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LOCAL COHOMOLOGY AND MATLIS DUALITY

by Michael Hellus and Jürgen Stückrad

Abstract. Relations between (set-theoretic) complete intersections and lo-
cal cohomology are studied; it is explained in what sense Matlis duals of cer-
tain local cohomology modules carry enough information to decide whether
the given ideal is a complete intersection or not. Finally, we present some
related results on associated primes of Matlis duals of local cohomology
modules.

1. The situation – notation and basic definitions. Let I be an ideal
of a (always commutative, noetherian) ring R. For every R-module M one sets

ΓI(M) := {m ∈ M |In ·m = 0∀n � 0}

(that is, ΓI(M) is the largest submodule of M whose support is contained in
V (I)). The (right) derived functors of the (left exact) functor ΓI are called
local cohomology functors H i

I with support in I (for i ∈ N). One can show that
these functors are affine versions of Serre cohomology on sheaves. [3] and [1]
are general references for local cohomology.

Usually, we will assume in addition that R is local with maximal ideal m.
In this case we denote by E := ER(R/m) a fixed R-injective hull of the R-
module R/m and by D the (contravariant) functor HomR(·, E). Some of the
following ideas are contained in the first author’s Habilitationsschrift [7].

Definition 1.1. I is a set-theoretic complete intersection iff it can be
generated by height(I) many elements up to radical, i.e., iff ara(I) = height(I),
where ara(I) is the minimal number of generators of I up to radical.

Remark 1.2. It is an easy consequence of Krull’s principal ideal theorem
that there is always the inequality ara(I) ≥ height(I).

From now on we will use “complete intersection” for “set-theoretic complete
intersection.”
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Example 1.3. Let k be a field, d ∈ N, d ≥ 3 and let Pn
k denote projective

n-space over k. Furthermore, let Cd be the (projective, smooth) curve which
is the image of

P1
k → P3

k, (u : v) 7→ (ud : ud−1v : uvd−1 : vd).

It is well-known that C3 is a complete intersection. In addition, in the case
of char(k) > 0 Hartshorne ([4, Theorem*]) resp. Bresinsky, second author
and Renschuch ([2]) have shown that Cd is a complete intersection (for every
d ≥ 3). The case char(k) = 0 is open, even for d = 4. The curve C4 is the
famous Macaulay curve.

2. Results. The following (first) remark is an easy consequence of the
fact that one may use Čech cohomology to compute Serre cohomology over an
affine scheme:

Remarks 2.1. (i) I is a complete intersection ⇒ H l
I(R) = 0 for every

l > height(I). More generally, for every ideal I, one has H l
I(R) = 0 for every

l > ara(I).
(ii) The reversed statement of (i) does not hold in general, here is an

example (later we will refer to this example again): Let R = k[[x, y, z, w]] be a
formal power series ring over a base field k in four variables. Set f := xw−yz,
g1 := y3 − x2z, g2 := z3 − u2w. It is easy to see that I :=

√
(f, g1, g2)R is the

height two prime ideal of R which corresponds to the curve C4. In particular,
I/fR ⊆ R/fR has height one. We claim that both H l

I/fR(R/fR) = 0 for
every l > 1 and ara(I/fR) ≥ 2 hold (in particular, I/fR is not a complete
intersection, i.e., it is an example, where the reversed statement from (i) does
not hold):

Proof of (ii). Let y0, . . . , y3 be new variables and set S :=k[[y0, y1, y2, y3]].
Denote by R1 the three-dimensional subring R1 := k[[y0y1, y0y2, y1y3, y2y3]] of
S. The ring homomorphism

R → R1, x 7→ y0y1, y 7→ y0y2, z 7→ y1y3, w 7→ y2y3

clearly induces an isomorphism

R/fR ∼= R1(⊆ S).

Now consider the k-linear map

k[y0, y1, y2, y3]
ϕ→ R1

that sends a term yα0
0 yα1

1 yα2
2 yα3

3 to yα0
0 yα1

1 yα2
2 yα3

3 ∈ R1 if α0 + α3 = α1 + α2

holds, and to zero otherwise. Note that ϕ is well-defined by construction and
naturally induces a map

S = k[[y0, y1, y2, y3]]
ϕ̃→ R1.
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Now it is easy to see that ϕ̃ is R1-linear and makes R1 into a direct summand in
S (as an R1-submodule). Thus H2

I (R/fR) is isomorphic to a direct summand
of H2

IS(S). We have

IS = (g1, g2)S = ((y0y
3
2 − y3

1y3) · y2
0, (y0y

3
2 − y3

1y3) · (−y2
3))S

and √
IS = (y0y

3
2 − y3

1y3)S.

