LOCAL COHOMOLOGY AND MATLIS DUALITY

by Michael Hellus and Jürgen Stückrad

Abstract

Relations between (set-theoretic) complete intersections and local cohomology are studied; it is explained in what sense Matlis duals of certain local cohomology modules carry enough information to decide whether the given ideal is a complete intersection or not. Finally, we present some related results on associated primes of Matlis duals of local cohomology modules.

1. The situation - notation and basic definitions. Let I be an ideal of a (always commutative, noetherian) ring R. For every R-module M one sets

$$
\Gamma_{I}(M):=\left\{m \in M \mid I^{n} \cdot m=0 \forall n \gg 0\right\}
$$

(that is, $\Gamma_{I}(M)$ is the largest submodule of M whose support is contained in $V(I))$. The (right) derived functors of the (left exact) functor Γ_{I} are called local cohomology functors H_{I}^{i} with support in I (for $i \in \mathbb{N}$). One can show that these functors are affine versions of Serre cohomology on sheaves. [3] and [1] are general references for local cohomology.

Usually, we will assume in addition that R is local with maximal ideal m. In this case we denote by $E:=E_{R}(R / m)$ a fixed R-injective hull of the R module R / m and by D the (contravariant) functor $\operatorname{Hom}_{R}(\cdot, E)$. Some of the following ideas are contained in the first author's Habilitationsschrift 7 .

Definition 1.1. I is a set-theoretic complete intersection iff it can be generated by height (I) many elements up to radical, i.e., iff $\operatorname{ara}(I)=\operatorname{height}(I)$, where $\operatorname{ara}(I)$ is the minimal number of generators of I up to radical.

Remark 1.2. It is an easy consequence of Krull's principal ideal theorem that there is always the inequality $\operatorname{ara}(I) \geq$ height (I).

From now on we will use "complete intersection" for "set-theoretic complete intersection."

Example 1.3. Let k be a field, $d \in \mathbb{N}, d \geq 3$ and let \mathbb{P}_{k}^{n} denote projective n -space over k. Furthermore, let C_{d} be the (projective, smooth) curve which is the image of

$$
\mathbb{P}_{k}^{1} \rightarrow \mathbb{P}_{k}^{3},(u: v) \mapsto\left(u^{d}: u^{d-1} v: u v^{d-1}: v^{d}\right) .
$$

It is well-known that C_{3} is a complete intersection. In addition, in the case of $\operatorname{char}(k)>0$ Hartshorne ([4, Theorem*]) resp. Bresinsky, second author and Renschuch ([2]) have shown that C_{d} is a complete intersection (for every $d \geq 3$). The case $\operatorname{char}(k)=0$ is open, even for $d=4$. The curve C_{4} is the famous Macaulay curve.
2. Results. The following (first) remark is an easy consequence of the fact that one may use Čech cohomology to compute Serre cohomology over an affine scheme:

Remarks 2.1. (i) I is a complete intersection $\Rightarrow H_{I}^{l}(R)=0$ for every $l>\operatorname{height}(I)$. More generally, for every ideal I, one has $H_{I}^{l}(R)=0$ for every $l>\operatorname{ara}(I)$.
(ii) The reversed statement of (i) does not hold in general, here is an example (later we will refer to this example again): Let $R=k[[x, y, z, w]]$ be a formal power series ring over a base field k in four variables. Set $f:=x w-y z$, $g_{1}:=y^{3}-x^{2} z, g_{2}:=z^{3}-u^{2} w$. It is easy to see that $I:=\sqrt{\left(f, g_{1}, g_{2}\right) R}$ is the height two prime ideal of R which corresponds to the curve C_{4}. In particular, $I / f R \subseteq R / f R$ has height one. We claim that both $H_{I / f R}^{l}(R / f R)=0$ for every $l>1$ and $\operatorname{ara}(I / f R) \geq 2$ hold (in particular, $I / f R$ is not a complete intersection, i.e., it is an example, where the reversed statement from (i) does not hold):

