REMARKS ON THE CAYLEY-VAN DER WAERDEN-CHOW FORM

By Rüdiger Achilles and Jürgen Stückrad

Abstract

It is known that a variety in projective space is uniquely determined by its Cayley-van der Waerden-Chow form. An algebraic formulation and a proof (for an arbitrary base field) of this classical result are given in view of applications to the Stückrad-Vogel intersection cycle.

1. Introduction. It is well-known that, given a k-dimensional projective variety $X \subset \mathbb{P}_{K}^{n}$, all ($n-k-1$)-dimensional projective subspaces meeting X form a hypersurface in the Grassmannian of $(n-k-1)$-dimensional projective subspaces in \mathbb{P}^{n} from which X can be recovered. The homogeneous form in the Plücker coordinates defining this hypersurface is known as the (Cayley-van der Waerden-) Chow form of X. It was introduced by Cayley [2, 3] and later generalized by Chow and van der Waerden [4]. Since then there has appeared a vast literature on the subject (see e.g. [5, 7], and the references given there).

In this note we present some results on generic hyperplane sections of affine or projective varieties and an algebraic formulation and proof of the classical result that a variety $X \subset \mathbb{P}_{K}^{n}$, where K is an arbitrary field, is determined by its Cayley-van der Waerden-Chow form. These algebraic results, for which we could not find any suitable reference, are very useful in order to study movable components of the intersection cycle (and its intersection numbers) in the algebraic approach to intersection theory of Stückrad and Vogel [8, 6] (see our forthcoming paper [1]).

1991 Mathematics Subject Classification. P14C05, 13B99, 14N05.
Key words and phrases. Cayley-van der Waerden-Chow form, generic residual intersections.

The support by the "Zentrum für Höhere Studien" at the University of Leipzig and by the Italian Ministry of University and Research (MIUR) is gratefully acknowledged. The first author is a member of GNSAGA of INdAM.

In Section 2 we will establish a 1-1 correspondence between components of the closure of the difference of two varieties and the components of a generic residual intersection (see Proposition 2.5). This result is important in the study of the Stückrad-Vogel intersection algorithm in order to control components outside the intersection (see [1).

In Section 3, using Lemma [2.3, we shall prove the result on the Cayleyvan der Waerden-Chow form (Proposition 3.3) and give an example that in positive characteristic the degree of the Chow form can be smaller than the degree of the variety.
2. Some algebraic preliminaries. Let R be a commutative noetherian ring with identity element. Further let $x_{1}, \ldots, x_{r} \in R$ and let u_{1}, \ldots, u_{r} be indeterminates over R, where $r \in \mathbb{N}^{+}$. If M is an R-module, N a submodule of M and J an ideal in R, let

$$
N:_{M}\langle J\rangle:=\left\{m \in M \mid J^{t} \cdot m \subseteq N \text { for some } t \in \mathbb{N}\right\} .
$$

We will assume that not all of the elements x_{1}, \ldots, x_{r} are nilpotent and set

$$
\begin{aligned}
S & :=R\left[u_{1}, \ldots, u_{r}\right], \quad I:=\left(x_{1}, \ldots, x_{r}\right) R, \\
F & :=\sum_{i=1}^{r} x_{i} u_{i} \in S \text { and } R^{\prime}:=S / F S: S
\end{aligned}
$$

We note that R^{\prime} is an S-algebra which is not the zero ring because of our assumption.

In this section we will establish a 1-1 correspondence between the associated prime ideals of R and R^{\prime} and we will prove that the corresponding primary ideals have the same length. We note that the geometric background of these investigations is the study of generic hyperplane sections of affine or projective varieties.

For this we will use a more general approach. First of all it is easy to see that the definition of R^{\prime} can be extended to R-modules: For an R-module M let

$$
M^{\prime}:=\left(M \otimes_{R} S\right) / F\left(M \otimes_{R} S\right):_{M \otimes_{R} S}\langle I S\rangle .
$$

M^{\prime} is an S-module which may be considered as an R^{\prime} - and an R-module as well.

If $f: M \rightarrow N$ is an R-linear map ($M, N R$-modules), then $f \otimes_{R} S: M \otimes_{R} S$ $\rightarrow N \otimes_{R} S$ induces a homomorphism $f^{\prime}: M^{\prime} \rightarrow N^{\prime}$, which is S-, R^{\prime} - and R-linear.

It is clear that this defines an additive covariant functor from the category of R-modules to the category of S-modules ($R^{\prime}-, R$-modules, resp.). We will denote it by $\mathfrak{G}_{R}\left(x_{1}, \ldots, x_{r}\right)$ and write \mathfrak{G} if no confusion is possible. (By definition $\mathfrak{G}(M)=M^{\prime}$ and $\mathfrak{G}(f)=f^{\prime}$ for all R-modules M and all R-linear maps
f.) \mathfrak{G} commutes with localizations, i.e., if $T \subset R$ is multiplicatively closed then $\left(M^{\prime}\right)_{T}=\left(M_{T}\right)^{\prime}$ for all R-modules M if we consider M^{\prime} as an R - or an S-module.

Furthermore, let $\varphi_{M}: M \rightarrow M^{\prime}$ be the composition of the embedding

$$
M \subseteq M\left[u_{1}, \ldots \ldots, u_{r}\right]=M \otimes_{R} S
$$

and the canonical epimorphism $M \otimes_{R} S \rightarrow M^{\prime}$. It is clear that $\operatorname{ker} \varphi_{M}=0:_{M}\langle I\rangle$. By φ_{R}^{*} : Spec $R^{\prime} \rightarrow \operatorname{Spec} R$, we denote the morphism induced by φ_{R}.

Finally, we note that the map

$$
V(F S) \backslash V(I S) \rightarrow \operatorname{Spec} R^{\prime}
$$

given by $\mathfrak{P} \mapsto \mathfrak{P} / F S: S\langle I S\rangle$ for all $\mathfrak{P} \in V(F S) \backslash V(I S) \subseteq \operatorname{Spec} S$, is injective.
Lemma 2.1. With the preceding notation, it holds
(a) $\mathfrak{G}_{R}\left(x_{1}, \ldots, x_{r}\right)$ respects monomorphisms and epimorphisms.
(b) For all R-modules M, N and all R-linear maps $f: M \rightarrow N$ there is a commutative diagram

Moreover, f^{\prime} is a monomorphism (isomorphism) if $\operatorname{Supp}(\operatorname{ker} f) \subseteq V(I)$ (and f is an epimorphism).

Remark 2.2. The commutative diagram in (b) says that the φ_{M}, M an R module, provide a natural transformation of the identity functor of the category of R-modules into $\mathfrak{G}\left(x_{1}, \ldots, x_{r}\right)$ considered as a functor from the category of R-modules to itself.

Before embarking on the proof of Lemma 2.1 we introduce the following notion: A prime ideal $\mathfrak{P} \in \operatorname{Spec} S$ is called R-rational if there is a prime ideal $\mathfrak{p} \in \operatorname{Spec} R$ such that $\mathfrak{P}=\mathfrak{p} \cdot S$. In this situation we have $\mathfrak{p}=\mathfrak{P} \cap R$ and $\mathrm{ht}_{S}(\mathfrak{P})=\mathrm{ht}_{R}(\mathfrak{p})$, where ht (I) denotes the height of an ideal I. If M is an R-module, then all prime ideals of $\operatorname{Ass}_{S}\left(M \otimes_{R} S\right)$ are R-rational, for $R \subset S$ is a special case of a flat extension of rings.

