A NOTE ON ABHYANKAR-MOH'S APPROXIMATE ROOTS OF POLYNOMIALS

by Szymon Brzostowski

Abstract

We make a contribution to the Abhyankar-Moh's theory by studying approximate roots of non-characteristic degrees of an irreducible element of $\mathbb{K}((X))[Y]$.

Introduction. Let $\mathbb{K}((X))$ be the power series field in one variable X with coefficients in an algebraically closed field \mathbb{K}. Our aim is to examine approximate roots $\sqrt[l]{f}$ of an irreducible element f of the ring $\mathbb{K}((X))[Y]$ (as Abhyankar and Moh did in [2]), without assuming, though, that we deal with an approximate root of a 'characteristic degree' (see the end of Introduction for an explanation). For similar considerations in a more general setting see Moh [6].

Let us recall the basic notions and results of [1, 2]. For more information about approximate roots see also [1, 2, 4].

Let R be a commutative ring with unity, $f \in R[Y], \operatorname{deg}_{Y} f=k$ be monic in Y and let $l \mid k$ be a divisor of k such that $1 / l \in R$. A monic polynomial $g \in R[Y]$ satisfying the relation $\operatorname{deg}_{Y}\left(f-g^{l}\right)<k-k / l$ is called an approximate l-th root of f. We will denote it by $\sqrt[l]{f}$.

It is a well known fact that under above assumptions an l-th approximate root of f exists and is uniquely determined (cf. [1, 4).

Now we pass to the classical situation. The following assumptions will be made in the sequel. We will call them the Basic Assumptions.

Let f be an irreducible and monic element of $\mathbb{K}((X))[Y], \mathbb{K}=\overline{\mathbb{K}}$, char $\mathbb{K}=$ $0, \operatorname{deg}_{Y} f=k$. Then, by Newton's theorem, $f\left(t^{k}, Y\right)=\prod_{\varepsilon \in U_{k}(\mathbb{K})}(Y-y(\varepsilon t))$ for some $y(t) \in \mathbb{K}((t)), y(t)=\sum_{j} y_{j} t^{j}\left(\right.$ by $U_{k}(\mathbb{K})$ we denote the set $\left.\left\{\varepsilon \in \mathbb{K}: \varepsilon^{k}=1\right\}\right)$.

Further, let $m=\left(m_{0}, \ldots, m_{h}\right)$ be the characteristic of f (roughly speaking: $\left|m_{0}\right|=k, m_{1}=\operatorname{ord}_{t} y(t)$ and m_{2}, \ldots, m_{h} are consecutive exponents of the Laurent expansion of $y(t)$ such that $\operatorname{gcd}\left(m_{0}, \ldots, m_{i}\right)<\operatorname{gcd}\left(m_{0}, \ldots, m_{i-1}\right)$ for $2 \leqslant i \leqslant h$ and $\operatorname{gcd}\left(m_{0}, \ldots, m_{h}\right)=1$; for the definition see [1, Definition (6.8)]) and $d=\left(d_{1}, \ldots, d_{h+1}\right)$, where $d_{h+1}=1$, be the divisor sequence defined by

$$
d_{i}=\operatorname{gcd}\left(m_{0}, \ldots, m_{i-1}\right) \text { for } 1 \leqslant i \leqslant h+1 .
$$

It is also convenient to define the following derived sequences:

$$
s=\left(s_{0}, \ldots, s_{h+1}\right),
$$

putting $s_{0}:=m_{0}, s_{i}:=m_{1} d_{1}+\sum_{2 \leqslant j \leqslant i}\left(m_{j}-m_{j-1}\right) d_{j}$, for $1 \leqslant i \leqslant h$, and $s_{h+1}:=+\infty$;

$$
r=\left(r_{0}, \ldots, r_{h+1}\right),
$$

putting $r_{0}:=m_{0}, r_{i}:=\frac{s_{i}}{d_{i}}$, for $1 \leqslant i \leqslant h$, and $r_{h+1}:=+\infty$;

$$
n=\left(n_{1}, \ldots, n_{h}\right),
$$

putting $n_{i}=\frac{d_{i}}{d_{i+1}}$, for $1 \leqslant i \leqslant h$.
Remark 1. Under an additional assumption char $\mathbb{K} \nmid \operatorname{deg}_{Y} f$, one can extend the results of this work to the case of a positive characteristic.

We summarize basic properties of approximate roots in the following wellknown theorem ([1 Theorem (13.2) (i) and (ii), Theorem (8.2)]).

