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GEOMETRY OF SYMMETRIZED ELLIPSOIDS

by Pawe l Zapa lowski

Abstract. We study the geometric properties of the symmetrized ellip-
soids. In the paper we look for the differences and the similarities between
the geometry of the symmetrized polydisc and symmetrized ellipsoids.

1. Introduction and results. The symmetrized polydisc has drawn quite
a lot of attention recently. One of the most striking properties of that set is the
one saying that in two-dimensional case the Lempert function, the Kobayashi
distance and the Carathéodory distance coincide (see [6] and [1]) and, simulta-
neously, this domain cannot be exhausted by domains biholomorphic to convex
ones (see [7] and [8]). Next interesting property of the symmetrized bidisc can
be seen if we consider the question posed by Znamenskĭı(see [19]): Is any
bounded C-convex domain biholomorphic to a convex domain? It turns out
(see [17]) that the symmetrized bidisc gives a negative answer to that ques-
tion.

Since the symmetrized polydisc can be exhausted by symmetrized ellip-
soids, i.e. Gn =

⋃
p>0 Ep,n (see the definition below), it seems reasonable to

study the geometry of the symmetrized ellipsoid Ep,n. This may be helpful in
understanding whether the phenomena concerning the symmetrized polydisc
are exceptional or not.

Let us start with some helpful notions and definitions.
For p > 0 let Bp,n := {(z1, . . . , zn) ∈ Cn : |z1|p+ · · ·+ |zn|p < 1}. Moreover,

put Bn := B2,n, D := B1, B(a, r) := a+ rD, B(r) := B(0, r), and T := ∂D.
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Let πn = (πn,1, . . . , πn,n) : Cn → Cn be defined as follows

πn,k(z) =
∑

16j1<···<jk6n

zj1 . . . zjk , 1 6 k 6 n, z = (z1, . . . , zn) ∈ Cn.

The set Ep,n := πn(Bp,n) is called the symmetrized (p, n)-ellipsoid. Moreover,
for p > 0 put

∆p,n := {(z, . . . , z) ∈ Cn : |z| < n
− 1
p }, Σp,n := πn(∆p,n).

Note that πn is a proper holomorphic mapping with multiplicity equal to n!,
πn|Bp,n : Bp,n → Ep,n is proper, and πn|Bp,n\∆p,n

: Bp,n \∆p,n → Ep,n \Σp,n is a
holomorphic covering.

In this note we deal not only with the geometric convexity but also with the
notion of C-convexity. Let us recall that a domain D ⊂ Cn is called C-convex
if D ∩L is connected and simply connected for any complex affine line L such
that D ∩ L is not empty.

Clearly, any convex domain is C-convex, but the converse is not true. For
the comprehensive information on the C-convexity, see e.g. [4].

Below we present a number of results on the geometry of symmetrized
ellipsoids.

Our first result concerns the convexity and C-convexity of symmetrized
ellipsoids and corresponds with Theorem 1 in [17].

Proposition 1. If p > 1 and n > k(p) := min{l ∈ N : l > 3, logl(l−1) l
2 <

p}, then Ep,n is not C-convex. In particular, Ep,n is not C-convex for any
p > log6 9 and n > 3.

Since logn(n−1) n
2 ↘ 1 as n→ +∞, we obtain the following

Corollary 2. For any p > 1 there exists k(p) ∈ N such that Ep,n is not
C-convex for any n > k(p). For example, k(log6 9) = 4.

In general, as the following proposition shows, symmetrized ellipsoids are
not convex. From that point of view, exceptional are the exponents p = 1 and
p = 2, for which two-dimensional symmetrized ellipsoids are convex.

Proposition 3. (i) For any p ∈ (0, log2
5
4) ∪ (2,+∞) and n > 2, the set

Ep,n is not convex.
(ii) For any p > log3

9
4 and n > 3, the set Ep,n is not convex.

(iii) The sets E2,2 and E1,2 are convex.

