A NOTE ON ABHYANKAR–MOH'S APPROXIMATE ROOTS OF POLYNOMIALS

BY SZYMON BRZOSTOWSKI

Abstract. We make a contribution to the Abhyankar–Moh's theory by studying approximate roots of non-characteristic degrees of an irreducible element of $\mathbb{K}((X))[Y]$.

Introduction. Let $\mathbb{K}((X))$ be the power series field in one variable X with coefficients in an algebraically closed field \mathbb{K} . Our aim is to examine approximate roots $\sqrt[l]{f}$ of an irreducible element f of the ring $\mathbb{K}((X))[Y]$ (as Abhyankar and Moh did in [2]), without assuming, though, that we deal with an approximate root of a 'characteristic degree' (see the end of Introduction for an explanation). For similar considerations in a more general setting see Moh [6].

Let us recall the basic notions and results of [1, 2]. For more information about approximate roots see also [1, 2, 4].

Let R be a commutative ring with unity, $f \in R[Y]$, $\deg_Y f = k$ be monic in Y and let l|k be a divisor of k such that $1/l \in R$. A monic polynomial $g \in R[Y]$ satisfying the relation $\deg_Y(f - g^l) < k - k/l$ is called an *approximate l-th root* of f. We will denote it by $\sqrt[l]{f}$.

It is a well known fact that under above assumptions an l-th approximate root of f exists and is uniquely determined (cf. [1, 4]).

Now we pass to the classical situation. The following assumptions will be made in the sequel. We will call them the BASIC ASSUMPTIONS.

Let f be an irreducible and monic element of $\mathbb{K}((X))[Y]$, $\mathbb{K} = \overline{\mathbb{K}}$, char $\mathbb{K} = 0$, deg_Y f = k. Then, by Newton's theorem, $f(t^k, Y) = \prod_{\varepsilon \in U_k(\mathbb{K})} (Y - y(\varepsilon t))$ for some $y(t) \in \mathbb{K}((t))$, $y(t) = \sum_j y_j t^j$ (by $U_k(\mathbb{K})$ we denote the set { $\varepsilon \in \mathbb{K} : \varepsilon^k = 1$ }).

Further, let $m = (m_0, \ldots, m_h)$ be the characteristic of f (roughly speaking: $|m_0| = k, m_1 = \operatorname{ord}_t y(t)$ and m_2, \ldots, m_h are consecutive exponents of the Laurent expansion of y(t) such that $\operatorname{gcd}(m_0, \ldots, m_i) < \operatorname{gcd}(m_0, \ldots, m_{i-1})$ for $2 \leq i \leq h$ and $\operatorname{gcd}(m_0, \ldots, m_h) = 1$; for the definition see [1, Definition (6.8)]) and $d = (d_1, \ldots, d_{h+1})$, where $d_{h+1} = 1$, be the divisor sequence defined by

$$d_i = \operatorname{gcd}(m_0, \ldots, m_{i-1})$$
 for $1 \leq i \leq h+1$.

It is also convenient to define the following derived sequences:

$$s = (s_0, \ldots, s_{h+1}),$$

putting $s_0 := m_0$, $s_i := m_1 d_1 + \sum_{2 \leq j \leq i} (m_j - m_{j-1}) d_j$, for $1 \leq i \leq h$, and $s_{h+1} := +\infty$;

$$r = (r_0, \ldots, r_{h+1}),$$

putting $r_0 := m_0$, $r_i := \frac{s_i}{d_i}$, for $1 \leq i \leq h$, and $r_{h+1} := +\infty$;

$$n=(n_1,\ldots,n_h),$$

putting $n_i = \frac{d_i}{d_{i+1}}$, for $1 \leq i \leq h$.

3.

REMARK 1. Under an additional assumption char $\mathbb{K} \nmid \deg_Y f$, one can extend the results of this work to the case of a positive characteristic.

We summarize basic properties of approximate roots in the following well-known theorem ([1, Theorem (13.2) (i) and (ii), Theorem (8.2)]).