Proof of (II), Let y_{0}, \ldots, y_{3} be new variables and set $S:=k\left[\left[y_{0}, y_{1}, y_{2}, y_{3}\right]\right]$. Denote by R_{1} the three-dimensional subring $R_{1}:=k\left[\left[y_{0} y_{1}, y_{0} y_{2}, y_{1} y_{3}, y_{2} y_{3}\right]\right]$ of S. The ring homomorphism

$$
R \rightarrow R_{1}, x \mapsto y_{0} y_{1}, y \mapsto y_{0} y_{2}, z \mapsto y_{1} y_{3}, w \mapsto y_{2} y_{3}
$$

clearly induces an isomorphism

$$
R / f R \cong R_{1}(\subseteq S)
$$

Now consider the k-linear map

$$
k\left[y_{0}, y_{1}, y_{2}, y_{3}\right] \xrightarrow{\varphi} R_{1}
$$

that sends a term $y_{0}^{\alpha_{0}} y_{1}^{\alpha_{1}} y_{2}^{\alpha_{2}} y_{3}^{\alpha_{3}}$ to $y_{0}^{\alpha_{0}} y_{1}^{\alpha_{1}} y_{2}^{\alpha_{2}} y_{3}^{\alpha_{3}} \in R_{1}$ if $\alpha_{0}+\alpha_{3}=\alpha_{1}+\alpha_{2}$ holds, and to zero otherwise. Note that φ is well-defined by construction and naturally induces a map

$$
S=k\left[\left[y_{0}, y_{1}, y_{2}, y_{3}\right]\right] \xrightarrow{\tilde{\oplus}} R_{1} .
$$

Now it is easy to see that $\tilde{\varphi}$ is R_{1}-linear and makes R_{1} into a direct summand in S (as an R_{1}-submodule). Thus $H_{I}^{2}(R / f R)$ is isomorphic to a direct summand of $H_{I S}^{2}(S)$. We have

$$
I S=\left(g_{1}, g_{2}\right) S=\left(\left(y_{0} y_{2}^{3}-y_{1}^{3} y_{3}\right) \cdot y_{0}^{2},\left(y_{0} y_{2}^{3}-y_{1}^{3} y_{3}\right) \cdot\left(-y_{3}^{2}\right)\right) S
$$

and

$$
\sqrt{I S}=\left(y_{0} y_{2}^{3}-y_{1}^{3} y_{3}\right) S .
$$

This implies $H_{I S}^{2}(S)=0$ and thus, by what we have seen above, $H_{I}^{2}(R / f R)=$ 0 . Now we show $\operatorname{ara}(I(R / f R))=2$: We assume $\operatorname{ara}(I(R / f R)) \neq 2$; then we clearly have $\operatorname{ara}(I(R / f R))=1$. Let $h \in R$ be such that

$$
I(R / f R)=\sqrt{h(R / f R)}
$$

holds. This implies

$$
\sqrt{I S}=\sqrt{h S} .
$$

We have seen before that

$$
\sqrt{I S}=\left(y_{0} y_{2}^{3}-y_{1}^{3} y_{3}\right) S
$$

holds. S is a unique factorization domain and so there exist $N \geq 1$ and $s \in S$ such that

$$
h=\left(y_{0} y_{2}^{3}-y_{1}^{3} y_{3}\right)^{N} \cdot s \text { and }\left(y_{0} y_{2}^{3}-y_{1}^{3} y_{3}\right) \nless s
$$

hold. From $h \in R_{1} \subseteq S$ it follows that all terms $y_{0}^{\alpha_{0}} y_{1}^{\alpha_{1}} y_{2}^{\alpha_{2}} y_{3}^{\alpha_{3}}$ in $h \in S$ have the property $\alpha_{0}+\alpha_{3}=\alpha_{1}+\alpha_{2}$; on the other hand, all terms $y_{0}^{\alpha_{0}} y_{1}^{\alpha_{1}} y_{2}^{\alpha_{2}} y_{3}^{\alpha_{3}}$ of $\left(y_{0} y_{2}^{3}-y_{1}^{3} y_{3}\right)^{N}$ have the property $\left(\alpha_{0}+\alpha_{3}\right)-\left(\alpha_{1}+\alpha_{2}\right)=-2 N$. So we can assume that all terms $y_{0}^{\alpha_{0}} y_{1}^{\alpha_{1}} y_{2}^{\alpha_{2}} y_{3}^{\alpha_{3}}$ of s have the property $\left(\alpha_{0}+\alpha_{3}\right)-\left(\alpha_{1}+\alpha_{2}\right)=2 N$. But then s cannot be a unit in S and so

$$
\left(y_{0} y_{2}^{3}-y_{1}^{3} y_{3}\right) S=\sqrt{h S}=\left(y_{0} y_{2}^{3}-y_{1}^{3} y_{3}\right) S \cap \sqrt{s S}
$$

clearly leads to a contradiction.
Thus the implication from Remark 2.1 (i) is not an equivalence, in general; the next result answers the question what additional condition is required to get equivalence:

Theorem 2.2. Set $h:=\operatorname{height}(I)$ and let $f_{1}, \ldots f_{h} \in I$ be an R-regular sequence. The following statements are equivalent:
(i) $\sqrt{\left(f_{1}, \ldots, f_{h}\right) R}=\sqrt{I}$; in particular, I is a complete intersection.
(ii) $H_{I}^{l}(R)=0$ for every $l>h$ and f_{1}, \ldots, f_{h} is a $D\left(H_{I}^{h}(R)\right)$-regular sequence.
(iii) $H_{I}^{l}(R)=0$ for every $l>h$ and f_{1}, \ldots, f_{h} is a $D\left(H_{I}^{h}(R)\right)$-quasiregular sequence.

The (technical) proof can be found in [7, Corollary 1.1.4]. Note that a sequence $\underline{x}=x_{1}, \ldots, x_{n} \in R$ is called M-quasiregular for a given R-module M if multiplication by every x_{i} is injective on $M /\left(x_{1}, \ldots, x_{i-1} M\right)$ for every $i=1, \ldots, n$.

Due to the importance of $D\left(H_{I}^{h}(R)\right)$-regular sequences (in the above situation) contained in I, one might be tempted to define a notion of depth in he following sense:

Definition 2.3. For every ideal I of R and every $l \in \mathbb{N}$ let depth($\left.I, D\left(H_{I}^{l}(R)\right)\right)$ be the maximal length of a $D\left(H_{I}^{l}(R)\right)$-regular sequence inside I.

But this notion is not well-behaved in the sense that, in general, not all maximal regular sequences have the same length; here is a concrete example:

Again, like in Remark 2.1 (ii), let $I \subseteq k[[x, y, z, w]]$ be the ideal corresponding to the curve C_{4}; assume char $(k)>0$. As we mentioned before, I is a complete intersection. Therefore, because of Theorem 2.2, $\operatorname{depth}\left(I, D\left(H_{I}^{2}(R)\right)\right)=$ 2. On the other hand, one can show that $f:=x w-y z \in I$ is a regular sequence (of length one) on $D\left(H_{I}^{2}(R)\right)$ (this follows e.g. from calculations in Remark 2.1 (ii)). But there is no $h \in I$ such that $\sqrt{(f, h) R}=\sqrt{I}$, because $I / f R$ is not a a complete intersection. Therefore, again because of Theorem 2.2, the sequence consisting solely of f is already maximal.

Nevertheless, Theorem 2.2 suggests to study $D\left(H_{I}^{h}(R)\right)$-regular sequences contained in I; this problem is related to the study of the set $\operatorname{Ass}_{R}\left(D\left(H_{I}^{h}(R)\right)\right)$ of associated primes of $D\left(H_{I}^{h}(R)\right)$.

The general idea that associated primes of $D\left(H_{I}^{h}(R)\right)$ tend to be "small" becomes concrete in the following special

Example 2.4. Let $R=k[[X, Y]]$ be a formal power series ring over a field k in two variables and set $I:=X R$. Čech cohomology shows $H_{I}^{1}(R)=$ $k[[Y]]\left[X^{-1}\right]$. A tedious calculation based on this description shows $D\left(H_{I}^{1}(R)\right)=$ $k\left[Y^{-1}\right][[X]]$. Note that, for any ring S, an expression like $S\left[X^{-1}\right]$ stands for the direct sum over all $S \cdot X^{-l}$ for $l \leq-1$. Also note that $k\left[Y^{-1}\right][[X]]$ is bigger than $k[[X]]\left[Y^{-1}\right]$.

Using the above description of $D\left(H_{I}^{1}(R)\right)$ we consider the element $Y^{-1} X+$ $Y^{-4} X^{2}+Y^{-9} X^{3}+\cdots \in D\left(H_{I}^{1}(R)\right)$. It is not too difficult to see that its annihilator in R is zero; in particular, $\{0\} \in \operatorname{Ass}_{R}\left(D\left(H_{I}^{1}(R)\right)\right)$.