Remark 4. It seems that in Proposition 3 (i), the number log2
5
4 may be

replaced with 1. However, in such case we cannot give a formal proof. Using
some technical method we are able to replace log2

5
4 with 0.648. However, we

skip that proof since it does not solve the problem completely.
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For p > 3 even more than nonconvexity holds, namely the following is true
(cf. [1] and [17] for similar results on the symmetrized polydiscs).

Proposition 5. (i) The domain E3,2 is starlike with respect to the origin.
(ii) If Ep,2 is starlike with respect to the origin then so is E p

2
,2. In particular,

Ep,2 is starlike for p ∈ { l
2k

: l = 1, 3, k ∈ N}.
(iii) For p > 3 and n > 2, the domain Ep,n is not starlike with respect to

the origin.

It turns out that the two-dimensional symmetrized ellipsoid, just like the
symmetrized bidisc, cannot be exhausted by domains biholomorphic to a con-
vex ones, either. This property holds for p > 2, while E2,2 is even convex
(cf. Proposition 3 (iii)).

Proposition 6. The domain Ep,2, p > 2, cannot be exhausted by domains
biholomorphic to convex domains.

Since E1,2 and E2,2 are convex bounded domains in C2, it was quite natural
to ask whether these domains are Lu Qi-Keng. For E2,2 the answer is positive
(see the proposition below). Moreover, we conjecture that E1,2 is Lu Qi-Keng,
too.

Proposition 7. E2,2 is the Lu Qi-Keng domain.

Finally we want to discuss some partial results on automorphisms of sym-
metrized ellipsoids.

Recall that Aut(Bn) = {u ◦ha : a ∈ Bn, u ∈ U(Cn)}, where U(Cn) denotes
the class of unitary operators in Cn and

ha(z) :=

√
1− ‖a‖2(‖a‖2z − 〈z, a〉a)− ‖a‖2a+ 〈z, a〉a

‖a‖2(1− 〈z, a〉)
, z, a ∈ Bn, a 6= 0,

and h0 := idBn .
Let Sn denote the group of all permutations of the set {1, . . . , n}. For

σ ∈ Sn, z = (z1, . . . , zn) ∈ Cn denote zσ := (zσ(1), . . . , zσ(n)).
For any domain D ⊂ Cn with σ(D) = D, σ ∈ Sn, let

OS(D) = OSn(D) := {f ∈ O(D,D) : fσ(z) = f(zσ), z ∈ D, σ ∈ Sn}.

Remark 8. (a) If h ∈ OS(Bp,n) then the relation Hh ◦ πn = πn ◦ h defines
a holomorphic mapping Hh : Ep,n → Ep,n with Hh(Σp,n) ⊂ Σp,n. Moreover, if
h is proper then Hh is proper, too.

(b) Observe that if h ∈ Aut(Bp,n)∩OS(Bp,n), then Hh ∈ Aut(Ep,n), H−1
h =

Hh−1 , andHh(Σp,n) = Σp,n. In particular, if u ∈ U(Cn)∩OS(Cn) and a ∈ ∆2,n,
then Hu◦ha ∈ Aut(E2,n).

(c) For any u ∈ U(Cn)∩OS(Cn) and z = πn(a) ∈ Σ2,n, there is Hu◦ha(z) =
0. Consequently, the group Aut(E2,n) acts transitively on Σ2,n.
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(d) Note that if u ∈ U(C2) ∩ OS(C2) then

u(z1, z2) = uξ(z1, z2) := (ξ1z1 + ξ2z2, ξ2z1 + ξ1z2), (z1, z2) ∈ C2,

where ξ = (ξ1, ξ2) ∈ ∂B2 is such that Re(ξ1ξ̄2) = 0.
(e) Let p 6= 2. If h ∈ Aut(Bp,n) ∩ OS(Bp,n) then Hh(0) = 0. This follows

from the fact that h(0) = 0 (see Corollary 8.5.5 in [11]).