Abhyankar-Moh Theorem. If $l=d_{j}$ for some $1 \leqslant j \leqslant h+1$ then:

1. $\sqrt[d_{j}]{f}$ is irreducible in $K((X))[Y]$,
2. if $2 \leqslant j \leqslant h+1$, then for every Puiseux root $z(t)$ of $\sqrt[d_{j}]{f}(t, Y)$ there exists $\varepsilon \in U_{k}(\mathbb{K})$ such that
3.

$$
\operatorname{ord}_{t}\left(y(\varepsilon t)-z\left(t^{k}\right)\right)=m_{j},
$$

$$
\operatorname{ord}_{t}\left(\sqrt[d_{j}]{f}\left(t^{k}, y(t)\right)\right)=r_{j} .
$$

In the sequel, we try to examine 'non-characteristic' approximate roots (i.e., we skip the assumption $l=d_{j}$) and to give some results similar to those stated in the above theorem. More specifically: property 1 is not true (Example 11), properties 2 and 3 carry over in the form of inequalities (Theorem 1, Corollary 1 and Theorem 3), which are then proved to be in fact equalities in some special case (Theorem 2 and Theorem 3).

Auxiliary results. Throughout the work we freely utilize the notations and results from [1]. We recall that the symbol θ stands for an unspecified, non-zero element of a field under consideration.

Under the Basic Assumptions, it is easy to prove the following lemma, which is a slight improvement of Lemma (7.16) in [1].

Lemma 1. Let e be an integer such that $1 \leqslant e \leqslant h$ and let \mathbb{K}_{0} be a subfield of \mathbb{K} such that the k-th primitive root of $1 \in \mathbb{K}$ belongs to \mathbb{K}_{0}. Assume that $\sum_{j<m_{e}} y_{j} t^{j} \in \mathbb{K}_{0}((t))$. Then for every (e, U)-deformation $y^{*}(t)$ of $y(t)$ (i.e., an element of $\mathbb{K}^{\prime}((t))$, where \mathbb{K}^{\prime} is an overfield of \mathbb{K}, such that $\operatorname{info}_{t}\left(y^{*}(t)-\right.$ $\left.\left.\sum_{j<m_{e}} y_{j} t^{j}\right)=U t^{m_{e}}\right)$, there is

$$
\operatorname{info}_{t} f\left(t^{k}, y^{*}(t)\right)=\theta\left(U^{n_{e}}-y_{m_{e}}^{n_{e}}\right)^{d_{e+1}} t^{s_{e}} \text { with } \theta \in \mathbb{K}_{0}
$$

Proof. We repeat the proof of (7.16) in [1 to obtain the equality (7.16.2): $\operatorname{info}_{t}\left(y^{*}(t)-y(w t)\right)=\operatorname{info}_{t}(y(t)-y(w t))$ for a fixed $w \in Q(e)=\left\{\varepsilon \in U_{k}\left(\mathbb{K}_{0}\right)\right.$: $\left.\operatorname{ord}_{t}(y(t)-y(\varepsilon t))<m_{e}\right\}$. Since, by assumption, $\operatorname{inco}_{t}(y(t)-y(w t)) \in \mathbb{K}_{0}$, then (7.16.3) takes the form

$$
\operatorname{info}_{t}\left(\prod_{w \in Q(e)}\left(y^{*}(t)-y(w t)\right)\right)=\left\{\begin{array}{ll}
\theta, & \text { if } e=1 \\
\theta t^{s_{e-1}-m_{e-1} d_{e}}, & \text { if } e \geqslant 2
\end{array} \text { with } \theta \in \mathbb{K}_{0}\right.
$$

The rest of the proof goes through without changes.
Next we need a version of the Newton Polygon Method, which is a consequence of [1, Theorem (14.2)]. For a more explicit formulation see also $\S 2$. in 5].

Proposition 1. Let g be an element of $\mathbb{K}((X))[Y]$ splitting into linear factors of the form $Y-z_{j}(X)$, where $z_{j}(X) \in \mathbb{K}\left(\left(X^{1 / M}\right)\right)$ and $1 \leqslant j \leqslant \operatorname{deg}_{Y} g$. Let us consider an arbitrary $u(t)=\sum_{j \leqslant L} u_{j} t^{j / M} \in \mathbb{K}\left(\left(t^{1 / M}\right)\right)$, for some $L \in \mathbb{Z}$. Then the following two conditions are equivalent:
i) there exists $1 \leqslant j \leqslant \operatorname{deg}_{Y} g$ such that $\operatorname{ord}_{t}\left(u(t)-z_{j}(t)\right)>\frac{L}{M}$;
ii) the polynomial $h(U):=\operatorname{inco}_{t} g\left(t, u(t)+U t^{L / M}\right) \in \mathbb{K}[U]$ is not constant and one of its roots is $U=0$.
Furthermore, if $U=0$ has multiplicity $l>0$ as a root of $h(U)$, then there exist at least l different indices $j_{1}, \ldots, j_{l} \in\left\{1, \ldots, \operatorname{deg}_{Y} g\right\}$ such that $\operatorname{ord}_{t}\left(u(t)-z_{j_{i}}(t)\right)>\frac{L}{M}$ for $i=1, \ldots, l$.