A generalization of the preceding example is
Theorem 2.5. Let $i \in \mathbb{N}^{+}$. For an arbitrary sequence $\underline{x}=x_{1}, \ldots, x_{i}$ of elements of R one has

$$
\begin{equation*}
\{p \in \operatorname{Spec}(R) \mid \underline{x} \text { is part of a s. o. p. of } R / p\} \subseteq \operatorname{Ass}_{R}\left(D\left(H_{(\underline{x}) R}^{i}(R)\right)\right) \tag{1}
\end{equation*}
$$

A proof can be found in [7, Theorem 3.1.3]. On the other hand, it was shown also in [7, Remark 1.2.1] that

REmark 2.6. In the above situation

$$
\begin{equation*}
\operatorname{Ass}_{R}\left(D\left(H_{(\underline{x}) R}^{i}(R)\right)\right) \subseteq\left\{p \in \operatorname{Spec}(R) \mid H_{(\underline{x}) R}^{i}(R / p) \neq 0\right\} \tag{2}
\end{equation*}
$$

holds.
But while one can show that, in general, (1) is not an equality, it is conjectured that (2) is an equality; this is conjecture $(*)$ from [5, 7, 8].

Theorem 2.7. The following statements are equivalent:
(i) Conjecture (*) holds, i. e. for every noetherian local ring (R, m), every $i>0$ and every sequence x_{1}, \ldots, x_{i} of elements of R the equality

$$
\operatorname{Ass}_{R}\left(D\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(R)\right)\right)=\left\{p \in \operatorname{Spec}(R) \mid H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(R / p) \neq 0\right\}
$$

holds.
(ii) For every noetherian local ring (R, m), every $i>0$ and every sequence x_{1}, \ldots, x_{i} of elements of R the set

$$
Y:=\operatorname{Ass}_{R}\left(D\left(H_{\left(x_{1}, \ldots, x_{i}\right)}^{i}(R)\right)\right)
$$

is stable under generalization, i.e., the implication

$$
p_{0}, p_{1} \in \operatorname{Spec}(R), p_{0} \subseteq p_{1}, p_{1} \in Y \Longrightarrow p_{0} \in Y
$$

holds.
(iii) For every noetherian local domain (R, m), every $i>0$ and every sequence x_{1}, \ldots, x_{i} of elements of R the implication

$$
H_{\left(x_{1}, \ldots, x_{i}\right)}^{i}(R) \neq 0 \Longrightarrow\{0\} \in \operatorname{Ass}_{R}\left(D\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(R)\right)\right)
$$

holds.
(iv) For every noetherian local ring (R, m), every finitely generated R module M, every $i>0$ and every sequence x_{1}, \ldots, x_{i} of elements of R the equality
(3) $\quad \operatorname{Ass}_{R}\left(D\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(M)\right)\right)=\left\{p \in \operatorname{Supp}_{R}(M) \mid H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(M / p M) \neq 0\right\}$
holds.
Proof. First we show that (i) - (iii) are equivalent.
(i) \Longrightarrow (ii): In the given situation we have

$$
\operatorname{Hom}_{R}\left(R / p_{1}, D\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(R)\right)\right) \neq 0
$$

this implies

$$
\begin{aligned}
0 & \neq \operatorname{Hom}_{R}\left(R / p_{0}, D\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(R)\right)\right) \\
& =\operatorname{Hom}_{R}\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(R) \otimes_{R}\left(R / p_{0}\right), E_{R}(R / m)\right) \\
& =D\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}\left(R / p_{0}\right)\right)
\end{aligned}
$$

Thus conjecture $\left(^{*}\right)$ implies that p_{0} is associated to $D\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(R)\right)$. (ii) \Longrightarrow (iii): We assume that $H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(R) \neq 0$. This implies

$$
D\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(R)\right) \neq 0
$$

and hence $\operatorname{Ass}_{R}\left(D\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(R)\right)\right) \neq \emptyset$; now (ii) shows

$$
\{0\} \in \operatorname{Ass}_{R}\left(D\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(R)\right)\right) .
$$

(iii) \Longrightarrow (i): We know that \subseteq holds always; we take a prime ideal p of R such that $H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(R / p) \neq 0$ and we have to show $p \in \operatorname{Ass}_{R}\left(D\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(R)\right)\right)$: We apply (iii) to the domain R / p and get an R-linear injection

$$
\begin{aligned}
R / p & \rightarrow D\left(H_{\left(x_{1}, \ldots, x_{i}\right)(R / p)}^{i}(R / p)\right) \\
& =\operatorname{Hom}_{R}\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(R / p), E_{R}(R / m)\right) \\
& =\operatorname{Hom}_{R}\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(R) \otimes_{R} R / p, E_{R}(R / p)\right) \\
& =\operatorname{Hom}_{R}\left(R / p, D\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(R)\right)\right) \\
& \subseteq D\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(R)\right) .
\end{aligned}
$$

