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DEPENDENCE OF A WEAK SOLUTION OF THE FIRST

ORDER DIFFERENTIAL EQUATION ON A PARAMETER

by Mariusz Jużyniec

Abstract. The purpose of this paper is to present some theorems on dif-
ferentiability with respect to h of a weak solution of the evolution equation
u̇h(t) = Ahuh(t) + fh(t), uh(0) = u0

h, with a parameter h ∈ [a, b] ⊂ R and
with a variable operator Ah.

Introduction. We consider the abstract first-order initial value problem

d

dt
u(t) = Au(t) + f(t) for t ∈ (0, τ ],(1)

u(0) = x,(2)

where A is a densely defined, closed linear operator on a Banach space X,
x ∈ X and f ∈ L1(0, τ ;X) (see [2, III.3.1], [3, Appendix C5]). For a Banach
space X, X∗, B(X), C(X) will denote its dual space, the set of bounded
li-near operators and the set of closed linear operators from X into itself,
respectively. Let 〈·, ·〉 : X×X∗ −→ K be the duality pairing. For an operator
A, D(A), %(A), R(λ,A) and A∗ will denote its domain, resolvent set, resolvent
and adjoint, respectively.

Definition 1. (see [1]) A function u ∈ C([0, τ ]; X) is a weak solution
of (1) on [0, τ ] if and only if for every v ∈ D(A∗) the function 〈u(t), v〉 is
absolutely continuous on [0, τ ] and

d

dt
〈u(t), v〉 = 〈u(t), A∗v〉+ 〈f(t), v〉 a.e. on [0, τ ].

J. M. Ball in [1] proved that

Theorem 1. For each x ∈ X, there exists a unique weak solution u of
problem (1)–(2) if and only if A is the infinitesimal generator of a C0 semigroup
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{T (t)}t≥0 of bounded linear operators on X, and in this case u is given by

(3) u(t) = T (t)x+
∫ t

0
T (t− s)f(s)ds t ∈ [0, τ ].

The main object of this paper is to present some theorems on differentia-
bility (with respect to a parameter h ∈ [a, b]) of the weak solution of the first
order initial value problem with A, D(A), f and the initial value dependent
on h. Most of the results concerning the dependence of the weak solution of
the problem (1)–(2) on a parameter have been obtained under the assumption
that the operators {Ah}h∈[a,b], of a given family of linear, closed operators

Ah : X ⊃ Dh −→ X

with domains Dh ⊂ X, have domains independent of h (see, e.g., [5, 6]).
In this paper we assume that D(Ah) = Dh depends on h and for each h ∈
[a, b] Dh = X (Theorem 9). One of possible ways of handling some problems
concerning operators {Ah}h∈[a,b] with domains Dh ⊂ X depending on h is to
find a sufficiently regular family {Bh}h∈[a,b] of automorphisms of the Banach
space X such that Bh(Dh) = D, where D is a fixed linear subspace of X
(Theorem 6).

1. Preliminaries. For the reader’s convenience, we recall some theorems
concerning the operator calculus for unbounded operators and the theory of
semigroups of operators (see, e.g., [2, 3, 4, 7, 8, 9]). Let A be a generator of
a strongly continuous semigroup {T (t)}t≥0.

Proposition 1. The following statements are true:

(i) ∃M ≥ 1 ∃β ≥ 0 : ‖T (t)‖ ≤Meβt,
(ii) ∀x ∈ D(A) T (t)x ∈ D(A) : d

dtT (t)x = AT (t)x = T (t)Ax,
(iii) ∀x ∈ X ∀v ∈ D(A∗) : d

dt〈T (t)x, v〉 = 〈T (t)x,A∗v〉,
(iv) ∀v ∈ D(A∗) : T ∗(t)v ∈ D(A∗) A∗T ∗(t)v = T ∗(t)A∗v.
(v) ∀f ∈ L1(0, τ ;X) ∀v ∈ X∗ ∀t ∈ (0, τ ] : the function

[0, t] 3 s→ 〈f(s), T ∗(t− s)v〉

is integrable and
∫ t

0 〈f(s), T ∗(t− s)v〉ds = 〈
∫ t

0 T (t− s)f(s)ds, v〉.

Let G(M,β) := {A ∈ C(X) : D(A) = X, (β,+∞) ⊂ %(A) and ‖R(ξ, A)‖ ≤
M(ξ − β)−k for ξ > β and k = 1, 2, . . . }.

