A NOTE ON TRIANGULAR AUTOMORPHISMS

by Marek Karaś

Abstract. In this short note we propose a new very easy and elementary proof of the known fact that every triangular automorphism of \mathbf{k}^n is the exponent of a suitably chosen locally nilpotent \mathbf{k} -derivation on $\mathbf{k}[x_1, \ldots, x_n]$. Two other, different proofs of this fact can be found in [2] and [3].

1. Introduction. Let **k** be a field of characteristic zero and R a **k**-algebra. Recall that a **k**-derivation on R is a **k**-linear map $D: R \to R$ satisfying the Leibniz rule: D(ab) = aD(b) + bD(a) for all $a, b \in R$. A derivation D on a ring R is called *locally nilpotent* if for every $a \in R$ there is an $n \in \mathbb{N}$ such that $D^n(a) = 0$. If $D: R \to R$ is a locally nilpotent **k**-derivation, then the mapping $\exp D: R \to R$ given by the formula $\exp D(a) = \sum_{i=0}^{\infty} \frac{1}{i!} D^i(a)$ is a **k**-automorphism of R (see e.g. [2] or [4]).

Recall also that a **k**-automorphism $F : \mathbf{k}[X_1, \ldots, X_n] \to \mathbf{k}[X_1, \ldots, X_n]$ of the polynomial ring in *n* variables X_1, \ldots, X_n over a field **k** is called triangular if $F(X_i) = X_i + f_i(X_1, \ldots, X_{i-1})$, for $i = 1, \ldots, n$. Since **k** is an infinite field, there is an isomorphism between the group of the ring $\mathbf{k}[X_1, \ldots, X_n]$ and the ring of polynomial automorphism of \mathbf{k}^n , given by the formula $G \mapsto G_* = (G(X_1), \ldots, G(X_n))$.

In this short note we give an easy proof of the following theorem, which has already been proved (see [1] and [3]).

²⁰⁰⁰ Mathematics Subject Classification. 14Rxx, 14R10.

Key words and phrases. Triangular automorphism, locally nilpotent derivation, exponent automorphism.

THEOREM 1.1. For all n > 1 and for all polynomials $f_1 \in \mathbf{k}$, $f_2 \in \mathbf{k}[X_1]$, $f_3 \in \mathbf{k}[X_1, X_2], \ldots, f_n \in \mathbf{k}[X_1, \ldots, X_{n-1}]$ there exists a locally nilpotent **k**derivation $D : \mathbf{k}[X_1, \ldots, X_n] \to \mathbf{k}[X_1, \ldots, X_n]$ such that

$$\left(\exp D\right)_*: \left\{ \begin{array}{c} x_1\\ x_2\\ \vdots\\ x_n \end{array} \right\} \mapsto \left\{ \begin{array}{c} x_1+f_1\\ x_2+f_2(x_1)\\ \vdots\\ x_n+f_n(x_1,\ldots,x_{n-1}) \end{array} \right\}.$$

The proof of the above theorem can also be found in [1] and [3]. The proof given in [1] uses the Campbell-Hausdorff formula for $\exp D_1 \circ \exp D_2$, and the one given in [3] uses the notion of the logarithm of locally nilpotent map $E : \mathbf{k}^n \to \mathbf{k}^n$ (more precisely, the logarithm of $\mathrm{id}_{\mathbf{k}^n} + E$). Our proof is completely different and perhaps easier.

An easy consequence of Theorem 1.1, also already known, is the following

COROLLARY 1.2. If $F: \mathbf{k}^n \to \mathbf{k}^n$ is a polynomial automorphism of the form

$$F: \left\{ \begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right\} \mapsto \left\{ \begin{array}{c} a_1 x_1 + f_1 \\ a_2 x_2 + f_2(x_1) \\ \vdots \\ a_n x_n + f_n(x_1, \dots, x_{n-1}) \end{array} \right\}$$

where $a_1, \ldots, a_n \in \mathbf{k} \setminus \{0\}$, then there exists a locally nilpotent derivation D: $\mathbf{k}[x_1, \ldots, x_n] \to \mathbf{k}[x_1, \ldots, x_n]$ such that $F = (\exp D)_* \circ L$, where $L : \mathbf{k}^n \to \mathbf{k}^n$ is linear with the diagonal matrix determined by a_1, \ldots, a_n .