Note that we used $H_{\left(x_{1}, \ldots, x_{i}\right)(R / p)}^{i}(R / p)=H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(R / p)$ and the fact that $\operatorname{Hom}_{R}\left(R / p, E_{R}(R / m)\right)$ is an R / p-injective hull of R / m. Now it is clearly sufficient to show that (i) implies (iv): " \subseteq ": Every element p of the left-hand side of identity (3) must contain $\operatorname{Ann}_{R}(M)$ and hence is an element of $\operatorname{Supp}_{R}(M)$; furthermore, it satisfies

$$
\begin{aligned}
0 & \neq \operatorname{Hom}_{R}\left(R / p, D\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(M)\right)\right) \\
& =\operatorname{Hom}_{R}\left(R / p \otimes_{R} H_{\left(x_{1}, \ldots, x_{i}\right) R}(M), E_{R}(R / m)\right) \\
& =D\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(M / p M)\right) .
\end{aligned}
$$

$" \supseteq "$ Let p be an element of the support of M such that $H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(M / p M)$ is not zero. We set $\bar{R}:=R / \operatorname{Ann}_{R}(M), M$ is an \bar{R}-module. $p \supseteq \operatorname{Ann}_{R}(M)$, we set $\bar{p}:=p / \operatorname{Ann}_{R}(M)$. Clearly, our hypothesis implies that $H_{\left(x_{1}, \ldots, x_{i}\right)}^{i} \bar{R}(\bar{R}) \neq 0$. We apply (i) to \bar{R} and deduce

$$
\bar{p} \in \operatorname{Ass}_{\bar{R}}\left(D\left(H_{\left(x_{1}, \ldots, x_{i}\right) \bar{R}}^{i}(\bar{R})\right)\right) .
$$

Hence there is an R-linear injection

$$
0 \rightarrow R / p=\bar{R} / \bar{p} \rightarrow D\left(H_{\left(x_{1}, \ldots, x_{i}\right) \bar{R}}^{i}(\bar{R})\right),
$$

which induces an R-linear injection

$$
\begin{aligned}
0 & \rightarrow \operatorname{Hom}_{R}(M, R / p) \\
& \rightarrow \operatorname{Hom}_{R}\left(M, D\left(H_{\left(x_{1}, \ldots, x_{i}\right) \bar{R}}^{i}(\bar{R})\right)\right) \\
& =\operatorname{Hom}_{\bar{R}}\left(M, D\left(H_{\left(x_{1}, \ldots, x_{i}\right) \bar{R}}^{i}(\bar{R})\right)\right) \\
& =D\left(H_{\left(x_{1}, \ldots, x_{i}\right) \bar{R}}^{i}(M)\right) \\
& =D\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(M)\right) .
\end{aligned}
$$

Note that for the second equality we have used Hom-Tensor adjointness and for the last equality the facts that M is an \bar{R}-module and that $\operatorname{Hom}_{R}\left(\bar{R}, E_{R}(R / m)\right)$ is an \bar{R}-injective hull of R / m; It is sufficient to show $p \in \operatorname{Ass}_{R}\left(\operatorname{Hom}_{R}(M, R / p)\right)$; but M is finite and so we have

$$
\left(\operatorname{Hom}_{R}(M, R / p)\right)_{p}=\operatorname{Hom}_{R_{p}}\left(M_{p}, R_{p} / p R_{p}\right) \neq 0,
$$

which shows that $p R_{p}$ is associated to the R_{p}-module $\left(\operatorname{Hom}_{R}(M, R / p)\right)_{p}$. Thus $p \in \operatorname{Ass}_{R}\left(\operatorname{Hom}_{R}(M, R / p)\right)$.

Even in the following special case it seems to be very difficult to completely calculate the set of associated primes:

Example 2.8. Let $R=k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ be a formal power series ring in $n \geq 2$ (to avoid trivial cases) variables and set $I:=\left(x_{1}, \ldots, x_{i}\right)$ for some $1 \leq i \leq n$. Let m denote the maximal ideal of R.

