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A NOTE ON TRIANGULAR AUTOMORPHISMS

by Marek Karaś

Abstract. In this short note we propose a new very easy and elementary
proof of the known fact that every triangular automorphism of kn is the ex-
ponent of a suitably chosen locally nilpotent k-derivation on k[x1, . . . , xn].
Two other, different proofs of this fact can be found in [2] and [3].

1. Introduction. Let k be a field of characteristic zero and R a k-algebra.
Recall that a k-derivation on R is a k-linear map D : R → R satisfying the
Leibniz rule: D(ab) = aD(b) + bD(a) for all a, b ∈ R. A derivation D on a
ring R is called locally nilpotent if for every a ∈ R there is an n ∈ N such
that Dn(a) = 0. If D : R → R is a locally nilpotent k-derivation, then the
mapping exp D : R → R given by the formula exp D(a) =

∑∞
i=0

1
i!D

i(a) is a
k-automorphism of R (see e.g. [2] or [4]).

Recall also that a k-automorphism F : k[X1, . . . , Xn] → k[X1, . . . , Xn] of
the polynomial ring in n variables X1, . . . , Xn over a field k is called triangular
if F (Xi) = Xi + fi(X1, . . . , Xi−1), for i = 1, . . . , n. Since k is an infinite field,
there is an isomorphism between the group of the ring k[X1, . . . , Xn] and the
ring of polynomial automorphism of kn, given by the formula G 7→ G∗ =
(G(X1), . . . , G(Xn)).

In this short note we give an easy proof of the following theorem, which
has already been proved (see [1] and [3]).
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Theorem 1.1. For all n > 1 and for all polynomials f1 ∈ k, f2 ∈ k[X1],
f3 ∈ k[X1, X2], . . . , fn ∈ k[X1, . . . , Xn−1] there exists a locally nilpotent k-
derivation D : k[X1, . . . , Xn]→ k[X1, . . . , Xn] such that

(exp D)∗ :


x1

x2
...
xn

 7→


x1 + f1

x2 + f2(x1)
...
xn + fn(x1, . . . , xn−1)

 .

The proof of the above theorem can also be found in [1] and [3]. The
proof given in [1] uses the Campbell–Hausdorff formula for exp D1 ◦ exp D2,
and the one given in [3] uses the notion of the logarithm of locally nilpotent
map E : kn → kn (more precisely, the logarithm of idkn + E). Our proof is
completely different and perhaps easier.

An easy consequence of Theorem 1.1, also already known, is the following

Corollary 1.2. If F : kn → kn is a polynomial automorphism of the
form

F :


x1

x2
...
xn

 7→


a1x1 + f1

a2x2 + f2(x1)
...
anxn + fn(x1, . . . , xn−1)

 ,

where a1, . . . , an ∈ k\{0}, then there exists a locally nilpotent derivation D :
k[x1, . . . , xn] → k[x1, . . . , xn] such that F = (exp D)∗ ◦ L, where L : kn → kn

is linear with the diagonal matrix determined by a1, . . . , an.

Proof. F ◦ L−1 is of the triangular form. Following Theorem 1.1 there
exists a locally nilpotent k-derivation D : k[X1, . . . , Xn]→ k[X1, . . . , Xn] such
that F ◦ L−1 = (exp D)∗ .

2. Proof. We start with the following lemma

Lemma 2.1. Let R be a k-algebra and D : R → R be a locally nilpo-
tent k-derivation such that for every g ∈ R there is g̃ ∈ R such that g =∑∞

i=1
1
i!D

i−1(g̃). For an f ∈ R define the k-derivation D̃ : R[t] → R[t] on the
polynomial ring in one variable t over R such that D̃|R = D and D̃(t) = f̃ ,

where f̃ ∈ R is such that f =
∑∞

i=1
1
i!D

i−1(f̃). Then
(1) D̃ is locally nilpotent,
(2) exp D̃|R = exp D and

(
exp D̃

)
(t) = t + f,

(3) for every h ∈ R[t] there is h̃ ∈ R[t] such that h =
∑∞

i=1
1
i!D̃

i−1(h̃).
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Proof. Assertions that D̃ is locally nilpotent and exp D̃|R = exp D are
obvious. Moreover,(

exp D̃
)

(t) =
∞∑
i=0

1
i!

