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CONVERGENCE OF NONAUTONOMOUS EVOLUTIONARY

ALGORITHM

by Marcin Radwański

Abstract. We present a general criterion guaranteeing the stochastic con-
vergence of a wide class of nonautonomous evolutionary algorithms used
for finding the global minimum of a continuous function. This paper is an
extension of paper [6], where autonomous case was presented. Our main
tool here is a cocycle system defined on the space of probabilistic measures
and its stability properties.

1. Introduction. This paper concerns the problem of numerically find-
ing a point or points at which a given function attains its global minimum
(maximum). Let f : A→ R be a function and assume that its minimum value
is zero, A ⊂ Rd. Let A? = {x ∈ A : f(x) = 0} be the set of all the solutions
of the problem. We are interested in the class of stochastic methods that are
known as evolutionary algorithms. A general form of such an algorithm is as
follows

xn = T (n, xn−1, yn), x0 ∈ A, n = 1, 2, 3 . . .

Here T is a given operator, {xn} is a sequence of approximations of the
problem and {yn} is a random factor, n represents time. Our aim is to establish
a criterion for the stochastic convergence of the sequence {xn} to the set A?.
The same problem, when T does not depend on time n, was considered in [6]
and, generally speaking, a sufficient condition is∫

f(T (x, y))dy < f(x).

Key words and phrases. Global optimization, nonautonomous evolutionary algorithm,
cocycle system, Lyapunov function.



198

In this paper we extend the above results onto the case of the operator T
depending on time by means of some dynamical system, namely

xn = T (θnp, xn−1, yn), x0 ∈ A, p ∈ P, n = 1, 2, 3, . . . ,

where θ : P → P is a map, θn is its n-th iteration. If P = {p} is a singleton,
we have situation as in [6].

We may, for example, apply our approach to methods that are changed
cyclically. In fact, assume there are k operators {T1, T2, . . . , Tk} and put:
P = {1, 2, . . . , k}, θ(p) = p+1 for p = 1, 2, . . . , k−1, θ(k) = 1 and T (q, x, y) =
Tq(x, y) for q ∈ P.

As in [6], we express our problem in terms of some system defined on the
space of probabilistic measures on A. This allow us to use some classical results
from the theory of dynamical system.

2. Basic definitions and preliminaries. Let (A, dA) be a compact met-
ric space, B = Al, for some fixed d, l ∈ N, f : A → R be a continuous func-
tion having its global minimum min f on A. Without loss of generality, we
may assume that min f = 0. Let (Ω,Σ,Prob) be a probability space and
(P,N, θ) a semi-dynamical system on a compact metric space (P, dP ). Let
A? = {x ∈ A : f(x) = 0} be the set of all the solutions of the global min-
imization problem. We define a nonautonomous evolutionary algorithm as an
algorithm finding points from A?, given by the formula

(1) Xn = T (θnp,Xn−1, Yn), n = 1, 2, 3, . . . ,

Here p ∈ P is an initial value of dynamical system θ, X0 is a fixed random
variable with a known distribution on A, X0 ∼ λ. Yn is a random variable
with a known distribution on B, Yn ∼ ν, for n = 1, 2, 3, . . . . We assume that
X0, Y1, Y2, Y3, . . . are independent. T : P×A×B → A is an operator identifying
the algorithm, that is a measurable function. Thus, Xn is a random variable
with the distribution µn for n = 1, 2, 3, . . . . Let B(A),B(B) denote the σ-
algebras of Borel subsets of the space A and B, respectively. As all the variables
Xn, n = 1, 2, 3, . . . are defined on Ω, there is

µn(C) = Prob(Xn ∈ C) for each C ∈ B(A).

Let M be the set of all probabilistic measures on B(A). It is obvious that
λ, µn ∈ M for n = 1, 2, . . . We check the properties of the sequence {Xn} by
observing the behavior of the sequence {µn}. Thus, we recall some facts about
the topological properties of M. It is known (see [7]) that M with the Fortet-
Mourier metric is a compact metric space and its topology is determined by
the weak convergence of the sequence of measures as follows. The sequence
µn ∈ M converges to µ0 ∈ M if and only if for any continuous (so bounded,
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by the compactness of A) function h : A→ R :

(2)
∫

A
h(x)µn(dx) −→

∫
A
h(x)µ0(dx), as n→∞.