Proof. We set

$$
\tilde{X}:=X \otimes_{R} S / F\left(X \otimes_{R} S\right),
$$

X an R-module. It is enough to show the following: For any exact sequence

$$
\begin{equation*}
0 \rightarrow M \xrightarrow{f} N \xrightarrow{g} P \rightarrow 0 \tag{1}
\end{equation*}
$$

of R-modules f^{\prime} is a monomorphism and g^{\prime} an epimorphism. If, moreover, Supp $M \subseteq V(I)$ then g^{\prime} is an isomorphism. Tensoring (1) with $S / F S$ we obtain an exact sequence

$$
\begin{equation*}
0 \rightarrow C \rightarrow \tilde{M} \rightarrow \tilde{N} \rightarrow \tilde{P} \rightarrow 0 \tag{2}
\end{equation*}
$$

with a suitably defined S-module C. Since $C=\operatorname{coker}\left(0:_{N \otimes_{R} S} F \rightarrow 0:_{P \otimes_{R} S} F\right)$ we have $\operatorname{Supp}_{S}(C) \subseteq \operatorname{Supp}_{S}\left(0:_{P \otimes_{R} S} F\right)$.

On the other hand, $\operatorname{Ass}_{S}\left(P \otimes_{R} S\right)$ consists only of R-rational primes. Therefore, $0:_{P \otimes_{R} S} F \subseteq 0:_{P \otimes_{R} S}\langle I S\rangle$, i.e.,

$$
\operatorname{Supp}_{S}(C) \subseteq \operatorname{Supp}_{S}\left(0: P_{\otimes_{R} S} F\right) \subseteq V(I S)
$$

Hence $H_{I S}^{0}(C)=C, H_{I S}^{i}(C)=0$ for all $i>0$ and from (2) we obtain a commutative diagram with exact rows

Therefore, passing to cokernels, we get a monomorphism

$$
M^{\prime}=\operatorname{coker} \rho \xrightarrow{f^{\prime}} \operatorname{coker} \sigma=N^{\prime}
$$

and an epimorphism

$$
N^{\prime}=\operatorname{coker} \sigma \xrightarrow{g^{\prime}} \operatorname{coker} \tau=P^{\prime}
$$

as claimed. If Supp $M \subseteq V(I)$ then \tilde{g} is an epimorphism, $\rho=\mathrm{id}$ and therefore g^{\prime} is an isomorphism.

We note that the following result can be obtained by analyzing the proofs in 9. For the convenience of the reader we will give here an independent proof. We begin with two lemmata.

Lemma 2.3. Let M be an R-module. Then we have for $\mathfrak{P} \in \operatorname{Ass}_{S} M^{\prime}$ and $\mathfrak{p}:=\mathfrak{P} \cap R$:
(a) $\mathfrak{p} \in \operatorname{Ass}_{R}(M) \backslash V(I)$,
(b) $\mathfrak{P}=(\mathfrak{p} S+F S): S\langle I S\rangle$.

Proof. Since

$$
\operatorname{Ass}_{S} M^{\prime}=\operatorname{Ass}_{S}\left(M \otimes_{R} S\right) / F\left(M \otimes_{R} S\right) \backslash V(I S)
$$

we have $\mathfrak{P} \in V(F S) \backslash V(I S)$ and therefore $I \nsubseteq \mathfrak{p}$, i. e., $\mathfrak{p} \notin V(I)$. Without loss of generality we assume $x_{1} \notin \mathfrak{p}$.

Considering M^{\prime} as an R-module, we have

$$
\begin{aligned}
\left(M^{\prime}\right)_{\mathfrak{p}} & =\left(M_{\mathfrak{p}}\right)^{\prime} \\
& =M_{\mathfrak{p}}\left[u_{1}, \ldots, u_{r}\right] / F M_{\mathfrak{p}}\left[u_{1}, \ldots, u_{r}\right] \quad\left(\text { since } I S_{\mathfrak{p}}=S_{\mathfrak{p}}\right) \\
& \cong M_{\mathfrak{p}}\left[u_{2}, \ldots, u_{r}\right]
\end{aligned}
$$

where the last isomorphism is induced by the inclusion

$$
M_{\mathfrak{p}}\left[u_{2}, \ldots, u_{r}\right] \subset M_{\mathfrak{p}}\left[u_{1}, \ldots, u_{r}\right]
$$

(note that the image of x_{1} in $R_{\mathfrak{p}}$ is a unit). Because $R \backslash \mathfrak{p} \subseteq S \backslash \mathfrak{P}$ and $I \nsubseteq \mathfrak{p}$ this isomorphism gives rise to the following isomorphisms (note that $I S_{\mathfrak{P}}=S_{\mathfrak{P}}$)

$$
\left(M^{\prime}\right)_{\mathfrak{F}}=\left(\left(M^{\prime}\right)_{\mathfrak{p}}\right)_{\mathfrak{P} S_{\mathfrak{p}}} \cong M_{\mathfrak{p}}\left[u_{2}, \ldots, u_{r}\right]_{\mathfrak{F}^{\prime}},
$$

where \mathfrak{P}^{\prime} denotes the image of $\mathfrak{P} S_{\mathfrak{p}}$ in $R_{\mathfrak{p}}\left[u_{2}, \ldots, u_{r}\right]$ under the map given by the composition of the canonical epimorphism $S_{\mathfrak{p}} \rightarrow S_{\mathfrak{p}} / F S_{\mathfrak{p}}=\left(R^{\prime}\right)_{\mathfrak{p}}$ and the isomorphism $S_{\mathfrak{p}} / F S_{\mathfrak{p}} \cong R_{\mathfrak{p}}\left[u_{2}, \ldots, u_{r}\right]$. Therefore, we have

$$
\mathfrak{P} S_{\mathfrak{p}} / F S_{\mathfrak{p}}=\left(\mathfrak{P}^{\prime} S_{\mathfrak{p}}+F S_{\mathfrak{p}}\right) / F S_{\mathfrak{p}},
$$

i.e., $\mathfrak{P} S_{\mathfrak{p}}=\mathfrak{P}^{\prime} S_{\mathfrak{p}}+F S_{\mathfrak{p}}$. Since $\mathfrak{P} \in \operatorname{Ass}_{S} M^{\prime}$ we have $\mathfrak{P} S_{\mathfrak{F}} \in \operatorname{Ass}_{S_{\mathfrak{F}}}\left(M^{\prime}\right)_{\mathfrak{F}}$ and consequently

$$
\mathfrak{P}^{\prime} R_{\mathfrak{p}}\left[u_{2}, \ldots, u_{r}\right]_{\mathfrak{P}^{\prime}} \in \operatorname{Ass}_{R_{\mathfrak{p}}\left[u_{2}, \ldots, u_{r}\right]_{\mathfrak{W}^{\prime}}} M_{\mathfrak{p}}\left[u_{2}, \ldots, u_{r}\right]_{\mathfrak{F}^{\prime}}
$$

Therefore,

$$
\mathfrak{P}^{\prime} \in \operatorname{Ass}_{R_{\mathfrak{p}}\left[u_{2}, \ldots, u_{r}\right]} M_{\mathfrak{p}}\left[u_{2}, \ldots, u_{r}\right]=\left\{\mathfrak{q} R_{\mathfrak{p}}\left[u_{2}, \ldots, u_{r}\right] \mid \mathfrak{q} \in \operatorname{Ass} M_{\mathfrak{p}}\right\},
$$

i.e., there is some $\mathfrak{q} \in$ Ass $M_{\mathfrak{p}}$ with $\mathfrak{P}^{\prime}=\mathfrak{q} R_{\mathfrak{p}}\left[u_{2}, \ldots, u_{r}\right]$. For this prime ideal \mathfrak{q} we have

$$
\mathfrak{q}=\mathfrak{P}^{\prime} \cap R_{\mathfrak{p}}=\left(\mathfrak{P}^{\prime} S_{\mathfrak{p}}+F S_{\mathfrak{p}}\right) \cap R_{\mathfrak{p}}=\mathfrak{P} S_{\mathfrak{p}} \cap R_{\mathfrak{p}}=(\mathfrak{P} \cap R)_{\mathfrak{p}}=\mathfrak{p} R_{\mathfrak{p}} .
$$