This implies H2
IS(S) = 0 and thus, by what we have seen above, H2

I (R/fR) =
0. Now we show ara(I(R/fR)) = 2: We assume ara(I(R/fR)) 6= 2; then we
clearly have ara(I(R/fR)) = 1. Let h ∈ R be such that

I(R/fR) =
√

h(R/fR)

holds. This implies √
IS =

√
hS .

We have seen before that
√

IS = (y0y
3
2 − y3

1y3)S

holds. S is a unique factorization domain and so there exist N ≥ 1 and s ∈ S
such that

h = (y0y
3
2 − y3

1y3)N · s and (y0y
3
2 − y3

1y3) 6 |s
hold. From h ∈ R1 ⊆ S it follows that all terms yα0

0 yα1
1 yα2

2 yα3
3 in h ∈ S have

the property α0 + α3 = α1 + α2; on the other hand, all terms yα0
0 yα1

1 yα2
2 yα3

3 of
(y0y

3
2−y3

1y3)N have the property (α0+α3)−(α1+α2) = −2N . So we can assume
that all terms yα0

0 yα1
1 yα2

2 yα3
3 of s have the property (α0 +α3)− (α1 +α2) = 2N .

But then s cannot be a unit in S and so

(y0y
3
2 − y3

1y3)S =
√

hS = (y0y
3
2 − y3

1y3)S ∩
√

sS

clearly leads to a contradiction.

Thus the implication from Remark 2.1 (i) is not an equivalence, in general;
the next result answers the question what additional condition is required to
get equivalence:

Theorem 2.2. Set h := height(I) and let f1, . . . fh ∈ I be an R-regular
sequence. The following statements are equivalent:

(i)
√

(f1, . . . , fh)R =
√

I; in particular, I is a complete intersection.
(ii) H l

I(R) = 0 for every l > h and f1, . . . , fh is a D(Hh
I (R))-regular

sequence.
(iii) H l

I(R) = 0 for every l > h and f1, . . . , fh is a D(Hh
I (R))-quasiregular

sequence.
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The (technical) proof can be found in [7, Corollary 1.1.4]. Note that a
sequence x = x1, . . . , xn ∈ R is called M -quasiregular for a given R-module
M if multiplication by every xi is injective on M/(x1, . . . , xi−1M) for every
i = 1, . . . , n.

Due to the importance of D(Hh
I (R))-regular sequences (in the above situ-

ation) contained in I, one might be tempted to define a notion of depth in he
following sense:

Definition 2.3. For every ideal I of R and every l∈N let depth(I, D(H l
I(R)))

be the maximal length of a D(H l
I(R))-regular sequence inside I.

But this notion is not well-behaved in the sense that, in general, not all
maximal regular sequences have the same length; here is a concrete example:

Again, like in Remark 2.1 (ii), let I ⊆ k[[x, y, z, w]] be the ideal correspond-
ing to the curve C4; assume char(k) > 0. As we mentioned before, I is a com-
plete intersection. Therefore, because of Theorem 2.2, depth(I, D(H2

I (R))) =
2. On the other hand, one can show that f := xw−yz ∈ I is a regular sequence
(of length one) on D(H2

I (R)) (this follows e.g. from calculations in Remark
2.1 (ii)). But there is no h ∈ I such that

√
(f, h)R =

√
I, because I/fR is

not a a complete intersection. Therefore, again because of Theorem 2.2, the
sequence consisting solely of f is already maximal.

Nevertheless, Theorem 2.2 suggests to study D(Hh
I (R))-regular sequences

contained in I; this problem is related to the study of the set AssR(D(Hh
I (R)))

of associated primes of D(Hh
I (R)).

The general idea that associated primes of D(Hh
I (R)) tend to be “small”

becomes concrete in the following special

Example 2.4. Let R = k[[X, Y ]] be a formal power series ring over a
field k in two variables and set I := XR. Čech cohomology shows H1

I (R) =
k[[Y ]][X−1]. A tedious calculation based on this description shows D(H1

I (R)) =
k[Y −1][[X]]. Note that, for any ring S, an expression like S[X−1] stands for
the direct sum over all S ·X−l for l ≤ −1. Also note that k[Y −1][[X]] is bigger
than k[[X]][Y −1].

