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Abstract. The aim of this paper is to prove theorems about the existence
and uniqueness of mild and classical solutions of a semilinear functional-
differential evolution Cauchy problem. The method of semigroups, Banach
fixed-point theorem and Bochenek theorem about the existence and unique-
ness of the classical solution of the linear first-order differential evolution
problem in a not necessarily reflexive Banach space are used to prove the
existence and uniqueness of the solutions of the problem considered. The
results obtained are based on results by Balachandran and Ilamaran [1],
Bochenek [2], Kato [7], Pazy [8], Winiarska [11] and the author [3, 4].

1. Introduction. In this paper, we prove two theorems on the existence
and uniqueness of mild and classical solutions of a semilinear functional-diffe-
rential evolution Cauchy problem using the method of semigroups, Banach
fixed-point theorem and Bochenek theorem (see [2]) about the existence and
uniqueness of the classical solution of the linear first-order differential evolution
problem in a not necessarily reflexive Banach space.

Let E be a real Banach space with norm ‖ · ‖ and let A : E → E be a
closed densly defined linear operator. For an operator A,D(A), %(A) and A∗

will denote its domain, resolvent set and adjoint, respectively.
For a Banach space E,C(E) will denote the set of closed linear operators

from E into itself.
We will need the class G(M̃, β) of operators A satisfying the conditions:

There exist constants M̃ > 0 and β ∈ R such that

(C1) A ∈ C(E), D(A) = E and (β, +∞) ⊂ %(−A),
(C2) ‖(A + ς)−k‖ ≤ M̃(ς − β)−k for each ς > β and k = 1, 2, . . .
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It is known (see Kato [7]) that for A ∈ G(M̃, β) there exists exactly one
strongly continuous semigroup T (t) : E → E for t ≥ 0 such that −A is its
infinitesimal generator and

‖T (t)‖ ≤ M̃ eβt for t ≥ 0.

Throughout the paper we shall use the notation:

I = [0, a], where a > 0,

M = sup {‖T (t)‖, t ∈ [0, a]}
and

X = C(I, E).

The fuctional-diffrential evolution semilinear problem considered here is of
the form

(1.1) u′(t) + Au(t) = f(t, u(t), u(σ(t))), t ∈ (0, a],

(1.2) u(0) + g(u) = u0,

where f : I × E2 → E, g : X → E, σ : I → I are given functions satisfying
some assumptions and u0 is an element of E.

The results obtained are based on those by Balachandran and Ilamaran
[1], Bochenek [2], Kato [7], Pazy [8], Winiarska [11] and the author [3, 4].

Some ordinary functional-differential equations were considered by Cor-
duneanu [5], Hale [6], Pelczar and Szarski [9], and Przeworska-Rolewicz [10].

2. The Bochenek theorem. The results of this section were obtained
by Professor Jan Bochenek (see [2]).

Let us consider the Cauchy problem

u′(t) + Au(t) = h(t), t ∈ I \ {0},(2.1)

u(0) = x.(2.2)

A function u : I → E is said to be a classical solution of problem (2.1),
(2.2) if:

(i) u is continuous on I and continuously differentiable on I \ {0},
(ii) u′(t) + Au(t) = h(t) for t ∈ I \ {0},

(iii) u(0) = x.

Assumption (Z). The adjoint operator A∗ is densly defined in E∗, i.e.,
D(A∗) = E∗.
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Theorem 2.1. Let conditions (C1), (C2) and Assumption (Z) be satisfied.
Moreover, let h : I → E be Lipschitz continuous on I and x ∈ D(A).

Then Cauchy problem (2.1), (2.2) has exactly one classical solution u given
by the formula

u(t) = T (t)x +
∫ t

0
T (t− s)h(s)ds, t ∈ I.

3. Theorem about a mild solution. A function u ∈ X and satisfying
the integral equation

u(t) = T (t)u0 − T (t)g(u) +
∫ t

0
T (t− s)f(s, u(s), u(σ(s)))ds, t ∈ I,

is said to be a mild solution of semilinear Cauchy problem (1.1), (1.2).

Theorem 3.1. Assume that:

(i) the operator A : E → E satisfies conditions (C1) and (C2),
(ii) f : I × E2 → E is continuous with respect to the first variable on I, g :

X → E, σ : I → I is continuous on I and there exist positive constants
L and K such that

‖f(s, z1, z2)− f(s, z̃1, z̃2)‖ ≤ L
2∑

i=1

‖zi − z̃i‖

for s ∈ I, zi, z̃i ∈ E (i = 1, 2)

(3.1)

and

(3.2) ‖g(w)− g(w̃)‖ ≤ K‖w − w̃‖X for w, w̃ ∈ X,

(iii) M(2aL + K) < 1,
(iv) u0 ∈ E.

Then semilinear Cauchy problem (1.1), (1.2) has a unique mild solution.

Proof. Introduce the operator F given by the formula

(Fw)(t) := T (t)u0 − T (t)g(w) +
∫ t

0
T (t− s)f(s, w(s), w(σ(s)))ds, t ∈ I,

on the Banach space X.
It is easy to see that

(3.3) F : X → X.