ABHYANKAR-MOH THEOREM. If $l = d_j$ for some $1 \leq j \leq h+1$ then:

- 1. $\sqrt[d_i]{f}$ is irreducible in K((X))[Y],
- 2. if $2 \leq j \leq h+1$, then for every Puiseux root z(t) of $\sqrt[d]{f}(t,Y)$ there exists $\varepsilon \in U_k(\mathbb{K})$ such that

$$\operatorname{ord}_{t}\left(y\left(\varepsilon t\right)-z\left(t^{k}\right)\right)=m_{j},$$
$$\operatorname{ord}_{t}\left(\sqrt[d_{j}]{f}\left(t^{k},y\left(t\right)\right)\right)=r_{j}.$$

In the sequel, we try to examine 'non-characteristic' approximate roots (i.e., we skip the assumption $l = d_j$) and to give some results similar to those stated in the above theorem. More specifically: property 1 is not true (Example 1), properties 2 and 3 carry over in the form of inequalities (Theorem 1, Corollary 1 and Theorem 3), which are then proved to be in fact equalities in some special case (Theorem 2 and Theorem 3).

Auxiliary results. Throughout the work we freely utilize the notations and results from [1]. We recall that the symbol $\boldsymbol{\sigma}$ stands for an unspecified, non-zero element of a field under consideration.

Under the Basic Assumptions, it is easy to prove the following lemma, which is a slight improvement of Lemma (7.16) in [1].

LEMMA 1. Let e be an integer such that $1 \leq e \leq h$ and let \mathbb{K}_0 be a subfield of \mathbb{K} such that the k-th primitive root of $1 \in \mathbb{K}$ belongs to \mathbb{K}_0 . Assume that $\sum_{j \leq m_e} y_j t^j \in \mathbb{K}_0((t))$. Then for every (e, U)-deformation $y^*(t)$ of y(t) (i.e.,

an element of $\mathbb{K}'((t))$, where \mathbb{K}' is an overfield of \mathbb{K} , such that $\operatorname{info}_t(y^*(t) - \sum_{j < m_e} y_j t^j) = Ut^{m_e})$, there is

$$\inf_{t} f\left(t^{k}, y^{*}\left(t\right)\right) = \sigma\left(U^{n_{e}} - y^{n_{e}}_{m_{e}}\right)^{d_{e+1}} t^{s_{e}} \text{ with } \sigma \in \mathbb{K}_{0}.$$

PROOF. We repeat the proof of (7.16) in [1] to obtain the equality (7.16.2): info_t($y^*(t)-y(wt)$) = info_t(y(t)-y(wt)) for a fixed $w \in Q(e) = \{\varepsilon \in U_k(\mathbb{K}_0) :$ ord_t($y(t) - y(\varepsilon t)$) < $m_e\}$. Since, by assumption, inco_t(y(t) - y(wt)) $\in \mathbb{K}_0$, then (7.16.3) takes the form

$$\operatorname{info}_{t}\left(\prod_{w\in Q(e)}\left(y^{*}\left(t\right)-y\left(wt\right)\right)\right) = \begin{cases} \vartheta, & \text{if } e=1\\ \vartheta t^{s_{e-1}-m_{e-1}d_{e}}, & \text{if } e \geqslant 2 \end{cases} \text{ with } \vartheta \in \mathbb{K}_{0}.$$

The rest of the proof goes through without changes.

Next we need a version of the Newton Polygon Method, which is a conse-
quence of
$$[1, \text{ Theorem (14.2)}]$$
. For a more explicit formulation see also § 2.
in $[5]$.

PROPOSITION 1. Let g be an element of $\mathbb{K}((X))[Y]$ splitting into linear factors of the form $Y - z_j(X)$, where $z_j(X) \in \mathbb{K}((X^{1/M}))$ and $1 \leq j \leq \deg_Y g$. Let us consider an arbitrary $u(t) = \sum_{j \leq L} u_j t^{j/M} \in \mathbb{K}((t^{1/M}))$, for some $L \in \mathbb{Z}$.

Then the following two conditions are equivalent:

- i) there exists $1 \leq j \leq \deg_Y g$ such that $\operatorname{ord}_t (u(t) z_j(t)) > \frac{L}{M}$;
- ii) the polynomial $h(U) := \operatorname{inco}_t g(t, u(t) + Ut^{L/M}) \in \mathbb{K}[U]$ is not constant and one of its roots is U = 0.

Furthermore, if U = 0 has multiplicity l > 0 as a root of h(U), then there exist at least l different indices $j_1, \ldots, j_l \in \{1, \ldots, \deg_Y g\}$ such that $\operatorname{ord}_t(u(t) - z_{j_i}(t)) > \frac{L}{M}$ for $i = 1, \ldots, l$.