Therefore, $\mathfrak{p} R_{\mathfrak{p}} \in \operatorname{Ass}_{R_{\mathfrak{p}}} M_{\mathfrak{p}}$ and thus $\mathfrak{p} \in \operatorname{Ass}_{R} M$, which shows (a).
For proving (b) we note that $\mathfrak{q}=\mathfrak{p} R_{\mathfrak{p}}$ implies $\mathfrak{P}^{\prime}=\mathfrak{p} R_{\mathfrak{p}}\left[u_{2}, \ldots, u_{r}\right]$ and therefore we get with $\mathfrak{p}^{*}:=(\mathfrak{p} S+F S): S\langle I S\rangle$ (note that $I \nsubseteq \mathfrak{p}$):

$$
\mathfrak{P} S_{\mathfrak{p}}=\mathfrak{P}^{\prime} S_{\mathfrak{p}}+F S_{\mathfrak{p}}=\mathfrak{p} S_{\mathfrak{p}}+F S_{\mathfrak{p}}=\mathfrak{p}^{*} S_{\mathfrak{p}} .
$$

Let $\tilde{\mathfrak{P}} \in \operatorname{Ass}_{S} S / \mathfrak{p}^{*}$. Since $S / \mathfrak{p}^{*} \cong(R / \mathfrak{p})^{\prime}$, (a) implies $(\tilde{\mathfrak{P}} / \mathfrak{p} S) \cap(R / \mathfrak{p})=0$, i.e., $\tilde{\mathfrak{P}} \cap R=\mathfrak{p}$ and therefore we have $R \backslash \mathfrak{p} \subseteq S \backslash \tilde{\mathfrak{P}}$. Now $\mathfrak{P} S_{\mathfrak{p}}=\mathfrak{p}^{*} S_{\mathfrak{p}}$ implies $\mathfrak{P}=\mathfrak{p}^{*}$.

Lemma 2.4. For $\mathfrak{p} \in \operatorname{Spec} R$ we set $\mathfrak{p}^{*}:=(\mathfrak{p} S+F S): S\langle I S\rangle$. Then the following conditions are equivalent:
(i) $\mathfrak{p}^{*} \in \operatorname{Spec} S$,
(ii) $\mathfrak{p} \notin V(I)$,
(iii) $\mathfrak{p}^{*} \cap R=\mathfrak{p}$.

In this case $\mathfrak{p}^{*} \in V(F S) \backslash V(I S)$ and $\mathrm{ht}_{S}\left(\mathfrak{p}^{*}\right)=1+\mathrm{ht}_{R}(\mathfrak{p})$.

Proof. (ii) \Rightarrow (i), (iii): Passing from R to R / \mathfrak{p}, we can assume without loss of generality that R is an integral domain and that $\mathfrak{p}=0$. Then $S / \mathfrak{p}^{*}=R^{\prime}$. Since

$$
\left(F S:_{S}\langle I\rangle\right) \cap R=\operatorname{ker} \varphi_{R}=0:_{R}\langle I\rangle=0
$$

it is sufficient to show that $F S:_{S}\langle I\rangle$ is a prime ideal in S.
Let $\mathfrak{P} \in \operatorname{Ass}_{S} R^{\prime}$. Then $\mathfrak{P} \cap R \in \operatorname{Ass} R=\{0\}$ by Lemma 2.3(a), i.e. $\mathfrak{P} \cap R=0$. By Lemma 2.3(b), we therefore obtain $\mathfrak{P}=F S: S\langle I\rangle$, i.e. $F S: S\langle I\rangle$ is a prime ideal.
(i), (iii) \Rightarrow (ii): Assume that $\mathfrak{p} \in V(I)$. Then $I S \subseteq \mathfrak{p} S$ and therefore $\mathfrak{p}^{*}=S \notin \operatorname{Spec} S$ and $\mathfrak{p}^{*} \cap R=S \cap R=R \neq \mathfrak{p}$.

It is clear that $\mathfrak{p}^{*} \in V(F S) \backslash V(I S)$ in this case. Then

$$
\mathfrak{p}^{*} S_{\mathfrak{p}^{*}}=\left(\mathfrak{p} S_{\mathfrak{p}^{*}}+F S_{\mathfrak{p}^{*}}\right):_{S_{\mathfrak{p}}}\left\langle I S_{\mathfrak{p}^{*}}\right\rangle=\mathfrak{p} S_{\mathfrak{p}^{*}}+F S_{\mathfrak{p}^{*}}
$$

Since $F \notin \mathfrak{p} S_{\mathfrak{p}^{*}}$,

$$
\mathrm{ht}_{S}\left(\mathfrak{p}^{*}\right)=\mathrm{ht}_{S_{\mathfrak{p}^{*}}}\left(\mathfrak{p}^{*} S_{\mathfrak{p}^{*}}\right)=1+\mathrm{ht}_{S_{\mathfrak{p}^{*}}}\left(\mathfrak{p} S_{\mathfrak{p}^{*}}\right)=1+\mathrm{ht}_{R}(\mathfrak{p})
$$

by Krull's Hauptidealsatz.
Now we can prove:
Proposition 2.5. For any R-module M the $\operatorname{map} \varphi_{R}^{*}: \operatorname{Spec} R^{\prime} \rightarrow \operatorname{Spec} R$ induces a bijection $\operatorname{Ass}_{R^{\prime}} M^{\prime} \rightarrow \operatorname{Ass}_{R}(M) \backslash V(I)$.

Proof. By our above remarks, it is sufficient to show that the restriction map $\operatorname{Spec} S \rightarrow \operatorname{Spec} R$ induces a bijection $\operatorname{Ass}_{S}\left(M^{\prime}\right) \rightarrow \operatorname{Ass}_{R}(M) \backslash V(I)$. For $\mathfrak{p} \in \operatorname{Spec} R \backslash V(I)$, we set again $\mathfrak{p}^{*}:=(\mathfrak{p} S+F S): S\langle I S\rangle$. Then $\mathfrak{p}^{*} \in$ $V(F S) \backslash V(I S) \subseteq \operatorname{Spec} S$ and $\mathfrak{p}^{*} \cap R=\mathfrak{p}$ by Lemma 2.4 .

By Lemma 2.3(a), the restriction map $\operatorname{Spec} S \rightarrow \operatorname{Spec} R$ induces a map

$$
\psi_{M}: \operatorname{Ass}_{S}\left(M^{\prime}\right) \rightarrow \operatorname{Ass}_{R}(M) \backslash V(I)
$$

By Lemma 2.3 (b), we have $\mathfrak{P}=\psi_{M}(\mathfrak{P})^{*}$ for all $\mathfrak{P} \in \operatorname{Ass}_{S} M^{\prime}$ and therefore ψ_{M} is injective.

Let now $\mathfrak{p} \in \operatorname{Ass}_{R}(M) \backslash V(I)$, i.e., there is a monomorphism $R / \mathfrak{p} \rightarrow M$. By Lemma 2.1(a), this monomorphism induces a monomorphism $S / \mathfrak{p}^{*} \cong(R / \mathfrak{p})^{\prime} \rightarrow M^{\prime}$, i.e., $\mathfrak{p}^{*} \in \operatorname{Ass}_{S} M^{\prime}$. Since $\psi_{M}\left(\mathfrak{p}^{*}\right)=\mathfrak{p}, \psi_{M}$ is surjective and hence bijective.

Corollary 2.6. Let M be a finitely generated R-module and let $\mathfrak{p} \in$ $\min \operatorname{Ass}_{R} M$ with $I \nsubseteq \mathfrak{p}$. If $\mathfrak{p}^{\prime} \in \operatorname{Ass}_{R^{\prime}} M^{\prime}$ is the uniquely determined prime ideal such that $\mathfrak{p}=\varphi_{R}^{*}\left(\mathfrak{p}^{\prime}\right)$ then $\mathfrak{p}^{\prime} \in \min \operatorname{Ass}_{R^{\prime}} M^{\prime}$ and length $\left(R_{\mathfrak{p}}\right)=\operatorname{length}\left(R_{\mathfrak{p}^{\prime}}^{\prime}\right)$.