Using the above description of D(H1
I (R)) we consider the element Y −1X +

Y −4X2 + Y −9X3 + · · · ∈ D(H1
I (R)). It is not too difficult to see that its

annihilator in R is zero; in particular, {0} ∈ AssR(D(H1
I (R))).

A generalization of the preceding example is

Theorem 2.5. Let i ∈ N+. For an arbitrary sequence x = x1, . . . , xi of
elements of R one has

(1) {p ∈ Spec(R)|x is part of a s. o. p. of R/p} ⊆ AssR(D(H i
(x)R(R))).

A proof can be found in [7, Theorem 3.1.3]. On the other hand, it was
shown also in [7, Remark 1.2.1] that
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Remark 2.6. In the above situation

(2) AssR(D(H i
(x)R(R))) ⊆ {p ∈ Spec(R)|H i

(x)R(R/p) 6= 0}

holds.

But while one can show that, in general, (1) is not an equality, it is con-
jectured that (2) is an equality; this is conjecture (*) from [5, 7, 8].

Theorem 2.7. The following statements are equivalent:
(i) Conjecture (*) holds, i. e. for every noetherian local ring (R,m), every

i > 0 and every sequence x1, . . . , xi of elements of R the equality

AssR(D(H i
(x1,...,xi)R

(R))) = {p ∈ Spec(R)|H i
(x1,...,xi)R

(R/p) 6= 0}

holds.
(ii) For every noetherian local ring (R, m), every i > 0 and every sequence

x1, . . . , xi of elements of R the set

Y := AssR(D(H i
(x1,...,xi)

(R)))

is stable under generalization, i.e., the implication

p0, p1 ∈ Spec(R), p0 ⊆ p1, p1 ∈ Y =⇒ p0 ∈ Y

holds.
(iii) For every noetherian local domain (R,m), every i > 0 and every

sequence x1, . . . , xi of elements of R the implication

H i
(x1,...,xi)

(R) 6= 0 =⇒ {0} ∈ AssR(D(H i
(x1,...,xi)R

(R)))

holds.
(iv) For every noetherian local ring (R, m), every finitely generated R-

module M , every i > 0 and every sequence x1, . . . , xi of elements of R the
equality

(3) AssR(D(H i
(x1,...,xi)R

(M))) = {p ∈ SuppR(M)|H i
(x1,...,xi)R

(M/pM) 6= 0}

holds.

Proof. First we show that (i) – (iii) are equivalent.
(i) =⇒ (ii): In the given situation we have

HomR(R/p1, D(H i
(x1,...,xi)R

(R))) 6= 0;

this implies

0 6= HomR(R/p0, D(H i
(x1,...,xi)R

(R)))

= HomR(H i
(x1,...,xi)R

(R)⊗R (R/p0), ER(R/m))

= D(H i
(x1,...,xi)R

(R/p0)).
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Thus conjecture (*) implies that p0 is associated to D(H i
(x1,...,xi)R

(R)).
(ii) =⇒ (iii): We assume that H i

(x1,...,xi)R
(R) 6= 0. This implies

D(H i
(x1,...,xi)R

(R)) 6= 0

and hence AssR(D(H i
(x1,...,xi)R

(R))) 6= ∅; now (ii) shows

{0} ∈ AssR(D(H i
(x1,...,xi)R

(R))).

(iii) =⇒ (i): We know that ⊆ holds always; we take a prime ideal p of R such
that H i

(x1,...,xi)R
(R/p) 6= 0 and we have to show p ∈ AssR(D(H i

(x1,...,xi)R
(R))):

We apply (iii) to the domain R/p and get an R-linear injection

R/p → D(H i
(x1,...,xi)(R/p)(R/p))

= HomR(H i
(x1,...,xi)R

(R/p), ER(R/m))

= HomR(H i
(x1,...,xi)R

(R)⊗R R/p, ER(R/p))

= HomR(R/p, D(H i
(x1,...,xi)R

(R)))

⊆ D(H i
(x1,...,xi)R

(R)).