PROOF. $F \circ L^{-1}$ is of the triangular form. Following Theorem 1.1 there exists a locally nilpotent k-derivation $D : \mathbf{k}[X_1, \ldots, X_n] \to \mathbf{k}[X_1, \ldots, X_n]$ such that $F \circ L^{-1} = (\exp D)_*$.

2. **Proof.** We start with the following lemma

LEMMA 2.1. Let R be a \mathbf{k} -algebra and $D : R \to R$ be a locally nilpotent \mathbf{k} -derivation such that for every $g \in R$ there is $\tilde{g} \in R$ such that $g = \sum_{i=1}^{\infty} \frac{1}{i!} D^{i-1}(\tilde{g})$. For an $f \in R$ define the \mathbf{k} -derivation $\tilde{D} : R[t] \to R[t]$ on the polynomial ring in one variable t over R such that $\tilde{D}|_R = D$ and $\tilde{D}(t) = \tilde{f}$, where $\tilde{f} \in R$ is such that $f = \sum_{i=1}^{\infty} \frac{1}{i!} D^{i-1}(\tilde{f})$. Then

(1) \widetilde{D} is locally nilpotent,

(2) $\exp \widetilde{D}|_R = \exp D$ and $\left(\exp \widetilde{D}\right)(t) = t + f$,

(3) for every $h \in R[t]$ there is $\tilde{h} \in R[t]$ such that $h = \sum_{i=1}^{\infty} \frac{1}{i!} \tilde{D}^{i-1}(\tilde{h})$.

70

PROOF. Assertions that \widetilde{D} is locally nilpotent and $\exp \widetilde{D}|_R = \exp D$ are obvious. Moreover,

$$\left(\exp \widetilde{D} \right)(t) = \sum_{i=0}^{\infty} \frac{1}{i!} \widetilde{D}^i(t) = \widetilde{D}^0(t) + \sum_{i=1}^{\infty} \frac{1}{i!} D^{i-1}(\widetilde{D}(t))$$
$$= t + \sum_{i=1}^{\infty} \frac{1}{i!} D^{i-1}(\widetilde{f}) = t + f.$$

Statement (3) will be proved by induction with respect to $k = \deg_t g$. If k = 0, i.e., $g \in R$, then, by the assumptions, there exists an element $\tilde{g} \in R \subset R[t]$ such that $g = \sum_{i=1}^{\infty} \frac{1}{i!} D^{i-1}(\tilde{g}) = \sum_{i=1}^{\infty} \frac{1}{i!} \widetilde{D}^{i-1}(\tilde{g})$. Now assume that (3) is true for $k \ge 0$ and consider a polynomial:

$$g = a_{k+1}t^{k+1} + a_kt^k + \ldots + a_0,$$

where $a_{k+1}, a_k, ..., a_0 \in R$.

By the assumptions, there is an element $b_{k+1} \in R$ such that $a_{k+1} = \sum_{i=1}^{\infty} \frac{1}{i!} D^{i-1}(b_{k+1})$. Denote $\tilde{g}_1 = b_{k+1} t^{k+1}$, $g_1 = \sum_{i=1}^{\infty} \frac{1}{i!} \tilde{D}^{i-1}(\tilde{g}_1)$ and observe that

$$g_1 = \left[\sum_{i=1}^{\infty} \frac{1}{i!} D^{i-1}(b_{k+1})\right] t^{k+1} + \ldots = a_{k+1} t^{k+1} + \ldots$$

Indeed, for all $l \ge 0$ there is:

$$\begin{split} \widetilde{D}^{l}(b_{k+1}t^{k+1}) &= \sum_{i=0}^{l} \binom{l}{i} \widetilde{D}^{i}(b_{k+1}) \widetilde{D}^{l-i}(t^{k+1}) = \sum_{i=0}^{l} \binom{l}{i} D^{i}(b_{k+1}) \widetilde{D}^{l-i}(t^{k+1}) \\ &= D^{l}(b_{k+1})t^{k+1} + \sum_{i=0}^{l-1} \binom{l}{i} D^{i}(b_{k+1}) \widetilde{D}^{l-i}(t^{k+1}). \end{split}$$

Since $\deg_t D(h) < \deg_t h$ for each $h \in R[t] \setminus R$, we see that

$$\deg_t \tilde{D}^j(t^{k+1}) < k+1$$

for j > 0.