Now we recall a well-known theorem.

Theorem 2. A linear operator A is a generator of a strongly continuous
semigroup iff A ∈ G(M,β), for some M, β. Then ‖T (t)‖ ≤Meβt.
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Let Ω = [a, b] ⊂ R, where a < b. In [7] (IX.2.16) it is established that
if {R(λ,Ah)}h∈Ω is a family strongly continuous at λ0 for some λ0 > β, and
∀h ∈ Ω Ah ∈ G(M,β) then ∀x ∈ X {Th(t)x}h∈Ω continuously depend on h,
so it is easy to prove the next theorem.

Theorem 3. Suppose that
(a) {Ah}h∈Ω ⊂ G(M,β),
(b) ∃λ > β ∀x ∈ X : Ω 3 h −→ R(λ,Ah)x ∈ X is continuous,
(c) mappings Ω 3 h −→ u0

h ∈ X and Ω 3 h −→ fh ∈ L1(0, τ ;X) are
continuous.

Then for each h ∈ Ω there exists exactly one weak solution of the problem

d

dt
u(t) = Ahu(t) + fh(t) for t ∈ (0, τ ],(4)

u(0) = u0
h(5)

given by

(6) uh(t) = Th(t)u0
h +

∫ t

0
Th(t− s)fh(s)ds t ∈ [0, τ ],

and
lim
h→h0

uh(t) = uh0(t)

uniformly with respect to t ∈ [0, τ ] for each h0 ∈ Ω.

2. Families of linear operators. Let {Bh}h∈Ω be a family of linear,
bounded operators with domains D(Bh) = X.

Definition 2. We call the family {Bh}h∈Ω weakly continuous (weakly
differentiable) if for any x ∈ X the mapping

Ω 3 h −→ Bhx ∈ X

is weakly continuous (weakly differentiable).

Definition 3. We say that the family {Bh}h∈Ω ⊂ B(X) has weakly con-
tinuous weak derivative if there exists a weakly continuous family of linear
operators {B′h}h∈Ω such that for each x ∈ X and each v ∈ X∗

d

dh
〈Bhx, v〉 = 〈B′hx, v〉.

Theorem 4. Assume that the family {Bh}h∈Ω ⊂ B(X) has weakly con-
tinuous weak derivative. Then

(i) ∀h ∈ Ω : B
′
h ∈ B(X),

(ii) the family {B′h}h∈Ω is uniformly bounded,
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(iii) the family {B∗h}h∈Ω is w∗-differentiable and

[B
′
h]∗ = [B∗h]

′
.

Proof. Fix v ∈ X∗. A weakly*-convergent sequence converges to an ele-
ment of X∗, so there exists w ∈ X∗ for which

〈B′hx, v〉 = lim
k→0

〈
x,
B∗h+k −B∗h

k
v

〉
= 〈x,w〉.

Setting (B∗h)
′
v := w, we see that

∀x ∈ X ∀v ∈ X∗ : 〈B′hx, v〉 = 〈x, (B∗h)
′
v〉.

This implies that

D((B
′
h)∗) = X∗ and (B

′
h)∗ = (B∗h)

′
.

By the closed graph theorem, (B
′
h)∗ is bounded; there follows that the operator

B
′
h is bounded (see [4, Theorem 2.12.4]). This proves (i).

To prove (ii), fix x ∈ X. A function

Ω 3 h −→ B
′
hx ∈ X

is weakly continuous, so it is bounded. There exists M = M(x) such that for
each h ∈ Ω

∥∥∥B′hx∥∥∥ ≤ M(x). By the Banach–Steinhaus Theorem, there exists

C > 0 that ∀h ∈ Ω
∥∥∥B′h∥∥∥ ≤ C.