D̃i(t) = D̃0(t) +
∞∑
i=1

1
i!

Di−1(D̃(t))

= t +
∞∑
i=1

1
i!

Di−1(f̃) = t + f.

Statement (3) will be proved by induction with respect to k = degt g. If
k = 0, i.e., g ∈ R, then, by the assumptions, there exists an element g̃ ∈ R ⊂
R[t] such that g =

∑∞
i=1

1
i!D

i−1(g̃) =
∑∞

i=1
1
i!D̃

i−1(g̃). Now assume that (3) is
true for k ≥ 0 and consider a polynomial:

g = ak+1t
k+1 + akt

k + . . . + a0,

where ak+1, ak, . . . , a0 ∈ R.
By the assumptions, there is an element bk+1 ∈ R such that ak+1 =∑∞

i=1
1
i!D

i−1(bk+1). Denote g̃1 = bk+1t
k+1, g1 =

∑∞
i=1

1
i!D̃

i−1(g̃1) and observe
that

g1 =

[ ∞∑
i=1

1
i!

Di−1(bk+1)

]
tk+1 + . . . = ak+1t

k+1 + . . .

Indeed, for all l ≥ 0 there is:

D̃l(bk+1t
k+1) =

l∑
i=0

(
l

i

)
D̃i(bk+1)D̃l−i(tk+1) =

l∑
i=0

(
l

i

)
Di(bk+1)D̃l−i(tk+1)

= Dl(bk+1)tk+1 +
l−1∑
i=0

(
l

i

)
Di(bk+1)D̃l−i(tk+1).

Since degt D̃(h) < degt h for each h ∈ R[t]\R, we see that

degt D̃j(tk+1) < k + 1

for j > 0.
Thus degt(g− g1) < degt g, and, by the induction assumption, there exists

g̃2 ∈ R[t] such that:

g − g1 =
∞∑
i=1

1
i!

D̃i−1(g̃2).

Putting g̃ = g̃1 + g̃2 we obtain
∞∑
i=1

1
i!

D̃i−1
2 (g̃) =

∞∑
i=1

1
i!

D̃i−1
2 (g̃1) +

∞∑
i=1

1
i!

D̃i−1
2 (g̃2) = g1 + (g − g1) = g.
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Proof of Theorem 1.1. Consider the k-derivation D0 = 0 on k. Since
Dj

0(h) = 0 for all h ∈ k and j > 0, then exp D0 = idk and:
∞∑
i=1

1
i!

Di−1
1 (h) = h

for all h ∈ k.
Applying Lemma 2.1 for R = k, D = D0 and f = f1, we obtain the locally

nilpotent k-derivation D1 : k[X1]→ k[X1] such that

(exp D1)∗ :
{

x1

}
7→
{

x1 + f1

}
and that for every h ∈ k[X1] there is h̃ ∈ k[X1] such that h =

∑∞
i=1

1
i!D

i−1
1 (h̃).

Thus we can apply Lemma 2.1 for R = k[X1], D = D1 and f = f2. In this way
we obtain the locally nilpotent k-derivation D2 : k[X1, X2] → k[X1, X2] such
that

(exp D2)∗ :
{

x1

x2

}
7→
{

x1 + f1

x2 + f2(x1)

}
and that for every h ∈k[X1, X2] there is h̃ ∈k[X1, X2] with h =

∑∞
i=1

1
i!D

i−1
2 (h̃).

Now it is easy to see that applying Lemma 2.1 n times, we complete the
proof of Theorem 1.1

References

1. Drensky V., Yu J.-T., Exponential automorphism of polynomial algebras, Comm. Algebra,
26 (1998), 2977–2985.

2. van den Essen A., Polynomial automorphism and the Jacobian Conjecture, Birkhäuser
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