Proof. Passing from R to $R / \operatorname{Ann}_{R} M$, we may assume without loss of generality that \mathfrak{p} is minimal in $\operatorname{Spec} R$. Since $I \nsubseteq \mathfrak{p}$, we get $I S \nsubseteq \mathfrak{p}^{*}$ and $F \notin \mathfrak{p} S$. Using Lemma 2.4, we obtain
Ass $S_{\mathfrak{p}^{*}}=\left\{\mathfrak{q} S_{\mathfrak{p}^{*}} \mid \mathfrak{q} \in\right.$ Ass $\left.R, \mathfrak{q} \subseteq \mathfrak{p}^{*}\right\}=\left\{\mathfrak{q} S_{\mathfrak{p}^{*}} \mid \mathfrak{q} \in\right.$ Ass $\left.R, \mathfrak{q} \subseteq \mathfrak{p}^{*} \cap R\right\}=\left\{\mathfrak{p} S_{\mathfrak{p}^{*}}\right\}$
by the minimality of \mathfrak{p} in $\operatorname{Spec} R$. Since $\operatorname{dim} S_{\mathfrak{p}^{*}}=\operatorname{ht}_{S}\left(\mathfrak{p}^{*}\right)=1+\operatorname{ht}_{R}(\mathfrak{p})=1$ by Lemma 2.4, F is a parameter element in $S_{\mathfrak{p}^{*}}$ which is a nonzerodivisor. Therefore,

$$
\text { length } S_{\mathfrak{p}^{*}} / F S_{\mathfrak{p}^{*}}=e\left(F S_{\mathfrak{p}^{*}}, S_{\mathfrak{p}^{*}}\right)<\infty .
$$

Now

$$
R_{\mathfrak{p}^{\prime}}^{\prime} \cong R_{\mathfrak{p}^{*}}^{\prime}=S_{\mathfrak{p}^{*}} /\left(F S_{\mathfrak{p}^{*}}: S_{\mathfrak{p}^{*}}\left\langle I S_{\mathfrak{p}^{*}}\right\rangle\right)=S_{\mathfrak{p}^{*}} / F S_{\mathfrak{p}^{*}},
$$

i.e., we obtain length $R_{\mathfrak{p}^{\prime}}^{\prime}=e\left(F S_{\mathfrak{p}^{*}}, S_{\mathfrak{p}^{*}}\right)<\infty$, in particular, \mathfrak{p}^{\prime} is minimal in Ass R^{\prime}. Further, by the addition and reduction theorem for multiplicities, we get

$$
e\left(F S_{\mathfrak{p} *}, S_{\mathfrak{p}^{*}}\right)=\operatorname{length}\left(S_{\mathfrak{p} S}\right) \cdot e\left(F S_{\mathfrak{p} *}, S_{\mathfrak{p}^{*}} / \mathfrak{p} S_{\mathfrak{p}^{*}}\right),
$$

for $\mathfrak{p} S_{\mathfrak{p}^{*}}$ is the unique minimal prime ideal in $S_{\mathfrak{p}^{*}}$. Since $R \subset S$ is flat, $R_{\mathfrak{p}} \subset S_{\mathfrak{p} S}$ is flat too with fibre $S_{\mathfrak{p}} / \mathfrak{p} S_{\mathfrak{p}}$. Therefore, length $\left(S_{\mathfrak{p} S}\right)=\operatorname{length}\left(R_{\mathfrak{p}}\right)$. Furthermore, since $F \notin \mathfrak{p}$, we get

$$
e\left(F S_{\mathfrak{p}^{*}}, S_{\mathfrak{p}^{*}} / \mathfrak{p} S_{\mathfrak{p}^{*}}\right)=\operatorname{length}\left(S_{\mathfrak{p}^{*}} / \mathfrak{p} S_{\mathfrak{p}^{*}}+F S_{\mathfrak{p}^{*}}\right)=\operatorname{length}\left(S_{\mathfrak{p}^{*}} / \mathfrak{p}^{*} S_{\mathfrak{p}^{*}}\right)=1,
$$

as required.
Corollary 2.7. Assume R is reduced (an integral domain). Then R^{\prime} is again reduced (an integral domain) with the same number of associated primes as R.
3. The Cayley-van der Waerden-Chow form. Let $u_{0}, \ldots, u_{n}, n \geq 1$, be indeterminates of degree one. We will use the following notation: Let R be a ring. For a polynomial $f \in R\left[u_{0}, \ldots, u_{n}\right]$ we denote by $\operatorname{supp} f$ the (finite) set of all monomials in u_{0}, \ldots, u_{n} occurring in f with non-zero coefficient.

Lemma 3.1. Let $L \mid K$ be an algebraic field extension. For $\xi:=\left(\xi_{1}, \ldots, \xi_{n}\right) \in$ L^{n}, set

$$
\begin{aligned}
G_{\xi} & :=u_{1} \xi_{1}+\cdots+u_{n} \xi_{n} \in L\left[u_{1}, \ldots, u_{n}\right] \quad \text { and } \\
F_{\xi} & :=u_{0}+G_{\xi} \in L\left[u_{0}, u_{1}, \ldots, u_{n}\right] .
\end{aligned}
$$

Then:
(a) There is an irreducible homogeneous polynomial $f_{\xi} \in K\left[u_{0}, u_{1}, \ldots, u_{n}\right]$ of positive degree with the following properties:
(i) $f_{\xi} \cdot K\left[u_{0}, u_{1}, \ldots, u_{n}\right]=F_{\xi} L\left[u_{0}, u_{1}, \ldots, u_{n}\right] \cap K\left[u_{0}, u_{1}, \ldots, u_{n}\right]$.
(ii) f_{ξ} is integral with respect to u_{0}, that is, $u_{0}^{\operatorname{deg} f_{\xi}} \in \operatorname{supp} f_{\xi}$.
(iii) $g_{\xi}:=f_{\xi}\left(X, u_{1}, \ldots u_{n}\right) \in K\left(u_{1}, \ldots, u_{n}\right)[X]$ (X an indeterminate) is the minimal polynomial of $-G_{\xi} \in L\left(u_{1}, \ldots, u_{n}\right)$ over $K\left(u_{1}, \ldots, u_{n}\right)$.
(iv) If all but possibly one of the elements ξ_{1}, \ldots, ξ_{n} are separable over K, then $\operatorname{deg} f_{\xi}=\left[K\left[\xi_{1}, \ldots, \xi_{n}\right]: K\right]$. Otherwise, there exists a nonnegative integer ε with $p^{\varepsilon} \operatorname{deg} f_{\xi}=\left[K\left[\xi_{1}, \ldots, \xi_{n}\right]: K\right]$, where $p:=$ char $K>0$.
(b) If $\zeta:=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in L^{n}$, then $f_{\xi}=f_{\zeta}$ (up to a non zero constant factor) if and only if there exists a K-isomorphism $\varphi: K\left[\xi_{1}, \ldots, \xi_{n}\right] \rightarrow K\left[\zeta_{1}, \ldots, \zeta_{n}\right]$ with $\varphi\left(\xi_{i}\right)=\zeta_{i}, i=1, \ldots, n$.