We already know from Remark 8 (b) that there are automorphisms of E2,n

generated by some automorphisms of Bn. Next result shows that in the case
of n = 2 there is no other automorphism of E2,2 (see [12] for a similar result
on the symmetrized bidisc).

Proposition 9. Aut(E2,2) = {Huξ◦ha : ξ ∈ ∂B2, Re(ξ1ξ̄2) = 0, a ∈ ∆2,2}.

Moreover, similarly as in [12] we prove

Proposition 10. (i) Aut(E2,n) does not act transitively on E2,n for n > 1.
(ii) F (Σ2,n) = Σ2,n for every F ∈ Aut(E2,n).

Numerous questions concerning symmetrized ellipsoids remain open. Be-
low, we list some of them.

(a) Prove that Ep,n is not convex for log2
5
4 6 p < 1 and n > 2. Using

some iteration method we are able to show non-convexity of Ep,n for
p < 0.648.

(b) Is Ep,n not C-convex for 1 < p 6 log6 9 and n 6 3? What about
0 < p 6 1?

(c) Is Ep,2 convex for 1 < p < 2?
(d) Is Ep,2 C-convex for p > 2? What about 0 < p < 1?
(e) Is Ep,n or, at least, Ep,2 starlike with respect to the origin for 0 < p < 3?
(f) Is Proposition 6 valid for p < 1?
(g) Is cEp,2 6= k̃Ep,2 for p > 2 or p < 1?
(h) Is E1,2 the Lu Qi-Keng domain?
(i) Is Aut(E2,n) = {Hu◦ha : u ∈ U(Cn) ∩ OS(Cn), a ∈ ∆2,n} for n > 2?

Does any similar result hold for the holomorphic proper self-mappings
of E2,n?

2. Proofs.

Proof of Proposition 1. The proof follows from the one of Theo-
rem 1 (ii) in [17]. For the reader’s convenience, we repeat the reasoning.
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Let k = k(p). For t ∈ (0, k−
1
p ) consider the points

at := πn(t, . . . , t︸ ︷︷ ︸
k

, 0, . . . , 0) =
((

k
1

)
t, . . . ,

(
k
k

)
tk, 0, . . . , 0

)
,

bt := πn(−t, . . . ,−t︸ ︷︷ ︸
k

, 0, . . . , 0) =
((

k
1

)
(−t)1, . . . ,

(
k
k

)
(−t)k, 0, . . . , 0

)
.

Obviously, at, bt ∈ Ep,n. Denote by Lt the complex line passing through at and
bt, that is,

Lt =
{
ct,λ :=

((
k
1

)
t(1− 2λ), . . . ,

(
k
k

)
tk(1− 2λ)k−2[ k

2
], 0, . . . , 0

)
: λ ∈ C

}
.

Assume that the set Lt ∩ Ep,n is connected. Since at = ct,0 and bt = ct,1,
then ct,λ ∈ Ep,n for some λ = 1

2 + iτ , where τ ∈ R. It follows that

ct,λ =
((

k
1

)
(−2iτ t),

(
k
2

)
t2, . . . ,

(
k
k

)
tk(−2iτ)k−2[ k

2
], 0, . . . , 0

)
.

We may choose µ ∈ Bp,n such that µj = 0, j = k + 1, . . . , n, and ct,λ = πn(µ).
Observe that

(1) − 4k2τ2t2 =
( k∑
j=1

µj

)2

=
k∑
j=1

µ2
j + k(k − 1)t2.

We consider two cases.
Case 1. Let p > 2. Then (1) yields (if p > 2 we use the Hölder inequality):

t2 =
|
∑k

j=1 µ
2
j |

4k2τ2 + k(k − 1)
6

∑k
j=1 |µj |2

k(k − 1)
6
k
p−2
p (
∑k

j=1 |µj |p)
2
p

k(k − 1)
6

k
− 2
p

k − 1
.