Now we can prove
Lemma 2. Let f fulfil the Basic Assumptions. Let l be an integer such that $l \mid d_{i}$ for some $1 \leqslant i \leqslant h$ and $l \notin\left\{d_{1}, \ldots, d_{h+1}\right\}$, and assume that there
exists an integer $m^{\prime}, m_{i-1}<m^{\prime}<m_{i}$ (in the case of $i=1$, we only demand $\left.m^{\prime}<m_{1}\right)$ such that $\operatorname{gcd}\left(d_{i}, m^{\prime}\right)=l$. Then for every Puiseux series $z(t)$ with $\sqrt[l]{f}(t, z(t))=0$ there exists $\varepsilon \in U_{k}(\mathbb{K})$ such that $\operatorname{ord}_{t}\left(y(\varepsilon t)-z\left(t^{k}\right)\right)>m^{\prime}$.

Proof. Let Z be an indeterminate over \mathbb{K} and consider $y^{Z}(t)=y(t)+$ $Z t^{m^{\prime}} \in \mathbb{K}[Z]((t))$. Put $f^{Z}\left(t^{k}, Y\right)=\prod_{\varepsilon^{k}=1}\left(Y-y^{Z}(\varepsilon t)\right)$. Then $f^{Z}(X, Y) \in$ $\mathbb{K}[Z]((X))[Y]$ has the characteristic sequence $m^{Z}=\left(m_{0}, \ldots, m_{i-1}, m^{\prime}, m_{i+1}^{\prime}, \ldots\right)$ and the divisor sequence $d^{Z}=\left(d_{1}, \ldots, d_{i}, l, \ldots, 1\right)$. Notice that $l>1$, because $l \neq d_{h+1}$. From the Abhyankar-Moh theory it follows that $\sqrt[l]{f^{Z}} \in$ $\mathbb{K}[Z]((X))[Y]$ is irreducible in $\overline{\mathbb{K}(Z)}((X))[Y]$. Let

$$
\sqrt[l]{f^{Z}}\left(t^{k / l}, Y\right)=\prod_{\varepsilon_{1}^{k / l}=1}\left(Y-\bar{z}\left(\varepsilon_{1} t\right)\right)
$$

where $\bar{z}(t) \in \overline{\mathbb{K}(Z)}((t))$ has the property that $\operatorname{ord}_{t}\left(\bar{z}\left(t^{l}\right)-y^{Z}(t)\right)=m_{i+1}^{\prime}>$ $m^{\prime}([\mathbf{1}$, Theorem (13.2) (ii)]).

Fix $\varepsilon_{1} \in U_{k / l}(\mathbb{K})$ and consider $\bar{z}\left(\varepsilon_{1} t\right)$. It follows that $z^{*}(t)=\sum_{j<m^{\prime}} y_{j}\left(\varepsilon_{1} t\right)^{j / l}+$ $U\left(\varepsilon_{1} t\right)^{m^{\prime} / l} \in \mathbb{K}[U]((t))$ is (i, U)-deformation of $\bar{z}\left(\varepsilon_{1} t\right)$. Applying Lemma 1 to $\sqrt[l]{f^{Z}}$ and $z^{*}(t)$, we get

$$
\begin{equation*}
\operatorname{info}_{t} \sqrt[l]{f^{Z}}\left(t^{k / l}, z^{*}(t)\right)=\theta\left(U^{\bar{n}_{i}}-Z^{\bar{n}_{i}}\right)^{\bar{d}_{i+1}} t^{\bar{s}_{i}} \text { with } \theta \in \mathbb{K} \tag{1}
\end{equation*}
$$

(Here the bar ${ }^{\prime-}$, indicates characteristic sequences for $\sqrt[l]{f^{Z}}$.) From the definition of the approximate root we conclude that $\operatorname{deg}_{Y}\left(f^{Z}-\left(\sqrt[l]{f^{Z}}\right)^{l}\right)<k-\frac{k}{l}$. After the substitution $Z=0$ in that inequality, we thus get $\operatorname{deg}_{Y}\left(f_{Z=0}^{Z}-\right.$ $\left.\left(\sqrt[l]{f^{Z}}{ }_{Z=0}\right)^{l}\right)<k-\frac{k}{l}$. But, obviously, $f_{Z=0}^{Z}=f$. This means that $\sqrt[l]{f^{Z}}{ }_{Z=0}=$ $\sqrt[l]{f}$. Since $\sqrt[l]{f^{Z}}\left(t^{k / l}, z^{*}(t)\right) \in \mathbb{K}[Z][U]((t))$, then substituting $Z=0$ in (1) we get

$$
\operatorname{info}_{t} \sqrt[l]{f}\left(t^{k / l}, z^{*}(t)\right)=\Theta U^{\bar{n}_{i} \bar{d}_{i+1}} t^{\bar{s}_{i}}=\Theta U^{\bar{d}_{i}} t^{\bar{s}_{i}}=\Theta U^{d_{i} / l} t^{\bar{s}_{i}} \text { with } \theta \in \mathbb{K}
$$