One easily verifies that (iii) holds.

Let us consider densely defined linear operators A and B with domains
D(A) and D(B), respectively.

Theorem 5. If D(A) = D(B) = X and 0 ∈ ρ(A) ∩ ρ(B), then the
following properties are equivalent:

(i) D(A∗) = D(B∗),
(ii) ∃M > 0 ∃m > 0 ∀x ∈ X : m

∥∥A−1x
∥∥ ≤ ∥∥B−1x

∥∥ ≤M ∥∥A−1x
∥∥ .

If one of this properties holds, then the operator

A−1B : D(B) −→ D(A)

is an isomorphism and A−1B ∈ Aut(X).

Proof. (i)⇒ (ii)
The linear operator A−1B : D(B) −→ D(A) is densely defined and bi-

jective. The adjoint operator (A−1B)∗ = B∗(A∗)−1 exists, is closed and by
assumption (i), its domain D(B∗(A∗)−1) = X∗. By the closed graph theorem,
(A−1B)∗ is bounded. So the operator A−1B is bounded, too (see [2]).

∀y ∈ D(B)
∥∥A−1By

∥∥ ≤ ∥∥∥A−1B
∥∥∥ ‖y‖ .
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Setting x := By and m :=
∥∥A−1B

∥∥−1
, we get m

∥∥A−1x
∥∥ ≤ ‖By‖. Considering

the operator B−1A, we will get
∥∥B−1x

∥∥ ≤ M ‖Ax‖ for a suitably defined
M > 0.

(ii)⇒ (i) Let v ∈ D(A∗) be fixed. For y ∈ D(B), the following is true

|〈By, v〉| =
∣∣〈AA−1By, v〉

∣∣ =
∣∣〈A−1By,A∗v〉

∣∣ ≤ ‖A∗v‖ ∥∥A−1By
∥∥

≤ m−1 ‖A∗v‖
∥∥B−1By

∥∥ = m−1 ‖A∗v‖ ‖y‖ .
The inequality 〈By, v〉 ≤ C ‖y‖ implies the continuity of the linear mapping
y → 〈By, v〉 and it is equivalent to v ∈ D(B∗). The theorem is proved.

Now we consider a family {Ah}h∈Ω ⊂ C(X) of densely defined operators.
Assume that the domains D(A∗h) = D∗ are independent of h ∈ Ω and suppose
that ∀h ∈ Ω 0 ∈ ρ(Ah). By Theorem 5, for any h, k ∈ Ω, A−1

h Ak ∈ Aut(X).

B(h, k) := A−1
h Ak.

It is easy to see that for any h, k, l ∈ Ω :
(a) B(h, h) = I,
(b) B(h, k)B(k, l) = B(h, l),
(c) [B(h, k)]−1 = B(k, h),
(d) A−1

h = B(h, k)A−1
k .

Theorem 6. Suppose that for each h ∈ Ω :
(a) Ah ∈ C(X) and D(Ah) = X,
(b) 0 ∈ ρ(Ah),
(c) mapping Ω 3 k → B(k, h) ∈ Aut(X) is continuous in k = h,

then
(i) ∀h ∈ Ω : mappings k → B(k, h) and k −→ B(h, k) are continuous in Ω,

(ii) mapping Ω 3 h −→ A−1
h ∈ B(X) is continuous,

(iii) ∃M,m > 0 ∀h, k ∈ Ω ∀x ∈ X : m
∥∥A−1

h x
∥∥ ≤ ∥∥A−1

k x
∥∥ ≤M ∥∥A−1

h x
∥∥ .

Proof. It is easy to see (i). To prove (ii), we notice that∥∥A−1
h −A

−1
k

∥∥ =
∥∥B(h, k)A−1

k −A
−1
k

∥∥ ≤ ‖B(h, k)− I‖
∥∥A−1

k

∥∥→ 0

as h→ k.
To obtain (iii), we infer from (i) that for a fixed l ∈ Ω there exist positive

constants M(l),m(l) such that for any h, k ∈ Ω

‖B(h, l)‖ ≤M(l) and ‖B(l, k)‖ ≤ m(l).