Now we can prove

LEMMA 2. Let f fulfil the Basic Assumptions. Let l be an integer such that $l|d_i$ for some $1 \leq i \leq h$ and $l \notin \{d_1, \ldots, d_{h+1}\}$, and assume that there

exists an integer m', $m_{i-1} < m' < m_i$ (in the case of i = 1, we only demand $m' < m_1$) such that $gcd(d_i, m') = l$. Then for every Puiseux series z(t) with $\sqrt[l]{f}(t, z(t)) = 0$ there exists $\varepsilon \in U_k(\mathbb{K})$ such that $ord_t(y(\varepsilon t) - z(t^k)) > m'$.

PROOF. Let Z be an indeterminate over K and consider $y^{Z}(t) = y(t) + Zt^{m'} \in \mathbb{K}[Z]((t))$. Put $f^{Z}(t^{k}, Y) = \prod_{\varepsilon^{k}=1} (Y - y^{Z}(\varepsilon t))$. Then $f^{Z}(X, Y) \in \mathbb{K}[Z]((X))[Y]$ has the characteristic sequence $m^{Z} = (m_{0}, \ldots, m_{i-1}, m', m'_{i+1}, \ldots)$ and the divisor sequence $d^{Z} = (d_{1}, \ldots, d_{i}, l, \ldots, 1)$. Notice that l > 1, because $l \neq d_{h+1}$. From the Abhyankar–Moh theory it follows that $\sqrt[l]{f^{Z}} \in \mathbb{K}[Z]((X))[Y]$ is irreducible in $\overline{\mathbb{K}(Z)}((X))[Y]$. Let

$$\sqrt[l]{f^{Z}}\left(t^{k/l},Y\right) = \prod_{\varepsilon_{1}^{k/l}=1}\left(Y - \bar{z}\left(\varepsilon_{1}t\right)\right),$$

where $\bar{z}(t) \in \overline{\mathbb{K}(Z)}((t))$ has the property that $\operatorname{ord}_t \left(\bar{z}(t^l) - y^Z(t) \right) = m'_{i+1} > m'$ ([1, Theorem (13.2) (ii)]).

Fix $\varepsilon_1 \in U_{k/l}$ (K) and consider $\bar{z}(\varepsilon_1 t)$. It follows that $z^*(t) = \sum_{j < m'} y_j(\varepsilon_1 t)^{j/l} + U(\varepsilon_1 t)^{m'/l} \in \mathbb{K}[U]((t))$ is (i, U)-deformation of $\bar{z}(\varepsilon_1 t)$. Applying Lemma 1 to $\sqrt[l]{f^Z}$ and $z^*(t)$, we get

(1)
$$\operatorname{info}_{t} \sqrt[l]{f^{Z}} \left(t^{k/l}, z^{*}(t) \right) = \sigma \left(U^{\bar{n}_{i}} - Z^{\bar{n}_{i}} \right)^{\bar{d}_{i+1}} t^{\bar{s}_{i}} \text{ with } \sigma \in \mathbb{K}.$$

(Here the bar '-' indicates characteristic sequences for $\sqrt[l]{f^Z}$.) From the definition of the approximate root we conclude that $\deg_Y(f^Z - (\sqrt[l]{f^Z})^l) < k - \frac{k}{l}$. After the substitution Z = 0 in that inequality, we thus get $\deg_Y(f_{Z=0}^Z - (\sqrt[l]{f^Z}_{Z=0})^l) < k - \frac{k}{l}$. But, obviously, $f_{Z=0}^Z = f$. This means that $\sqrt[l]{f^Z}_{Z=0} = \sqrt[l]{f}$. Since $\sqrt[l]{f^Z}(t^{k/l}, z^*(t)) \in \mathbb{K}[Z][U]((t))$, then substituting Z = 0 in (1) we get

$$\inf_{t} \sqrt[l]{f}\left(t^{k/l}, z^{*}\left(t\right)\right) = \sigma U^{\bar{n}_{i}\bar{d}_{i+1}}t^{\bar{s}_{i}} = \sigma U^{\bar{d}_{i}}t^{\bar{s}_{i}} = \sigma U^{d_{i}/l}t^{\bar{s}_{i}} \text{ with } \sigma \in \mathbb{K}.$$

From Proposition 1 we conclude that there exist d_i/l Puiseux roots $z_{j_1}(t), \ldots, z_{j_{d_i/l}}(t)$ of $\sqrt[l]{f}(t,Y)$ such that $m'/k < \operatorname{ord}_t \left(\sum_{j \leq m'} y_j \varepsilon_1^{j/l} t^{j/k} - z_{j_p}(t) \right)$ and so $m' < \operatorname{ord}_t \left(y\left(\varepsilon_1^{1/l} t\right) - z_{j_p}\left(t^k\right) \right)$ for $p = 1, \ldots, d_i/l$.

