A NOTE ON TRIANGULAR AUTOMORPHISMS

by Marek Karaś

Abstract

In this short note we propose a new very easy and elementary proof of the known fact that every triangular automorphism of \mathbf{k}^{n} is the exponent of a suitably chosen locally nilpotent \mathbf{k}-derivation on $\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$. Two other, different proofs of this fact can be found in [2] and [3].

1. Introduction. Let \mathbf{k} be a field of characteristic zero and R a k-algebra. Recall that a k-derivation on R is a k-linear map $D: R \rightarrow R$ satisfying the Leibniz rule: $D(a b)=a D(b)+b D(a)$ for all $a, b \in R$. A derivation D on a ring R is called locally nilpotent if for every $a \in R$ there is an $n \in \mathbb{N}$ such that $D^{n}(a)=0$. If $D: R \rightarrow R$ is a locally nilpotent \mathbf{k}-derivation, then the mapping $\exp D: R \rightarrow R$ given by the formula $\exp D(a)=\sum_{i=0}^{\infty} \frac{1}{i!} D^{i}(a)$ is a \mathbf{k}-automorphism of R (see e.g. [2] or [4]).

Recall also that a k-automorphism $F: \mathbf{k}\left[X_{1}, \ldots, X_{n}\right] \rightarrow \mathbf{k}\left[X_{1}, \ldots, X_{n}\right]$ of the polynomial ring in n variables X_{1}, \ldots, X_{n} over a field \mathbf{k} is called triangular if $F\left(X_{i}\right)=X_{i}+f_{i}\left(X_{1}, \ldots, X_{i-1}\right)$, for $i=1, \ldots, n$. Since \mathbf{k} is an infinite field, there is an isomorphism between the group of the ring $\mathbf{k}\left[X_{1}, \ldots, X_{n}\right]$ and the ring of polynomial automorphism of \mathbf{k}^{n}, given by the formula $G \mapsto G_{*}=$ $\left(G\left(X_{1}\right), \ldots, G\left(X_{n}\right)\right)$.

In this short note we give an easy proof of the following theorem, which has already been proved (see [1] and [3]).

[^0]Theorem 1.1. For all $n>1$ and for all polynomials $f_{1} \in \mathbf{k}, f_{2} \in \mathbf{k}\left[X_{1}\right]$, $f_{3} \in \mathbf{k}\left[X_{1}, X_{2}\right], \ldots, f_{n} \in \mathbf{k}\left[X_{1}, \ldots, X_{n-1}\right]$ there exists a locally nilpotent \mathbf{k} derivation $D: \mathbf{k}\left[X_{1}, \ldots, X_{n}\right] \rightarrow \mathbf{k}\left[X_{1}, \ldots, X_{n}\right]$ such that

$$
(\exp D)_{*}:\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right\} \mapsto\left\{\begin{array}{l}
x_{1}+f_{1} \\
x_{2}+f_{2}\left(x_{1}\right) \\
\vdots \\
x_{n}+f_{n}\left(x_{1}, \ldots, x_{n-1}\right)
\end{array}\right\}
$$

The proof of the above theorem can also be found in [1] and [3]. The proof given in [1] uses the Campbell-Hausdorff formula for $\exp D_{1} \circ \exp D_{2}$, and the one given in [3] uses the notion of the logarithm of locally nilpotent $\operatorname{map} E: \mathbf{k}^{n} \rightarrow \mathbf{k}^{n}$ (more precisely, the logarithm of $\mathrm{id}_{\mathbf{k}^{n}}+E$). Our proof is completely different and perhaps easier.

An easy consequence of Theorem 1.1, also already known, is the following
Corollary 1.2. If $F: \mathbf{k}^{n} \rightarrow \mathbf{k}^{n}$ is a polynomial automorphism of the form

$$
F:\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right\} \mapsto\left\{\begin{array}{l}
a_{1} x_{1}+f_{1} \\
a_{2} x_{2}+f_{2}\left(x_{1}\right) \\
\vdots \\
a_{n} x_{n}+f_{n}\left(x_{1}, \ldots, x_{n-1}\right)
\end{array}\right\}
$$

where $a_{1}, \ldots, a_{n} \in \mathbf{k} \backslash\{0\}$, then there exists a locally nilpotent derivation D : $\mathbf{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ such that $F=(\exp D)_{*} \circ L$, where $L: \mathbf{k}^{n} \rightarrow \mathbf{k}^{n}$ is linear with the diagonal matrix determined by a_{1}, \ldots, a_{n}.