Therefore, Lt ∩ Ep,n is not connected if t ∈ [ 1√
k−1

k
− 1
p , k
− 1
p ) (note that k > 3)

and so Ep,n is not a C-convex domain.
Case 2. Now let p < 2. Then (1) implies:

t2 =
|
∑k

j=1 µ
2
j |

4k2τ2 + k(k − 1)
6

∑k
j=1 |µj |p

k(k − 1)
<

1
k(k − 1)

.

Moreover, since logk(k−1) k
2 < p, there follows (k(k− 1))−

1
2 < k

− 1
p . Therefore,

Lt ∩ Ep,n is not connected if t ∈ [(k(k − 1))−
1
2 , k
− 1
p ) and so Ep,n is not a

C-convex domain.

Before we continue, let us make the following very useful remark.

Remark 11. Observe that

(2) (s, t, 0, . . . , 0) ∈ Ep,n ⇔ |s+ ξ1|p + |s+ ξ2|p < 2p,
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where {ξ1, ξ2} =
√
s2 − 4t. If we consider the closure Ep,n then the “6” sign

appears on the right hand side.

In the proof of Proposition 3 (iii), we will use the following simple result.

Lemma 12. Let aj , bj ∈ C, rj > 0, j = 1, 2, be such that |a2
j |+ |a2

j − bj | <
rj , j = 1, 2. Then∣∣∣∣ (a1 + a2

2

)2 ∣∣∣∣+
∣∣∣∣ (a1 + a2

2

)2

− b1 + b2
2

∣∣∣∣ < r1 + r2

2
.

Proof of Lemma 12. Since bj ∈ B(a2
j , rj − |a2

j |), j = 1, 2, then b1+b2
2 ∈

B(a3, r3), where a3 := a2
1+a2

2
2 and r3 := r1+r2

2 − |a
2
1|+|a2

2|
2 . In our case it suffices to

show that b1+b2
2 ∈ B(a0, r0), where a0 := (a1+a2

2 )2 and r0 := r1+r2
2 −|(a1+a2

2 )2|.
In other words, it is enough that B(a3, r3) ⊂ B(a0, r0). We show that r0 =
|a0 − a3|+ r3. Indeed,

r0 − |a0 − a3| − r3 =
|a2

1|+ |a2
2|

2
−
∣∣∣∣ (a1 + a2

2

)2 ∣∣∣∣− ∣∣∣∣ (a1 + a2

2

)2

− a2
1 + a2

2

2

∣∣∣∣
=

1
4
(
2(|a1|2 + |a2|2)− |a1 + a2|2 − |a1 − a2|2

)
= 0.

Proof of Proposition 3. Re (i). We consider two cases.
Case 1. Let p < log2

5
4 , x := 2−

1
p . Then (1, 0, . . . , 0), (2x, x2, 0, . . . , 0) ∈

Ep,n but (1+2x
2 , x

2

2 , 0, . . . , 0) /∈ Ep,n since (use (2))

L :=
(

1 + 2x+
√

1 + 4x− 4x2
)p

+
(

1 + 2x−
√

1 + 4x− 4x2
)p

> 4p.

Indeed, using the estimates 1 <
√

1 + 4x− 4x2 < 1 + 2x− 2x2, we obtain

L > (2 + 2x)p + (2x2)p = 2p
(

(1 + x)p +
1
4

)
>

5
4

2p > 4p.