Proof. For any field Z with $K \subseteq Z \subseteq L$ we set

$$
\begin{aligned}
S_{Z} & :=Z\left[u_{0}, \ldots, u_{n}\right],
\end{aligned} \quad Q_{Z}:=Z\left(u_{0}, \ldots, u_{n}\right)=Q\left(S_{Z}\right) \text { and } .
$$

Since F_{ξ} is homogeneous of degree one, it is obviously irreducible in S_{L} and in $Q_{L}^{\prime}\left[u_{0}\right]$. Therefore, $F_{\xi} S_{L}$ is a homogeneous prime ideal in S_{L} (note that S_{L} is factorial) and $P_{\xi}:=F_{\xi} S_{L} \cap S_{K}$ is a homogeneous prime ideal in S_{K}.
(a) Since

$$
P_{\xi}=F_{\xi} S_{L} \cap S_{K}=F_{\xi} S_{L} \cap S_{K\left[\xi_{1}, \ldots, \xi_{n}\right]} \cap S_{K}=F_{\xi} S_{K\left[\xi_{1}, \ldots, \xi_{n}\right]} \cap S_{K}
$$

we may assume without loss of generality that $L=K\left[\xi_{1}, \ldots, \xi_{n}\right]$ and hence that $L \mid K$ is finite. Furthermore, $P_{\xi} \cap S_{K}^{\prime} \subseteq F_{\xi} S_{L} \cap S_{L}^{\prime}=0$ so that we have a chain of monomorphisms and isomorphisms, respectively,

$$
S_{K}^{\prime} \rightarrow S_{K} / P_{\xi} \rightarrow S_{L} / F_{\xi} S_{L} \cong S_{L}^{\prime}
$$

where the composition map $S_{K}^{\prime} \rightarrow S_{L}^{\prime}$ is given by the inclusion $K \subseteq L$ and by $u_{i} \mapsto u_{i}, i=1, \ldots, n$. Since $L \mid K$ is finite, $S_{L}^{\prime}\left(\cong S_{K}^{\prime} \otimes_{K} L\right)$ is a finitely generated graded S_{K}^{\prime}-module and hence S_{K} / P_{ξ} is a finitely generated graded S_{K}^{\prime}-module as well. Therefore, there exists an irreducible homogeneous polynomial f_{ξ} in P_{ξ} which is integral with respect to u_{0}. It is clear that $\operatorname{deg} f_{\xi}=\operatorname{deg}_{u_{0}} f_{\xi}>0$. Moreover,

$$
\operatorname{ht}\left(P_{\xi}\right)=\operatorname{dim} S_{K}-\operatorname{dim} S_{K} / P_{\xi}=n+1-\operatorname{dim} S_{K}^{\prime}=n+1-n=1
$$

so that actually $P_{\xi}=f_{\xi} \cdot S_{K}$, and (i) and (ii) have been proved.
Since f_{ξ} is irreducible in $S_{K}=S_{K}^{\prime}\left[u_{0}\right], f_{\xi}\left(X, u_{1}, \ldots, u_{n}\right)$ is irreducible in $Q_{K}^{\prime}[X]$. Let $g:=f_{\xi}\left(-G_{\xi}, u_{1}, \ldots, u_{n}\right) \in S_{L}^{\prime}$. Since $f_{\xi}=f_{\xi}\left(F_{\xi}-G_{\xi}, u_{1}, \ldots, u_{n}\right)$, we have $g-f_{\xi} \in F_{\xi} S_{L}$ and therefore

$$
g=g-f_{\xi}+f_{\xi} \in F_{\xi} S_{L} \cap S_{L}^{\prime}=0
$$

Thus (iii) has been proved.

If all but possibly one of the elements ξ_{1}, \ldots, ξ_{n} are separable over K, then all but possibly one of them, viewed as elements of $Q_{L}=Q_{K}\left[\xi_{1}, \ldots, \xi_{n}\right]$, are separable over Q_{K} with the same minimal polynomials as over K. Therefore, G_{ξ} is a primitive element of the finite field extension $Q_{K}\left[\xi_{1}, \ldots, \xi_{n}\right] \mid Q_{K}$ and, taking into account (a) (ii) and (iii) and using $Q_{K}\left[\xi_{1}, \ldots, \xi_{n}\right] \cong Q_{K} \otimes_{K}$ $K\left[\xi_{1}, \ldots, \xi_{n}\right]$, one has

$$
\begin{aligned}
\operatorname{deg} f_{\xi} & =\operatorname{deg}_{X} f_{\xi}\left(X, u_{1}, \ldots, u_{n}\right)=\left[Q_{K}\left[-G_{\xi}\right]: Q_{K}\right]= \\
& =\left[Q_{K}\left[\xi_{1}, \ldots, \xi_{n}\right]: Q_{K}\right]=\left[K\left[\xi_{1}, \ldots, \xi_{n}\right]: K\right] .
\end{aligned}
$$

Assume that at least two of the elements ξ_{1}, \ldots, ξ_{n} are not separable over K. Then, in particular, K is not perfect. Since $\xi_{1}^{p^{e}}, \ldots, \xi_{n}^{p^{e}}$ are separable over K for $e \gg 1, G_{\xi}^{p^{e}}$ is a primitive element of $Q_{K}\left[\xi_{1}^{p^{e}}, \ldots, \xi_{n}^{p^{e}}\right] \mid Q_{K}$. Therefore,

$$
\xi_{i}^{p^{e}} \in Q_{K}\left[G_{\xi}^{p^{e}}\right] \subseteq Q_{K}\left[G_{\xi}\right] \text { for all } i=1, \ldots, n
$$

As above,

$$
\begin{aligned}
\operatorname{deg} f_{\xi} & =\left[Q_{K}\left[-G_{\xi}\right]: Q_{K}\right]=\left[Q_{K}\left[G_{\xi}\right]: Q_{K}\right]= \\
& =\frac{\left[Q_{K}\left[\xi_{1}, \ldots, \xi_{n}\right]: Q_{K}\right]}{\left[Q_{K}\left[\xi_{1}, \ldots, \xi_{n}\right]: Q_{K}\left[G_{\xi}\right]\right]}=\frac{\left[K\left[\xi_{1}, \ldots, \xi_{n}\right]: K\right]}{\left[Q_{K}\left[\xi_{1}, \ldots, \xi_{n}\right]: Q_{K}\left[G_{\xi}\right]\right]}
\end{aligned}
$$

Since $Q_{K}\left[\xi_{1}^{p^{e}}, \ldots, \xi_{n}^{p^{e}}\right] \subseteq Q_{K}\left[G_{\xi}\right]$, the degree $\left[Q_{K}\left[\xi_{1}, \ldots, \xi_{n}\right]: Q_{K}\left[G_{\xi}\right]\right]$ divides

$$
\left[Q_{K}\left[\xi_{1}, \ldots, \xi_{n}\right]: Q_{K}\left[\xi_{1}^{p^{e}}, \ldots, \xi_{n}^{p^{e}}\right]\right]
$$

but the latter is a power of p. Therefore, $\left[Q_{K}\left[\xi_{1}, \ldots, \xi_{n}\right]: Q_{K}\left[G_{\xi}\right]\right]=p^{\varepsilon}$ for some $\varepsilon \in \mathbb{N}$, which shows (iv).
(b) If $f_{\xi}=f_{\zeta}=: f$, then $-G_{\xi}$ and $-G_{\zeta}$ are roots of $f\left(X, u_{1}, \ldots, u_{n}\right)$. Therefore, there is a Q_{K}-isomorphism

$$
\psi: Q_{K}\left[G_{\xi}\right] \rightarrow Q_{K}\left[G_{\zeta}\right] \text { with } \psi\left(G_{\xi}\right)=G_{\zeta} .
$$

We choose a positive integer q as follows: If K is perfect, we set $q:=1$. If K is not perfect and $p:=$ char K, then $q:=p^{e}$, where $e \in \mathbb{N}$ has been chosen as in the proof of (a)(iv), that is, such that $\xi_{1}^{p^{e}}, \ldots, \xi_{n}^{p^{e}} \in Q_{K}\left[G_{\xi}\right]$ and $\zeta_{1}^{p^{e}}, \ldots, \zeta_{n}^{p^{e}} \in Q_{K}\left[G_{\zeta}\right]$. Then

$$
\left.\sum_{i=1}^{n} u_{i}^{q} \zeta_{i}^{q}=G_{\zeta}^{q}=\psi\left(G_{\xi}\right)^{q}=\psi\left(G_{\xi}^{q}\right)=\psi \sum_{i=1}^{n} u_{i}^{q} \xi_{i}^{q}\right)=\sum_{i=1}^{n} u_{i}^{q} \psi\left(\xi_{i}^{q}\right)
$$

and we obtain $\zeta_{i}^{q}=\psi\left(\xi_{i}^{q}\right), i=1, \ldots, n$, since $\psi\left(\xi_{i}^{q}\right) \in Q_{K}\left[G_{\zeta}\right]$ is even algebraic over K (with the same minimal polynomial as ξ_{i}^{q}). Thus the restriction of ψ to $K^{q}\left[\xi_{1}^{q}, \ldots, \xi_{n}^{q}\right]$ is a K^{q}-isomorphism

$$
\psi_{q}: K^{q}\left[\xi_{1}^{q}, \ldots, \xi_{n}^{q}\right] \rightarrow K^{q}\left[\zeta_{1}^{q}, \ldots, \zeta_{n}^{q}\right] .
$$