A useful condition for weak convergence (see [2]) is as follows:

(3) µn(C) −→ µ0(C), as n→∞,

for every C ∈ B(A) such that µ0(∂C) = 0. We are interested in the convergence
of the sequence {Xn} to the set A in the stochastic sense, i.e.,

(4) ∀ε > 0 lim
n→∞

Prob
(
dA(Xn, A) < ε

)
= 1.

In the sequel, we show sufficient conditions for such convergence. Algorithm
(1) induces a specific nonautonomous system on the space M, called a cocycle
system. In Section 3, we show that the sequence {µn} is an orbit of this
system. In Section 4, we introduce some asymptotic properties of cocycle
systems and prove a theorem corresponding to the Lyapunov Theorem for
dynamical systems (Theorem 4.2). It gives sufficient conditions for a set X? ⊂
X to be asymptoticially stable under a cocycle defined on X. In Section 5, we
apply Theorem 4.2 to our case, by constructing the Lyapunov function for the
set M? which denotes the set of all the measures µ ∈ M that are supported
on A?. Theorem 5.2 is the main result, and it gives sufficient conditions on T
for the asymptotic stability of M?. Theorem 5.3 is a corollary of Theorem 5.2
and gives sufficient conditions for the stochastic convergence of every {Xn} to
the set A?.

3. Cocycle systems. Now we recall the concept of a cocycle system.
It is a triple (X,ψ, (P,N, θ)), where X is a metric space, (P,N, θ) is a semi-
dynamical system, and the cocycle mapping ψ : N× P ×X → X satisfies the
conditions:

(C1) ψ(0, p, x) = x for each p ∈ P, x ∈ X,
(C2) ψ(n+m, p, x) = ψ(n, θmp, ψ(m, p, x)) for each p ∈ P, x ∈ X,n,m ∈ N,
(C3) (p, x) 7→ ψ(n, p, x) is a continuous mapping for all n ∈ N.

Let us fix q ∈ P for a moment and let Xn = T (q,Xn−1, Yn). It has been
proved (see [4, 5, 6]) that for every set C ∈ B(A)

(5) µn(C) =
∫

A

(∫
B

IC(T (q, x, y))ν(dy)
)
µn−1(dx),

and that the above equality defines the Foias operator Sq : M→M such that
µn = Sq(µn−1). Here IC is the indicator function of a set C. Let us define a
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new operator S : P ×M→M such that S(q, µ) = Sq(µ). For each fixed q, it
is the Foias operator. By (1) and (5), we get

µn = S(θnp, µn−1) = S(θnp, S(θn−1p, µn−2)),

and by induction,

(6) µn =
(
S(θnp, ·) ◦ S(θn−1p, ·) ◦ . . . ◦ S(θp, ·)

)
(λ).

For any measurable function h :A→R, we define the function Uh :P ×A→
R as:

Uh(q, x) =
∫

B
h(T (q, x, y))ν(dy).

It is known (see [4, 5, 6]) that if q ∈ P is fixed, then for every measure
µ ∈M and measurable function h : A→ R there holds

(7)
∫

A
h(x)S(q, µ)(dx) =

∫
A
Uh(q, x)µ(dx) for each q ∈ P,

and hence

(8) µn(C) =
∫

A
U IC(q, x)µn−1(dx).

We say that an operator T is ν-almost everywhere continuous (ν-a.e. con-
tinuous) when the following two conditions hold:
1) for each q ∈ P, x0 ∈ A, xk → x0 : T (q, xk, y) → T (q, x0, y) a. e. ν,
2) for each x ∈ A, q0 ∈ P, qk → q0 : T (qk, x, y) → T (q0, x, y) a. e. ν.

We now prove the following

Lemma 3.1. Let T be ν-a.e. continuous. Then S is continuous.

Proof. As P × M is compact, we can prove the continuity of S with
respect to each of the variables separately. First, let us fix µ ∈ M. Let
h : A → R be a continuous function (thus measurable), qn → q0. We prove
that S(qn, µ) → S(q0, µ) in the sense of (2). By the continuity of h and T, for
each x ∈ A, there is

h(T (qn, x, y)) −→ h(T (q0, x, y)) a. e. ν.

By the Lebesgue Dominated Convergence Theorem (X,P – compact),∫
B
h(T (qn, x, y))(dy) −→

∫
B
h(T (q0, x, y))(dy).