Note that we used H i
(x1,...,xi)(R/p)(R/p) = H i

(x1,...,xi)R
(R/p) and the fact that

HomR(R/p, ER(R/m)) is an R/p-injective hull of R/m. Now it is clearly suffi-
cient to show that (i) implies (iv): ”⊆”: Every element p of the left-hand side
of identity (3) must contain AnnR(M) and hence is an element of SuppR(M);
furthermore, it satisfies

0 6= HomR(R/p, D(H i
(x1,...,xi)R

(M)))

= HomR(R/p⊗R H i
(x1,...,xi)R

(M), ER(R/m))

= D(H i
(x1,...,xi)R

(M/pM)).

”⊇”: Let p be an element of the support of M such that H i
(x1,...,xi)R

(M/pM)
is not zero. We set R := R/ AnnR(M), M is an R-module. p ⊇ AnnR(M), we
set p := p/ AnnR(M). Clearly, our hypothesis implies that H i

(x1,...,xi)R
(R) 6= 0.

We apply (i) to R and deduce

p ∈ AssR(D(H i
(x1,...,xi)R

(R))).

Hence there is an R-linear injection

0 → R/p = R/p → D(H i
(x1,...,xi)R

(R)),
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which induces an R-linear injection

0 → HomR(M,R/p)
→ HomR(M,D(H i

(x1,...,xi)R
(R)))

= HomR(M,D(H i
(x1,...,xi)R

(R)))

= D(H i
(x1,...,xi)R

(M))

= D(H i
(x1,...,xi)R

(M)).

Note that for the second equality we have used Hom-Tensor adjointness and for
the last equality the facts that M is an R-module and that HomR(R,ER(R/m))
is an R-injective hull of R/m; It is sufficient to show p ∈ AssR(HomR(M,R/p));
but M is finite and so we have

(HomR(M,R/p))p = HomRp(Mp, Rp/pRp) 6= 0,

which shows that pRp is associated to the Rp-module (HomR(M,R/p))p. Thus
p ∈ AssR(HomR(M,R/p)).

Even in the following special case it seems to be very difficult to completely
calculate the set of associated primes:

Example 2.8. Let R = k[[x1, . . . , xn]] be a formal power series ring in
n ≥ 2 (to avoid trivial cases) variables and set I := (x1, . . . , xi) for some
1 ≤ i ≤ n. Let m denote the maximal ideal of R.

• Case i = n: It is easy to see that (*) holds.
• Case i = n − 1: Conjecture (*) holds (this follows e.g. from Theorem

2.10 below).
• Case i = n − 2: It is easy to see (e.g. from Remark 2.6) that for every

prime ideal p of R one has p ∈ AssR(D(Hn−2
I (R))) ⇒ height(p) ≤ 2; in

addition, for every height two prime ideal p of R, one has

p ∈ AssR(D(Hn−2
I (R))) ⇐⇒ I + p is m-primary.

For every prime element p ∈ I \mI one has

pR 6∈ AssR(D(Hn−2
I (R)))

(this can be deduced from Hn−2
I (R/pR) = 0). But note that, in general,

there are prime elements p ∈ I such that pR ∈ AssR(D(Hn−2
I (R))). For

example, take n = 5, h = 3, k = Q and p := −X2X
2
4 +X3X4X5−X1X

2
5 +

4X1X2−X2
3 ∈ I. Then pR is (even maximal) in AssR(D(H3

I (R))) (this
is explained and proven in [7, Remarks 4.3.2]).

Finally, if p ∈ R is a prime element that is not contained in I, one
has

pR ∈ AssR(D(Hn−2
I (R)))

(this follows from Theorem 2.5).
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Finally, there are two results on the set AssR(D(Hdim(R)
J (R))) for one-

dimensional ideals J ⊆ R:

Theorem 2.9. Let J ⊆ R be an ideal of the local ring R such that
dim(R/J) = 1 and H

dim(R)
J (R) = 0. Then

Assh(D(Hdim(R)−1
J (R))) = Assh(R)

(here Assh stands for those associated primes of highest dimension) holds.

Theorem 2.10. Let J ⊆ R be an ideal of the local complete ring R such
that dim(R/J) = 1 and H

dim(R)
J (R) = 0. Then

AssR(D(Hdim(R)−1
J (R)))

= {P ∈ Spec(R)|dim(R/P ) = dim(R)− 1,dim(R/(P + J)) = 0} ∪Assh(R)
holds.

Proofs of the preceding two results can be found in [7, Theorems 3.2.6 and
3.2.7].
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