(Above, $\varepsilon_1^{1/l}$ denotes any of *l*-th roots of ε_1 in \mathbb{K} .) Since ε_1 was a fixed element of $U_{k/l}(\mathbb{K})$, then we have proven that for any $\varepsilon \in U_k(\mathbb{K})$ there exist d_i/l Puiseux roots $z_{\varepsilon,1}(t), \ldots, z_{\varepsilon,d_i/l}(t)$ of $\sqrt[l]{f}(t,Y)$ such that

$$\operatorname{ord}_{t}\left(y\left(\varepsilon t\right)-z_{\varepsilon,p}\left(t^{k}\right)\right)>m' \text{ for } p=1,\ldots,d_{i}/l.$$

Now for $A = \left\{ \varepsilon^{d_i} : \varepsilon \in U_k\left(\mathbb{K}\right) \right\}$ there is card $A = k/d_i$ and if $\sigma_1, \sigma_2 \in U_k\left(\mathbb{K}\right)$, $\sigma_1^{d_i} \neq \sigma_2^{d_i}$, then $\operatorname{ord}_t\left(y\left(\sigma_1 t\right) - y\left(\sigma_2 t\right)\right) < m_{i-1} < m'$. Thus

$$\operatorname{ord}_{t}\left(z_{\sigma_{1},p_{1}}\left(t^{k}\right) - z_{\sigma_{2},p_{2}}\left(t^{k}\right)\right) < m' \text{ for } p_{1},p_{2} = 1,\ldots,d_{i}/l.$$

Since $\frac{k}{d_i} \frac{d_i}{l} = \frac{k}{l} = \deg_Y \sqrt[l]{f}$, the lemma is proved.

PROPERTY 1. Let $g \in K((X))[Y]$, $\deg_Y g = \overline{k}$, $g = g_1 \cdot \ldots \cdot g_r$ be the decomposition of g into irreducible factors in K((X))[Y]. Let N be a positive integer such that $gcd(N,\overline{k}!) = 1$. Then $g(X^N,Y) = g_1(X^N,Y) \cdot \ldots \cdot g_r(X^N,Y)$ is the decomposition of $g(X^N,Y)$ into irreducible factors in K((X))[Y]. Furthermore, if $z_1(t), \ldots, z_{\overline{k}}(t)$ are all Puiseux roots of g(t,Y), then $z_1(t^N), \ldots, z_{\overline{k}}(t^N)$ are all Puiseux roots of $g(t^N,Y)$.

PROOF. It is enough to prove the property under the assumption that g is irreducible in $\mathbb{K}((X))[Y]$. Let g have characteristic $\overline{m} = (\overline{m}_0, \dots, \overline{m}_{\overline{h}})$, deg_Y $g = \overline{k}$ and z(t) be any of Puiseux roots of g(t, Y) = 0. Since $g\left(t^{\overline{k}}, z\left(t^{\overline{k}}\right)\right) = 0$, then $g\left(t^{\overline{k}N}, z\left(t^{\overline{k}N}\right)\right) = 0$ with gcd $(\overline{k}, \text{Supp}\left(z\left(t^{\overline{k}N}\right)\right)) = 1$. Thus $g\left(X^N, Y\right)$ is irreducible in $\mathbb{K}((X))[Y]$ and the characteristic sequence of $g\left(X^N, Y\right)$ is $(\overline{m}_0, N\overline{m}_1, \dots, N\overline{m}_{\overline{h}})$.

Main results. Our first theorem is an improvement of Lemma 2. It is a generalization of the item 2 in Abhyankar–Moh Theorem covering the noncharacteristic case.