The Frobenius homomorphism $\varphi_{q}: L \rightarrow L$ induces an isomorphism $\tilde{\varphi}_{q}: L \rightarrow L^{q}$. Now we set

$$
\varphi:=\left(\left.\tilde{\varphi}_{q}^{-1}\right|_{K^{q}\left[\left[_{1}^{q}, \ldots, \zeta_{n}^{q}\right]\right.} ^{q}\right) \circ \psi_{q} \circ\left(\left.\tilde{\varphi}_{q}\right|_{K\left[\xi_{1}, \ldots, \xi_{n}\right]}\right) .
$$

The homomorphism φ has the desired property.
Conversely, let $\varphi: K\left[\xi_{1}, \ldots, \xi_{n}\right] \rightarrow K\left[\zeta_{1}, \ldots, \zeta_{n}\right]$ be a K-isomorphism with $\varphi\left(\xi_{i}\right)=\zeta_{i}$ for $i=1, \ldots, n$. Then the restriction of $\varphi \otimes_{K} Q_{K}$ to $Q_{K}\left[G_{\xi}\right]$ yields a Q_{K}-isomorphism $\psi: Q_{K}\left[G_{\xi}\right] \rightarrow Q_{K}\left[G_{\zeta}\right]$ such that $\psi\left(G_{\xi}\right)=G_{\zeta}$. Hence the minimal polynomials of $-G_{\xi}$ and $-G_{\zeta}$ over Q_{K} coincide, that is, $f_{\xi}=f_{\zeta}$ by (a)(iii). This finishes the proof of Lemma 3.1.

Lemma 3.2. Let K be a field, and let X_{0}, \ldots, X_{n} be further indeterminates of degree one. Set $R:=K\left[X_{0}, \ldots, X_{n}\right], T:=K\left[u_{0}, \ldots, u_{n}\right], S:=$ $T\left[X_{0}, \ldots, X_{n}\right]=R\left[u_{0}, \ldots, u_{n}\right]$ and $F:=u_{0} X_{0}+\cdots+u_{n} X_{n} \in S$. Furthermore, let $P \subset R$ be a homogeneous prime ideal with $r:=\operatorname{ht}(P) \leq n$ and set

$$
P^{*}:=(P S+F S):_{S}\left\langle X_{0}, \ldots, X_{n}\right\rangle .
$$

Then:
(a) P^{*} is a prime ideal in S of height $r+1$ such that $P^{*} \cap R=P$, and P^{*} is homogeneous both with respect to X_{0}, \ldots, X_{n} and u_{0}, \ldots, u_{n}.
(b) If $\operatorname{ht}(P)=n$, then there exists an irreducible and (with respect to u_{0}, \ldots, u_{n}) homogeneous polynomial $f_{P} \in T$ with the following properties:
(i) $f_{P} T=P^{*} \cap T$.
(ii) Let $I:=\left\{i \in\{0, \ldots, n\} \mid X_{i} \notin P\right\}$. Then $f_{P} \in K\left[\left\{u_{i} \mid i \in I\right\}\right]$ and, for any $i \in I, f_{P}$ is integral with respect to u_{i}, that is,

$$
u_{i}^{\operatorname{deg} f_{P}} \in \operatorname{supp} f_{P}
$$

(iii) $\operatorname{deg} f_{P}=h_{0}(R / P)$ if char $K=0$. If $p:=\operatorname{char} K>0$,

$$
\operatorname{deg} f_{P}=p^{-\varepsilon} h_{0}(R / P) \leq h_{0}(R / P)
$$

for a suitable $\varepsilon \in \mathbb{N}$.
(c) If $P^{\prime} \subset R$ is another homogeneous prime ideal with $\mathrm{ht}(P)^{\prime}=\operatorname{ht}(P)=n$, then $f_{P}=f_{P^{\prime}}$ (up to multiplication by a nonzero constant) if and only if $P=P^{\prime}$.

Proof. (a) follows from Lemma 2.4 (it is clear, that P^{*} is homogeneous with respect to X_{0}, \ldots, X_{n} and $\left.u_{0}, \ldots, u_{n}\right)$.
(b) Suppose that $X_{0} \notin P$. Then $X_{0} \notin P^{*}$ by (a). We set

$$
\begin{aligned}
& R^{\prime}:=K\left[X_{1}, \ldots, X_{n}\right], \quad S^{\prime}:=R^{\prime}\left[u_{0}, \ldots, u_{n}\right], \quad \text { and } \\
& F^{\prime}:=u_{0}+u_{1} X_{1}+\cdots+u_{n} X_{n} \in S^{\prime} .
\end{aligned}
$$

Furthermore, let $\lambda_{R}: R^{\prime} \rightarrow R_{X_{0}}$ be the K-homomorphism defined by

$$
\lambda_{R}\left(X_{i}\right)=\frac{X_{i}}{X_{0}}, i=1, \ldots, n
$$

Moreover, we set

$$
\lambda_{S}:=\lambda_{R} \otimes_{K} T: S^{\prime} \rightarrow S_{X_{0}}
$$

By definition, λ_{S} is a T-homomorphism. Then $\tilde{P}:=\lambda_{R}^{-1}\left(P R_{X_{0}}\right)$ and $\widetilde{P^{*}}:=$ $\lambda_{S}^{-1}\left(P^{*} S_{X_{0}}\right)$ are prime ideals in R^{\prime} and S^{\prime}, respectively. More precisely, $\tilde{P}=$ $\left\{\left.f\right|_{X_{0}=1} \mid f \in P\right\}$ and $\widetilde{P^{*}}=\left\{\left.f^{*}\right|_{X_{0}=1} \mid f^{*} \in P^{*}\right\}$ are the dehomogenizations of P and P^{*}, respectively, with respect to X_{0}. Therefore, $\operatorname{ht}(\tilde{P})=\operatorname{ht}(P)=n$ (i.e. \tilde{P} is a maximal ideal of $\left.R^{\prime}\right), \operatorname{ht}\left(\widetilde{P^{*}}\right)=\operatorname{ht}\left(P^{*}\right)=n+1$ and $\widetilde{P^{*}}=\tilde{P} S^{\prime}+F^{\prime} S^{\prime}$. Moreover, $\tilde{P} S^{\prime} \cap T=P S \cap T=0$ and $\widetilde{P^{*}} \cap T=P^{*} \cap T$. Hence T may be considered as a subring of $S^{\prime} / \tilde{P} S^{\prime}$ and we have $P^{*} \cap T=\left(\widetilde{P^{*}} / \tilde{P} S^{\prime}\right) \cap T$. Since \tilde{P} is a maximal ideal in R^{\prime}, we have $R^{\prime} / \tilde{P}=K\left[\xi_{1}, \ldots, \xi_{n}\right]=: L$, where $\xi_{i}:=X_{i}+\tilde{P} \in \bar{K}$ for $i=1, \ldots, n$. With the notation of the proof of Lemma 3.1 we therefore have $S^{\prime} / \tilde{P} S^{\prime}=S_{L}$, where $F^{\prime}+\tilde{P} S^{\prime}=F_{\xi}$. By Lemma 3.1 (a) (i), we obtain (note that $T=S_{K}$)