- Case $i=n$: It is easy to see that $\left({ }^{*}\right)$ holds.
- Case $i=n-1$: Conjecture (*) holds (this follows e.g. from Theorem 2.10 below).
- Case $i=n-2$: It is easy to see (e.g. from Remark 2.6) that for every prime ideal p of R one has $p \in \operatorname{Ass}_{R}\left(D\left(H_{I}^{n-2}(R)\right)\right) \Rightarrow \operatorname{height}(p) \leq 2$; in addition, for every height two prime ideal p of R, one has

$$
p \in \operatorname{Ass}_{R}\left(D\left(H_{I}^{n-2}(R)\right)\right) \Longleftrightarrow I+p \text { is } m \text {-primary. }
$$

For every prime element $p \in I \backslash m I$ one has

$$
p R \notin \operatorname{Ass}_{R}\left(D\left(H_{I}^{n-2}(R)\right)\right)
$$

(this can be deduced from $H_{I}^{n-2}(R / p R)=0$). But note that, in general, there are prime elements $p \in I$ such that $p R \in \operatorname{Ass}_{R}\left(D\left(H_{I}^{n-2}(R)\right)\right)$. For example, take $n=5, h=3, k=\mathbb{Q}$ and $p:=-X_{2} X_{4}^{2}+X_{3} X_{4} X_{5}-X_{1} X_{5}^{2}+$ $4 X_{1} X_{2}-X_{3}^{2} \in I$. Then $p R$ is (even maximal) in $\operatorname{Ass}_{R}\left(D\left(H_{I}^{3}(R)\right)\right)$ (this is explained and proven in [7, Remarks 4.3.2]).

Finally, if $p \in R$ is a prime element that is not contained in I, one has

$$
p R \in \operatorname{Ass}_{R}\left(D\left(H_{I}^{n-2}(R)\right)\right)
$$

(this follows from Theorem 2.5).

Finally, there are two results on the set $\operatorname{Ass}_{R}\left(D\left(H_{J}^{\operatorname{dim}(R)}(R)\right)\right)$ for onedimensional ideals $J \subseteq R$:

ThEOREM 2.9. Let $J \subseteq R$ be an ideal of the local ring R such that $\operatorname{dim}(R / J)=1$ and $H_{J}^{\operatorname{dim}(R)}(R)=0$. Then

$$
\operatorname{Assh}\left(D\left(H_{J}^{\operatorname{dim}(R)-1}(R)\right)\right)=\operatorname{Assh}(R)
$$

(here Assh stands for those associated primes of highest dimension) holds.
Theorem 2.10. Let $J \subseteq R$ be an ideal of the local complete ring R such that $\operatorname{dim}(R / J)=1$ and $H_{J}^{\operatorname{dim}(R)}(R)=0$. Then

$$
\operatorname{Ass}_{R}\left(D\left(H_{J}^{\operatorname{dim}(R)-1}(R)\right)\right)
$$

$=\{P \in \operatorname{Spec}(R) \mid \operatorname{dim}(R / P)=\operatorname{dim}(R)-1, \operatorname{dim}(R /(P+J))=0\} \cup \operatorname{Assh}(R)$
holds.
Proofs of the preceding two results can be found in [7, Theorems 3.2.6 and 3.2.7].

References

1. Brodmann M. P., Sharp R. J., Local Cohomology, Cambridge studies in advanced mathematics, 60, (1998).
2. Bresinsky H., Stückrad J., Renschuch B., Mengentheoretisch vollständige Durchschnitte verschiedener rationaler Raumkurven im \mathbf{P}^{3}, Math. Nachr., 104 (1981), 147-169.
3. Grothendieck A., Local Cohomology, Lecture Notes in Math., Springer Verlag, 1967.
4. Hartshorne R., Complete intersections in characteristic $p>0$, Amer. J. Math., 101 (1979).
5. Hellus M., On the associated primes of Matlis duals of top local cohomology modules, Comm. Algebra, 33, No. 11 (2005), 3997-4009.
6. Hellus M., Matlis duals of top local cohomology modules and the arithmetic rank of an ideal, to appear in Comm. Algebra.
7. Hellus M., Local Cohomology and Matlis duality, Habilitationsschrift, Leipzig, 2006.
8. Hellus M., Stückrad J., Matlis duals of top Local Cohomology Modules, submitted to Proc. Amer. Math. Soc.
Received December 18, 2006
Both authors:
Mathematisches Institut
Universitaet Leipzig
Postfach 100920
D-04009 Leipzig
Germany
e-mail: hellus@math.uni-leipzig.de
e-mail: stueckrad@math.uni-leipzig.de