THEOREM 1. Let f fulfill the Basic Assumptions. Let l be such an integer that $l|d_i$ for some $1 \leq i \leq h$ and $l \notin \{d_1, \ldots, d_{h+1}\}$. Then for every Puiseux series z(t) with $\sqrt[l]{f}(t, z(t)) = 0$ there exists $\varepsilon \in U_k(\mathbb{K})$ such that

(2)
$$\operatorname{ord}_{t}\left(y\left(\varepsilon t\right)-z\left(t^{k}\right)\right) \geqslant m_{i}.$$

PROOF. Let M = k! and let N be any positive integer such that (N, M) = 1. Then by Property 1, $f(X^N, Y)$ is irreducible in $\mathbb{K}((X))[Y]$ and has the characteristic $(m_0, Nm_1, \ldots, Nm_h)$ (see the proof of Property 1). If N is large enough, then there exists such an integer m' that $Nm_{i-1} < m' < Nm_i$ and $gcd(m_0, Nm_1, \ldots, Nm_{i-1}, m') = l$ (if i = 1, then we demand $m' < Nm_1$ and $gcd(m_0, m') = l$). Consequently, $f_1 := f(X^N, Y)$ fulfills the assumptions of Lemma 2. We conclude that for every Puiseux series $\bar{z}(t)$ with $\sqrt[4]{f_1}(t, \bar{z}(t)) = 0$, there exists $\varepsilon \in U_k(\mathbb{K})$ such that $ord_t(y(\varepsilon t^N) - \bar{z}(t^k)) > m'$.

But it is evident that $\sqrt[l]{f_1}(X,Y) = \sqrt[l]{f}(X^N,Y)$. And so, by Property 1, there exists a Puiseux root z(t) of $\sqrt[l]{f}(t,Y)$ such that $z(t^N) = \overline{z}(t)$ and $\operatorname{ord}_t(y(\varepsilon t^N) - z(t^{kN})) > m'$, or in other words

(3)
$$\operatorname{ord}_t\left(y\left(\varepsilon t\right) - z\left(t^k\right)\right) > m'/N.$$

From Property 1 it follows that every Puiseux root of $\sqrt[l]{f}(t, Y)$ satisfies the above inequality.

Choosing a suitable N tending to infinity, we will now improve (3) to obtain inequality (2). By Dirichlet's theorem, the sequence $\{1 + j \cdot d_i l\}_{j \in \mathbb{N}}$ contains infinitely many prime numbers. Let $\{N_p\}_{p \in \mathbb{N}} = \{1 + j_p \cdot d_i l\}_{p \in \mathbb{N}}$ be the sequence of primes. Let $A := m_i - l$. Now we can write

$$N_p m_i = m_i + j_p \cdot d_i l m_i = (m_i - l) + (d_i m_i j_p + 1) \, l = A + (d_i m_i j_p + 1) \, l.$$

Taking a large enough $r \in \mathbb{N}$ we define $B := A + j_r \cdot d_i lm_i$ (or, respectively, $B := A - j_r \cdot d_i lm_i$ if $m_i < 0$) with the property that B > 0. For p > r we now obtain

$$N_p m_i = B + (d_i m_i (j_p \mp j_r) + 1) \, l = B + m'_p,$$

taking $m'_p = (d_i m_i (j_p \mp j_r) + 1) l$. Here $\gcd(d_i, m'_p) = \gcd(d_i, l) = l$ for p > r. Since $m'_p = N_p m_i - B$ and B > 0, then $m'_p < N_p m_i$, and for a p large enough, also $N_p m_{i-1} < m'_p$ if i > 1. Obviously, we can also assume that $\gcd(N_p, M) = 1$.

Fix a Puiseux series z(t) satisfying $\sqrt[1]{f}(t, z(t)) = 0$. From the first part of the proof it follows that for every $N = N_p$, $p \gg 0$, there exists $\varepsilon_p \in U_k(\mathbb{K})$ such that

$$\operatorname{ord}_{t}\left(y\left(\varepsilon_{p}t\right)-z\left(t^{k}\right)\right)>m_{p}^{\prime}/N_{p}=m_{i}-B/N_{p}.$$

We conclude that there exists an $\varepsilon \in U_k(\mathbb{K})$ such that

$$\operatorname{ord}_{t}\left(y\left(\varepsilon t\right)-z\left(t^{k}\right)\right)>m_{i}-B/N_{p}$$

for infinitely many $p \in \mathbb{N}$. Since B is constant and N_p tends to infinity with p, then it means that

$$\operatorname{ord}_{t}\left(y\left(\varepsilon t\right)-z\left(t^{k}\right)\right)\geqslant m_{i}$$

Thus the theorem is proved.

