

Next, consider the polynomial curve c(t) = (t2
1
, t2

2
, . . . , t2

11
). The first equa-

tion in (6) implies that

(7) c(t)T Ag
(
c(t)
)

= 0, for all t ∈ R.

By means of this condition only, we can prove that A vanishes performing a
boring calculation.

3. A Mathematica program. In our search for examples of polynomial
mappings without low-degree invariants, we used the computer algebra system
Mathematica, by Wolfram Research Inc., version 5.0 or later. The following
routine does the heavy work:
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HomogeneousInvariantSearch [ po lynomia l s L i s t ,
v a r i a b l e s L i s t , d e g r e e O f I n v a r i a n t I n t e g e r ] :=
Module [{n , degreeOfPolynomials , t , a ,

a r r ayOfCoe f f i c i en t sO f Inva r i an t ,
c o e f f i c i e n t s O f I n v a r i a n t ,
invar i ant , invariantComposedWithTheMapping ,
mustVanish ,
der ivat ivesAtZero , so l , r e s u l t } ,

n = Length [ v a r i a b l e s ] ;
degreeOfPolynomials =

Max@Exponent [ Collect [ po lynomia ls / .
Thread [ v a r i a b l e s −> t ∗ v a r i a b l e s ] ,

t ] , t ] ;
a r r a y O f C o e f f i c i e n t s O f I n v a r i a n t =

Array [ a , Evaluate@Table [ n ,
{ degreeOf Invar iant } ] ] / .

a [ i ] / ; Not@OrderedQ [{ i } ] :>
a @@ Sort [{ i } ] ;

c o e f f i c i e n t s O f I n v a r i a n t =
Union@Flatten@

a r r a y O f C o e f f i c i e n t s O f I n v a r i a n t ;
i n v a r i a n t =

Dot [ a r r ayOfCoe f f i c i en t sO f Inva r i an t ,
Sequence @@ Table [ v a r i a b l e s ,

{ degreeOf Invar iant } ] ] ;
invariantComposedWithTheMapping =

Dot [ a r r ayOfCoe f f i c i en t sO f Inva r i an t ,
Sequence @@ Table [ polynomials ,

{ degreeOf Invar iant } ] ] ;
mustVanish =

Expand [ invariantComposedWithTheMapping −
i n v a r i a n t ] ;

de r i va t iv e sAtZero [ 0 ] = {mustVanish } ;
d e r i va t iv e sAtZero [ k ] :=

der iva t iv e sAtZero [ k ] =
Union@Flatten [ Evaluate@Outer [D,

d e r i va t iv e sAtZero [ k − 1 ] ,
v a r i a b l e s ] / .

s o l [ k − 1 ] ] ;
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s o l [ k ] := s o l [ k ] =
Solve [ 0 == der iva t i ve sAtZero [ k ] / .

Thread [ v a r i a b l e s −> 0 ] ,
c o e f f i c i e n t s O f I n v a r i a n t ] ;

r e s u l t =
First@Flatten@Fold [ ReplaceAll ,

i nvar i ant , Table [ s o l [ n ] ,
{n , degreeOfPolynomials ∗

degreeOf Invar iant } ] ] ;
I f [ S imp l i f y@re su l t === 0 , 0 ,

ColumnForm@Complement [
Factor@Together@Flatten@

CoefficientList [ r e s u l t ,
c o e f f i c i e n t s O f I n v a r i a n t ] ,

{ 0 } ] ] ] ;

It takes as arguments the list of the components of the polynomial map, then
the list of the variables, and finally the degree of the desired homogeneous
invariants to be found. In the sequel we are going to apply the routine to the
9-dimensional automorphism, called map9 below, which was considered in [6]
as a slight modification of de Bondt’s 10-dimensional mapping, and to our
11-dimensional mapping in Section 2, called map11 below.

var = {x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 } ;
map9 =

var +
{x1 x7 x9 + x2 x9 ˆ2 ,
−x1 x7ˆ2 − x2 x7 x9 ,
x3 x7 x9 + x4 x9 ˆ2 ,
−x3 x7ˆ2 − x4 x7 x9 ,
x5 x7 x9 + x6 x9 ˆ2 ,
−x5 x7ˆ2 − x6 x7 x9 ,
( x1 x4 − x2 x3 ) x9 ,
( x3 x6 − x4 x5 ) x9 ,
( x1 x4 − x2 x3 ) x8 −

( x3 x6 − x4 x5 ) x7 } ;
HomogeneousInvariantSearch [ map9 , var , 1 ]
HomogeneousInvariantSearch [ map9 , var , 2 ]

The application gives the output

0



12

for the first call of the routine, and

2 ( x2 x3 − x1 x4 )
2 ( x2 x5 − x1 x6 )
2 ( x4 x5 − x3 x6 )

for the second one. Now, let us go to the mapping map11:

var = {x1 , x2 , x3 , x4 , x5 , x6 ,
x7 , x8 , x9 , x10 , x11 } ;

map11 = var −
{x10 ˆ2∗x3 ,

x11 ˆ2∗x3 ,
x10 ˆ2∗x2 − x11 ˆ2∗x1 ,
x10 ˆ2∗x6 ,
x11 ˆ2∗x6 ,
x10 ˆ2∗x5 − x11 ˆ2∗x4 ,
x10 ˆ2∗x9 ,
x11 ˆ2∗x9 ,
x10 ˆ2∗x8 − x11 ˆ2∗x7 ,
Det [{{ x1 , x2 , x3 } ,

{x4 , x5 , x6 } ,
{x7 , x8 , x9 }} ] ,

x10 ˆ3} ;
HomogeneousInvariantSearch [ map11 , var , 1 ]
HomogeneousInvariantSearch [ map11 , var , 2 ]
HomogeneousInvariantSearch [ map11 , var , 3 ]

The application gives the output

0

for the first and second calls of the routine, and

6 ( x3 x5 x7 − x2 x6 x7 −
x3 x4 x8 + x1 x6 x8 +
x2 x4 x9 − x1 x5 x9 )

for the third one.
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