This means that Uh(qn, ·) → Uh(q0, ·). Again by the Lebesgue Dominated
Convergence Theorem and by (7), for each continuous function h, there holds∫

A
h(x)dS(qn, µ) =

∫
A
Uh(qn, x)dµ −→

∫
A
Uh(q0, x)dµ =

∫
A
h(x)dS(q0, µ),

which proves the continuity of S with respect to the first variable.
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Now fix q ∈ P. Let µn → µ0. We prove that S(q, µn) → S(q, µ0) in the
sense of (2). Let h : A → R be a continuous function. From the continuity of
T we get

Uh(q, xn) =
∫

B
h(T (q, xn, y))(dy) −→

∫
B
h(T (q, x0, y))(dy) = Uh(q, x0),

for each sequence xn → x0. It means that the function Uh(q, ·) : A → R is
continuous. So from (7), there follows∫

A
h(x)dS(q, µn) =

∫
A
Uh(q, x)dµn −→

∫
A
Uh(q, x)dµ0 =

∫
A
h(x)dS(q, µ0),

which proves that S(q, µn) → S(q, µ0).

We now prove the main result of this section.

Theorem 3.2. Let T be ν-a.e. continuous. Then triple (M, ψ, (P,N, θ)),
where ψ : N×P ×M→M is given by the formula ψ(n, p, λ) = µn, is a cocycle
system.

Proof. We prove conditions (C1)–(C3) from the definition of a cocycle
system. Condition (C1) is obvious. We prove condition (C2). From (6), for
all n,m ∈ N, p ∈ P, µ ∈M
ψ(n+m, p, λ) = (S(θn+mp, ·) ◦ . . . ◦ S(θm+1p, ·) ◦ S(θmp, ·) ◦ . . . ◦ S(θp, ·))(λ).

Then, by properties of the dynamical system θ,

ψ(n+m, p, λ) = S(θnθmp, ·) ◦ S(θn−1θmp, ·) ◦ . . . ◦ S(θθmp, µm),

and again by (6), we get

ψ(n+m, p, λ) = ψ(n, θmp, µm) = ψ(n, θmp, ψ(m, p, λ)).

The continuity (condition (C3)) of the cocycle ψ follows from Lemma 3.1,
(8) and (6), as ψ is a composition of continuous mappings.

4. Stability in cocycle systems. Let (X,ψ, (P,N, θ)) be a nonauto-
nomous dynamical system (NDS) and let dH denote the Hausdorff distance
(semi-metric) on the space 2X , i.e.,

dH(A,B) = sup
a∈A

inf
b∈B

dX(a, b).

The following notions are taken from [3]. A function Â : P 3 p 7→ A(p)
taking values in the set of nonempty (compact) subsets of X is called a nonau-
tonomous (compact) set. A nonautonomous set Â is called forward invari-
ant under NDS ψ, if for each p ∈ P , n ∈ N : ψ(n, p,A(p)) ⊂ A(θnp). A
nonautonomous compact set Ĉ is called a neighborhood of a set Â if for each
p ∈ P : A(p) ⊂ int C(p).
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A nonautonomous set Â, compact and forward invariant under ψ is called:
(i) stable if for every ε > 0 there exists a nonautonomous compact, forward

invariant set Ĉ which is a neighborhood of Â and such that

dH(C(p), A(p)) 6 ε for each p ∈ P ;

(ii) attractor of ψ if for every p ∈ P, x ∈ X
(9) lim

n→∞
dX(ψ(n, p, x), A(θnp)) = 0;

(iii) asymptotically stable if it is an attractor and is stable.

Let Â be a nonautonomous compact set, forward invariant under ψ.
A function V : P ×X 7→ R is called a Lyapunov function for Â if
(L1) V is continuous,
(L2) V (p, x) = 0 for x ∈ A(p), V (p, x) > 0 for x /∈ A(p),
(L3) V (θnp, ψ(n, p, x)) < V (p, x) for each p ∈ P, n ∈ N, x /∈ A(p).

The following lemma and its proof are taken from [1].

Lemma 4.1. Let X and P be compact metric spaces, V a Lyapunov function
for a nonautonomous compact set Â, forward invariant under ψ. Then, for each
δ > 0, the set Ĉδ such that

Cδ(p) = V −1(p, [0, δ)) = {x ∈ X : V (p, x) < δ},
is a compact nonautonomous set, forward invariant under ψ.

Proof. Let us first note that for each p ∈ P, δ > 0, the set Cδ(p) is
compact as a closed subset of a compact set. It remains to show that

(10) ψ(n, p, Cδ(p)) ⊂ Cδ(θnp) for each δ > 0, p ∈ P, n ∈ N.