Also ∥∥A−1
h x

∥∥ =
∥∥A−1

h AlA
−1
l AkA

−1
k x

∥∥ ≤ ‖B(h, l)‖ ‖B(l, k)‖
∥∥A−1

k x
∥∥

≤M(l)m(l)
∥∥A−1

k x
∥∥ .
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Theorem 7. Suppose that assumptions (a), (b), (c) of Theorem 6 are
satisfied. If for each k ∈ Ω the family {B(h, k)}h∈Ω has weakly continuous
weak derivative { ∂∂hB(h, k)}h∈Ω, then

(i) ∀k ∈ Ω ∃C > 0 ∀h ∈ Ω : h 6= k ⇒
∥∥∥B(h,k)−I

h−k

∥∥∥ ≤ C,
(ii) ∀k, h ∈ Ω : the linear operator ∂

∂hB(h, k) is bounded,
(iii) family {B∗(h, k)}h∈Ω is w∗-differentiable and

∂

∂h
B∗(h, k) =

[
∂

∂h
B(h, k)

]∗
,

(iv) family {B(k, h)}h∈Ω has weakly continuous weak derivative,
(v) ∀x ∈ X ∀v ∈ D∗ ∀k ∈ Ω :

d

dh
〈x,A∗hv〉 |h=k=

〈
x,

(
∂

∂h
B(k, h)|h=k

)∗
A∗kv

〉
.

Proof. Let

B̃(h, k) :=

{
B(h,k)−I
h−k for h 6= k

∂
∂hB(h, k)|h=k for h = k.

By assumption, the family {B̃(h, k)}h∈Ω is weakly continuous, so it is uni-
formly bounded.

(ii) and (iii) follow from Theorem 4.
To prove (iv), fix k ∈ Ω and v ∈ X∗. Let h ∈ Ω and h 6= k.〈

B(k, h)− I
h− k

x, v

〉
=
〈
I −B(h, k)
h− k

B(k, h)x, v
〉

=
〈
I −B(h, k)
h− k

[B(k, h)− I]x, v
〉

+
〈
I −B(h, k)
h− k

x, v

〉
→ −

〈
∂

∂h
B(h, k)|h=k

x, v

〉
,

when h → k. The above relation follows from (i), norm continuity for the
family {B(h, k)}h∈Ω and∣∣∣∣〈I −B(h, k)

h− k
[B(k, h)− I]x, v

〉∣∣∣∣ ≤ ‖v‖∥∥∥∥I −B(h, k)
h− k

∥∥∥∥ ‖B(k, h)− I‖ ‖x‖

≤ C ‖v‖ ‖x‖ ‖B(k, h)− I‖ → 0,

when h→ k.
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Now we show that the family {B(k, h)}h∈Ω is weakly differentiable. Fix
r ∈ Ω.

lim
h→r

〈
B(k, h)−B(k, r)

h− r
x, v

〉
= lim

h→r

〈
B(r, h)− I
h− r

x,B∗(k, r)v
〉

= −
〈
∂

∂h
B(h, r)|h=r

x,B∗(h, r)v
〉
.

To prove (v), let x ∈ X, v ∈ D∗ and k ∈ Ω.〈
x,
A∗h −A∗k
h− k

v

〉
=
〈
B(k, h)− I
h− k

x,A∗kv

〉
→
〈
∂

∂h
B(k, h)|h=k

x,A∗kv

〉
=
〈
x,

(
∂

∂h
B(k, h)|h=k

)∗
A∗kv

〉
,

when h→ k.

3. Differentiability with respect to the parameter. In this section
we will prove a theorem on differentiability of the weak solution with respect
to a parameter, in the case when non-constant domains D(Ah) are isomorphic.
In this section we adopt the following.