From Proposition 1 we conclude that there exist d_{i} / l Puiseux roots $z_{j_{1}}(t), \ldots$, $z_{j_{d_{i} / l}}(t)$ of $\sqrt[l]{f}(t, Y)$ such that $m^{\prime} / k<\operatorname{ord}_{t}\left(\sum_{j \leqslant m^{\prime}} y_{j} \varepsilon_{1}^{j / l} t^{j / k}-z_{j_{p}}(t)\right)$ and so

$$
m^{\prime}<\operatorname{ord}_{t}\left(y\left(\varepsilon_{1}^{1 / l} t\right)-z_{j_{p}}\left(t^{k}\right)\right) \text { for } p=1, \ldots, d_{i} / l
$$

(Above, $\varepsilon_{1}^{1 / l}$ denotes any of l-th roots of ε_{1} in \mathbb{K}.) Since ε_{1} was a fixed element of $U_{k / l}(\mathbb{K})$, then we have proven that for any $\varepsilon \in U_{k}(\mathbb{K})$ there exist d_{i} / l

Puiseux roots $z_{\varepsilon, 1}(t), \ldots, z_{\varepsilon, d_{i} / l}(t)$ of $\sqrt[l]{f}(t, Y)$ such that

$$
\operatorname{ord}_{t}\left(y(\varepsilon t)-z_{\varepsilon, p}\left(t^{k}\right)\right)>m^{\prime} \text { for } p=1, \ldots, d_{i} / l .
$$

Now for $A=\left\{\varepsilon^{d_{i}}: \varepsilon \in U_{k}(\mathbb{K})\right\}$ there is card $A=k / d_{i}$ and if $\sigma_{1}, \sigma_{2} \in U_{k}(\mathbb{K})$, $\sigma_{1}^{d_{i}} \neq \sigma_{2}^{d_{i}}$, then $\operatorname{ord}_{t}\left(y\left(\sigma_{1} t\right)-y\left(\sigma_{2} t\right)\right)<m_{i-1}<m^{\prime}$. Thus

$$
\operatorname{ord}_{t}\left(z_{\sigma_{1}, p_{1}}\left(t^{k}\right)-z_{\sigma_{2}, p_{2}}\left(t^{k}\right)\right)<m^{\prime} \text { for } p_{1}, p_{2}=1, \ldots, d_{i} / l .
$$

Since $\frac{k}{d_{i}} \frac{d_{i}}{l}=\frac{k}{l}=\operatorname{deg}_{Y} \sqrt[l]{f}$, the lemma is proved.
Property 1. Let $g \in K((X))[Y], \operatorname{deg}_{Y} g=\bar{k}, g=g_{1} \cdot \ldots \cdot g_{r}$ be the decomposition of g into irreducible factors in $K((X))[Y]$. Let N be a positive integer such that $\operatorname{gcd}(N, \bar{k}!)=1$. Then $g\left(X^{N}, Y\right)=g_{1}\left(X^{N}, Y\right)$. $\ldots g_{r}\left(X^{N}, Y\right)$ is the decomposition of $g\left(X^{N}, Y\right)$ into irreducible factors in $K((X))[Y]$. Furthermore, if $z_{1}(t), \ldots, z_{\bar{k}}(t)$ are all Puiseux roots of $g(t, Y)$, then $z_{1}\left(t^{N}\right), \ldots, z_{\bar{k}}\left(t^{N}\right)$ are all Puiseux roots of $g\left(t^{N}, Y\right)$.

Proof. It is enough to prove the property under the assumption that g is irreducible in $\mathbb{K}((X))[Y]$. Let g have characteristic $\bar{m}=\left(\bar{m}_{0}, \ldots \bar{m}_{\bar{h}}\right), \operatorname{deg}_{Y} g=$ \bar{k} and $z(t)$ be any of Puiseux roots of $g(t, Y)=0$. Since $g\left(t^{\bar{k}}, z\left(t^{\bar{k}}\right)\right)=0$, then $g\left(t^{\bar{k} N}, z\left(t^{\bar{k} N}\right)\right)=0$ with $\operatorname{gcd}\left(\bar{k}, \operatorname{Supp}\left(z\left(t^{\bar{k} N}\right)\right)\right)=1$. Thus $g\left(X^{N}, Y\right)$ is irreducible in $\mathbb{K}((X))[Y]$ and the characteristic sequence of $g\left(X^{N}, Y\right)$ is $\left(\bar{m}_{0}, N \bar{m}_{1}, \ldots, N \bar{m}_{\bar{h}}\right)$.

Main results. Our first theorem is an improvement of Lemma 2. It is a generalization of the item 2 in Abhyankar-Moh Theorem covering the noncharacteristic case.