REMARK 2. The construction of the sequence $\{N_p\}$ can be simplified: demanding only that the sequence $\{N_pm_i - m'_p\}$ should be bounded, there is no need to use Dirichlet's theorem.

COROLLARY 1. For a given integer $l|d_1$, the above theorem is true with $i = \max\{1 \leq j \leq h+1 : l|d_j\}$. If, in addition, $l > d_{i+1}$, then for every Puiseux root z(t) of $\sqrt[l]{f}(t, Y)$ and every $\sigma \in U_k(\mathbb{K})$ there holds

$$\operatorname{ord}_{t}\left(y\left(\sigma t\right)-z\left(t^{k}\right)\right)\leqslant m_{i}.$$

PROOF. The first part of the corollary is obvious. As for the second one, if there were $\operatorname{ord}_t(y(\sigma t) - z(t^k)) > m_i$, for some Puiseux root z(t) of $\sqrt[l]{f}(t, Y)$ and some $\sigma \in U_k(\mathbb{K})$, then

$$z(t) = \sum_{j \leqslant m_i} y_j(\sigma^j t^{j/k}) + \ldots = \sum_{j \leqslant m_i} y_j \sigma^j t^{\frac{j/d_{i+1}}{k/d_{i+1}}} + \ldots$$

and since $gcd(k/d_{i+1}, m_1/d_{i+1}, \ldots, m_i/d_{i+1}) = 1$, there would also hold $deg_Y \sqrt[l]{f} \ge k/d_{i+1}$ and so $k/l \ge k/d_{i+1}$, which is impossible by the assumption.

Combining Theorem 1 and Corollary 1, we get

THEOREM 2. Let f fulfill the Basic Assumptions. Let l be an integer such that $l|d_1$ and $l \notin \{d_1, \ldots, d_{h+1}\}$. Define $i = \max\{1 \leqslant j \leqslant h+1 : l|d_j\}$. If $l > d_{i+1}$, then for every Puiseux root z(t) of $\sqrt[l]{f}(t, Y)$ and every $\sigma \in U_k(\mathbb{K})$,

$$\operatorname{ord}_{t}\left(y\left(\sigma t\right)-z\left(t^{k}\right)\right)\leqslant m_{i}.$$

Furthermore, there exists an $\varepsilon \in U_k(\mathbb{K})$ such that

$$\operatorname{ord}_{t}\left(y\left(\varepsilon t\right)-z\left(t^{k}\right)\right)=m_{i}.$$

THEOREM 3. Let f fulfill the Basic Assumptions. If l is an integer such that $l|d_1$ and $l \notin \{d_1, \ldots, d_{h+1}\}$, then for $i = \max\{1 \leq j \leq h+1 : l|d_j\}$:

$$\operatorname{ord}_{t}\left(\sqrt[l]{f}\left(t^{k}, y\left(t\right)\right)\right) \geqslant r_{i}\frac{d_{i}}{l}.$$

If, in addition, $l > d_{i+1}$, then the equality holds.

PROOF. The concept of the proof is similar to that of the proofs of Lemma 2 and Theorem 1, so we will just sketch it, omitting the details.

1. First we return to the proof of Lemma 2. Assume accordingly, that there exists an integer m', $m_{i-1} < m' < m_i$ (or simply $m' < m_1$ for i = 1) such that $gcd(d_i, m') = l$. Defining $y^Z(t)$, f^Z , $\bar{z}(t)$ as in that proof, we obtain $\sqrt[l]{f^Z}(t^{k/l}, Y) = \prod_{\substack{\varepsilon_1^{k/l} = 1\\ z_1 = l}} (Y - \bar{z}(\varepsilon_1 t))$ and so $\left(\sqrt[l]{f^Z}(t^k, Y)\right)^l = \prod_{\substack{\varepsilon_1^k = 1\\ z_1 = l}} (Y - \bar{z}(\varepsilon_1 t))^l$.