Assumption A. Suppose that
(i) ∀h ∈ Ω : a closed and densely defined operator Ah has a domain Dh,

(ii) for each h ∈ Ω the adjoint operator A∗h has a domain D(A∗h) = D∗,
(iii) ∃M ≥ 1, β ≥ 0 ∀h ∈ Ω : Ah ∈ G(M,β),
(iv) ∀h ∈ Ω : 0 ∈ %(Ah),
(v) ∀k ∈ Ω : Ω 3 h −→ A−1

k Ah ∈ Aut(X) is continuous in h = k,
(vi) ∀k ∈ Ω : the family {A−1

k Ah}h∈Ω has weakly continuous weak derivative.

To prove Theorem 9, we need the following theorem.

Theorem 8. Suppose that for each h ∈ Ω : u0
h ∈ X, fh ∈ L1(0, τ ;X)

and uh is the weak solution of Cauchy problem (4)–(5). Then for each v ∈ D∗,∫ t
0

〈
uh(s),

A∗h−A
∗
h0

h−h0
T ∗h0

(t− s)v
〉
ds exists and〈

uh(t)− uh0(t)
h− h0

, v

〉
=

〈
Th0(t)

u0
h − u0

h0

h− h0
, v

〉

+
∫ t

0

〈
Th0(t− s)fh(s)− fh0(s)

h− h0
, v

〉
ds

+
∫ t

0

〈
uh(s),

A∗h −A∗h0

h− h0
T ∗h0

(t− s)v
〉
ds v ∈ D∗, h 6= h0.

(7)

Proof. Fix h, h0 ∈ Ω. It follows from Proposition 1 that:
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• d
dt〈uh(t), v〉 = 〈uh(t), A∗hv〉+ 〈fh(t), v〉 for v ∈ D∗ a.e. on [0, τ ],

• T ∗h (t)v ∈ D∗ and A∗hT
∗
h (t)v = T ∗h (t)A∗hv for v ∈ D∗,

• d
dt〈x, T

∗
h (t)v〉 = d

dt〈Th(t)x, v〉 = 〈Th(t)x,A∗hv〉 = 〈x,A∗hT ∗h (t)v〉 for
x ∈ X, v ∈ D∗.

This implies that
d

ds
〈uh(s),T ∗h0

(t− s)v〉 = 〈uh(s), A∗hT
∗
h0

(t− s)v〉

+ 〈fh(s), T ∗h0
(t− s)v〉 − 〈uh(s), A∗h0

T ∗h0
(t− s)v〉.

(8)

Functions s→ d
ds〈uh(s), T ∗h0

(t−s)v〉 and s→ 〈fh(s), T ∗h0
(t−s)v〉 are integrable.

It is easy to see that 〈uh(s), A∗h0
T ∗h0

(t− s)v〉 = 〈Th0(t− s)uh(s), A∗h0
v〉, so the

function s → 〈uh(s), A∗h0
T ∗h0

(t − s)v〉 is integrable. From this and (8) there
follows that the function s→ 〈uh(s), A∗hT

∗
h0

(t− s)v〉 is integrable in [0, t].
Integrating (8) over [0, t], we obtain

〈uh(t), v〉 − 〈uh(0), T ∗h0
(t)v〉 =

∫ t

0
〈fh(s), T ∗h0

(t− s)v〉ds

+
∫ t

0
〈uh(s), [A∗h −A∗h0

]T ∗h0
(t− s)v〉ds.

(9)

By (6) and (9),

〈uh(t)−uh0(t), v〉 =
∫ t

0
〈uh(s), [A∗h −A∗h0

]T ∗h0
(t− s)v〉ds

+
∫ t

0
〈fh(s), T ∗h0

(t− s)v〉ds+ 〈uh(0), T ∗h0
(t)v〉

− 〈Th0(t)uh0(0), v〉 −
∫ t

0
〈Th0(t− s)fh0(s), v〉ds

= 〈Th0(t)[u0
h − u0

h0
], v〉+

∫ t

0
〈Th0(t− s)[fh(s)− fh0(s)], v〉ds

+
∫ t

0
〈uh(s), [A∗h −A∗h0

]T ∗h0
(t− s)v〉ds.