Case 2. Let p > 2, x := 2−
1
p . Then (2x, x2, 0, . . . , 0), (2xi,−x2, 0, . . . , 0) ∈

Ep,n. On the other hand, (x(1 + i), 0, . . . , 0) /∈ Ep,n. Indeed,

|x(1 + i)− x(1 + i)|p + |x(1 + i) + x(1 + i)|p = (2
√

2x)p = 2
3
2
p−1 > 2p,

which contradicts (2).
Re (ii). Consider the points

at := πn(t, t, t, 0, . . . , 0) = (3t, 3t2, t3, 0, . . . , 0),

bt := πn(−t,−t,−t, 0, . . . , 0) = (−3t, 3t2,−t3, 0, . . . , 0), t = 3−
1
p .
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Obviously, at, bt ∈ Ep,n. We show that ct := 1
2(at + bt) 6∈ Ep,n. Suppose

that ct ∈ Ep,n. Then there exists µ ∈ Bp,n such that πn(µ) = ct. Since
ct = (0, 3t2, 0, . . . , 0), we may assume that µ = (

√
3ti,−

√
3ti, 0, . . . , 0). A con-

tradiction, since
n∑
j=1

|µj |p = 2(
√

3t)p =
2
3

3
p
2 > 1.

Re (iii). First observe that for n = 2 we may rewrite condition (2) as

(s, t) ∈ E2,2 ⇔ |s2|+ |s2 − 4t| < 2, s, t ∈ C, for p = 2,

(s, t) ∈ E1,2 ⇔ |s2|+ |4t|+ |s2 − 4t| < 2, s, t ∈ C, for p = 1.

Since Ep,2 is open, to prove its convexity it suffices to show that ( s1+s2
2 ,

t1+t2
2 ) ∈ Ep,2 whenever (s1, t1), (s2, t2) ∈ Ep,2 for p = 1, 2.

If p = 2, use Lemma 12 with aj = sj , bj = 4tj , and rj = 2, j = 1, 2.
If p = 1, then fix (sj , tj) ∈ E1,2, j = 1, 2, and use Lemma 12 with aj =

sj , bj = 4tj , and rj = 2− |4tj |, j = 1, 2.

Proof of Proposition 5. Re (i). Fix (s, t) ∈ E3,2 and u ∈ (0, 1). Ob-
serve that (2) yields

(|s+ ξ1|+ |s+ ξ2|)(|s2|+ |s2 − 4t| − 2|t|) < 4,

where {ξ1, ξ2} =
√
s2 − 4t. Hence,

(|s+ ξ1|+ |s+ ξ2|) <
4

(|s2|+ |s2 − 4t| − 2|t|)
=: 2c(s, t) = 2c,

i.e. ( sc ,
t
c2

) ∈ E1,2. Since E1,2 is convex, then (u sc , u
t
c2

) ∈ E1,2, i.e.

(3) (|us+ ξ1,u|+ |us+ ξ2,u|)(|s2|+ |s2 − 4t| − 2|t|) < 4,

where {ξ1,u, ξ2,u} =
√

(us)2 − 4ut.
Now we show that

(4) |(us)2|+ |(us)2 − 4ut| − 2|ut| < |s2|+ |s2 − 4t| − 2|t|.

Since |(us)2| + |(us)2 − 4ut| − 2|ut| < |us2| + |us2 − 4t| − 2|t|, to prove (4) it
suffices to show that

|us2|+ |us2 − 4t| 6 |s2|+ |s2 − 4t| =: r.

The above inequality holds true, since B(s2, r − |s2|) ⊂ B(us2, r − |us2|).
Consequently, (3) and (4) imply that (us, ut) ∈ E3,2, which ends the proof

of part (i).
Re (ii). Fix (s, t) ∈ E p

2
,2 and u ∈ (0, 1). Then from (2) there follows

|s+ ξ1|p + |s+ ξ2|p < 2p(1− 2−p|4t|
p
2 ) =: 2pcp,
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i.e. ( sc ,
t
c2

) ∈ Ep,2. Since Ep,2 is starlike with respect to the origin, (u sc , u
t
c2

) ∈
Ep,2, i.e.

|us+ ξ1,u|p + |s+ ξ2,u|p < 2pcp.

Moreover, note that c(u) := (1− 2−p|4ut|
p
2 )

1
p > c, which gives

|us+ ξ1,u|p + |s+ ξ2,u|p < 2p(c(u))p.