Theorem 1. Let f fulfill the Basic Assumptions. Let l be such an integer that $l \mid d_{i}$ for some $1 \leqslant i \leqslant h$ and $l \notin\left\{d_{1}, \ldots, d_{h+1}\right\}$. Then for every Puiseux series $z(t)$ with $\sqrt[{\sqrt{f}}]{ }(t, z(t))=0$ there exists $\varepsilon \in U_{k}(\mathbb{K})$ such that

$$
\begin{equation*}
\operatorname{ord}_{t}\left(y(\varepsilon t)-z\left(t^{k}\right)\right) \geqslant m_{i} . \tag{2}
\end{equation*}
$$

Proof. Let $M=k!$ and let N be any positive integer such that $(N, M)=1$. Then by Property $1, f\left(X^{N}, Y\right)$ is irreducible in $\mathbb{K}((X))[Y]$ and has the characteristic $\left(m_{0}, N m_{1}, \ldots, N m_{h}\right)$ (see the proof of Property 1). If N is large enough, then there exists such an integer m^{\prime} that $N m_{i-1}<m^{\prime}<N m_{i}$ and $\operatorname{gcd}\left(m_{0}, N m_{1}, \ldots, N m_{i-1}, m^{\prime}\right)=l$ (if $i=1$, then we demand $m^{\prime}<N m_{1}$ and $\left.\operatorname{gcd}\left(m_{0}, m^{\prime}\right)=l\right)$. Consequently, $f_{1}:=f\left(X^{N}, Y\right)$ fulfills the assumptions of Lemma 2 We conclude that for every Puiseux series $\bar{z}(t)$ with $\sqrt[l]{f_{1}}(t, \bar{z}(t))=0$, there exists $\varepsilon \in U_{k}(\mathbb{K})$ such that $\operatorname{ord}_{t}\left(y\left(\varepsilon t^{N}\right)-\bar{z}\left(t^{k}\right)\right)>m^{\prime}$.

But it is evident that $\sqrt[l]{f_{1}}(X, Y)=\sqrt[l]{f}\left(X^{N}, Y\right)$. And so, by Property 1 , there exists a Puiseux root $z(t)$ of $\sqrt[l]{f}(t, Y)$ such that $z\left(t^{N}\right)=\bar{z}(t)$ and $\operatorname{ord}_{t}\left(y\left(\varepsilon t^{N}\right)-z\left(t^{k N}\right)\right)>m^{\prime}$, or in other words

$$
\begin{equation*}
\operatorname{ord}_{t}\left(y(\varepsilon t)-z\left(t^{k}\right)\right)>m^{\prime} / N \tag{3}
\end{equation*}
$$

From Property 1 it follows that every Puiseux root of $\sqrt[l]{f}(t, Y)$ satisfies the above inequality.

Choosing a suitable N tending to infinity, we will now improve (3) to obtain inequality (2). By Dirichlet's theorem, the sequence $\left\{1+j \cdot d_{i} l\right\}_{j \in \mathbb{N}}$ contains infinitely many prime numbers. Let $\left\{N_{p}\right\}_{p \in \mathbb{N}}=\left\{1+j_{p} \cdot d_{i} l\right\}_{p \in \mathbb{N}}$ be the sequence of primes. Let $A:=m_{i}-l$. Now we can write

$$
N_{p} m_{i}=m_{i}+j_{p} \cdot d_{i} l m_{i}=\left(m_{i}-l\right)+\left(d_{i} m_{i} j_{p}+1\right) l=A+\left(d_{i} m_{i} j_{p}+1\right) l .
$$

Taking a large enough $r \in \mathbb{N}$ we define $B:=A+j_{r} \cdot d_{i} l m_{i}$ (or, respectively, $B:=A-j_{r} \cdot d_{i} l m_{i}$ if $m_{i}<0$) with the property that $B>0$. For $p>r$ we now obtain

$$
N_{p} m_{i}=B+\left(d_{i} m_{i}\left(j_{p} \mp j_{r}\right)+1\right) l=B+m_{p}^{\prime}
$$

taking $m_{p}^{\prime}=\left(d_{i} m_{i}\left(j_{p} \mp j_{r}\right)+1\right) l$. Here $\operatorname{gcd}\left(d_{i}, m_{p}^{\prime}\right)=\operatorname{gcd}\left(d_{i}, l\right)=l$ for $p>r$. Since $m_{p}^{\prime}=N_{p} m_{i}-B$ and $B>0$, then $m_{p}^{\prime}<N_{p} m_{i}$, and for a p large enough, also $N_{p} m_{i-1}<m_{p}^{\prime}$ if $i>1$. Obviously, we can also assume that $\operatorname{gcd}\left(N_{p}, M\right)=1$.
Fix a Puiseux series $z(t)$ satisfying $\sqrt[l]{f}(t, z(t))=0$. From the first part of the proof it follows that for every $N=N_{p}, p \gg 0$, there exists $\varepsilon_{p} \in U_{k}(\mathbb{K})$ such that

$$
\operatorname{ord}_{t}\left(y\left(\varepsilon_{p} t\right)-z\left(t^{k}\right)\right)>m_{p}^{\prime} / N_{p}=m_{i}-B / N_{p}
$$