$$
\begin{aligned}
P^{*} \cap T & =\left(\widetilde{P^{*}} / \tilde{P} S^{\prime}\right) \cap T=\left(\left(\tilde{P} S^{\prime}+F^{\prime} S^{\prime}\right) / \tilde{P} S^{\prime}\right) \cap T \\
& =F_{\xi} S_{L} \cap S_{K}=f_{\xi} T=f_{P} T
\end{aligned}
$$

with $f_{P}:=f_{\xi}$ and (i) is shown. Moreover, f_{P} depends (up to constant factors) only on P and not on the choice of the indeterminate X_{i} such that $X_{i} \notin P$. Therefore, by Lemma 3.1 (a)(ii), f_{P} is integral with respect to all $u_{i}, i \in I$. On the other hand, if $X_{j} \in P$ for $j \in\{0, \ldots, n\}$ then with

$$
P^{\prime}:=P \cap R_{j}, \text { where } R_{j}:=K\left[X_{0}, \ldots, X_{j-1}, X_{j+1}, \ldots, X_{n}\right]
$$

it is immediately clear that $P^{*}=P^{*} S+X_{j} S$, where

$$
P^{* *} \subseteq R_{j}\left[u_{0}, \ldots, u_{j-1}, u_{j+1}, \ldots, u_{n}\right]
$$

is suitably defined. Thus $f_{P}=f_{P^{\prime}}$ does not depend upon u_{j}, and (ii) is proved. (iii) follows from Lemma 3.1 (a) (iv) since

$$
h_{0}(R / P)=\operatorname{rank}_{K} R^{\prime} / \tilde{P}=\left[K\left[\xi_{1}, \ldots, \xi_{n}\right]: K\right]
$$

(c) Let $f_{P}=f_{Q}=: f$ and $I:=\left\{i \in\{0, \ldots, n\} \mid X_{i} \notin P\right\}$. Assume that $X_{i} \in Q$ for all $i \in I$. Then by (b)(ii) we had

$$
\begin{aligned}
& f=f_{P} \in K\left[\left\{u_{i} \mid i \in I\right\}\right] \text { and } \\
& f=f_{Q} \in K\left[\left\{u_{i} \mid i \in\{0, \ldots, n\} \backslash I\right]\right.
\end{aligned}
$$

so that f would be constant, which is a contradiction. Hence there exists an $i \in\{0, \ldots, n\}$ such that $X_{i} \notin P$ and $X_{i} \notin Q$. Without loss of generality we
may assume that this happens for $i=0$. Further let $R^{\prime} / \tilde{P} \cong K\left[\xi_{1}, \ldots, \xi_{n}\right]$ and $R^{\prime} / \tilde{Q} \cong K\left[\zeta_{1}, \ldots, \zeta_{n}\right]$ (cf. the proof of (b)). Then $f_{\xi}=f_{P}=f_{Q}=f_{\zeta}$ and, by Lemma 3.1](b), there is a K-isomorphism

$$
\varphi: K\left[\xi_{1}, \ldots, \xi_{n}\right] \rightarrow K\left[\zeta_{1}, \ldots, \zeta_{n}\right] \text { with } \varphi\left(\xi_{i}\right)=\zeta_{i}, i=1, \ldots, n .
$$

But this implies for any $g \in \tilde{Q}$ that

$$
\varphi\left(g\left(\xi_{1}, \ldots, \xi_{n}\right)\right)=g\left(\varphi\left(\xi_{1}\right), \ldots, \varphi\left(\xi_{n}\right)\right)=g\left(\zeta_{1}, \ldots, \zeta_{n}\right)=0
$$

that is, $g\left(\xi_{1}, \ldots, \xi_{n}\right)=0$. Thus $g \in \tilde{P}$ and $\tilde{Q} \subseteq \tilde{P}$. Since \tilde{Q}, \tilde{P} are maximal ideals in R^{\prime}, this implies $\tilde{P}=\tilde{Q}$ and hence $P=Q$. The converse is trivial.

Proposition 3.3 (Cayley-van der Waerden-Chow form). Let K be a field, and let X_{0}, \ldots, X_{n} be indeterminates. Further let $P \subset R:=K\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous prime ideal and $d:=\operatorname{dim} R / P-1 \geq 0$, that is, d is the degree of the Hilbert polynomial of R / P. For $i=0, \ldots, d$ and $j=0, \ldots, n$ let $u_{i j}$ be further indeterminates and abbreviate $u_{i 0}, \ldots, u_{\text {in }}$ by \mathbf{u}_{i}. Moreover, set

$$
\begin{gathered}
S:=R\left[\mathbf{u}_{0}, \ldots, \mathbf{u}_{d}\right], \quad T:=k\left[\mathbf{u}_{0}, \ldots, \mathbf{u}_{d}\right], \quad F_{i}:=\sum_{j=0}^{n} u_{i j} X_{j}, \quad i=0, \ldots, d, \\
\text { and } P^{*}:=\left(P S+\left(F_{0}, \ldots, F_{d}\right) S\right):\left\langle X_{0}, \ldots, X_{n}\right\rangle .
\end{gathered}
$$

Then:
(a) P^{*} is a prime ideal in S of height $n+1$ with $P^{*} \cap R=P$, and P^{*} is homogeneous in each row of indeterminates $\mathbf{u}_{0}, \ldots, \mathbf{u}_{d}$ as well as in $\mathbf{X}:=$ X_{0}, \ldots, X_{n}.
(b) There exists an irreducible and with respect to each row of indeterminates $\mathbf{u}_{0}, \ldots, \mathbf{u}_{d}$ homogeneous polynomial $f_{P} \in T$ with the following properties:
(i) $f_{P} T=P^{*} \cap T$.
(ii) $0<\operatorname{deg}_{\mathbf{u}_{0}} f_{P}=\cdots=\operatorname{deg}_{\mathbf{u}_{d}} f_{P} \leq h_{0}(R / P)$ with equality if $\operatorname{char} K=0$.
(c) If $Q \subset R$ is another homogeneous prime ideal with $\operatorname{ht}(Q)=\operatorname{ht}(P)$, then $f_{P}=f_{Q}$ (up to multiplication by a nonzero constant) if and only if $P=Q$.
f_{P} is called Cayley-van der Waerden-Chow form of P.
Proof. (a) For $0 \leq i \leq d$ we set $S^{(i)}:=R\left[\mathbf{u}_{0}, \ldots, \mathbf{u}_{i}\right]$ and

$$
P_{i}^{*}:=\left(P S^{(i)}+\left(F_{0}, \ldots, F_{i}\right) S^{(i)}\right):\left\langle X_{0}, \ldots, X_{n}\right\rangle .
$$

Since $P_{i}^{*}=\left(P_{i-1}^{*} S^{(i)}+F_{i} S^{(i)}\right):\left\langle X_{0}, \ldots, X_{n}\right\rangle\left(P_{-1}^{*}:=P\right)$, it follows from Lemma 3.2 by induction on i that P_{i}^{*} is a prime ideal in $S^{(i)}$ of height

$$
\operatorname{ht}(P)+i=n-d+i+1 .
$$

Now (a) follows since $P^{*}=P_{d}^{*}$.
(b) Let $I_{P}:=P^{*} \cap T$. The ideal I_{P} is a prime ideal in T, which is homogeneous in each row of indeterminates $\mathbf{u}_{0}, \ldots, \mathbf{u}_{d}$. Now let

$$
\begin{aligned}
T_{0} & :=K\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{d}\right], \\
S_{0} & :=R\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{d}\right], \text { and } \\
k & :=Q\left(T_{0}\right)=K\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{d}\right) .
\end{aligned}
$$

Furthermore, we set

$$
P_{0}:=\left(P S_{0}+\left(F_{1}, \ldots, F_{d}\right) S_{0}\right):\left\langle X_{0}, \ldots, X_{n}\right\rangle
$$