Thus $\deg_t(g-g_1) < \deg_t g$, and, by the induction assumption, there exists $\widetilde{g}_2 \in R[t]$ such that:

$$g - g_1 = \sum_{i=1}^{\infty} \frac{1}{i!} \widetilde{D}^{i-1}(\widetilde{g}_2).$$

Putting $\tilde{g} = \tilde{g}_1 + \tilde{g}_2$ we obtain

$$\sum_{i=1}^{\infty} \frac{1}{i!} \widetilde{D}_2^{i-1}(\widetilde{g}) = \sum_{i=1}^{\infty} \frac{1}{i!} \widetilde{D}_2^{i-1}(\widetilde{g}_1) + \sum_{i=1}^{\infty} \frac{1}{i!} \widetilde{D}_2^{i-1}(\widetilde{g}_2) = g_1 + (g - g_1) = g.$$

PROOF OF THEOREM 1.1. Consider the **k**-derivation $D_0 = 0$ on **k**. Since $D_0^j(h) = 0$ for all $h \in \mathbf{k}$ and j > 0, then $\exp D_0 = \mathrm{id}_{\mathbf{k}}$ and:

$$\sum_{i=1}^{\infty} \frac{1}{i!} D_1^{i-1}(h) = h$$

for all $h \in \mathbf{k}$.

Applying Lemma 2.1 for $R = \mathbf{k}, D = D_0$ and $f = f_1$, we obtain the locally nilpotent **k**-derivation $D_1 : \mathbf{k}[X_1] \to \mathbf{k}[X_1]$ such that

$$(\exp D_1)_* : \{ x_1 \} \mapsto \{ x_1 + f_1 \}$$

and that for every $h \in \mathbf{k}[X_1]$ there is $\tilde{h} \in \mathbf{k}[X_1]$ such that $h = \sum_{i=1}^{\infty} \frac{1}{i!} D_1^{i-1}(\tilde{h})$. Thus we can apply Lemma 2.1 for $R = \mathbf{k}[X_1], D = D_1$ and $f = f_2$. In this way we obtain the locally nilpotent **k**-derivation $D_2 : \mathbf{k}[X_1, X_2] \to \mathbf{k}[X_1, X_2]$ such that

$$(\exp D_2)_*: \left\{ \begin{array}{c} x_1 \\ x_2 \end{array} \right\} \mapsto \left\{ \begin{array}{c} x_1 + f_1 \\ x_2 + f_2(x_1) \end{array} \right\}$$

and that for every $h \in \mathbf{k}[X_1, X_2]$ there is $\tilde{h} \in \mathbf{k}[X_1, X_2]$ with $h = \sum_{i=1}^{\infty} \frac{1}{i!} D_2^{i-1}(\tilde{h})$. Now it is easy to see that applying Lemma 2.1 *n* times, we complete the proof of Theorem 1.1

References

- 1. Drensky V., Yu J.-T., Exponential automorphism of polynomial algebras, Comm. Algebra, **26** (1998), 2977-2985.
- 2. van den Essen A., Polynomial automorphism and the Jacobian Conjecture, Birkhäuser Verlag, Basel–Boston–Berlin, 2000.
- 3. Freudenburg G., Algebraic theory of locally nilpotent derivation, Springer-Verlag, Berlin-Heidelberg, 2006.
- 4. Nowicki A., Polynomial derivations and their rings of constants, Univ. of Toruń, Toruń, 1994.

Received July 15, 2008

Institute of Mathematics Jagiellonian University ul. Lojasiewicza 6 30-348 Kraków, Poland e-mail: Marek.Karas@im.uj.edu.pl

72