We conclude that there exists an $\varepsilon \in U_{k}(\mathbb{K})$ such that

$$
\operatorname{ord}_{t}\left(y(\varepsilon t)-z\left(t^{k}\right)\right)>m_{i}-B / N_{p}
$$

for infinitely many $p \in \mathbb{N}$. Since B is constant and N_{p} tends to infinity with p, then it means that

$$
\operatorname{ord}_{t}\left(y(\varepsilon t)-z\left(t^{k}\right)\right) \geqslant m_{i}
$$

Thus the theorem is proved.
REMARK 2. The construction of the sequence $\left\{N_{p}\right\}$ can be simplified: demanding only that the sequence $\left\{N_{p} m_{i}-m_{p}^{\prime}\right\}$ should be bounded, there is no need to use Dirichlet's theorem.

Corollary 1. For a given integer $l \mid d_{1}$, the above theorem is true with $i=\max \left\{1 \leqslant j \leqslant h+1: l \mid d_{j}\right\}$. If, in addition, $l>d_{i+1}$, then for every Puiseux root $z(t)$ of $\sqrt[l]{f}(t, Y)$ and every $\sigma \in U_{k}(\mathbb{K})$ there holds

$$
\operatorname{ord}_{t}\left(y(\sigma t)-z\left(t^{k}\right)\right) \leqslant m_{i}
$$

Proof. The first part of the corollary is obvious. As for the second one, if there were $\operatorname{ord}_{t}\left(y(\sigma t)-z\left(t^{k}\right)\right)>m_{i}$, for some Puiseux root $z(t)$ of $\sqrt[l]{f}(t, Y)$ and some $\sigma \in U_{k}(\mathbb{K})$, then

$$
z(t)=\sum_{j \leqslant m_{i}} y_{j}\left(\sigma^{j} t^{j / k}\right)+\ldots=\sum_{j \leqslant m_{i}} y_{j} \sigma^{j} t^{\frac{j / d_{i+1}}{k / d_{i+1}}}+\ldots
$$

and since $\operatorname{gcd}\left(k / d_{i+1}, m_{1} / d_{i+1}, \ldots, m_{i} / d_{i+1}\right)=1$, there would also hold $\operatorname{deg}_{Y} \sqrt[l]{f} \geqslant k / d_{i+1}$ and so $k / l \geqslant k / d_{i+1}$, which is impossible by the assumption.

Combining Theorem 1 and Corollary 1, we get
Theorem 2. Let f fulfill the Basic Assumptions. Let l be an integer such that $l \mid d_{1}$ and $l \notin\left\{d_{1}, \ldots, d_{h+1}\right\}$. Define $i=\max \left\{1 \leqslant j \leqslant h+1: l \mid d_{j}\right\}$. If $l>d_{i+1}$, then for every Puiseux root $z(t)$ of $\sqrt[l]{f}(t, Y)$ and every $\sigma \in U_{k}(\mathbb{K})$,

$$
\operatorname{ord}_{t}\left(y(\sigma t)-z\left(t^{k}\right)\right) \leqslant m_{i}
$$

Furthermore, there exists an $\varepsilon \in U_{k}(\mathbb{K})$ such that

$$
\operatorname{ord}_{t}\left(y(\varepsilon t)-z\left(t^{k}\right)\right)=m_{i}
$$

Theorem 3. Let f fulfill the Basic Assumptions. If l is an integer such that $l \mid d_{1}$ and $l \notin\left\{d_{1}, \ldots, d_{h+1}\right\}$, then for $i=\max \left\{1 \leqslant j \leqslant h+1: l \mid d_{j}\right\}$:

$$
\operatorname{ord}_{t}\left(\sqrt[l]{f}\left(t^{k}, y(t)\right)\right) \geqslant r_{i} \frac{d_{i}}{l}
$$

If, in addition, $l>d_{i+1}$, then the equality holds.
Proof. The concept of the proof is similar to that of the proofs of Lemma 2 and Theorem 1, so we will just sketch it, omitting the details.