Let x ∈ ψ(n, p, Cδ(p)). This means that there exists a y ∈ Cδ(p) such that
x = ψ(n, p, y) and V (p, y) 6 δ. From the properties of a Lyapunov function it
follows that V (θnp, ψ(n, p, y)) 6 V (p, y). Therefore,

V (θnp, ψ(n, p, y)) = V (θnp, x) 6 δ,

and hence x ∈ Cδ(θnp). The proof is complete.

Now we prove the main result of this section; the result gives sufficient
conditions for the asymptotic stability of nonautonomous sets of the form
A(p) = A? for some compact subset A? of the set X and for each p ∈ P.

Theorem 4.2. Let (X,ψ, (P,N, θ)) be an NDS and let X and P be compact.
If there exists a Lyapunov function V for a nonautonomous compact set Â,
forward invariant under ψ, of the form A(p) = A? for each p ∈ P, then the set
Â is asymptotically stable under ψ.
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Proof. We begin with showing the stability of Â. From condition (L2) we
conclude that the nonautonomous set Ĉδ given by Lemma 4.1 is a neighborhood
of Â. By the forward invariance of Ĉδ it remains to show that for each ε > 0,
we find δ > 0 such that dH(Cδ(p), A(p)) < ε for each p ∈ P. Let us suppose
for the contrary that:

∃ε0 ∀n ∈ N ∀pn ∈ P ∃xn ∈ X : xn ∈ C 1
n
(pn), dX(xn, A(pn)) > ε0.

From the definition of Ĉδ, there follows V (pn, xn) < 1
n . By the compactness

of X and P, without loss of generality, we may assume that xn → x0, pn → p0

for some x0 ∈ X, p0 ∈ P. Therefore, by continuity of V , we get V (p0, x0) = 0.
On the other hand, by A(p) = A?, we get dX(x0, A(p0)) > ε0, hence

x0 /∈ A(p0). Again by (L2), we get V (p0, x0) > 0. This contradicts the above
condition: V (p0, x0) = 0. Thus we have proved the stability of Â.

Now we are going to show (9). Define the ω-limit set

ω(p, x) = {(q, y) ∈ P ×X : ∃nk →∞, θnkp→ q, ψ(nk, p, x) → y}.
By the compactness of P and X, the ω-limit set is nonempty for each (p, x).

We show that V is constant on ω(p, x). Indeed, let (q, y), (r, z) ∈ ω(p, x). This
means that there exist sequences {nk}, {mk} divergent to infinity such that

θnkp→ q, ψ(nk, p, x) → y, θmkp→ r, ψ(mk, p, x) → z.

Without loss of generality we may assume that nk < mk < nk+1 < mk+1

for each k ∈ N. Then from property (L3) we get

V (θnkp,ψ(nk, p, x)) 6 V (θmkp, ψ(mk, p, x))

6 V (θnk+1p, ψ(nk+1, p, x)) 6 V (θmk+1p, ψ(mk+1, p, x)).

By the continuity of V (property (L1)):

V (q, y) 6 V (r, z) 6 V (q, y) 6 V (r, z),

and hence V (q, y) = V (r, z).
Now let (q, y) ∈ ω(p, x), θnkp → q, ψ(nk, p, x) → y. For some fixed n, let

mk = nk + n. Then from the properties of DS and NDS, we get θmkp =
θnθnkp → θnq, and ψ(mk, p, x) = ψ(nk + n, p, x) = ψ(n, θnkp, ψ(nk, p, x)) →
ψ(n, q, y). By the definition of an ω-limit set, it means that (θnq, ψ(n, q, y)) ∈
ω(p, x).

Now from the above we get V (θnq, ψ(n, q, y)) = V (q, y). Hence, by property
(L3), y ∈ A(q) = A?. As X and P are compact, for every sequence {xk}
in X there exists a convergent subsequence {xki

} and, by the above, xki
=

ψ(nki
, p, x) → A?. Therefore,

dX(ψ(nki
, p, x), A(θnp)) = dx(ψ(nki

, p, x), A?) −→ 0,

for each p, x. The proof is complete.
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5. Main result. Assume that ψ is the cocycle defined by Theorem 3.2.
Let M? denote the set of all the measures µ ∈ M supported on A?. Let M̂
denote the nonautonomous set of the form M(p) = M? for each p ∈ P.

Lemma 5.1. Let T be ν-a.e. continuous and assume that:

(11) T (q, x, y) ∈ A? for all x ∈ A?, q ∈ P, y ∈ Y.

Then M̂ is a compact nonautonomous set, forward invariant under ψ.