Proof. $F \circ L^{-1}$ is of the triangular form. Following Theorem 1.1 there exists a locally nilpotent k-derivation $D: \mathbf{k}\left[X_{1}, \ldots, X_{n}\right] \rightarrow \mathbf{k}\left[X_{1}, \ldots, X_{n}\right]$ such that $F \circ L^{-1}=(\exp D)_{*}$.
2. Proof. We start with the following lemma

Lemma 2.1. Let R be a k-algebra and $D: R \rightarrow R$ be a locally nilpotent \mathbf{k}-derivation such that for every $g \in R$ there is $\widetilde{g} \in R$ such that $g=$ $\sum_{i=1}^{\infty} \frac{1}{i!} D^{i-1}(\widetilde{g})$. For an $f \in R$ define the \mathbf{k}-derivation $\widetilde{D}: R[t] \rightarrow R[t]$ on the polynomial ring in one variable t over R such that $\left.\widetilde{D}\right|_{R}=D$ and $\widetilde{D}(t)=\widetilde{f}$, where $\widetilde{f} \in R$ is such that $f=\sum_{i=1}^{\infty} \frac{1}{i!} D^{i-1}(\widetilde{f})$. Then
(1) \widetilde{D} is locally nilpotent,
(2) $\left.\exp \widetilde{D}\right|_{R}=\exp D$ and $(\exp \widetilde{D})(t)=t+f$,
(3) for every $h \in R[t]$ there is $\widetilde{h} \in R[t]$ such that $h=\sum_{i=1}^{\infty} \frac{1}{i!} \widetilde{D}^{i-1}(\widetilde{h})$.

Proof. Assertions that \widetilde{D} is locally nilpotent and $\left.\exp \widetilde{D}\right|_{R}=\exp D$ are obvious. Moreover,

$$
\begin{aligned}
(\exp \widetilde{D})(t) & =\sum_{i=0}^{\infty} \frac{1}{i!} \widetilde{D}^{i}(t)=\widetilde{D}^{0}(t)+\sum_{i=1}^{\infty} \frac{1}{i!} D^{i-1}(\widetilde{D}(t)) \\
& =t+\sum_{i=1}^{\infty} \frac{1}{i!} D^{i-1}(\widetilde{f})=t+f
\end{aligned}
$$

Statement (3) will be proved by induction with respect to $k=\operatorname{deg}_{t} g$. If $k=0$, i.e., $g \in R$, then, by the assumptions, there exists an element $\widetilde{g} \in R \subset$ $R[t]$ such that $g=\sum_{i=1}^{\infty} \frac{1}{i!} D^{i-1}(\widetilde{g})=\sum_{i=1}^{\infty} \frac{1}{i!} \widetilde{D}^{i-1}(\widetilde{g})$. Now assume that (3) is true for $k \geq 0$ and consider a polynomial:

$$
g=a_{k+1} t^{k+1}+a_{k} t^{k}+\ldots+a_{0}
$$

where $a_{k+1}, a_{k}, \ldots, a_{0} \in R$.
By the assumptions, there is an element $b_{k+1} \in R$ such that $a_{k+1}=$ $\sum_{i=1}^{\infty} \frac{1}{i!} D^{i-1}\left(b_{k+1}\right)$. Denote $\widetilde{g}_{1}=b_{k+1} t^{k+1}, g_{1}=\sum_{i=1}^{\infty} \frac{1}{i!} \widetilde{D}^{i-1}\left(\widetilde{g}_{1}\right)$ and observe that

$$
g_{1}=\left[\sum_{i=1}^{\infty} \frac{1}{i!} D^{i-1}\left(b_{k+1}\right)\right] t^{k+1}+\ldots=a_{k+1} t^{k+1}+\ldots
$$

Indeed, for all $l \geq 0$ there is:

$$
\begin{aligned}
\widetilde{D}^{l}\left(b_{k+1} t^{k+1}\right) & =\sum_{i=0}^{l}\binom{l}{i} \widetilde{D}^{i}\left(b_{k+1}\right) \widetilde{D}^{l-i}\left(t^{k+1}\right)=\sum_{i=0}^{l}\binom{l}{i} D^{i}\left(b_{k+1}\right) \widetilde{D}^{l-i}\left(t^{k+1}\right) \\
& =D^{l}\left(b_{k+1}\right) t^{k+1}+\sum_{i=0}^{l-1}\binom{l}{i} D^{i}\left(b_{k+1}\right) \widetilde{D}^{l-i}\left(t^{k+1}\right)
\end{aligned}
$$