1. First we return to the proof of Lemma 2. Assume accordingly, that there exists an integer $m^{\prime}, m_{i-1}<m^{\prime}<m_{i}$ (or simply $m^{\prime}<m_{1}$ for $i=1$) such that $\operatorname{gcd}\left(d_{i}, m^{\prime}\right)=l$. Defining $y^{Z}(t), f^{Z}, \bar{z}(t)$ as in that proof, we obtain $\sqrt[l]{f^{Z}}\left(t^{k / l}, Y\right)=\prod_{\varepsilon_{1}^{k / l}=1}\left(Y-\bar{z}\left(\varepsilon_{1} t\right)\right)$ and so $\left(\sqrt[l]{f^{Z}}\left(t^{k}, Y\right)\right)^{l}=\prod_{\varepsilon^{k}=1}\left(Y-\bar{z}\left((\varepsilon t)^{l}\right)\right)$.
We put $z^{V}(t)=\bar{z}\left(t^{l}\right)+V t^{\alpha} \in \overline{\mathbb{K}(Z)}[V]((t))$, where $\alpha>m_{i}$ is chosen in such a way that $\operatorname{gcd}\left(k, \operatorname{Supp}\left(\bar{z}\left(t^{l}\right)\right), \alpha\right)=1$. Let $h^{Z V}\left(t^{k}, Y\right)=\prod_{\varepsilon^{k}=1}\left(Y-z^{V}(\varepsilon t)\right)$. Then
$h^{Z V}(X, Y) \in \mathbb{K}[Z, V]((X))[Y]$ is an irreducible element of $\overline{\mathbb{K}(Z, V)}((X))[Y]$. By [1, Theorem (13.2) (ii)], we can assume that $m_{i}=\operatorname{ord}_{t}\left(\bar{z}\left(t^{l}\right)-y^{Z}(t)\right)=$ $\operatorname{ord}_{t}\left(z^{V}(t)-y^{Z}(t)\right)$, and so $\operatorname{ord}_{t}\left(z^{V}(t)-y(t)\right)=m^{\prime}$. Since m^{\prime} is the i-th characteristic exponent of $z^{V}(t)$, from Lemma 1 we get

$$
\operatorname{info}_{t} h^{Z V}\left(t^{k}, y(t)\right)=\Theta\left(0-Z^{n_{i}^{Z V}}\right)^{d_{i+1}^{Z V}} t^{s_{i}^{Z V}} \text { with } \theta \in \mathbb{K}
$$

where the superscript ${ }^{\prime} Z V$, indicates characteristic sequences for $h^{Z V}$. But this implies that also

$$
\operatorname{info}_{t} h_{V=0}^{Z V}\left(t^{k}, y(t)\right)=ө Z^{n_{i}^{Z V} d_{i+1}^{Z V}} t^{s_{i}^{Z V}}=ө Z^{d_{i}^{Z V}} t^{S_{i}^{Z V}} \text { with } ө \in \mathbb{K}
$$

Since, obviously, $h_{V=0}^{Z V}=\left(\sqrt[l]{f^{Z}}\right)^{l}$, we thus get

$$
\begin{equation*}
\operatorname{info}_{t} \sqrt[l]{f^{Z}}\left(t^{k}, y(t)\right)=ө Z^{d_{i}^{Z V} / l} t^{S_{i}^{Z V} / l} \text { with } \theta \in \mathbb{K} \tag{4}
\end{equation*}
$$

We now notice that $s_{i}^{Z V}=s_{i}+\left(m^{\prime}-m_{i}\right) d_{i}$ and so, having substituted $Z=0$ in (4),

$$
\operatorname{ord}_{t} \sqrt[l]{f}\left(t^{k}, y(t)\right)>\frac{d_{i}}{l} r_{i}+\frac{d_{i}}{l}\left(m^{\prime}-m_{i}\right)
$$

2. Now we return to the proof of Theorem 1. Constructing a sequence of primes $\left\{N_{p}\right\}_{p \in \mathbb{N}}$ as in that proof and applying Property 1 , we improve the above inequality to

$$
\operatorname{ord}_{t} \sqrt[l]{f}\left(t^{k}, y(t)\right)>\frac{d_{i}}{l} r_{i}-\frac{\text { const }}{N_{p}}
$$

and so

$$
\operatorname{ord}_{t} \sqrt[l]{f}\left(t^{k}, y(t)\right) \geqslant \frac{d_{i}}{l} r_{i}
$$

Finally, from [1, Theorem (8.5)] it follows that in the case of $d_{i+1}<l$, the equality has to hold in the above formula. Indeed, let $g_{1}=Y$ and $g_{j}=\sqrt[d_{j}]{f}$ for $2 \leqslant j \leqslant h+1$. Then for $G=\left(g_{1}, \ldots, g_{h+1}\right)$ we obtain the G-adic expansion of $\sqrt[l]{f}$ in the form $\sqrt[l]{f}=g_{i}^{d_{i} / l}+\ldots$, because $\frac{d_{i}}{l}<\frac{d_{i}}{d_{i+1}}$, and so, by [1, Theorem (8.5)], ord $\operatorname{orl}_{t} \sqrt[l]{f}\left(t^{k}, y(t)\right) \leqslant \frac{d_{i}}{l} r_{i}$.