(10)

The conclusion follows upon dividing (10) by h− h0.

Now we are able to prove the main theorem of this paper.

Theorem 9. If the family {Ah}h∈Ω satisfies Assumption A and
(i) Ω 3 h −→ u0

h ∈ X is continuously differentiable,
(ii) Ω 3 h −→ fh ∈ L1(0, τ ;X) is continuously differentiable,

then for each v ∈ D∗ the function

Ω× [0, τ ] 3 (h, t) −→ 〈uh(t), v〉 ∈ R
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is differentiable with respect to h, function [0, t] 3 s −→ 〈uh0(s), (A∗h0
)
′
T ∗h0

(t−
s)v〉 is integrable in [0, t] and

∂

∂h
〈uh(t), v〉|h=h0

= 〈Th0(t)[(u0
h0

)
′
], v〉+

∫ t

0
〈Th0(t− s)f ′h0

(s), v〉ds

+
∫ t

0
〈uh0(s), (A∗h0

)
′
T ∗h0

(t− s)v〉ds,

where “ ′ ” denotes differentiation with respect to h, and(
A∗h0

)′
:=
[
∂

∂h

(
A−1
h0
Ah

)
|h=h0

]∗
A∗h0

.

Proof. By previous Theorem 8, the function t → uh(t)−uh0
(t)

h−h0
satisfies

equation (7). Denote

zh(t) := Th0(t)
u0
h − u0

h0

h− h0
+
∫ t

0
Th0(t− s)fh(s)− fh0(s)

h− h0
ds.

The function zh is a weak solution of the Cauchy problem{
d
dtzh(t) = Ah0zh(t) + Fh(t)
zh(0) = z0

h,

where

Fh(t) =

{
fh−fh0
h−h0

(t) for h 6= h0

f
′
h0

(t) for h = h0

and

z0
h =

{
uh−uh0
h−h0

for h 6= h0

(u0
h0

)
′

for h = h0.

By Theorem 2,
lim
h→h0

zh(t) = zh0(t)

uniformly with respect to t ∈ [0, τ ], where

zh0(t) = Th0(t)[(u0
h0

)
′
] +
∫ t

0
Th0(t− s)f ′h0

(s)ds.

Now we consider∫ t

0

〈
uh(s),

A∗h −A∗h0

h− h0
T ∗h0

(t− s)v
〉
ds

=
∫ t

0

〈
uh(s)− uh0(s),

A∗h −A∗h0

h− h0
T ∗h0

(t− s)v
〉
ds

+
∫ t

0

〈
uh0(s),

A∗h −A∗h0

h− h0
T ∗h0

(t− s)v
〉
ds.
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It is easy to see that

A∗h −A∗h0

h− h0
=
A∗h(A∗h0

)−1 − I∗

h− h0
A∗h0

=

(
A−1
h0
Ah − I

h− h0

)∗
A∗h0

.

By Theorem 7 and Proposition 1,∥∥∥∥A∗h −A∗h0

h− h0
T ∗h0

(t− s)v
∥∥∥∥ ≤

∥∥∥∥∥A
−1
h0
Ah − I

h− h0

∥∥∥∥∥∥∥A∗h0
T ∗h0

(t− s)v
∥∥

≤ CMeβT
∥∥A∗h0

v
∥∥ .

So, by the Lebesgue Theorem

lim
h→h0

∫ t

0

〈
uh(s)− uh0(s),

A∗h −A∗h0

h− h0
T ∗h0

(t− s)v
〉
ds = 0,

uniformly in t ∈ [0, τ ].
Applying the Lebesgue Theorem again, we obtain∫ t

0

〈
uh0(s),

A∗h −A∗h0

h− h0
T ∗h0

(t− s)v
〉
ds→

∫ t

0

〈
uh0(s), (A∗h0

)
′
T ∗h0

(t− s)v
〉
ds,

when h→ h0, where
(
A∗h0

)′
=
[
∂

∂h

(
A−1
h0
Ah

)
|h=h0

]∗
A∗h0

.