We put $z^{V}(t) = \overline{z}(t^{l}) + Vt^{\alpha} \in \overline{\mathbb{K}(Z)}[V]((t))$, where $\alpha > m_{i}$ is chosen in such a way that gcd $(k, \operatorname{Supp}(\overline{z}(t^{l})), \alpha) = 1$. Let $h^{ZV}(t^{k}, Y) = \prod_{\varepsilon^{k}=1} (Y - z^{V}(\varepsilon t))$. Then

 $h^{ZV}(X,Y) \in \mathbb{K}[Z,V]((X))[Y]$ is an irreducible element of $\overline{\mathbb{K}(Z,V)}((X))[Y]$. By [1, Theorem (13.2) (ii)], we can assume that $m_i = \operatorname{ord}_t(\overline{z}(t^l) - y^Z(t)) = \operatorname{ord}_t(z^V(t) - y^Z(t))$, and so $\operatorname{ord}_t(z^V(t) - y(t)) = m'$. Since m' is the *i*-th characteristic exponent of $z^V(t)$, from Lemma 1 we get

$$\inf_{0} h^{ZV}\left(t^{k}, y\left(t\right)\right) = \sigma\left(0 - Z^{n_{i}^{ZV}}\right)^{d_{i+1}^{ZV}} t^{s_{i}^{ZV}} \text{ with } \sigma \in \mathbb{K},$$

where the superscript ${}^{\prime ZV}{}^{\prime}$ indicates characteristic sequences for $h^{ZV}.$ But this implies that also

$$\inf_{0} h_{V=0}^{ZV} \left(t^{k}, y\left(t \right) \right) = \sigma Z^{n_{i}^{ZV} d_{i+1}^{ZV}} t^{s_{i}^{ZV}} = \sigma Z^{d_{i}^{ZV}} t^{s_{i}^{ZV}} \text{ with } \sigma \in \mathbb{K}.$$

Since, obviously, $h_{V=0}^{ZV} = \left(\sqrt[l]{f^Z}\right)^l$, we thus get

(4)
$$\inf_{t} \sqrt{f^{Z}} \left(t^{k}, y\left(t \right) \right) = \sigma Z^{d_{i}^{ZV/l}} t^{s_{i}^{ZV/l}} \text{ with } \sigma \in \mathbb{K}.$$

We now notice that $s_i^{ZV} = s_i + (m' - m_i) d_i$ and so, having substituted Z = 0 in (4),

$$\operatorname{ord}_{t}\sqrt[l]{f}\left(t^{k}, y\left(t\right)\right) > \frac{d_{i}}{l}r_{i} + \frac{d_{i}}{l}\left(m'-m_{i}\right).$$

2. Now we return to the proof of Theorem 1. Constructing a sequence of primes $\{N_p\}_{p\in\mathbb{N}}$ as in that proof and applying Property 1, we improve the above inequality to

$$\operatorname{ord}_{t}\sqrt[l]{f}\left(t^{k}, y\left(t\right)\right) > \frac{d_{i}}{l}r_{i} - \frac{const}{N_{p}}$$

and so

$$\operatorname{ord}_{t}\sqrt[l]{f}\left(t^{k},y\left(t\right)\right) \geqslant \frac{d_{i}}{l}r_{i}.$$

Finally, from [1, Theorem (8.5)] it follows that in the case of $d_{i+1} < l$, the equality has to hold in the above formula. Indeed, let $g_1 = Y$ and $g_j = \sqrt[d]{f}$ for $2 \leq j \leq h+1$. Then for $G = (g_1, \ldots, g_{h+1})$ we obtain the *G*-adic expansion of $\sqrt[d]{f}$ in the form $\sqrt[d]{f} = g_i^{d_i/l} + \ldots$, because $\frac{d_i}{l} < \frac{d_i}{d_{i+1}}$, and so, by [1, Theorem (8.5)], $\operatorname{ord}_t \sqrt[d]{f} (t^k, y(t)) \leq \frac{d_i}{l} r_i$.

EXAMPLE 1. In general nothing can be said about the (ir)reducibility of non-characteristic approximate roots. Take the parametrization $X = t^{48}$, $Y = 1/(t^{36}) + 1/(t^6) + 1/(t^5)$ and let $f \in \mathbb{C}((X))[Y]$ be its minimal monic polynomial. Then $f = Y^{48} + \ldots$. It can be verified that for l = 2, there is $\operatorname{incot} \sqrt[4]{f}(t^8, 1/t^6 + 1/t + U \cdot t) = 4096(-51 + 8U^3)$ and so, by [1, Theorem (14.2)], $\sqrt[4]{f}$ splits into three irreducible factors in $\mathbb{C}((X))[Y]$ each of them having a Puiseux root of the form $t^{-3/4} + t^{-1/8} + o t^{1/8} + h.o.t$. It is worth noticing that the divisor l = 2 here is very 'regular', as $d_4 = 1|2|d_3 = 6$ and, despite of that, irreducibility does not follow.

