PARTS OF REDUCING SYSTEMS OF PARAMETERS

BY BJÖRN MÄURER AND JÜRGEN STÜCKRAD

Abstract. In the present paper we want to give some connections between parts of reducing systems of parameters and the Cohen–Macaulay-property. All proofs are given in [4].

Let R be a local ring with maximal ideal \mathfrak{m} , and let $M \neq 0$ be a f.g. R-module of dimension d.

DEFINITION. A system of parameters (x_1, \ldots, x_d) of M is called *reducing* if for all $i = 1, \ldots, d-1$ we have

 $x_i \notin P$ for all $P \in \operatorname{Ass} M/(x_1, \dots, x_{i-1})M$ with dim R/P = d - i.

A sequence x_1, \ldots, x_r of elements of \mathfrak{m} is called *part of a (reducing) system of parameters* of M if there are elements $x_{r+1}, \ldots, x_d \in \mathfrak{m}$ such that $(x_1, \ldots, x_r, x_{r+1}, \ldots, x_d)$ is a (reducing) system of parameters of M.

In [1] it is shown that for every system of parameters (x_1, \ldots, x_d) there is a reducing system of parameters (y_1, \ldots, y_d) , such that

$$(x_1,\ldots,x_d)M = (y_1,\ldots,y_d)M.$$

This definition is equivalent to that given in [1] (shown in [4]).

REMARK. If M is Cohen–Macaulay, then the concepts of a regular sequence, a part of a reducing system of parameters and a part of a system of parameters coincide.

THEOREM. Given a reducing system of parameters (y_1, \ldots, y_d) , M is Cohen-Macaulay iff y_d is a non zerodivisor on $M/(y_1, \ldots, y_{d-1})M$.

The proof is given in [4] using the following Lemma.

LEMMA. If $x \in \mathfrak{m}_R$ is a zerodivisor on M, then $P \in \operatorname{Ass} M/xM$ for all minimal primes $P \in \operatorname{Ass} M \cap V(x)$.

The main result determines connetions between parts of reducing systems of parameters and the Cohen–Macaulay-property:

THEOREM. Let (x_1, \ldots, x_r) be part of a system of parameters of M, where $0 \le r < d$. Then the following conditions are equivalent:

- (i) (x_1, \ldots, x_r) is part of a reducing system of parameters of M.
- (ii) M_P is an r-dimensional Cohen-Macaulay module over R_P for all $P \in$ Supp $M \cap V(x_1, \ldots, x_r)$ satisfying dim $R/P = \dim M - r$.
- (iii) There is a part (y_1, \ldots, y_r) of a reducing system of parameters of M, such that $(y_1, \ldots, y_r)M = (x_1, \ldots, x_r)M$.
- (iv) There is a part (y_1, \ldots, y_r) of a reducing system of parameters of M, such that Supp $M \cap V(x_1, \ldots, x_r) \subseteq V(y_1, \ldots, y_r)$.

As a first conclusion we note that any permutation of a part of a reducing system of parameters is again a part of a reducing system of parameters. This is impossible in the non reducing case.

Finally, we define the strong Cohen-Macaulay locus of $\operatorname{Supp} M$ by

$$\mathcal{CM}(M) := \{ P \in \operatorname{Supp} M \mid \dim R/P + \dim M_P = d \text{ and } M_P \text{ is} \\ a \text{ Cohen-Macaulay module over } R_P \}$$

and for $0 \le r \le d$ we set

$$\mathcal{CM}_r(M) := \{ P \in \mathcal{CM}(M) \mid \dim M_P = r \}.$$

PROPOSITION. For $r \in \mathbb{N}$, r < d we have

 $\mathcal{CM}_r(M) = \{ P \mid P \in \operatorname{Ass} M/(x_1, \dots, x_r)M, \dim R/P = d - r, \\ (x_1, \dots, x_r) \text{ is a part of a reducing system of para$ $meters of } M \}.$

References

- Auslander M., Buchsbaum D.A., Codimension and multiplicity, Ann. of Math., 68 (1958), 625–657.
- Eisennbud D., Commutative algebra with a view toward algebraic geometry, Springer-Verlag, 1994.
- Patil D. P., Storch U., Stückrad J., A criterion for regular sequences, Proc. Indian Acad. Sci. (Math. Sci.), 114 (2004), 103–106.
- Stückrad J., Mäurer B., Reducing Systems of Parameters and the Cohen-Macaulay Property, Proc. Indian Acad. Sci. (Math. Sci.), 117, No. 2 (2007), 159–165.

Received January 18, 2007

Fakultät für Mathematik und Informatik Universität Leipzig Augustus Platz 10/11 D-04109 Leipzig, Germany *e-mail*: Bjoern.Maeurer@math.uni-leipzig.de *e-mail*: stueckrad@math.uni-leipzig.de

118