Theorem 10. Suppose that for each h ∈ Ω Ah : X −→ X with D(Ah) =
D ⊂ X is a linear operator. If 0 ∈ ρ(A) and for each x ∈ D the mapping

Ω 3 h −→ Ahx

is continuously differentiable, then the family {AhA−1
k }h,k∈Ω ⊂ B(X) is con-

tinuous with respect to (h, k) ∈ Ω× Ω.

Proof. See [8] Lemma II.1.5.

Theorem 11. Suppose that for each h ∈ Ω, a closed and densely defined
operator Ah has a bounded inverse and the family {A∗h}h∈Ω, defined on a com-
mon domain D∗ := D(A∗h), is continuously differentiable, i.e., for each v ∈ D∗
the function

Ω 3 h −→ A∗hv ∈ X∗

is continuously differentiable, then the family {Ah}h∈Ω has the following pro-
perties:
(1) for each k ∈ Ω

Ω 3 h −→ A−1
k Ah ∈ Aut(X)

is continuous in h = k,
(2) for each k ∈ Ω the family {A−1

k Ah}h∈Ω is weakly differentiable.
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Proof. By the above theorem, the family {A∗h[A∗k]
−1}h,k∈Ω ⊂ B(X∗) is

continuous with respect to (h, k) ∈ Ω× Ω. It is easy to see that

A∗h[A∗k]
−1 =

(
A−1
k Ah

)∗
.

The operator A−1
k Ah is bounded and∥∥A∗h[A∗k]

−1
∥∥ =

∥∥∥A−1
k Ah

∥∥∥ .
This implies that the family

{
A−1
k Ah

}
h,k∈Ω

is continuous with respect to

(h, k) ∈ Ω× Ω.
Fix v ∈ X∗, x ∈ X and h0 ∈ Ω. There exists exactly one w ∈ D∗ such that

A∗h0
w = v.〈
A−1
h0
Ah − I

h− h0
x, v

〉
=

〈
x,

(
A−1
h0
Ah − I

h− h0

)∗
A∗h0

w

〉
=

〈
x,
A∗h[A∗h0

]−1 − I∗

h− h0
A∗h0

w

〉

=
〈
x,
A∗hw −A∗h0

w

h− h0

〉
→ 〈x, [A∗hw]

′

|h=h0
〉,

when h→ h0.

Example 1. (see [10, 2.1], [10, Example 2]) Let K be a bounded domain
in R2 with boundary S = ∂K of class C2 and let h ∈ [0, 1].

The sets

Dh := {u ∈ L2(K) : u ∈ H2(K) and
∂u

∂n
+ hu = 0 on ∂K},

D := {u ∈ L2(K) : u ∈ H2(K) and
∂u

∂n
= 0 on ∂K}

are dense linear subspaces of L2(K), where n is the interior unit normal vector
field on S.

One can verify that Dh 6= Dk for h, k ∈ [0, 1] and h 6= k.
Let φ : K × [0, 1] −→ R be a function of class C1, such that

1
2
≤ φh(x) := φ(x, h) for x ∈ K, h ∈ [0, 1],

φh(x) = 1 and
∂φh
∂n

= h for x ∈ ∂K, h ∈ [0, 1].

Let Φh : L2(K) −→ L2(K) be given by

Φh(u) := φh · u for u ∈ L2(K), h ∈ [0, 1].

One can verify that:
(1) Φh ∈ Aut(L2(K)),
(2) Φh(Dh) = D,



46

(3) the mapping [0, 1] 3 h −→ Φh ∈ B(L2(K)) is of class C1.
Let A := −∆ + λI : D −→ L2(K). This operator is closed and, for λ large

enough, it is onto and one-to-one. By the closed graph theorem, its inverse is
bounded.

The family Ah := A ◦ Φh : Dh −→ L2(K) parametrized by h ∈ [0, 1]
is a family of closed, densely defined linear operators with pairwise different
domains. The domain D(A∗h) = D(A∗) is the same for all h ∈ [0, 1] and
limh→k

∥∥A−1
h Ak − I

∥∥ = 0.
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