Hence, using (2) again, (us, ut) ∈ E p
2
,2, which ends the proof of part (ii).

Re (iii). For x := 2−
1
p , we conclude (2x, x2, 0, . . . , 0) ∈ Ep,n. Using (2), we

obtain (2xu, x2u, 0, . . . , 0) ∈ Ep,n, u ∈ (0, 1), iff

f(u) :=
(
u+

√
u− u2

)p
+
(
u−

√
u− u2

)p
6 2, u ∈ (0, 1).

We show that there is u0 ∈ (0, 1) with f(u0) > 2, which contradicts the star-
likeness of Ep,n. First observe that f is differentiable and f(1) = 2. Therefore,
we are done if we show that limu→1− f

′(u) < 0. Simple calculation gives

lim
u→1−

f ′(u) = p(3− p) < 0,

which completes the proof.

Before we give the proof of Proposition 6, let us make the following

Remark 13. For p > 1, let

ρ(z) := max
{ n∑
j=1

|λj |p : (λ1, . . . , λn) ∈ π−1
n (z)

}
, z ∈ Cn.

Then ρ is a continuous plurisubharmonic function such that

ρ(λz1, . . . , λ
nzn) := |λ|pρ(z1, . . . , zn), (z1, . . . , zn) ∈ Cn, λ ∈ C,

and
Ep,n = {z ∈ Cn : ρ(z) < 1}, Ep,n = {z ∈ Cn : ρ(z) 6 1}.

In particular, Ep,n is hyperconvex.

In the proof of Proposition 6, we will use the following

Lemma 14. Let p > 2 and δ > 0. Then there exist x, y > 0 such that
xp + yp = 1 and

A := x+
√
x2 + 4δy2 > 2.

Proof of Lemma 14. Note that the condition A > 2 is equivalent to

x > 1− δy2.

Therefore, if we show that there exists y ∈ (0, 1) such that

(5) yp + (1− δy2)p < 1,

then, taking x := (1− yp)
1
p , we are done.
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Put f(t) := tp+(1−δt2)p, t ∈ [0, 1]. Since f(0) = 1, it suffices to show that
f is a decreasing function on an interval (0, ε) for some ε > 0. Fortunately,
f ′(0) = 0 and

f ′′(0) = −2pδ < 0.
Hence, we are able to choose y ∈ (0, 1) satisfying (5).

Proof of Proposition 6. This is a modification of the proof given in
the case of the symmetrized bidisc by A. Edigarian [8] (see also Lemma 1.4.10
in [13]).

Fix p > 2. First observe that Ep,2 is not convex (Proposition 3 (i)).
Suppose that Ep,2 =

⋃
i∈I Gi, where each domain Gi is biholomorphic to

a convex domain and for any compact K ⊂⊂ Ep,2 there exists an i0 ∈ I with
K ⊂ Gi0 . For any 0 < ε < 1 take an i = i(ε) ∈ I such that {(s, t) ∈ C2 :
ρ(s, t) 6 1 − ε} ⊂ Gi(ε) and let fε = (gε, hε) : Gi(ε) → Dε be a biholomorphic
mapping onto a convex domain Dε ⊂ C2 with fε(0, 0) = (0, 0) and f ′ε(0, 0) =
idC2 .

Take arbitrary two points (sj , tj) ∈ C2, j = 1, 2, and put

C := max{ρ(s1, t1), ρ(s2, t2)}.
Our aim is to prove that ρ(x(s1, t1) + (1− x)(s2, t2)) 6 C, x ∈ [0, 1], which in
particular shows that Ep,2 is convex, a contradiction.