Proof. In Section 2, we noted thatM is compact. We prove thatM?⊂M
is closed. Indeed, let µn ∈ M? and µn → µ0. Then from the continuity of f
there follows

0 =
∫

A
f(x)µn(dx) −→

∫
A
f(x)µ0(dx).

Therefore,
∫
A f(x)µ0(dx) = 0 and µ0 ∈M?.

As M(p) = M? for each p ∈ P, it remains to show that ψ(n, p,M?) ⊂M?,
for each n ∈ N, p ∈ P. By (6), it remains to show that S(q,M?) ⊂M? for each
q ∈ P .

Let q ∈ P and µ ∈M?. We want to show that S(q, µ) ∈M?.
Let us first note that from (11) there follows

IA?(T (q, x, y)) > IA?(x) for each x ∈ A, q ∈ P, y ∈ Y.
By (5) and the above, we get

S(q, µ)(A?) =
∫

A

(∫
B

IA?(T (q, x, y))ν(dy)
)
µ(dx)

>
∫

A

(∫
B

IA?(x)ν(dy)
)
µ(dx).

By Fubini’s Theorem (ν and µ are probabilistic measures), and by the
assumption µ ∈M?,

S(q, µ)(A?) >
∫

B

(∫
A

IA?(x)µ(dx)
)
ν(dy) =

∫
B

1ν(dy) = 1.

Therefore, S(q, µ)(A?) = 1, which means that suppS(q, µ) ⊂ A?, and the
assertion follows.

Now we prove the main result of this paper.

Theorem 5.2. Let T be ν-a.e. continuous, satisfy condition (11) and let

(12)
∫

B
f(T (q, x, y))ν(dy) < f(x).

Then M̂ is asymptoticially stable under ψ.
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Proof. By Lemma 5.1, the set M̂ is compact and forward invariant. De-
fine a function V : P ×M→ R

V (p, µ) =
∫

A
f(x)µ(dx).

We show that V satisfies conditions (L1)–(L3) from the definition of a
Lyapunov function in Section 4.

Condition (L1) is obvious as f is continuous and V is constant with respect
to the variable p. Let us note that V (p, µ) > 0 for each p, µ. If µ ∈M(p) = M?,
then obviously V (p, µ) = 0. Let now V (p, µ) = 0 for some measure µ ∈ M.
Then, by the definition of A?

0 = V (p, µ) =
∫

A
f(x)dµ =

∫
A?

f(x)dµ+
∫

A\A?

f(x)dµ =
∫

A\A?

f(x)dµ.

As f is positive on A\A?, µ(A\A?) = 0, and therefore µ ∈M?. Condition
(L2) is proved.

It remains to prove (L3). We first prove that

(13) ∀µ /∈M?, ∀q ∈ P V (q, S(q, µ)) < V (q, µ).

From (12), for each x ∈ A \A?,

Uf(q, x) =
∫

B
f(T (q, x, y))ν(dy) < f(x).

The above equality, (7) and the definition of A? give

V (q, S(q, µ)) =
∫

A
f(x)S(q, µ)(dx) =

∫
A
Uf(q, x)µ(dx)

=
∫

A\A?

Uf(q, x)µ(dx) <
∫

A
f(x)µ(dx) = V (q, µ),

which proves (13). To show (L3) we use (6), the equality µk = S(θkp, µk−1),
for k = 1, 2, . . . , n, and (13) (n times):

V (θnp, ψ(n, p, µ)) = V (θnp, µn) < V (θnp, µn−1) < . . . < V (θnp, µ).

To end the proof, we use the fact that V is constant with respect to the
first variable and Theorem 4.2.

The last result is a corollary from the above theorem. It concerns describes
the convergence of algorithm (1).

Theorem 5.3. Under the conditions of Theorem 5.2:

lim
n→∞

Prob (dA(Xn, A
?) < ε) = 1 for all ε > 0.
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Proof. Fix ε > 0. Let Bε(A?) = {x ∈ A : dA(x,A?) < ε} and let µn be
the measure defined in Section 2, i.e., µn ∼ Xn, for n = 1, 2, 3, . . . , where Xn is
a random variable generated by algorithm (1). By Theorem 5.2, µn → µ0, for
some measure µ0 ∈M?. By (3), it means that µn(Bε(A?)) → µ0(Bε(A?)) = 1.
Finally, we get

µn(Bε(A?)) = Prob(Xn ∈ Bε(A?)) = Prob(dA(Xn, A
?) < ε) −→ 1,

which was to be shown.
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