By the proof of (a), P_{0} is a prime ideal in S_{0} of height $h t(P)+d=n$. Since also

$$
\begin{aligned}
\operatorname{ht}\left(P S_{0}+\left(F_{1}, \ldots, F_{d}\right) S_{0}\right) & =\operatorname{ht}(P)+d=n \\
& <n+1=\operatorname{ht}\left(X_{0}, \ldots, X_{n}\right) S_{0}
\end{aligned}
$$

it follows that $P_{0} \subseteq\left(X_{0}, \ldots, X_{n}\right) S_{0}$, and therefore

$$
P_{0} \cap T_{0} \subseteq\left(X_{0}, \ldots, X_{n}\right) S_{0} \cap T_{0}=0
$$

Furthermore, by Lemma 3.2 (a), $P^{*} \cap S_{0}=P_{0}$ and hence

$$
P^{*} \cap T_{0}=P^{*} \cap S_{0} \cap T_{0}=P_{0} \cap T_{0}=0
$$

that is, $I_{P} \cap T_{0}=0$. Now let

$$
\begin{aligned}
R_{k} & :=k\left[X_{0}, \ldots, X_{n}\right] \\
S_{k} & :=R_{k}\left[\mathbf{u}_{0}\right]=k\left[X_{0}, \ldots, X_{n}, u_{01}, \ldots, u_{0 n}\right], \text { and } \\
T_{k} & :=k\left[\mathbf{u}_{0}\right]
\end{aligned}
$$

Then $R_{k}=S_{0} \otimes_{T_{0}} k$ is the localization of S_{0} at the multiplicatively closed subset $T_{0} \backslash\{0\}$, and similar statements hold for S_{k} and T_{k}. Because of $I_{P} \cap T_{0}=0$ we have $\operatorname{ht}\left(I_{P}\right)=\operatorname{ht}\left(I_{P} T_{k}\right)$ and

$$
I_{P} T_{k}=P^{*} S_{k} \cap T_{k}=\left(P_{0} R_{k}\right)^{*} \cap T_{k}
$$

Since $P_{0} R_{k}$ is a homogeneous prime ideal in R_{k} of height n, it follows by Lemma 3.2 (b) that $I_{P} T_{k}=f_{P_{0} R_{k}} T_{k}$. Thus ht $\left(I_{P}\right)=1$, that is, $I_{P}=f_{P} T$ for some irreducible and with respect to each row of indeterminates $\mathbf{u}_{0}, \ldots, \mathbf{u}_{d}$ homogeneous polynomial $f_{P} \in T$ which shows (i). Any permutation of the rows of indeterminates $\mathbf{u}_{0}, \ldots, \mathbf{u}_{d}$ induces an automorphism of S and T, respectively, which maps the ideal P^{*} to itself and therefore leaves f_{P} unchanged. Hence $\operatorname{deg}_{\mathbf{u}_{0}} f_{P}=\cdots=\operatorname{deg}_{\mathbf{u}_{d}} f_{P}>0$. If we set $P^{\prime}:=P_{0} R_{k}$ then, by Lemma 3.2
(b)(iii) and the theorem of Bézout,

$$
\begin{aligned}
\operatorname{deg}_{\mathbf{u}_{0}} f_{P} & =\operatorname{deg} f_{P^{\prime}} \leq h_{0}\left(R_{k} / P^{\prime}\right) \\
& =\operatorname{deg} \mathbf{X} F_{1} \cdot \ldots \cdot \operatorname{deg}_{\mathbf{X}} F_{d} \cdot h_{0}\left(R_{k} / P R_{k}\right) \\
& =h_{0}\left(R_{k} / P R_{k}\right)=h_{0}(R / P)
\end{aligned}
$$

with equality if char $k=\operatorname{char} K=0$, which finishes the proof of (ii).
(c) Let $f_{P}=f_{Q}$. Then, with the notation introduced in (b), we have

$$
f_{P_{0}}=f_{P R_{k}}=f_{Q R_{k}}=f_{Q_{0}}
$$

and, by Lemma 3.2 (c), we conclude that $P_{0}=Q_{0}$. Now from (a) and Lemma 3.2 (a) it follows that

$$
\begin{aligned}
P & =P^{*} \cap R=P^{*} \cap R_{k} \cap R=P_{0} \cap R \\
& =Q_{0} \cap R=Q^{*} \cap R_{k} \cap R=Q^{*} \cap R=Q,
\end{aligned}
$$

which finishes the proof.
The following example shows that the assumption on the characteristic in Proposition (b) (ii) cannot be omitted.

Example 3.4. Let $K:=(\mathbb{Z} / 2 \mathbb{Z})(s, t)$ with indeterminates s, t and

$$
R:=K\left[X_{0}, X_{1}, X_{2}\right] .
$$

Furthermore, let $f_{1}=X_{1}^{2}+s X_{0}^{2}, f_{2}=X_{2}^{2}+t X_{0}^{2}$ and $P:=\left(f_{1}, f_{2}\right) R$. Then P is a homogeneous prime ideal in R. If we set

$$
\begin{aligned}
& S:=R\left[u_{0}, u_{1}, u_{2}\right], \\
& F:=u_{0} X_{0}+u_{1} X_{1}+u_{2} X_{2}, \\
& \tilde{F}:=u_{0} X_{1} X_{2}+u_{1} X_{0} X_{2}+u_{2} t X_{0} X_{1} \text { and } \\
& f:=u_{0}^{2}+s u_{1}^{2}+t u_{2}^{2},
\end{aligned}
$$

then we have

$$
P S+F S=\left(f_{1}, f_{2}, F, \tilde{F}, f\right) S \cap\left(X_{0}^{2}, X_{1}^{2}, X_{2}^{2}, X_{0} X_{1} X_{2}, F\right) S
$$

where $\left(X_{0}^{2}, X_{1}^{2}, X_{2}^{2}, X_{0} X_{1} X_{2}, F\right) S$ is $\left(X_{0}, X_{1}, X_{2}\right) S$-primary.
Therefore, $P^{*}=\left(f_{1}, f_{2}, F, \tilde{F}, f\right) S$ and $f_{P}=f$, i.e., $\operatorname{deg} f_{P}=2<4=h_{0}(R / P)$.

References

1. Achilles R., Stückrad J., Generic residual intersections and intersection numbers of movable components, in preparation.
2. Cayley A., On a new analytical representation of curves in space, Quarterly J. of Pure and Appl. Math., 3 (1860), 225-236.
3. Cayley A., On a new analytical representation of curves in space, Quarterly J. of Pure and Appl. Math., 5 (1862), 81-86.
4. Chow W.-L., van der Waerden B. L., Zur algebraischen Geometrie. IX. Über zugeordnete Formen und algebraische Systeme von algebraischen Mannigfaltigkeiten, Math. Ann., 113 (1937), 692-704.
5. Dalbec J., Sturmfels B., Introduction to Chow forms, in: N. L. White (ed.), Invariant Methods in Discrete and Computational Geometry, Kluwer Academic Publishers, 1995, 37-58.
6. Flenner H., O'Carroll L., Vogel W., Joins and intersections, Springer Monographs in Mathematics, Springer-Verlag, Berlin-New York, 1999.
7. Gel'fand I. M., Kapranov M. M., Zelevinsky A. V., Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston-Basel-Stuttgart, 1994.
8. Stückrad J., Vogel W., An algebraic approach to the intersection theory, The Curves Seminar at Queen's University, Vol. II, (Kingston, Ontario, Canada), Queen's papers pure appl. math., 61, Kingston, Ontario, Canada, 1982, 1-32.
9. Trung N. V., Über die Übertragung der Ringeigenschaften zwischen R und $R(u) /(F)$, Math. Nachr., 92 (1979), 215-229.
Received January 30, 2007
Dipartimento di Matematica Università di Bologna
Piazza di Porta S. Donato, 5
I-40126 Bologna
Italy
e-mail: achilles@dm.unibo.it
Mathematisches Institut
Universität Leipzig
Augustusplatz 10-11
D-04109 Leipzig
Germany
e-mail: stueckrad@mathematik.uni-leipzig.de