Observe that for |λ| < (1−ε
C )

1
p , there is ρ(λsj , λ2tj) = |λ|pρ(sj , tj) < 1 −

ε, j = 1, 2. Consequently, for any x ∈ [0, 1], the mapping ϕε,x : B((1−ε
C )

1
p ) →

Ep,2,

ϕε,x(λ) = (ψε,x(λ), χε,x(λ)) := f−1
ε (xfε(λs1, λ

2t1) + (1− x)fε(λs2, λ
2t2)),

is well defined. There holds ϕε,x(0) = (0, 0), ϕ′ε,x(0) = (xs1 +(1−x)s2, 0), and

1
2
χ′′ε,x(0) = xt1 + (1− x)t2 + µεx(1− x)(s1 − s2)2,

where µε := 1
2
∂2hε
∂s2

(0, 0). Define φε,x : B((1−ε
C )

1
p )→ C2 by

φε,x(λ) :=

{
(λ−1ψε,x(λ), λ−2χε,x(λ)), λ 6= 0
(ψ′ε,x(0), 1

2χ
′′
ε,x(0)), λ = 0

.

Then φε,x is holomorphic and, by the maximum principle, we get

ρ(φε,x(0)) 6 lim sup

s→
(

1−ε
C

) 1
p

max
|λ|=s

ρ(φε,x(λ)) = lim sup

s→
(

1−ε
C

) 1
p

1
sp

max
|λ|=s

ρ(ϕε,x(λ)) 6
C

1− ε
,

that is,

ρ(xs1 + (1− x)s2, xt1 + (1− x)t2 + µεx(1− x)(s1 − s2)2) 6
C

1− ε
.
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We only need to prove that µε → 0.
Taking x = 1

2 we get

ρ

(
1
2

(s1 + s2),
1
2

(t1 + t2) +
1
4
µε(s1 − s2)2

)
6

C

1− ε
.

For α, β ∈ C with |α|p + |β|p = 1, take (s1, t1) := π2(α, β) and (s2, t2) :=
π2(α,−β). Then C = 1 and

ρ(α, µεβ2) 6
1

1− ε
.

Hence ((1− ε)
1
pα, (1− ε)

2
pµεβ

2) ∈ Ep,2 and so, by (2),

(6)
∣∣∣α+

√
α2 − 4µεβ2

∣∣∣p +
∣∣∣α−√α2 − 4µεβ2

∣∣∣p 6
2p

1− ε
.

Suppose µε 6→ 0 as ε→ 0. Thus there exists δ > 0 such that for any η > 0
there is ε ∈ (0, η) with |µε| > δ. For such an ε, define α := x and β := ξy,
where x, y are the numbers from Lemma 14 and ξ ∈ T is such that µεβ2 < 0.
Then ∣∣∣α+

√
α2 − 4µεβ2

∣∣∣p > Ap >
2p

1− ε
for ε small enough, which contradicts (6).

Proof of Proposition 7. Note that, due to (2), E2,2 is biholomorphic
to the set D2 := {(z, w) ∈ C2 : |z|2 + |w| < 1}. Since KD2 has no zeros on
D2×D2 (see [13], Example 3.1.6. (c)), KE2,2 has no zeros on E2,2×E2,2 either
(use the formula for the behavior of the Bergman kernel under biholomorphic
mappings; see e.g. [11], Proposition 6.1.7).

In the proof of Proposition 9 we use following

Lemma 15. T2 = {(ξ1 + ξ2, (ξ1 − ξ2)2) : (ξ1, ξ2) ∈ ∂B2, Re(ξ1ξ̄2) = 0}.

Proof of Lemma 15. Fix (ζ1, ζ2) ∈ T2. Put ξ1 := 1
2(ζ1 +

√
ζ2), ξ2 :=

1
2(ζ1 −

√
ζ2), where

√
ζ2 is taken arbitrarily. It is easy to check that (ξ1, ξ2) ∈

∂B2 and Re(ξ1ξ̄2) = 0.
To prove the opposite inclusion it suffices to observe that 1 = |ξ1|2 ±