EXAMPLE 1. In general nothing can be said about the (ir)reducibility of non-characteristic approximate roots. Take the parametrization $X=t^{48}, Y=$ $1 /\left(t^{36}\right)+1 /\left(t^{6}\right)+1 /\left(t^{5}\right)$ and let $f \in \mathbb{C}((X))[Y]$ be its minimal monic polynomial. Then $f=Y^{48}+\ldots$. It can be verified that for $l=2$, there is inco $_{t} \sqrt[l]{f}\left(t^{8}, 1 / t^{6}+1 / t+U \cdot t\right)=4096\left(-51+8 U^{3}\right)$ and so, by [1, Theorem (14.2)], $\sqrt[l]{f}$ splits into three irreducible factors in $\mathbb{C}((X))[Y]$ each of them having a Puiseux root of the form $t^{-3 / 4}+t^{-1 / 8}+ө t^{1 / 8}+$ h.o.t. It is worth
noticing that the divisor $l=2$ here is very 'regular', as $d_{4}=1|2| d_{3}=6$ and, despite of that, irreducibility does not follow.

It is also easy to give examples in the other direction. Let $X=t^{18}, Y=$ $t^{-12}+t^{-2}+t^{-1}, l=3$ and let $f \in \mathbb{C}((X))[Y]$ be its minimal monic polynomial. Then $f=Y^{18}+\ldots$. There is incot $\sqrt[l]{f}\left(t^{6}, 1 / t^{4}+U t\right)=9 U^{2}-6$, so $\sqrt[l]{f}$ is irreducible.

To end with, let us mention that the restriction $l>d_{i+1}$ made in Theorem 2 and Theorem 3 does not seem to be indispensable; in fact, we were not able to find any counterexample to their respective conclusions. An interesting insight gives the following example, which is a slight modification of the one above.

Example 2. Let $X=t^{18}, Y=t^{-12}+a t^{-3}+b t^{-1}$, where a, b are indeterminates over $\mathbb{C}, l=2$. Then $l=2<d_{i+1}=3$, so the assumption $l>d_{i+1}$ is not fulfilled. In spite of that inco $_{t} \sqrt[{\sqrt[1]{f}}]{ }\left(t^{6}, 1 / t^{4}+U / t\right)=-27 / 2 \cdot U\left(-2 U^{2}+3 a^{2}\right)$. We conclude that $\sqrt[{\sqrt{f}}]{ }$ has two non-conjugate Puiseux roots. One of them is of the form $z_{1}(t)=t^{-2 / 3}+\sqrt{6} / 2 \cdot a \cdot t^{-1 / 6}+$ h.o.t., whereas $y(t)=t^{-12}+a t^{-3}+b t^{-18}$, so still $\operatorname{ord}_{t}\left(y(t)-z_{1}\left(t^{18}\right)\right)=-3=m_{2}$. Also $\operatorname{ord}_{t}\left(\sqrt[l]{f}\left(t^{18}, y(t)\right)\right)=r_{2} \frac{d_{2}}{l}=$ -81 .

We state
Problem 1. Can we drop the assumption $l>d_{i+1}$ from the formulation of Theorem 2 and Theorem [3?

Problem 2. If $\sqrt[l]{f}$ is reducible in $\mathbb{K}((X))[Y]$, do the degrees of the factors of $\sqrt[l]{f}$ divide k ?

References

1. Abhyankar S. S., Expansion Techniques in Algebraic Geometry, Tata Institute of Fundamental Research, Bombay, 1977.
2. Abhyankar S. S., Moh T. T., Newton-Puiseux expansion and generalized Tschirnhausen transformation I, II, J. Reine Angew. Math., 260 (1973), 47-83 and 261 (1973), 29-54.
3. Abhyankar S. S., Moh T. T., Embeddings of the Line in the Plane, J. Reine Angew. Math., 276 (1975), 148-166.
4. Gwoździewicz J., Płoski A., On the approximate roots of polynomials, Ann. Polon. Math., LX. 3 (1995), 199-210
5. Moh T. T., On approximate roots of a polynomial, J. Reine Angew. Math., 278 (1974), 301-306.
6. Moh T. T., On the Concept of Approximate Roots for Algebra, J. Algebra, 65 (1980), 347-360.
7. Płoski A., Pierwiastki aproksymatywne wielomianów wedtug S. S. Abhyankara i T. T. Moha, Materiały XIV Konferencji Szkoleniowej z Teorii Zagadnień Ekstremalnych, Wyd. UŁ., Łódź, 1993, 45-52.
8. Płoski A., Twierdzenia podstawowe o pierwiastkach aproksymatywnych wielomianów, Materiały XV Konferencji Szkoleniowej z Analizy i Geometrii Zespolonej, Wyd. UŁ., Łódź, 1994, 51-61.
9. Sathaye A., Generalized Newton-Puiseux Expansions and Abhyankar-Moh Semigroup Theorem, Invent. Math., 74 (1983), 149-157.

Received February 1, 2007
Faculty of Mathematics
University of Łódź
ul. Banacha 22, Łódź
Poland
e-mail: brzosts@math.uni.lodz.pl