It is also easy to give examples in the other direction. Let $X = t^{18}$, $Y = t^{-12} + t^{-2} + t^{-1}$, l = 3 and let $f \in \mathbb{C}((X))[Y]$ be its minimal monic polynomial. Then $f = Y^{18} + \ldots$. There is $\operatorname{inco}_t \sqrt[1]{f}(t^6, 1/t^4 + Ut) = 9U^2 - 6$, so $\sqrt[1]{f}$ is irreducible.

To end with, let us mention that the restriction $l > d_{i+1}$ made in Theorem 2 and Theorem 3 does not seem to be indispensable; in fact, we were not able to find any counterexample to their respective conclusions. An interesting insight gives the following example, which is a slight modification of the one above.

EXAMPLE 2. Let $X = t^{18}$, $Y = t^{-12} + at^{-3} + bt^{-1}$, where a, b are indeterminates over \mathbb{C} , l = 2. Then $l = 2 < d_{i+1} = 3$, so the assumption $l > d_{i+1}$ is not fulfilled. In spite of that $\operatorname{incot} \sqrt[4]{f} (t^6, 1/t^4 + U/t) = -27/2 \cdot U(-2U^2 + 3a^2)$. We conclude that $\sqrt[4]{f}$ has two non-conjugate Puiseux roots. One of them is of the form $z_1(t) = t^{-2/3} + \sqrt{6}/2 \cdot a \cdot t^{-1/6} + h.o.t.$, whereas $y(t) = t^{-12} + at^{-3} + bt^{-18}$, so still $\operatorname{ord}_t (y(t) - z_1(t^{18})) = -3 = m_2$. Also $\operatorname{ord}_t (\sqrt[4]{f} (t^{18}, y(t))) = r_2 \frac{d_2}{l} = -81$.

We state

PROBLEM 1. Can we drop the assumption $l > d_{i+1}$ from the formulation of Theorem 2 and Theorem 3?

PROBLEM 2. If $\sqrt[l]{f}$ is reducible in $\mathbb{K}((X))[Y]$, do the degrees of the factors of $\sqrt[l]{f}$ divide k?

References

- Abhyankar S. S., Expansion Techniques in Algebraic Geometry, Tata Institute of Fundamental Research, Bombay, 1977.
- Abhyankar S. S., Moh T. T., Newton-Puiseux expansion and generalized Tschirnhausen transformation I, II, J. Reine Angew. Math., 260 (1973), 47–83 and 261 (1973), 29–54.
- Abhyankar S. S., Moh T. T., Embeddings of the Line in the Plane, J. Reine Angew. Math., 276 (1975), 148–166.
- Gwoździewicz J., Płoski A., On the approximate roots of polynomials, Ann. Polon. Math., LX.3 (1995), 199–210
- 5. Moh T. T., On approximate roots of a polynomial, J. Reine Angew. Math., **278** (1974), 301–306.
- Moh T. T., On the Concept of Approximate Roots for Algebra, J. Algebra, 65 (1980), 347–360.
- Płoski A., Pierwiastki aproksymatywne wielomianów według S. S. Abhyankara i T. T. Moha, Materiały XIV Konferencji Szkoleniowej z Teorii Zagadnień Ekstremalnych, Wyd. UL., Łódź, 1993, 45–52.

- Płoski A., Twierdzenia podstawowe o pierwiastkach aproksymatywnych wielomianów, Materiały XV Konferencji Szkoleniowej z Analizy i Geometrii Zespolonej, Wyd. UL., Łódź, 1994, 51–61.
- 9. Sathaye A., Generalized Newton-Puiseux Expansions and Abhyankar-Moh Semigroup Theorem, Invent. Math., 74 (1983), 149-157.

Received February 1, 2007

Faculty of Mathematics University of Łódź ul. Banacha 22, Łódź Poland *e-mail*: brzosts@math.uni.lodz.pl