Since $\operatorname{deg}_{t} \widetilde{D}(h)<\operatorname{deg}_{t} h$ for each $h \in R[t] \backslash R$, we see that

$$
\operatorname{deg}_{t} \widetilde{D}^{j}\left(t^{k+1}\right)<k+1
$$

for $j>0$.
Thus $\operatorname{deg}_{t}\left(g-g_{1}\right)<\operatorname{deg}_{t} g$, and, by the induction assumption, there exists $\widetilde{g}_{2} \in R[t]$ such that:

$$
g-g_{1}=\sum_{i=1}^{\infty} \frac{1}{i!} \widetilde{D}^{i-1}\left(\widetilde{g}_{2}\right)
$$

Putting $\widetilde{g}=\widetilde{g}_{1}+\widetilde{g}_{2}$ we obtain

$$
\sum_{i=1}^{\infty} \frac{1}{i!} \widetilde{D}_{2}^{i-1}(\widetilde{g})=\sum_{i=1}^{\infty} \frac{1}{i!} \widetilde{D}_{2}^{i-1}\left(\widetilde{g}_{1}\right)+\sum_{i=1}^{\infty} \frac{1}{i!} \widetilde{D}_{2}^{i-1}\left(\widetilde{g}_{2}\right)=g_{1}+\left(g-g_{1}\right)=g
$$

Proof of Theorem 1.1. Consider the \mathbf{k}-derivation $D_{0}=0$ on \mathbf{k}. Since $D_{0}^{j}(h)=0$ for all $h \in \mathbf{k}$ and $j>0$, then $\exp D_{0}=\mathrm{id}_{\mathbf{k}}$ and:

$$
\sum_{i=1}^{\infty} \frac{1}{i!} D_{1}^{i-1}(h)=h
$$

for all $h \in \mathbf{k}$.
Applying Lemma 2.1 for $R=\mathbf{k}, D=D_{0}$ and $f=f_{1}$, we obtain the locally nilpotent \mathbf{k}-derivation $D_{1}: \mathbf{k}\left[X_{1}\right] \rightarrow \mathbf{k}\left[X_{1}\right]$ such that

$$
\left(\exp D_{1}\right)_{*}:\left\{x_{1}\right\} \mapsto\left\{x_{1}+f_{1}\right\}
$$

and that for every $h \in \mathbf{k}\left[X_{1}\right]$ there is $\widetilde{h} \in \mathbf{k}\left[X_{1}\right]$ such that $h=\sum_{i=1}^{\infty} \frac{1}{i!} D_{1}^{i-1}(\widetilde{h})$. Thus we can apply Lemma 2.1 for $R=\mathbf{k}\left[X_{1}\right], D=D_{1}$ and $f=f_{2}$. In this way we obtain the locally nilpotent \mathbf{k}-derivation $D_{2}: \mathbf{k}\left[X_{1}, X_{2}\right] \rightarrow \mathbf{k}\left[X_{1}, X_{2}\right]$ such that

$$
\left(\exp D_{2}\right)_{*}:\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\} \mapsto\left\{\begin{array}{l}
x_{1}+f_{1} \\
x_{2}+f_{2}\left(x_{1}\right)
\end{array}\right\}
$$

and that for every $h \in \mathbf{k}\left[X_{1}, X_{2}\right]$ there is $\widetilde{h} \in \mathbf{k}\left[X_{1}, X_{2}\right]$ with $h=\sum_{i=1}^{\infty} \frac{1}{i!} D_{2}^{i-1}(\widetilde{h})$.
Now it is easy to see that applying Lemma $2.1 n$ times, we complete the proof of Theorem 1.1

References

1. Drensky V., Yu J.-T., Exponential automorphism of polynomial algebras, Comm. Algebra, 26 (1998), 2977-2985.
2. van den Essen A., Polynomial automorphism and the Jacobian Conjecture, Birkhäuser Verlag, Basel-Boston-Berlin, 2000.
3. Freudenburg G., Algebraic theory of locally nilpotent derivation, Springer-Verlag, BerlinHeidelberg, 2006.
4. Nowicki A., Polynomial derivations and their rings of constants, Univ. of Toruń, Toruń, 1994.

Received July 15, 2008
Institute of Mathematics
Jagiellonian University
ul. Łojasiewicza 6
30-348 Kraków, Poland
e-mail: Marek.Karas@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification. 14Rxx, 14R10.
 Key words and phrases. Triangular automorphism, locally nilpotent derivation, exponent automorphism.