2 Re(ξ1ξ̄2) + |ξ2|2 = |ξ1 ± ξ2|2.

Proof of Proposition 9. Since E2,2 = {(z1, z2) ∈ C2 : |z1|2 + |z2
1 −

4z2| < 2} is biholomorphic to E(1, 1
2

) := {(z1, z2) ∈ C2 : |z1|2 + |z2| < 1} and
Aut(E(1, 1

2
)) is known (cf. [14], Theorem 2.3.4), we get Aut(E2,2) = {Φc,ζ : c ∈

D, ζ ∈ T2}, where
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Φc,ζ(z1, z2) :=
(
ζ1

√
2hc( z1√2

),
1
2

(
ζ2

1h
2
c(

z1√
2
)− 1

2
ζ2(z2

1 − 4z2)
1− |c|2

(1− c̄ z1√
2
)2

))
,

with c ∈ D, ζ = (ζ1, ζ2) ∈ T2.
Let a = (a0, a0) ∈ ∆2,2, i.e. |a0| < 1√

2
. If ha = (h1, h2), then, for any

(λ1, λ2) ∈ B2,

hj(λ1, λ2) =

√
1− 2|a0|2(2λj − λ1 − λ2)− 2a0 + λ1 + λ2

2(1− ā0(λ1 + λ2))
, j = 1, 2,

and, consequently,

h1(λ1, λ2) + h2(λ1, λ2) =
λ1 + λ2 − 2a0

1− ā0(λ1 + λ2)
,

h1(λ1, λ2)h2(λ1, λ2) =
(λ1 + λ2 − 2a0)2 − (1− 2|a0|2)(λ1 − λ2)2

4(1− ā0(λ1 + λ2))2
,

h2
1(λ1, λ2) + h2

2(λ1, λ2) =
(λ1 + λ2 − 2a0)2 + (1− 2|a0|2)(λ1 − λ2)2

2(1− ā0(λ1 + λ2))2
.

Next, if ξ ∈ ∂B2 with Re(ξ1ξ̄2) = 0 then, in virtue of Remark 8 (d),

π2 ◦ uξ ◦ ha = ((ξ1 + ξ2)(h1 + h2), (ξ2
1 + ξ2

2)h1h2 + ξ1ξ2(h2
1 + h2

2)).

If we put (z1, z2) = π2(λ1, λ2) and use the fact that

(λ1 − λ2)2 = (λ1 + λ2)2 − 4λ1λ2 = z2
1 − 4z2,

then the relation Huξ◦ha ◦ π2 = π2 ◦ uξ ◦ ha and the equalities above give
Huξ◦ha = Φc,ζ , with c = a0

√
2 and ζ = ζ(ξ) = (ξ1 + ξ2, (ξ1 − ξ2)2) which,

together with Lemma 15, finishes the proof.

It remains to prove Proposition 10.

Proof of Proposition 10. Re (i). Suppose that Aut(E2,n) acts transi-
tively on E2,n. Then, by the Cartan classification theorem (cf. [2], [10]), E2,n

is biholomorphic to Bn or Dn; a contradiction.
Indeed, in the case of E2,n ' Bn, we use the characterization of proper

holomorphic self-mappings of Bn due to H. Alexander (cf. [3] or [18], Theo-
rem 15.4.2), saying that any such mapping is an automorphism. In the case of
E2,n ' Dn, we use the fact that there is no proper holomorphic mapping from
Bn to Dn (cf. [18], Theorem 15.2.4).

Re (ii). Let V := {F (0) : F ∈ Aut(E2,n)}. By W. Kaups’ theorem,
V is a connected complex submanifold of E2,n (cf. [15]). We already know
that Σ2,n ⊂ V (Remark 8 (c)). Since Aut(E2,n) does not act transitively
(Proposition 10 (i)), then V ( E2,n. Thus V = Σ2,n. Take a point z = Hh(0) ∈
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Σ2,n with h ∈ Aut(Bn) (Remark 8 (c) again). Then for every F ∈ Aut(E2,n)
we get F (z) = (F ◦Hh)(0) ∈ V = Σ2,n.
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