Now we shall show that F is a contraction on X. For this purpose, consider
the difference
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(Fw)(t)− (Fw̃)(t) =
∫ t

0
T (t− s)[f(s, w(s), w(σ(s)))

− f(s, w̃(s), w̃(σ(s)))]ds− T (t)[g(w)− g(w̃)]
(3.4)

for w, w̃ ∈ X and t ∈ I.
Then, from (3.4), (3.1) and (3.2),

‖(Fw)(t)− (Fw̃)(t)‖ ≤ ‖T (t)‖‖g(w)− g(w̃)‖

+
∫ t

0
‖T (t− s)‖‖f(s, w(s), w(σ(s)))− f(s, w̃(s), w̃(σ(s)))‖ds

≤ ML

∫ t

0
(‖w(s)− w̃(s)‖+ ‖w(σ(s))− w̃(σ(s))‖)ds

+ MK‖w − w̃‖X ≤ M(2aL + K)‖w − w̃‖X

(3.5)

for w, w̃ ∈ X and t ∈ I.
If we define q = M(2aL + K), then, by (3.5) and assumption (iii),

(3.6) ‖Fw − Fw̃‖X ≤ q‖w − w̃‖X for w, w̃ ∈ X

with 0 < q < 1. This shows that the operator F is a contraction on X.
Consequently, by (3.3) and (3.6), operator F satisfies all the assumptions

of the Banach theorem. Therefore, in space X there is the only one fixed point
of F and this point is the mild solution of semilinear Cauchy problem (1.1),
(1.2). So, the proof of Theorem 3.1 is complete.

4. Theorem about a classical solution.
A function u : I → E is said be a classical solution of semilinear Cauchy

problem (1.1), (1.2) if:
(i) u is continuous on I and continuously differentiable on I\{0},

(ii) u′(t) + Au(t) = f(t, u(t), u(σ(t))) for t ∈ I\{0},
(iii) u(0) + g(u) = u0.

Theorem 4.1. Suppose that:
(i) the operator A : E → E satisfies conditions (C1) and (C2), and As-

sumption (Z),
(ii) f : I × E2 → E, g : X → E, σ : I → I is continuous on I and there

exist positive constants C and K such that

‖f(s, z1, z2)− f(s̃, z̃1, z̃2)‖ ≤ C(| s− s̃ | +
2∑

i=1

‖zi − z̃i‖)

for s, s̃ ∈ I, zi, z̃i ∈ E (i = 1, 2)

(4.1)
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and

‖g(w)− g(w̃)‖ ≤ K‖w − w̃‖X for w, w̃ ∈ X.

(iii) M(2aC + K) < 1.

Then semilinear Cauchy problem (1.1), (1.2) has a unique mild solution
u. Moreover, if u0 ∈ D(A) and g(u) ∈ D(A), and if there exists a positive
constant κ such that

(4.2) ‖u(σ(s))− u(σ(s̃))‖ ≤ κ‖u(s)− u(s̃)‖ for s, s̃ ∈ I

then u is the unique classical solution of problem (1.1), (1.2).

Proof. Since all the assumptions of Theorem 3.1 are satisfied, it is easy
to see that semilinear Cauchy problem (1.1), (1.2) possesses a unique mild
solution, which, in line with the last assumption, we denote by u.

Now, we shall show that u is the classical solution of problem (1.1), (1.2).
To this end, introduce

(4.3) N := max
s∈I

‖f(s, u(s), u(σ(s)))‖

and observe that
u(t + h)− u(t) = [T (t + h)u0 − T (t)u0]− [T (t + h)g(u)− T (t)g(u)]

+
∫ h

0
T (t + h− s)f(s, u(s), u(σ(s)))ds

+
∫ t+h

h
T (t + h− s)f(s, u(s), u(σ(s)))ds

−
∫ t

0
T (t− s)f(s, u(s), u(σ(s)))ds

= T (t)[T (h)− J ]u0 − T (t)[T (h)− J ]g(u)

+
∫ h

0
T (t + h− s)f(s, u(s), u(σ(s)))ds

+
∫ t

0
T (t− s)[f(s + h, u(s + h), u(σ(s + h)))

− f(s, u(s), u(σ(s)))ds

(4.4)

for t ∈ [0, a), h > 0 and t + h ∈ (0, a].
Consequently, by (4.4), (4.3), (4.1) and (4.2),

‖u(t + h)− u(t)‖ ≤ hM‖Au0‖+ hM‖Ag(u)‖+ hMN + MCah

+ MC

∫ t

0
(‖u(s + h)− u(s)‖+ ‖u(σ(s + h))− u(σ(s))‖)ds

= C∗h + MC(1 + κ)
∫ t

0
‖u(s + h)− u(s)‖ds

(4.5)
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for t ∈ [0, a), h > 0 and t + h ∈ (0, a], where C∗ = M [‖Au0‖ + ‖Ag(u)‖ +
N + aC].

From (4.5) and Gronwall’s inequality, there follows

‖u(t + h)− u(t)‖ ≤ C∗e
aMC(1+κ)h

for t ∈ [0, a), h > 0 and t + h ∈ (0, a]. Hence u is Lipschitz continuous on I.
The Lipschitz continuity of u on I combined with the Lipschitz continuity

of f on I × E2 implies that t → f(t, u(t), u(σ(t))) is Lipschitz continuous on
I. This property of f together with the assumptions of Theorem 4.1 imply, by
Bochenek Theorem 2.1 and by Theorem 3.1, that the linear Cauchy problem

v′(t) + Av(t) = f(t, u(t), u(σ(t))), t ∈ I\{0},
v(0) = u0 − g(u),

which can be written in the equivalent form as:

v′(t) + Av(t) = f(t, u(t), u(σ(t))), t ∈ I\{0},
v(0) + g(u) = u0,

has a unique classical solution v such that

v(t) = T (t)u0 − T (t)g(u) +
∫ t

0
T (t− s)f(s, u(s), u(σ(s)))ds = u(t), t ∈ I.

Consequently, u is the unique classical solution of semilinear Cauchy problem
(1.1), (1.2) and therefore the proof of Theorem 4.1 is complete.

Remark. If equation (1.1) does not depend on the functional argument
and g ≡ 0, then Theorem 4.1 is a particular case of the Bochenek theorem (see
[2], Theorem 2).
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